MAINTAINERS: Add myself as streams maintainer
[qemu/ar7.git] / target / arm / neon_helper.c
blob448be93fa12306080b3aa1f1490bd5ab5861fff5
1 /*
2 * ARM NEON vector operations.
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GNU GPL v2.
8 */
9 #include "qemu/osdep.h"
11 #include "cpu.h"
12 #include "exec/helper-proto.h"
13 #include "fpu/softfloat.h"
15 #define SIGNBIT (uint32_t)0x80000000
16 #define SIGNBIT64 ((uint64_t)1 << 63)
18 #define SET_QC() env->vfp.qc[0] = 1
20 #define NEON_TYPE1(name, type) \
21 typedef struct \
22 { \
23 type v1; \
24 } neon_##name;
25 #ifdef HOST_WORDS_BIGENDIAN
26 #define NEON_TYPE2(name, type) \
27 typedef struct \
28 { \
29 type v2; \
30 type v1; \
31 } neon_##name;
32 #define NEON_TYPE4(name, type) \
33 typedef struct \
34 { \
35 type v4; \
36 type v3; \
37 type v2; \
38 type v1; \
39 } neon_##name;
40 #else
41 #define NEON_TYPE2(name, type) \
42 typedef struct \
43 { \
44 type v1; \
45 type v2; \
46 } neon_##name;
47 #define NEON_TYPE4(name, type) \
48 typedef struct \
49 { \
50 type v1; \
51 type v2; \
52 type v3; \
53 type v4; \
54 } neon_##name;
55 #endif
57 NEON_TYPE4(s8, int8_t)
58 NEON_TYPE4(u8, uint8_t)
59 NEON_TYPE2(s16, int16_t)
60 NEON_TYPE2(u16, uint16_t)
61 NEON_TYPE1(s32, int32_t)
62 NEON_TYPE1(u32, uint32_t)
63 #undef NEON_TYPE4
64 #undef NEON_TYPE2
65 #undef NEON_TYPE1
67 /* Copy from a uint32_t to a vector structure type. */
68 #define NEON_UNPACK(vtype, dest, val) do { \
69 union { \
70 vtype v; \
71 uint32_t i; \
72 } conv_u; \
73 conv_u.i = (val); \
74 dest = conv_u.v; \
75 } while(0)
77 /* Copy from a vector structure type to a uint32_t. */
78 #define NEON_PACK(vtype, dest, val) do { \
79 union { \
80 vtype v; \
81 uint32_t i; \
82 } conv_u; \
83 conv_u.v = (val); \
84 dest = conv_u.i; \
85 } while(0)
87 #define NEON_DO1 \
88 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
89 #define NEON_DO2 \
90 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
91 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
92 #define NEON_DO4 \
93 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
94 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
95 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
96 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
98 #define NEON_VOP_BODY(vtype, n) \
99 { \
100 uint32_t res; \
101 vtype vsrc1; \
102 vtype vsrc2; \
103 vtype vdest; \
104 NEON_UNPACK(vtype, vsrc1, arg1); \
105 NEON_UNPACK(vtype, vsrc2, arg2); \
106 NEON_DO##n; \
107 NEON_PACK(vtype, res, vdest); \
108 return res; \
111 #define NEON_VOP(name, vtype, n) \
112 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
113 NEON_VOP_BODY(vtype, n)
115 #define NEON_VOP_ENV(name, vtype, n) \
116 uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
117 NEON_VOP_BODY(vtype, n)
119 /* Pairwise operations. */
120 /* For 32-bit elements each segment only contains a single element, so
121 the elementwise and pairwise operations are the same. */
122 #define NEON_PDO2 \
123 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
124 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
125 #define NEON_PDO4 \
126 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
127 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
128 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
129 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
131 #define NEON_POP(name, vtype, n) \
132 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
134 uint32_t res; \
135 vtype vsrc1; \
136 vtype vsrc2; \
137 vtype vdest; \
138 NEON_UNPACK(vtype, vsrc1, arg1); \
139 NEON_UNPACK(vtype, vsrc2, arg2); \
140 NEON_PDO##n; \
141 NEON_PACK(vtype, res, vdest); \
142 return res; \
145 /* Unary operators. */
146 #define NEON_VOP1(name, vtype, n) \
147 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
149 vtype vsrc1; \
150 vtype vdest; \
151 NEON_UNPACK(vtype, vsrc1, arg); \
152 NEON_DO##n; \
153 NEON_PACK(vtype, arg, vdest); \
154 return arg; \
158 #define NEON_USAT(dest, src1, src2, type) do { \
159 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
160 if (tmp != (type)tmp) { \
161 SET_QC(); \
162 dest = ~0; \
163 } else { \
164 dest = tmp; \
165 }} while(0)
166 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
167 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
168 #undef NEON_FN
169 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
170 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
171 #undef NEON_FN
172 #undef NEON_USAT
174 uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
176 uint32_t res = a + b;
177 if (res < a) {
178 SET_QC();
179 res = ~0;
181 return res;
184 uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
186 uint64_t res;
188 res = src1 + src2;
189 if (res < src1) {
190 SET_QC();
191 res = ~(uint64_t)0;
193 return res;
196 #define NEON_SSAT(dest, src1, src2, type) do { \
197 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
198 if (tmp != (type)tmp) { \
199 SET_QC(); \
200 if (src2 > 0) { \
201 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
202 } else { \
203 tmp = 1 << (sizeof(type) * 8 - 1); \
206 dest = tmp; \
207 } while(0)
208 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
209 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
210 #undef NEON_FN
211 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
212 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
213 #undef NEON_FN
214 #undef NEON_SSAT
216 uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
218 uint32_t res = a + b;
219 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
220 SET_QC();
221 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
223 return res;
226 uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
228 uint64_t res;
230 res = src1 + src2;
231 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
232 SET_QC();
233 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
235 return res;
238 /* Unsigned saturating accumulate of signed value
240 * Op1/Rn is treated as signed
241 * Op2/Rd is treated as unsigned
243 * Explicit casting is used to ensure the correct sign extension of
244 * inputs. The result is treated as a unsigned value and saturated as such.
