MAINTAINERS: Add myself as streams maintainer
[qemu/ar7.git] / hw / misc / imx6ul_ccm.c
bloba2fc1d0364af3cbbdd7e94e99b1dda3677c5c986
1 /*
2 * IMX6UL Clock Control Module
4 * Copyright (c) 2018 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 * To get the timer frequencies right, we need to emulate at least part of
10 * the CCM.
13 #include "qemu/osdep.h"
14 #include "hw/registerfields.h"
15 #include "migration/vmstate.h"
16 #include "hw/misc/imx6ul_ccm.h"
17 #include "qemu/log.h"
18 #include "qemu/module.h"
20 #include "trace.h"
22 static const char *imx6ul_ccm_reg_name(uint32_t reg)
24 static char unknown[20];
26 switch (reg) {
27 case CCM_CCR:
28 return "CCR";
29 case CCM_CCDR:
30 return "CCDR";
31 case CCM_CSR:
32 return "CSR";
33 case CCM_CCSR:
34 return "CCSR";
35 case CCM_CACRR:
36 return "CACRR";
37 case CCM_CBCDR:
38 return "CBCDR";
39 case CCM_CBCMR:
40 return "CBCMR";
41 case CCM_CSCMR1:
42 return "CSCMR1";
43 case CCM_CSCMR2:
44 return "CSCMR2";
45 case CCM_CSCDR1:
46 return "CSCDR1";
47 case CCM_CS1CDR:
48 return "CS1CDR";
49 case CCM_CS2CDR:
50 return "CS2CDR";
51 case CCM_CDCDR:
52 return "CDCDR";
53 case CCM_CHSCCDR:
54 return "CHSCCDR";
55 case CCM_CSCDR2:
56 return "CSCDR2";
57 case CCM_CSCDR3:
58 return "CSCDR3";
59 case CCM_CDHIPR:
60 return "CDHIPR";
61 case CCM_CTOR:
62 return "CTOR";
63 case CCM_CLPCR:
64 return "CLPCR";
65 case CCM_CISR:
66 return "CISR";
67 case CCM_CIMR:
68 return "CIMR";
69 case CCM_CCOSR:
70 return "CCOSR";
71 case CCM_CGPR:
72 return "CGPR";
73 case CCM_CCGR0:
74 return "CCGR0";
75 case CCM_CCGR1:
76 return "CCGR1";
77 case CCM_CCGR2:
78 return "CCGR2";
79 case CCM_CCGR3:
80 return "CCGR3";
81 case CCM_CCGR4:
82 return "CCGR4";
83 case CCM_CCGR5:
84 return "CCGR5";
85 case CCM_CCGR6:
86 return "CCGR6";
87 case CCM_CMEOR:
88 return "CMEOR";
89 default:
90 sprintf(unknown, "%d ?", reg);
91 return unknown;
95 static const char *imx6ul_analog_reg_name(uint32_t reg)
97 static char unknown[20];
99 switch (reg) {
100 case CCM_ANALOG_PLL_ARM:
101 return "PLL_ARM";
102 case CCM_ANALOG_PLL_ARM_SET:
103 return "PLL_ARM_SET";
104 case CCM_ANALOG_PLL_ARM_CLR:
105 return "PLL_ARM_CLR";
106 case CCM_ANALOG_PLL_ARM_TOG:
107 return "PLL_ARM_TOG";
108 case CCM_ANALOG_PLL_USB1:
109 return "PLL_USB1";
110 case CCM_ANALOG_PLL_USB1_SET:
111 return "PLL_USB1_SET";
112 case CCM_ANALOG_PLL_USB1_CLR:
113 return "PLL_USB1_CLR";
114 case CCM_ANALOG_PLL_USB1_TOG:
115 return "PLL_USB1_TOG";
116 case CCM_ANALOG_PLL_USB2:
117 return "PLL_USB2";
118 case CCM_ANALOG_PLL_USB2_SET:
119 return "PLL_USB2_SET";
120 case CCM_ANALOG_PLL_USB2_CLR:
121 return "PLL_USB2_CLR";
122 case CCM_ANALOG_PLL_USB2_TOG:
123 return "PLL_USB2_TOG";
124 case CCM_ANALOG_PLL_SYS:
125 return "PLL_SYS";
126 case CCM_ANALOG_PLL_SYS_SET:
127 return "PLL_SYS_SET";
128 case CCM_ANALOG_PLL_SYS_CLR:
129 return "PLL_SYS_CLR";
130 case CCM_ANALOG_PLL_SYS_TOG:
131 return "PLL_SYS_TOG";
132 case CCM_ANALOG_PLL_SYS_SS:
133 return "PLL_SYS_SS";
134 case CCM_ANALOG_PLL_SYS_NUM:
135 return "PLL_SYS_NUM";
136 case CCM_ANALOG_PLL_SYS_DENOM:
137 return "PLL_SYS_DENOM";
138 case CCM_ANALOG_PLL_AUDIO:
139 return "PLL_AUDIO";
140 case CCM_ANALOG_PLL_AUDIO_SET:
141 return "PLL_AUDIO_SET";
142 case CCM_ANALOG_PLL_AUDIO_CLR:
143 return "PLL_AUDIO_CLR";
144 case CCM_ANALOG_PLL_AUDIO_TOG:
145 return "PLL_AUDIO_TOG";