246 * We use a macro for the 8/16 bit cases which expects signed integers of va,
247 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
250 #define USATACC(bits, shift) \
251 do { \
252 va = sextract32(a, shift, bits); \
253 vb = extract32(b, shift, bits); \
254 vr = va + vb; \
255 if (vr > UINT##bits##_MAX) { \
256 SET_QC(); \
257 vr = UINT##bits##_MAX; \
258 } else if (vr < 0) { \
259 SET_QC(); \
260 vr = 0; \
262 r = deposit32(r, shift, bits, vr); \
263 } while (0)
265 uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
267 int16_t va, vb, vr;
268 uint32_t r = 0;
270 USATACC(8, 0);
271 USATACC(8, 8);
272 USATACC(8, 16);
273 USATACC(8, 24);
274 return r;
277 uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
279 int32_t va, vb, vr;
280 uint64_t r = 0;
282 USATACC(16, 0);
283 USATACC(16, 16);
284 return r;
287 #undef USATACC
289 uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
291 int64_t va = (int32_t)a;
292 int64_t vb = (uint32_t)b;
293 int64_t vr = va + vb;
294 if (vr > UINT32_MAX) {
295 SET_QC();
296 vr = UINT32_MAX;
297 } else if (vr < 0) {
298 SET_QC();
299 vr = 0;
301 return vr;
304 uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
306 uint64_t res;
307 res = a + b;
308 /* We only need to look at the pattern of SIGN bits to detect
309 * +ve/-ve saturation
311 if (~a & b & ~res & SIGNBIT64) {
312 SET_QC();
313 res = UINT64_MAX;
314 } else if (a & ~b & res & SIGNBIT64) {
315 SET_QC();
316 res = 0;
318 return res;
321 /* Signed saturating accumulate of unsigned value
323 * Op1/Rn is treated as unsigned
324 * Op2/Rd is treated as signed
326 * The result is treated as a signed value and saturated as such
328 * We use a macro for the 8/16 bit cases which expects signed integers of va,
329 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
332 #define SSATACC(bits, shift) \
333 do { \
334 va = extract32(a, shift, bits); \
335 vb = sextract32(b, shift, bits); \
336 vr = va + vb; \
337 if (vr > INT##bits##_MAX) { \
338 SET_QC(); \
339 vr = INT##bits##_MAX; \
340 } else if (vr < INT##bits##_MIN) { \
341 SET_QC(); \
342 vr = INT##bits##_MIN; \
344 r = deposit32(r, shift, bits, vr); \
345 } while (0)
347 uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
349 int16_t va, vb, vr;
350 uint32_t r = 0;
352 SSATACC(8, 0);
353 SSATACC(8, 8);
354 SSATACC(8, 16);
355 SSATACC(8, 24);
356 return r;
359 uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
361 int32_t va, vb, vr;
362 uint32_t r = 0;
364 SSATACC(16, 0);
365 SSATACC(16, 16);
367 return r;
370 #undef SSATACC
372 uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
374 int64_t res;
375 int64_t op1 = (uint32_t)a;
376 int64_t op2 = (int32_t)b;
377 res = op1 + op2;
378 if (res > INT32_MAX) {
379 SET_QC();
380 res = INT32_MAX;
381 } else if (res < INT32_MIN) {
382 SET_QC();
383 res = INT32_MIN;
385 return res;
388 uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
390 uint64_t res;
391 res = a + b;
392 /* We only need to look at the pattern of SIGN bits to detect an overflow */
393 if (((a & res)
394 | (~b & res)
395 | (a & ~b)) & SIGNBIT64) {
396 SET_QC();
397 res = INT64_MAX;
399 return res;
403 #define NEON_USAT(dest, src1, src2, type) do { \
404 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
405 if (tmp != (type)tmp) { \
406 SET_QC(); \
407 dest = 0; \
408 } else { \
409 dest = tmp; \
410 }} while(0)
411 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
412 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
413 #undef NEON_FN
414 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
415 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
416 #undef NEON_FN
417 #undef NEON_USAT
419 uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
421 uint32_t res = a - b;
422 if (res > a) {
423 SET_QC();
424 res = 0;
426 return res;
429 uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
431 uint64_t res;
433 if (src1 < src2) {
434 SET_QC();
435 res = 0;
436 } else {
437 res = src1 - src2;
439 return res;
442 #define NEON_SSAT(dest, src1, src2, type) do { \
443 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
444 if (tmp != (type)tmp) { \
445 SET_QC(); \
446 if (src2 < 0) { \
447 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
448 } else { \
449 tmp = 1 << (sizeof(type) * 8 - 1); \
452 dest = tmp; \
453 } while(0)
454 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
455 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
456 #undef NEON_FN
457 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
458 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
459 #undef NEON_FN
460 #undef NEON_SSAT
462 uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
464 uint32_t res = a - b;
465 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
466 SET_QC();
467 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
469 return res;
472 uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
474 uint64_t res;
476 res = src1 - src2;
477 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
478 SET_QC();
479 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
481 return res;
484 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
485 NEON_VOP(hadd_s8, neon_s8, 4)
486 NEON_VOP(hadd_u8, neon_u8, 4)
487 NEON_VOP(hadd_s16, neon_s16, 2)
488 NEON_VOP(hadd_u16, neon_u16, 2)
489 #undef NEON_FN
491 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
493 int32_t dest;
495 dest = (src1 >> 1) + (src2 >> 1);
496 if (src1 & src2 & 1)
497 dest++;
498 return dest;
501 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
503 uint32_t dest;
505 dest = (src1 >> 1) + (src2 >> 1);
506 if (src1 & src2 & 1)
507 dest++;
508 return dest;
511 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
512 NEON_VOP(rhadd_s8, neon_s8, 4)
513 NEON_VOP(rhadd_u8, neon_u8, 4)
514 NEON_VOP(rhadd_s16, neon_s16, 2)
515 NEON_VOP(rhadd_u16, neon_u16, 2)
516 #undef NEON_FN
518 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
520 int32_t dest;
522 dest = (src1 >> 1) + (src2 >> 1);
523 if ((src1 | src2) & 1)
524 dest++;
525 return dest;
528 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
530 uint32_t dest;
532 dest = (src1 >> 1) + (src2 >> 1);
533 if ((src1 | src2) & 1)
534 dest++;
535 return dest;
538 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
539 NEON_VOP(hsub_s8, neon_s8, 4)
540 NEON_VOP(hsub_u8, neon_u8, 4)
541 NEON_VOP(hsub_s16, neon_s16, 2)
542 NEON_VOP(hsub_u16, neon_u16, 2)
543 #undef NEON_FN
545 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
547 int32_t dest;
549 dest = (src1 >> 1) - (src2 >> 1);
550 if ((~src1) & src2 & 1)
551 dest--;
552 return dest;
555 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
557 uint32_t dest;
559 dest = (src1 >> 1) - (src2 >> 1);
560 if ((~src1) & src2 & 1)
561 dest--;
562 return dest;
565 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
566 NEON_POP(pmin_s8, neon_s8, 4)
567 NEON_POP(pmin_u8, neon_u8, 4)
568 NEON_POP(pmin_s16, neon_s16, 2)
569 NEON_POP(pmin_u16, neon_u16, 2)
570 #undef NEON_FN
572 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
573 NEON_POP(pmax_s8, neon_s8, 4)
574 NEON_POP(pmax_u8, neon_u8, 4)
575 NEON_POP(pmax_s16, neon_s16, 2)
576 NEON_POP(pmax_u16, neon_u16, 2)
577 #undef NEON_FN
579 #define NEON_FN(dest, src1, src2) \
580 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
581 NEON_VOP(abd_s8, neon_s8, 4)
582 NEON_VOP(abd_u8, neon_u8, 4)
583 NEON_VOP(abd_s16, neon_s16, 2)
584 NEON_VOP(abd_u16, neon_u16, 2)
585 NEON_VOP(abd_s32, neon_s32, 1)
586 NEON_VOP(abd_u32, neon_u32, 1)
587 #undef NEON_FN
589 #define NEON_FN(dest, src1, src2) do { \
590 int8_t tmp; \
591 tmp = (int8_t)src2; \
592 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
593 tmp <= -(ssize_t)sizeof(src1) * 8) { \
594 dest = 0; \
595 } else if (tmp < 0) { \
596 dest = src1 >> -tmp; \
597 } else { \
598 dest = src1 << tmp; \
599 }} while (0)
600 NEON_VOP(shl_u16, neon_u16, 2)
601 #undef NEON_FN
603 #define NEON_FN(dest, src1, src2) do { \
604 int8_t tmp; \
605 tmp = (int8_t)src2; \
606 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
607 dest = 0; \
608 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
609 dest = src1 >> (sizeof(src1) * 8 - 1); \
610 } else if (tmp < 0) { \
611 dest = src1 >> -tmp; \
612 } else { \
613 dest = src1 << tmp; \
614 }} while (0)
615 NEON_VOP(shl_s16, neon_s16, 2)
616 #undef NEON_FN
618 #define NEON_FN(dest, src1, src2) do { \
619 int8_t tmp; \
620 tmp = (int8_t)src2; \
621 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
622 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
623 dest = 0; \
624 } else if (tmp < 0) { \
625 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
626 } else { \
627 dest = src1 << tmp; \
628 }} while (0)
629 NEON_VOP(rshl_s8, neon_s8, 4)
630 NEON_VOP(rshl_s16, neon_s16, 2)
631 #undef NEON_FN
633 /* The addition of the rounding constant may overflow, so we use an
634 * intermediate 64 bit accumulator. */
635 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
637 int32_t dest;
638 int32_t val = (int32_t)valop;
639 int8_t shift = (int8_t)shiftop;
640 if ((shift >= 32) || (shift <= -32)) {
641 dest = 0;
642 } else if (shift < 0) {
643 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
644 dest = big_dest >> -shift;
645 } else {
646 dest = val << shift;
648 return dest;
651 /* Handling addition overflow with 64 bit input values is more
652 * tricky than with 32 bit values. */
653 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
655 int8_t shift = (int8_t)shiftop;
656 int64_t val = valop;
657 if ((shift >= 64) || (shift <= -64)) {
658 val = 0;
659 } else if (shift < 0) {
660 val >>= (-shift - 1);
661 if (val == INT64_MAX) {
662 /* In this case, it means that the rounding constant is 1,
663 * and the addition would overflow. Return the actual
664 * result directly. */
665 val = 0x4000000000000000LL;
666 } else {
667 val++;
668 val >>= 1;
670 } else {
671 val <<= shift;
673 return val;
676 #define NEON_FN(dest, src1, src2) do { \
677 int8_t tmp; \
678 tmp = (int8_t)src2; \
679 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
680 tmp < -(ssize_t)sizeof(src1) * 8) { \
681 dest = 0; \
682 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
683 dest = src1 >> (-tmp - 1); \
684 } else if (tmp < 0) { \
685 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
686 } else { \
687 dest = src1 << tmp; \
688 }} while (0)
689 NEON_VOP(rshl_u8, neon_u8, 4)
690 NEON_VOP(rshl_u16, neon_u16, 2)
691 #undef NEON_FN
693 /* The addition of the rounding constant may overflow, so we use an
694 * intermediate 64 bit accumulator. */
695 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
697 uint32_t dest;
698 int8_t shift = (int8_t)shiftop;
699 if (shift >= 32 || shift < -32) {
700 dest = 0;
701 } else if (shift == -32) {
702 dest = val >> 31;
703 } else if (shift < 0) {
704 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
705 dest = big_dest >> -shift;
706 } else {
707 dest = val << shift;
709 return dest;
712 /* Handling addition overflow with 64 bit input values is more
713 * tricky than with 32 bit values. */
714 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
716 int8_t shift = (uint8_t)shiftop;
717 if (shift >= 64 || shift < -64) {
718 val = 0;
719 } else if (shift == -64) {
720 /* Rounding a 1-bit result just preserves that bit. */
721 val >>= 63;
722 } else if (shift < 0) {
723 val >>= (-shift - 1);
724 if (val == UINT64_MAX) {
725 /* In this case, it means that the rounding constant is 1,
726 * and the addition would overflow. Return the actual
727 * result directly. */
728 val = 0x8000000000000000ULL;
729 } else {
730 val++;
731 val >>= 1;
733 } else {
734 val <<= shift;
736 return val;
739 #define NEON_FN(dest, src1, src2) do { \
740 int8_t tmp; \
741 tmp = (int8_t)src2; \
742 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
743 if (src1) { \
744 SET_QC(); \
745 dest = ~0; \
746 } else { \
747 dest = 0; \
749 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
750 dest = 0; \
751 } else if (tmp < 0) { \
752 dest = src1 >> -tmp; \
753 } else { \
754 dest = src1 << tmp; \
755 if ((dest >> tmp) != src1) { \
756 SET_QC(); \
757 dest = ~0; \
759 }} while (0)
760 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
761 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
762 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
763 #undef NEON_FN