146 case CCM_ANALOG_PLL_AUDIO_NUM:
147 return "PLL_AUDIO_NUM";
148 case CCM_ANALOG_PLL_AUDIO_DENOM:
149 return "PLL_AUDIO_DENOM";
150 case CCM_ANALOG_PLL_VIDEO:
151 return "PLL_VIDEO";
152 case CCM_ANALOG_PLL_VIDEO_SET:
153 return "PLL_VIDEO_SET";
154 case CCM_ANALOG_PLL_VIDEO_CLR:
155 return "PLL_VIDEO_CLR";
156 case CCM_ANALOG_PLL_VIDEO_TOG:
157 return "PLL_VIDEO_TOG";
158 case CCM_ANALOG_PLL_VIDEO_NUM:
159 return "PLL_VIDEO_NUM";
160 case CCM_ANALOG_PLL_VIDEO_DENOM:
161 return "PLL_VIDEO_DENOM";
162 case CCM_ANALOG_PLL_ENET:
163 return "PLL_ENET";
164 case CCM_ANALOG_PLL_ENET_SET:
165 return "PLL_ENET_SET";
166 case CCM_ANALOG_PLL_ENET_CLR:
167 return "PLL_ENET_CLR";
168 case CCM_ANALOG_PLL_ENET_TOG:
169 return "PLL_ENET_TOG";
170 case CCM_ANALOG_PFD_480:
171 return "PFD_480";
172 case CCM_ANALOG_PFD_480_SET:
173 return "PFD_480_SET";
174 case CCM_ANALOG_PFD_480_CLR:
175 return "PFD_480_CLR";
176 case CCM_ANALOG_PFD_480_TOG:
177 return "PFD_480_TOG";
178 case CCM_ANALOG_PFD_528:
179 return "PFD_528";
180 case CCM_ANALOG_PFD_528_SET:
181 return "PFD_528_SET";
182 case CCM_ANALOG_PFD_528_CLR:
183 return "PFD_528_CLR";
184 case CCM_ANALOG_PFD_528_TOG:
185 return "PFD_528_TOG";
186 case CCM_ANALOG_MISC0:
187 return "MISC0";
188 case CCM_ANALOG_MISC0_SET:
189 return "MISC0_SET";
190 case CCM_ANALOG_MISC0_CLR:
191 return "MISC0_CLR";
192 case CCM_ANALOG_MISC0_TOG:
193 return "MISC0_TOG";
194 case CCM_ANALOG_MISC2:
195 return "MISC2";
196 case CCM_ANALOG_MISC2_SET:
197 return "MISC2_SET";
198 case CCM_ANALOG_MISC2_CLR:
199 return "MISC2_CLR";
200 case CCM_ANALOG_MISC2_TOG:
201 return "MISC2_TOG";
202 case PMU_REG_1P1:
203 return "PMU_REG_1P1";
204 case PMU_REG_3P0:
205 return "PMU_REG_3P0";
206 case PMU_REG_2P5:
207 return "PMU_REG_2P5";
208 case PMU_REG_CORE:
209 return "PMU_REG_CORE";
210 case PMU_MISC1:
211 return "PMU_MISC1";
212 case PMU_MISC1_SET:
213 return "PMU_MISC1_SET";
214 case PMU_MISC1_CLR:
215 return "PMU_MISC1_CLR";
216 case PMU_MISC1_TOG:
217 return "PMU_MISC1_TOG";
218 case USB_ANALOG_DIGPROG:
219 return "USB_ANALOG_DIGPROG";
220 default:
221 sprintf(unknown, "%d ?", reg);
222 return unknown;
226 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
228 static const VMStateDescription vmstate_imx6ul_ccm = {
229 .name = TYPE_IMX6UL_CCM,
230 .version_id = 1,
231 .minimum_version_id = 1,
232 .fields = (VMStateField[]) {
233 VMSTATE_UINT32_ARRAY(ccm, IMX6ULCCMState, CCM_MAX),
234 VMSTATE_UINT32_ARRAY(analog, IMX6ULCCMState, CCM_ANALOG_MAX),
235 VMSTATE_END_OF_LIST()
239 static uint64_t imx6ul_analog_get_osc_clk(IMX6ULCCMState *dev)
241 uint64_t freq = CKIH_FREQ;
243 trace_ccm_freq((uint32_t)freq);
245 return freq;
248 static uint64_t imx6ul_analog_get_pll2_clk(IMX6ULCCMState *dev)
250 uint64_t freq = imx6ul_analog_get_osc_clk(dev);
252 if (FIELD_EX32(dev->analog[CCM_ANALOG_PLL_SYS],
253 ANALOG_PLL_SYS, DIV_SELECT)) {
254 freq *= 22;
255 } else {
256 freq *= 20;
259 trace_ccm_freq((uint32_t)freq);
261 return freq;
264 static uint64_t imx6ul_analog_get_pll3_clk(IMX6ULCCMState *dev)
266 uint64_t freq = imx6ul_analog_get_osc_clk(dev) * 20;
268 trace_ccm_freq((uint32_t)freq);
270 return freq;
273 static uint64_t imx6ul_analog_get_pll2_pfd0_clk(IMX6ULCCMState *dev)
275 uint64_t freq = 0;
277 freq = imx6ul_analog_get_pll2_clk(dev) * 18
278 / FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