765 uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
767 int8_t shift = (int8_t)shiftop;
768 if (shift >= 64) {
769 if (val) {
770 val = ~(uint64_t)0;
771 SET_QC();
773 } else if (shift <= -64) {
774 val = 0;
775 } else if (shift < 0) {
776 val >>= -shift;
777 } else {
778 uint64_t tmp = val;
779 val <<= shift;
780 if ((val >> shift) != tmp) {
781 SET_QC();
782 val = ~(uint64_t)0;
785 return val;
788 #define NEON_FN(dest, src1, src2) do { \
789 int8_t tmp; \
790 tmp = (int8_t)src2; \
791 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
792 if (src1) { \
793 SET_QC(); \
794 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
795 if (src1 > 0) { \
796 dest--; \
798 } else { \
799 dest = src1; \
801 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
802 dest = src1 >> 31; \
803 } else if (tmp < 0) { \
804 dest = src1 >> -tmp; \
805 } else { \
806 dest = src1 << tmp; \
807 if ((dest >> tmp) != src1) { \
808 SET_QC(); \
809 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
810 if (src1 > 0) { \
811 dest--; \
814 }} while (0)
815 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
816 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
817 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
818 #undef NEON_FN
820 uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
822 int8_t shift = (uint8_t)shiftop;
823 int64_t val = valop;
824 if (shift >= 64) {
825 if (val) {
826 SET_QC();
827 val = (val >> 63) ^ ~SIGNBIT64;
829 } else if (shift <= -64) {
830 val >>= 63;
831 } else if (shift < 0) {
832 val >>= -shift;
833 } else {
834 int64_t tmp = val;
835 val <<= shift;
836 if ((val >> shift) != tmp) {
837 SET_QC();
838 val = (tmp >> 63) ^ ~SIGNBIT64;
841 return val;
844 #define NEON_FN(dest, src1, src2) do { \
845 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
846 SET_QC(); \
847 dest = 0; \
848 } else { \
849 int8_t tmp; \
850 tmp = (int8_t)src2; \
851 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
852 if (src1) { \
853 SET_QC(); \
854 dest = ~0; \
855 } else { \
856 dest = 0; \
858 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
859 dest = 0; \
860 } else if (tmp < 0) { \
861 dest = src1 >> -tmp; \
862 } else { \
863 dest = src1 << tmp; \
864 if ((dest >> tmp) != src1) { \
865 SET_QC(); \
866 dest = ~0; \
869 }} while (0)
870 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
871 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
872 #undef NEON_FN
874 uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
876 if ((int32_t)valop < 0) {
877 SET_QC();
878 return 0;
880 return helper_neon_qshl_u32(env, valop, shiftop);
883 uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
885 if ((int64_t)valop < 0) {
886 SET_QC();
887 return 0;
889 return helper_neon_qshl_u64(env, valop, shiftop);
892 #define NEON_FN(dest, src1, src2) do { \
893 int8_t tmp; \
894 tmp = (int8_t)src2; \
895 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
896 if (src1) { \
897 SET_QC(); \
898 dest = ~0; \
899 } else { \
900 dest = 0; \
902 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
903 dest = 0; \
904 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
905 dest = src1 >> (sizeof(src1) * 8 - 1); \
906 } else if (tmp < 0) { \
907 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
908 } else { \
909 dest = src1 << tmp; \
910 if ((dest >> tmp) != src1) { \
911 SET_QC(); \
912 dest = ~0; \
914 }} while (0)
915 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
916 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
917 #undef NEON_FN
919 /* The addition of the rounding constant may overflow, so we use an
920 * intermediate 64 bit accumulator. */
921 uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
923 uint32_t dest;
924 int8_t shift = (int8_t)shiftop;
925 if (shift >= 32) {
926 if (val) {
927 SET_QC();
928 dest = ~0;
929 } else {
930 dest = 0;
932 } else if (shift < -32) {
933 dest = 0;
934 } else if (shift == -32) {
935 dest = val >> 31;
936 } else if (shift < 0) {
937 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
938 dest = big_dest >> -shift;
939 } else {
940 dest = val << shift;
941 if ((dest >> shift) != val) {
942 SET_QC();
943 dest = ~0;
946 return dest;
949 /* Handling addition overflow with 64 bit input values is more
950 * tricky than with 32 bit values. */
951 uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
953 int8_t shift = (int8_t)shiftop;
954 if (shift >= 64) {
955 if (val) {
956 SET_QC();
957 val = ~0;
959 } else if (shift < -64) {
960 val = 0;
961 } else if (shift == -64) {
962 val >>= 63;
963 } else if (shift < 0) {
964 val >>= (-shift - 1);
965 if (val == UINT64_MAX) {
966 /* In this case, it means that the rounding constant is 1,
967 * and the addition would overflow. Return the actual
968 * result directly. */
969 val = 0x8000000000000000ULL;
970 } else {
971 val++;
972 val >>= 1;
974 } else { \
975 uint64_t tmp = val;
976 val <<= shift;
977 if ((val >> shift) != tmp) {
978 SET_QC();
979 val = ~0;
982 return val;
985 #define NEON_FN(dest, src1, src2) do { \
986 int8_t tmp; \
987 tmp = (int8_t)src2; \
988 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
989 if (src1) { \
990 SET_QC(); \
991 dest = (typeof(dest))(1 << (sizeof(src1) * 8 - 1)); \
992 if (src1 > 0) { \
993 dest--; \
995 } else { \
996 dest = 0; \
998 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
999 dest = 0; \
1000 } else if (tmp < 0) { \
1001 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
1002 } else { \
1003 dest = src1 << tmp; \
1004 if ((dest >> tmp) != src1) { \
1005 SET_QC(); \
1006 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
1007 if (src1 > 0) { \
1008 dest--; \
1011 }} while (0)
1012 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
1013 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
1014 #undef NEON_FN
1016 /* The addition of the rounding constant may overflow, so we use an
1017 * intermediate 64 bit accumulator. */
1018 uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
1020 int32_t dest;
1021 int32_t val = (int32_t)valop;
1022 int8_t shift = (int8_t)shiftop;
1023 if (shift >= 32) {
1024 if (val) {
1025 SET_QC();
1026 dest = (val >> 31) ^ ~SIGNBIT;
1027 } else {
1028 dest = 0;
1030 } else if (shift <= -32) {
1031 dest = 0;
1032 } else if (shift < 0) {
1033 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
1034 dest = big_dest >> -shift;
1035 } else {
1036 dest = val << shift;
1037 if ((dest >> shift) != val) {
1038 SET_QC();
1039 dest = (val >> 31) ^ ~SIGNBIT;
1042 return dest;
1045 /* Handling addition overflow with 64 bit input values is more
1046 * tricky than with 32 bit values. */
1047 uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
1049 int8_t shift = (uint8_t)shiftop;
1050 int64_t val = valop;
1052 if (shift >= 64) {
1053 if (val) {
1054 SET_QC();
1055 val = (val >> 63) ^ ~SIGNBIT64;
1057 } else if (shift <= -64) {
1058 val = 0;
1059 } else if (shift < 0) {
1060 val >>= (-shift - 1);
1061 if (val == INT64_MAX) {
1062 /* In this case, it means that the rounding constant is 1,
1063 * and the addition would overflow. Return the actual
1064 * result directly. */
1065 val = 0x4000000000000000ULL;
1066 } else {
1067 val++;
1068 val >>= 1;
1070 } else {
1071 int64_t tmp = val;
1072 val <<= shift;
1073 if ((val >> shift) != tmp) {
1074 SET_QC();
1075 val = (tmp >> 63) ^ ~SIGNBIT64;
1078 return val;
1081 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
1083 uint32_t mask;
1084 mask = (a ^ b) & 0x80808080u;
1085 a &= ~0x80808080u;
1086 b &= ~0x80808080u;
1087 return (a + b) ^ mask;
1090 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
1092 uint32_t mask;
1093 mask = (a ^ b) & 0x80008000u;
1094 a &= ~0x80008000u;
1095 b &= ~0x80008000u;
1096 return (a + b) ^ mask;
1099 #define NEON_FN(dest, src1, src2) dest = src1 + src2
1100 NEON_POP(padd_u8, neon_u8, 4)
1101 NEON_POP(padd_u16, neon_u16, 2)
1102 #undef NEON_FN
1104 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1105 NEON_VOP(sub_u8, neon_u8, 4)
1106 NEON_VOP(sub_u16, neon_u16, 2)
1107 #undef NEON_FN
1109 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1110 NEON_VOP(mul_u8, neon_u8, 4)
1111 NEON_VOP(mul_u16, neon_u16, 2)
1112 #undef NEON_FN
1114 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1115 NEON_VOP(tst_u8, neon_u8, 4)
1116 NEON_VOP(tst_u16, neon_u16, 2)
1117 NEON_VOP(tst_u32, neon_u32, 1)
1118 #undef NEON_FN
1120 /* Count Leading Sign/Zero Bits. */
1121 static inline int do_clz8(uint8_t x)
1123 int n;
1124 for (n = 8; x; n--)
1125 x >>= 1;
1126 return n;
1129 static inline int do_clz16(uint16_t x)
1131 int n;
1132 for (n = 16; x; n--)
1133 x >>= 1;
1134 return n;
1137 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1138 NEON_VOP1(clz_u8, neon_u8, 4)
1139 #undef NEON_FN
1141 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1142 NEON_VOP1(clz_u16, neon_u16, 2)
1143 #undef NEON_FN
1145 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1146 NEON_VOP1(cls_s8, neon_s8, 4)
1147 #undef NEON_FN
1149 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1150 NEON_VOP1(cls_s16, neon_s16, 2)
1151 #undef NEON_FN
1153 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1155 int count;
1156 if ((int32_t)x < 0)
1157 x = ~x;
1158 for (count = 32; x; count--)
1159 x = x >> 1;
1160 return count - 1;
1163 /* Bit count. */
1164 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1166 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1167 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1168 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1169 return x;
1172 /* Reverse bits in each 8 bit word */
1173 uint32_t HELPER(neon_rbit_u8)(uint32_t x)
1175 x = ((x & 0xf0f0f0f0) >> 4)
1176 | ((x & 0x0f0f0f0f) << 4);
1177 x = ((x & 0x88888888) >> 3)
1178 | ((x & 0x44444444) >> 1)
1179 | ((x & 0x22222222) << 1)
1180 | ((x & 0x11111111) << 3);
1181 return x;
1184 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1185 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1186 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1187 SET_QC(); \
1188 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1189 } else { \
1190 tmp <<= 1; \
1192 if (round) { \
1193 int32_t old = tmp; \
1194 tmp += 1 << 15; \
1195 if ((int32_t)tmp < old) { \
1196 SET_QC(); \
1197 tmp = SIGNBIT - 1; \
1200 dest = tmp >> 16; \
1201 } while(0)
1202 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1203 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1204 #undef NEON_FN
1205 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1206 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1207 #undef NEON_FN
1208 #undef NEON_QDMULH16
1210 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1211 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1212 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1213 SET_QC(); \
1214 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1215 } else { \
1216 tmp <<= 1; \
1218 if (round) { \
1219 int64_t old = tmp; \
1220 tmp += (int64_t)1 << 31; \
1221 if ((int64_t)tmp < old) { \
1222 SET_QC(); \
1223 tmp = SIGNBIT64 - 1; \
1226 dest = tmp >> 32; \
1227 } while(0)
1228 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1229 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1230 #undef NEON_FN
1231 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1232 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1233 #undef NEON_FN
1234 #undef NEON_QDMULH32
1236 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1238 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1239 | ((x >> 24) & 0xff000000u);
1242 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1244 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1247 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1249 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1250 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1253 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1255 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1258 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1260 x &= 0xff80ff80ff80ff80ull;
1261 x += 0x0080008000800080ull;
1262 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1263 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1266 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1268 x &= 0xffff8000ffff8000ull;
1269 x += 0x0000800000008000ull;