279 ANALOG_PFD_528, PFD0_FRAC);
281 trace_ccm_freq((uint32_t)freq);
283 return freq;
286 static uint64_t imx6ul_analog_get_pll2_pfd2_clk(IMX6ULCCMState *dev)
288 uint64_t freq = 0;
290 freq = imx6ul_analog_get_pll2_clk(dev) * 18
291 / FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
292 ANALOG_PFD_528, PFD2_FRAC);
294 trace_ccm_freq((uint32_t)freq);
296 return freq;
299 static uint64_t imx6ul_analog_pll2_bypass_clk(IMX6ULCCMState *dev)
301 uint64_t freq = 0;
303 trace_ccm_freq((uint32_t)freq);
305 return freq;
308 static uint64_t imx6ul_ccm_get_periph_clk2_sel_clk(IMX6ULCCMState *dev)
310 uint64_t freq = 0;
312 switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PERIPH_CLK2_SEL)) {
313 case 0:
314 freq = imx6ul_analog_get_pll3_clk(dev);
315 break;
316 case 1:
317 freq = imx6ul_analog_get_osc_clk(dev);
318 break;
319 case 2:
320 freq = imx6ul_analog_pll2_bypass_clk(dev);
321 break;
322 case 3:
323 /* We should never get there as 3 is a reserved value */
324 qemu_log_mask(LOG_GUEST_ERROR,
325 "[%s]%s: unsupported PERIPH_CLK2_SEL value 3\n",
326 TYPE_IMX6UL_CCM, __func__);
327 /* freq is set to 0 as we don't know what it should be */
328 break;
329 default:
330 g_assert_not_reached();
333 trace_ccm_freq((uint32_t)freq);
335 return freq;
338 static uint64_t imx6ul_ccm_get_periph_clk_sel_clk(IMX6ULCCMState *dev)
340 uint64_t freq = 0;
342 switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PRE_PERIPH_CLK_SEL)) {
343 case 0:
344 freq = imx6ul_analog_get_pll2_clk(dev);
345 break;
346 case 1:
347 freq = imx6ul_analog_get_pll2_pfd2_clk(dev);
348 break;
349 case 2:
350 freq = imx6ul_analog_get_pll2_pfd0_clk(dev);
351 break;
352 case 3:
353 freq = imx6ul_analog_get_pll2_pfd2_clk(dev) / 2;
354 break;
355 default:
356 g_assert_not_reached();
359 trace_ccm_freq((uint32_t)freq);
361 return freq;
364 static uint64_t imx6ul_ccm_get_periph_clk2_clk(IMX6ULCCMState *dev)
366 uint64_t freq = 0;
368 freq = imx6ul_ccm_get_periph_clk2_sel_clk(dev)
369 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK2_PODF));
371 trace_ccm_freq((uint32_t)freq);
373 return freq;
376 static uint64_t imx6ul_ccm_get_periph_sel_clk(IMX6ULCCMState *dev)
378 uint64_t freq = 0;
380 switch (FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK_SEL)) {
381 case 0:
382 freq = imx6ul_ccm_get_periph_clk_sel_clk(dev);
383 break;
384 case 1:
385 freq = imx6ul_ccm_get_periph_clk2_clk(dev);
386 break;
387 default:
388 g_assert_not_reached();
391 trace_ccm_freq((uint32_t)freq);
393 return freq;
396 static uint64_t imx6ul_ccm_get_ahb_clk(IMX6ULCCMState *dev)
398 uint64_t freq = 0;
400 freq = imx6ul_ccm_get_periph_sel_clk(dev)
401 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, AHB_PODF));
403 trace_ccm_freq((uint32_t)freq);
405 return freq;
408 static uint64_t imx6ul_ccm_get_ipg_clk(IMX6ULCCMState *dev)
410 uint64_t freq = 0;
412 freq = imx6ul_ccm_get_ahb_clk(dev)
413 / (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, IPG_PODF));
415 trace_ccm_freq((uint32_t)freq);
417 return freq;
420 static uint64_t imx6ul_ccm_get_per_sel_clk(IMX6ULCCMState *dev)
422 uint64_t freq = 0;
424 switch (FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_CLK_SEL)) {
425 case 0:
426 freq = imx6ul_ccm_get_ipg_clk(dev);
427 break;
428 case 1:
429 freq = imx6ul_analog_get_osc_clk(dev);
430 break;