1270 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1273 uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1275 uint16_t s;
1276 uint8_t d;
1277 uint32_t res = 0;
1278 #define SAT8(n) \
1279 s = x >> n; \
1280 if (s & 0x8000) { \
1281 SET_QC(); \
1282 } else { \
1283 if (s > 0xff) { \
1284 d = 0xff; \
1285 SET_QC(); \
1286 } else { \
1287 d = s; \
1289 res |= (uint32_t)d << (n / 2); \
1292 SAT8(0);
1293 SAT8(16);
1294 SAT8(32);
1295 SAT8(48);
1296 #undef SAT8
1297 return res;
1300 uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1302 uint16_t s;
1303 uint8_t d;
1304 uint32_t res = 0;
1305 #define SAT8(n) \
1306 s = x >> n; \
1307 if (s > 0xff) { \
1308 d = 0xff; \
1309 SET_QC(); \
1310 } else { \
1311 d = s; \
1313 res |= (uint32_t)d << (n / 2);
1315 SAT8(0);
1316 SAT8(16);
1317 SAT8(32);
1318 SAT8(48);
1319 #undef SAT8
1320 return res;
1323 uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1325 int16_t s;
1326 uint8_t d;
1327 uint32_t res = 0;
1328 #define SAT8(n) \
1329 s = x >> n; \
1330 if (s != (int8_t)s) { \
1331 d = (s >> 15) ^ 0x7f; \
1332 SET_QC(); \
1333 } else { \
1334 d = s; \
1336 res |= (uint32_t)d << (n / 2);
1338 SAT8(0);
1339 SAT8(16);
1340 SAT8(32);
1341 SAT8(48);
1342 #undef SAT8
1343 return res;
1346 uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1348 uint32_t high;
1349 uint32_t low;
1350 low = x;
1351 if (low & 0x80000000) {
1352 low = 0;
1353 SET_QC();
1354 } else if (low > 0xffff) {
1355 low = 0xffff;
1356 SET_QC();
1358 high = x >> 32;
1359 if (high & 0x80000000) {
1360 high = 0;
1361 SET_QC();
1362 } else if (high > 0xffff) {
1363 high = 0xffff;
1364 SET_QC();
1366 return low | (high << 16);
1369 uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1371 uint32_t high;
1372 uint32_t low;
1373 low = x;
1374 if (low > 0xffff) {
1375 low = 0xffff;
1376 SET_QC();
1378 high = x >> 32;
1379 if (high > 0xffff) {
1380 high = 0xffff;
1381 SET_QC();
1383 return low | (high << 16);
1386 uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1388 int32_t low;
1389 int32_t high;
1390 low = x;
1391 if (low != (int16_t)low) {
1392 low = (low >> 31) ^ 0x7fff;
1393 SET_QC();
1395 high = x >> 32;
1396 if (high != (int16_t)high) {
1397 high = (high >> 31) ^ 0x7fff;
1398 SET_QC();
1400 return (uint16_t)low | (high << 16);
1403 uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1405 if (x & 0x8000000000000000ull) {
1406 SET_QC();
1407 return 0;
1409 if (x > 0xffffffffu) {
1410 SET_QC();
1411 return 0xffffffffu;
1413 return x;
1416 uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1418 if (x > 0xffffffffu) {
1419 SET_QC();
1420 return 0xffffffffu;
1422 return x;
1425 uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1427 if ((int64_t)x != (int32_t)x) {
1428 SET_QC();
1429 return ((int64_t)x >> 63) ^ 0x7fffffff;
1431 return x;
1434 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1436 uint64_t tmp;
1437 uint64_t ret;
1438 ret = (uint8_t)x;
1439 tmp = (uint8_t)(x >> 8);
1440 ret |= tmp << 16;
1441 tmp = (uint8_t)(x >> 16);
1442 ret |= tmp << 32;
1443 tmp = (uint8_t)(x >> 24);
1444 ret |= tmp << 48;
1445 return ret;
1448 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1450 uint64_t tmp;
1451 uint64_t ret;
1452 ret = (uint16_t)(int8_t)x;
1453 tmp = (uint16_t)(int8_t)(x >> 8);
1454 ret |= tmp << 16;
1455 tmp = (uint16_t)(int8_t)(x >> 16);
1456 ret |= tmp << 32;
1457 tmp = (uint16_t)(int8_t)(x >> 24);
1458 ret |= tmp << 48;
1459 return ret;
1462 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1464 uint64_t high = (uint16_t)(x >> 16);
1465 return ((uint16_t)x) | (high << 32);
1468 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1470 uint64_t high = (int16_t)(x >> 16);
1471 return ((uint32_t)(int16_t)x) | (high << 32);
1474 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1476 uint64_t mask;
1477 mask = (a ^ b) & 0x8000800080008000ull;
1478 a &= ~0x8000800080008000ull;
1479 b &= ~0x8000800080008000ull;
1480 return (a + b) ^ mask;
1483 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1485 uint64_t mask;
1486 mask = (a ^ b) & 0x8000000080000000ull;
1487 a &= ~0x8000000080000000ull;
1488 b &= ~0x8000000080000000ull;
1489 return (a + b) ^ mask;
1492 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1494 uint64_t tmp;
1495 uint64_t tmp2;
1497 tmp = a & 0x0000ffff0000ffffull;
1498 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1499 tmp2 = b & 0xffff0000ffff0000ull;
1500 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1501 return ( tmp & 0xffff)
1502 | ((tmp >> 16) & 0xffff0000ull)
1503 | ((tmp2 << 16) & 0xffff00000000ull)
1504 | ( tmp2 & 0xffff000000000000ull);
1507 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1509 uint32_t low = a + (a >> 32);
1510 uint32_t high = b + (b >> 32);
1511 return low + ((uint64_t)high << 32);
1514 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1516 uint64_t mask;
1517 mask = (a ^ ~b) & 0x8000800080008000ull;
1518 a |= 0x8000800080008000ull;
1519 b &= ~0x8000800080008000ull;
1520 return (a - b) ^ mask;
1523 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1525 uint64_t mask;
1526 mask = (a ^ ~b) & 0x8000000080000000ull;
1527 a |= 0x8000000080000000ull;
1528 b &= ~0x8000000080000000ull;
1529 return (a - b) ^ mask;
1532 uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1534 uint32_t x, y;
1535 uint32_t low, high;
1537 x = a;
1538 y = b;
1539 low = x + y;
1540 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1541 SET_QC();
1542 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1544 x = a >> 32;
1545 y = b >> 32;
1546 high = x + y;
1547 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1548 SET_QC();
1549 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1551 return low | ((uint64_t)high << 32);
1554 uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1556 uint64_t result;
1558 result = a + b;
1559 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1560 SET_QC();
1561 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1563 return result;
1566 /* We have to do the arithmetic in a larger type than
1567 * the input type, because for example with a signed 32 bit
1568 * op the absolute difference can overflow a signed 32 bit value.