431 default:
432 g_assert_not_reached();
435 trace_ccm_freq((uint32_t)freq);
437 return freq;
440 static uint64_t imx6ul_ccm_get_per_clk(IMX6ULCCMState *dev)
442 uint64_t freq = 0;
444 freq = imx6ul_ccm_get_per_sel_clk(dev)
445 / (1 + FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_PODF));
447 trace_ccm_freq((uint32_t)freq);
449 return freq;
452 static uint32_t imx6ul_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
454 uint32_t freq = 0;
455 IMX6ULCCMState *s = IMX6UL_CCM(dev);
457 switch (clock) {
458 case CLK_NONE:
459 break;
460 case CLK_IPG:
461 freq = imx6ul_ccm_get_ipg_clk(s);
462 break;
463 case CLK_IPG_HIGH:
464 freq = imx6ul_ccm_get_per_clk(s);
465 break;
466 case CLK_32k:
467 freq = CKIL_FREQ;
468 break;
469 case CLK_HIGH:
470 freq = CKIH_FREQ;
471 break;
472 case CLK_HIGH_DIV:
473 freq = CKIH_FREQ / 8;
474 break;
475 default:
476 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
477 TYPE_IMX6UL_CCM, __func__, clock);
478 break;
481 trace_ccm_clock_freq(clock, freq);
483 return freq;
486 static void imx6ul_ccm_reset(DeviceState *dev)
488 IMX6ULCCMState *s = IMX6UL_CCM(dev);
490 trace_ccm_entry();
492 s->ccm[CCM_CCR] = 0x0401167F;
493 s->ccm[CCM_CCDR] = 0x00000000;
494 s->ccm[CCM_CSR] = 0x00000010;
495 s->ccm[CCM_CCSR] = 0x00000100;
496 s->ccm[CCM_CACRR] = 0x00000000;
497 s->ccm[CCM_CBCDR] = 0x00018D00;
498 s->ccm[CCM_CBCMR] = 0x24860324;
499 s->ccm[CCM_CSCMR1] = 0x04900080;
500 s->ccm[CCM_CSCMR2] = 0x03192F06;
501 s->ccm[CCM_CSCDR1] = 0x00490B00;
502 s->ccm[CCM_CS1CDR] = 0x0EC102C1;
503 s->ccm[CCM_CS2CDR] = 0x000336C1;
504 s->ccm[CCM_CDCDR] = 0x33F71F92;
505 s->ccm[CCM_CHSCCDR] = 0x000248A4;
506 s->ccm[CCM_CSCDR2] = 0x00029B48;
507 s->ccm[CCM_CSCDR3] = 0x00014841;
508 s->ccm[CCM_CDHIPR] = 0x00000000;
509 s->ccm[CCM_CTOR] = 0x00000000;
510 s->ccm[CCM_CLPCR] = 0x00000079;
511 s->ccm[CCM_CISR] = 0x00000000;
512 s->ccm[CCM_CIMR] = 0xFFFFFFFF;
513 s->ccm[CCM_CCOSR] = 0x000A0001;
514 s->ccm[CCM_CGPR] = 0x0000FE62;
515 s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
516 s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
517 s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
518 s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
519 s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
520 s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
521 s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
522 s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
524 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013063;
525 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
526 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
527 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
528 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
529 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
530 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
531 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
532 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
533 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
534 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
535 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
536 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
537 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
538 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