1570 #define DO_ABD(dest, x, y, intype, arithtype) do { \
1571 arithtype tmp_x = (intype)(x); \
1572 arithtype tmp_y = (intype)(y); \
1573 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1574 } while(0)
1576 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1578 uint64_t tmp;
1579 uint64_t result;
1580 DO_ABD(result, a, b, uint8_t, uint32_t);
1581 DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1582 result |= tmp << 16;
1583 DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1584 result |= tmp << 32;
1585 DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1586 result |= tmp << 48;
1587 return result;
1590 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1592 uint64_t tmp;
1593 uint64_t result;
1594 DO_ABD(result, a, b, int8_t, int32_t);
1595 DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1596 result |= tmp << 16;
1597 DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1598 result |= tmp << 32;
1599 DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1600 result |= tmp << 48;
1601 return result;
1604 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1606 uint64_t tmp;
1607 uint64_t result;
1608 DO_ABD(result, a, b, uint16_t, uint32_t);
1609 DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1610 return result | (tmp << 32);
1613 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1615 uint64_t tmp;
1616 uint64_t result;
1617 DO_ABD(result, a, b, int16_t, int32_t);
1618 DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1619 return result | (tmp << 32);
1622 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1624 uint64_t result;
1625 DO_ABD(result, a, b, uint32_t, uint64_t);
1626 return result;
1629 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1631 uint64_t result;
1632 DO_ABD(result, a, b, int32_t, int64_t);
1633 return result;
1635 #undef DO_ABD
1637 /* Widening multiply. Named type is the source type. */
1638 #define DO_MULL(dest, x, y, type1, type2) do { \
1639 type1 tmp_x = x; \
1640 type1 tmp_y = y; \
1641 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1642 } while(0)
1644 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1646 uint64_t tmp;
1647 uint64_t result;
1649 DO_MULL(result, a, b, uint8_t, uint16_t);
1650 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1651 result |= tmp << 16;
1652 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1653 result |= tmp << 32;
1654 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1655 result |= tmp << 48;
1656 return result;
1659 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1661 uint64_t tmp;
1662 uint64_t result;
1664 DO_MULL(result, a, b, int8_t, uint16_t);
1665 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1666 result |= tmp << 16;
1667 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1668 result |= tmp << 32;
1669 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1670 result |= tmp << 48;
1671 return result;
1674 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1676 uint64_t tmp;
1677 uint64_t result;
1679 DO_MULL(result, a, b, uint16_t, uint32_t);
1680 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1681 return result | (tmp << 32);
1684 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1686 uint64_t tmp;
1687 uint64_t result;
1689 DO_MULL(result, a, b, int16_t, uint32_t);
1690 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1691 return result | (tmp << 32);
1694 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1696 uint16_t tmp;
1697 uint64_t result;
1698 result = (uint16_t)-x;
1699 tmp = -(x >> 16);
1700 result |= (uint64_t)tmp << 16;
1701 tmp = -(x >> 32);
1702 result |= (uint64_t)tmp << 32;
1703 tmp = -(x >> 48);
1704 result |= (uint64_t)tmp << 48;
1705 return result;
1708 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1710 uint32_t low = -x;
1711 uint32_t high = -(x >> 32);
1712 return low | ((uint64_t)high << 32);
1715 /* Saturating sign manipulation. */
1716 /* ??? Make these use NEON_VOP1 */
1717 #define DO_QABS8(x) do { \
1718 if (x == (int8_t)0x80) { \
1719 x = 0x7f; \
1720 SET_QC(); \
1721 } else if (x < 0) { \
1722 x = -x; \
1723 }} while (0)
1724 uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1726 neon_s8 vec;
1727 NEON_UNPACK(neon_s8, vec, x);
1728 DO_QABS8(vec.v1);
1729 DO_QABS8(vec.v2);
1730 DO_QABS8(vec.v3);
1731 DO_QABS8(vec.v4);
1732 NEON_PACK(neon_s8, x, vec);
1733 return x;
1735 #undef DO_QABS8
1737 #define DO_QNEG8(x) do { \
1738 if (x == (int8_t)0x80) { \
1739 x = 0x7f; \
1740 SET_QC(); \
1741 } else { \
1742 x = -x; \
1743 }} while (0)
1744 uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1746 neon_s8 vec;
1747 NEON_UNPACK(neon_s8, vec, x);
1748 DO_QNEG8(vec.v1);
1749 DO_QNEG8(vec.v2);
1750 DO_QNEG8(vec.v3);
1751 DO_QNEG8(vec.v4);
1752 NEON_PACK(neon_s8, x, vec);
1753 return x;
1755 #undef DO_QNEG8
1757 #define DO_QABS16(x) do { \
1758 if (x == (int16_t)0x8000) { \
1759 x = 0x7fff; \
1760 SET_QC(); \
1761 } else if (x < 0) { \
1762 x = -x; \
1763 }} while (0)
1764 uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1766 neon_s16 vec;
1767 NEON_UNPACK(neon_s16, vec, x);
1768 DO_QABS16(vec.v1);
1769 DO_QABS16(vec.v2);
1770 NEON_PACK(neon_s16, x, vec);
1771 return x;
1773 #undef DO_QABS16
1775 #define DO_QNEG16(x) do { \
1776 if (x == (int16_t)0x8000) { \
1777 x = 0x7fff; \
1778 SET_QC(); \
1779 } else { \
1780 x = -x; \
1781 }} while (0)
1782 uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1784 neon_s16 vec;
1785 NEON_UNPACK(neon_s16, vec, x);
1786 DO_QNEG16(vec.v1);
1787 DO_QNEG16(vec.v2);
1788 NEON_PACK(neon_s16, x, vec);
1789 return x;
1791 #undef DO_QNEG16
1793 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1795 if (x == SIGNBIT) {
1796 SET_QC();
1797 x = ~SIGNBIT;
1798 } else if ((int32_t)x < 0) {
1799 x = -x;
1801 return x;
1804 uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1806 if (x == SIGNBIT) {
1807 SET_QC();
1808 x = ~SIGNBIT;
1809 } else {
1810 x = -x;
1812 return x;
1815 uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
1817 if (x == SIGNBIT64) {
1818 SET_QC();
1819 x = ~SIGNBIT64;
1820 } else if ((int64_t)x < 0) {
1821 x = -x;
1823 return x;
1826 uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
1828 if (x == SIGNBIT64) {
1829 SET_QC();
1830 x = ~SIGNBIT64;
1831 } else {
1832 x = -x;
1834 return x;
1837 /* NEON Float helpers. */
1838 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1840 float_status *fpst = fpstp;
1841 float32 f0 = make_float32(a);
1842 float32 f1 = make_float32(b);
1843 return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1846 /* Floating point comparisons produce an integer result.