539 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
541 s->analog[PMU_REG_1P1] = 0x00001073;
542 s->analog[PMU_REG_3P0] = 0x00000F74;
543 s->analog[PMU_REG_2P5] = 0x00001073;
544 s->analog[PMU_REG_CORE] = 0x00482012;
545 s->analog[PMU_MISC0] = 0x04000000;
546 s->analog[PMU_MISC1] = 0x00000000;
547 s->analog[PMU_MISC2] = 0x00272727;
548 s->analog[PMU_LOWPWR_CTRL] = 0x00004009;
550 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x01000004;
551 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
552 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
553 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
554 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
555 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x01000004;
556 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
557 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
558 s->analog[USB_ANALOG_DIGPROG] = 0x00640000;
560 /* all PLLs need to be locked */
561 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
562 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
563 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
564 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
565 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
566 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
567 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
569 s->analog[TEMPMON_TEMPSENSE0] = 0x00000001;
570 s->analog[TEMPMON_TEMPSENSE1] = 0x00000001;
571 s->analog[TEMPMON_TEMPSENSE2] = 0x00000000;
574 static uint64_t imx6ul_ccm_read(void *opaque, hwaddr offset, unsigned size)
576 uint32_t value = 0;
577 uint32_t index = offset >> 2;
578 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
580 assert(index < CCM_MAX);
582 value = s->ccm[index];
584 trace_ccm_read_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
586 return (uint64_t)value;
589 static void imx6ul_ccm_write(void *opaque, hwaddr offset, uint64_t value,
590 unsigned size)
592 uint32_t index = offset >> 2;
593 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
595 assert(index < CCM_MAX);
597 trace_ccm_write_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
600 * We will do a better implementation later. In particular some bits
601 * cannot be written to.
603 s->ccm[index] = (uint32_t)value;
606 static uint64_t imx6ul_analog_read(void *opaque, hwaddr offset, unsigned size)
608 uint32_t value;
609 uint32_t index = offset >> 2;
610 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
612 assert(index < CCM_ANALOG_MAX);
614 switch (index) {
615 case CCM_ANALOG_PLL_ARM_SET:
616 case CCM_ANALOG_PLL_USB1_SET:
617 case CCM_ANALOG_PLL_USB2_SET:
618 case CCM_ANALOG_PLL_SYS_SET:
619 case CCM_ANALOG_PLL_AUDIO_SET:
620 case CCM_ANALOG_PLL_VIDEO_SET:
621 case CCM_ANALOG_PLL_ENET_SET:
622 case CCM_ANALOG_PFD_480_SET:
623 case CCM_ANALOG_PFD_528_SET:
624 case CCM_ANALOG_MISC0_SET:
625 case PMU_MISC1_SET:
626 case CCM_ANALOG_MISC2_SET:
627 case USB_ANALOG_USB1_VBUS_DETECT_SET:
628 case USB_ANALOG_USB1_CHRG_DETECT_SET:
629 case USB_ANALOG_USB1_MISC_SET:
630 case USB_ANALOG_USB2_VBUS_DETECT_SET:
631 case USB_ANALOG_USB2_CHRG_DETECT_SET:
632 case USB_ANALOG_USB2_MISC_SET:
633 case TEMPMON_TEMPSENSE0_SET:
634 case TEMPMON_TEMPSENSE1_SET:
635 case TEMPMON_TEMPSENSE2_SET:
637 * All REG_NAME_SET register access are in fact targeting
638 * the REG_NAME register.
640 value = s->analog[index - 1];
641 break;
642 case CCM_ANALOG_PLL_ARM_CLR:
643 case CCM_ANALOG_PLL_USB1_CLR:
644 case CCM_ANALOG_PLL_USB2_CLR:
645 case CCM_ANALOG_PLL_SYS_CLR:
646 case CCM_ANALOG_PLL_AUDIO_CLR:
647 case CCM_ANALOG_PLL_VIDEO_CLR:
648 case CCM_ANALOG_PLL_ENET_CLR:
649 case CCM_ANALOG_PFD_480_CLR:
650 case CCM_ANALOG_PFD_528_CLR:
651 case CCM_ANALOG_MISC0_CLR:
652 case PMU_MISC1_CLR:
653 case CCM_ANALOG_MISC2_CLR:
654 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
655 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
656 case USB_ANALOG_USB1_MISC_CLR:
657 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
658 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
659 case USB_ANALOG_USB2_MISC_CLR:
660 case TEMPMON_TEMPSENSE0_CLR:
661 case TEMPMON_TEMPSENSE1_CLR:
662 case TEMPMON_TEMPSENSE2_CLR:
664 * All REG_NAME_CLR register access are in fact targeting
665 * the REG_NAME register.
667 value = s->analog[index - 2];
668 break;
669 case CCM_ANALOG_PLL_ARM_TOG:
670 case CCM_ANALOG_PLL_USB1_TOG:
671 case CCM_ANALOG_PLL_USB2_TOG:
672 case CCM_ANALOG_PLL_SYS_TOG:
673 case CCM_ANALOG_PLL_AUDIO_TOG:
674 case CCM_ANALOG_PLL_VIDEO_TOG:
675 case CCM_ANALOG_PLL_ENET_TOG:
676 case CCM_ANALOG_PFD_480_TOG:
677 case CCM_ANALOG_PFD_528_TOG:
678 case CCM_ANALOG_MISC0_TOG:
679 case PMU_MISC1_TOG:
680 case CCM_ANALOG_MISC2_TOG:
681 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
682 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
683 case USB_ANALOG_USB1_MISC_TOG:
684 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
685 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
686 case USB_ANALOG_USB2_MISC_TOG:
687 case TEMPMON_TEMPSENSE0_TOG:
688 case TEMPMON_TEMPSENSE1_TOG:
689 case TEMPMON_TEMPSENSE2_TOG:
691 * All REG_NAME_TOG register access are in fact targeting
692 * the REG_NAME register.
694 value = s->analog[index - 3];
695 break;
696 default:
697 value = s->analog[index];
698 break;
701 trace_ccm_read_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
703 return (uint64_t)value;
706 static void imx6ul_analog_write(void *opaque, hwaddr offset, uint64_t value,
707 unsigned size)
709 uint32_t index = offset >> 2;
710 IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
712 assert(index < CCM_ANALOG_MAX);
714 trace_ccm_write_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
716 switch (index) {
717 case CCM_ANALOG_PLL_ARM_SET:
718 case CCM_ANALOG_PLL_USB1_SET:
719 case CCM_ANALOG_PLL_USB2_SET:
720 case CCM_ANALOG_PLL_SYS_SET:
721 case CCM_ANALOG_PLL_AUDIO_SET:
722 case CCM_ANALOG_PLL_VIDEO_SET:
723 case CCM_ANALOG_PLL_ENET_SET:
724 case CCM_ANALOG_PFD_480_SET:
725 case CCM_ANALOG_PFD_528_SET:
726 case CCM_ANALOG_MISC0_SET:
727 case PMU_MISC1_SET:
728 case CCM_ANALOG_MISC2_SET:
729 case USB_ANALOG_USB1_VBUS_DETECT_SET:
730 case USB_ANALOG_USB1_CHRG_DETECT_SET:
731 case USB_ANALOG_USB1_MISC_SET:
732 case USB_ANALOG_USB2_VBUS_DETECT_SET:
733 case USB_ANALOG_USB2_CHRG_DETECT_SET:
734 case USB_ANALOG_USB2_MISC_SET:
736 * All REG_NAME_SET register access are in fact targeting
737 * the REG_NAME register. So we change the value of the
738 * REG_NAME register, setting bits passed in the value.