1847 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1848 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1850 uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1852 float_status *fpst = fpstp;
1853 return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1856 uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1858 float_status *fpst = fpstp;
1859 return -float32_le(make_float32(b), make_float32(a), fpst);
1862 uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1864 float_status *fpst = fpstp;
1865 return -float32_lt(make_float32(b), make_float32(a), fpst);
1868 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1870 float_status *fpst = fpstp;
1871 float32 f0 = float32_abs(make_float32(a));
1872 float32 f1 = float32_abs(make_float32(b));
1873 return -float32_le(f1, f0, fpst);
1876 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1878 float_status *fpst = fpstp;
1879 float32 f0 = float32_abs(make_float32(a));
1880 float32 f1 = float32_abs(make_float32(b));
1881 return -float32_lt(f1, f0, fpst);
1884 uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
1886 float_status *fpst = fpstp;
1887 float64 f0 = float64_abs(make_float64(a));
1888 float64 f1 = float64_abs(make_float64(b));
1889 return -float64_le(f1, f0, fpst);
1892 uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
1894 float_status *fpst = fpstp;
1895 float64 f0 = float64_abs(make_float64(a));
1896 float64 f1 = float64_abs(make_float64(b));
1897 return -float64_lt(f1, f0, fpst);
1900 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1902 void HELPER(neon_qunzip8)(void *vd, void *vm)
1904 uint64_t *rd = vd, *rm = vm;
1905 uint64_t zd0 = rd[0], zd1 = rd[1];
1906 uint64_t zm0 = rm[0], zm1 = rm[1];
1908 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1909 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1910 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1911 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1912 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1913 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1914 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1915 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1916 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1917 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1918 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1919 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1920 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1921 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1922 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1923 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1925 rm[0] = m0;
1926 rm[1] = m1;
1927 rd[0] = d0;
1928 rd[1] = d1;
1931 void HELPER(neon_qunzip16)(void *vd, void *vm)
1933 uint64_t *rd = vd, *rm = vm;
1934 uint64_t zd0 = rd[0], zd1 = rd[1];
1935 uint64_t zm0 = rm[0], zm1 = rm[1];
1937 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1938 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1939 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1940 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1941 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1942 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1943 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1944 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1946 rm[0] = m0;
1947 rm[1] = m1;
1948 rd[0] = d0;
1949 rd[1] = d1;
1952 void HELPER(neon_qunzip32)(void *vd, void *vm)
1954 uint64_t *rd = vd, *rm = vm;
1955 uint64_t zd0 = rd[0], zd1 = rd[1];
1956 uint64_t zm0 = rm[0], zm1 = rm[1];
1958 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1959 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1960 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1961 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1963 rm[0] = m0;
1964 rm[1] = m1;
1965 rd[0] = d0;
1966 rd[1] = d1;
1969 void HELPER(neon_unzip8)(void *vd, void *vm)
1971 uint64_t *rd = vd, *rm = vm;
1972 uint64_t zd = rd[0], zm = rm[0];
1974 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1975 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1976 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1977 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1978 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1979 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1980 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1981 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1983 rm[0] = m0;
1984 rd[0] = d0;
1987 void HELPER(neon_unzip16)(void *vd, void *vm)
1989 uint64_t *rd = vd, *rm = vm;
1990 uint64_t zd = rd[0], zm = rm[0];
1992 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1993 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1994 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1995 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1997 rm[0] = m0;
1998 rd[0] = d0;
2001 void HELPER(neon_qzip8)(void *vd, void *vm)
2003 uint64_t *rd = vd, *rm = vm;
2004 uint64_t zd0 = rd[0], zd1 = rd[1];
2005 uint64_t zm0 = rm[0], zm1 = rm[1];
2007 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
2008 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
2009 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
2010 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
2011 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
2012 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
2013 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
2014 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
2015 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
2016 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
2017 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2018 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
2019 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
2020 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
2021 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
2022 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2024 rm[0] = m0;
2025 rm[1] = m1;
2026 rd[0] = d0;
2027 rd[1] = d1;
2030 void HELPER(neon_qzip16)(void *vd, void *vm)
2032 uint64_t *rd = vd, *rm = vm;
2033 uint64_t zd0 = rd[0], zd1 = rd[1];
2034 uint64_t zm0 = rm[0], zm1 = rm[1];
2036 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
2037 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
2038 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
2039 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
2040 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
2041 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
2042 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
2043 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2045 rm[0] = m0;
2046 rm[1] = m1;
2047 rd[0] = d0;
2048 rd[1] = d1;
2051 void HELPER(neon_qzip32)(void *vd, void *vm)
2053 uint64_t *rd = vd, *rm = vm;
2054 uint64_t zd0 = rd[0], zd1 = rd[1];
2055 uint64_t zm0 = rm[0], zm1 = rm[1];
2057 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
2058 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
2059 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2060 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2062 rm[0] = m0;
2063 rm[1] = m1;
2064 rd[0] = d0;
2065 rd[1] = d1;
2068 void HELPER(neon_zip8)(void *vd, void *vm)
2070 uint64_t *rd = vd, *rm = vm;
2071 uint64_t zd = rd[0], zm = rm[0];
2073 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2074 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2075 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2076 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2077 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2078 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2079 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2080 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2082 rm[0] = m0;
2083 rd[0] = d0;
2086 void HELPER(neon_zip16)(void *vd, void *vm)
2088 uint64_t *rd = vd, *rm = vm;
2089 uint64_t zd = rd[0], zm = rm[0];
2091 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2092 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2093 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2094 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2096 rm[0] = m0;
2097 rd[0] = d0;