740 s->analog[index - 1] |= value;
741 break;
742 case CCM_ANALOG_PLL_ARM_CLR:
743 case CCM_ANALOG_PLL_USB1_CLR:
744 case CCM_ANALOG_PLL_USB2_CLR:
745 case CCM_ANALOG_PLL_SYS_CLR:
746 case CCM_ANALOG_PLL_AUDIO_CLR:
747 case CCM_ANALOG_PLL_VIDEO_CLR:
748 case CCM_ANALOG_PLL_ENET_CLR:
749 case CCM_ANALOG_PFD_480_CLR:
750 case CCM_ANALOG_PFD_528_CLR:
751 case CCM_ANALOG_MISC0_CLR:
752 case PMU_MISC1_CLR:
753 case CCM_ANALOG_MISC2_CLR:
754 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
755 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
756 case USB_ANALOG_USB1_MISC_CLR:
757 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
758 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
759 case USB_ANALOG_USB2_MISC_CLR:
761 * All REG_NAME_CLR register access are in fact targeting
762 * the REG_NAME register. So we change the value of the
763 * REG_NAME register, unsetting bits passed in the value.
765 s->analog[index - 2] &= ~value;
766 break;
767 case CCM_ANALOG_PLL_ARM_TOG:
768 case CCM_ANALOG_PLL_USB1_TOG:
769 case CCM_ANALOG_PLL_USB2_TOG:
770 case CCM_ANALOG_PLL_SYS_TOG:
771 case CCM_ANALOG_PLL_AUDIO_TOG:
772 case CCM_ANALOG_PLL_VIDEO_TOG:
773 case CCM_ANALOG_PLL_ENET_TOG:
774 case CCM_ANALOG_PFD_480_TOG:
775 case CCM_ANALOG_PFD_528_TOG:
776 case CCM_ANALOG_MISC0_TOG:
777 case PMU_MISC1_TOG:
778 case CCM_ANALOG_MISC2_TOG:
779 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
780 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
781 case USB_ANALOG_USB1_MISC_TOG:
782 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
783 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
784 case USB_ANALOG_USB2_MISC_TOG:
786 * All REG_NAME_TOG register access are in fact targeting
787 * the REG_NAME register. So we change the value of the
788 * REG_NAME register, toggling bits passed in the value.
790 s->analog[index - 3] ^= value;
791 break;
792 default:
794 * We will do a better implementation later. In particular some bits
795 * cannot be written to.
797 s->analog[index] = value;
798 break;
802 static const struct MemoryRegionOps imx6ul_ccm_ops = {
803 .read = imx6ul_ccm_read,
804 .write = imx6ul_ccm_write,
805 .endianness = DEVICE_NATIVE_ENDIAN,
806 .valid = {
808 * Our device would not work correctly if the guest was doing
809 * unaligned access. This might not be a limitation on the real
810 * device but in practice there is no reason for a guest to access
811 * this device unaligned.
813 .min_access_size = 4,
814 .max_access_size = 4,
815 .unaligned = false,
819 static const struct MemoryRegionOps imx6ul_analog_ops = {
820 .read = imx6ul_analog_read,
821 .write = imx6ul_analog_write,
822 .endianness = DEVICE_NATIVE_ENDIAN,
823 .valid = {
825 * Our device would not work correctly if the guest was doing
826 * unaligned access. This might not be a limitation on the real
827 * device but in practice there is no reason for a guest to access
828 * this device unaligned.
830 .min_access_size = 4,
831 .max_access_size = 4,
832 .unaligned = false,
836 static void imx6ul_ccm_init(Object *obj)
838 DeviceState *dev = DEVICE(obj);
839 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
840 IMX6ULCCMState *s = IMX6UL_CCM(obj);
842 /* initialize a container for the all memory range */
843 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6UL_CCM, 0x8000);
845 /* We initialize an IO memory region for the CCM part */
846 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6ul_ccm_ops, s,
847 TYPE_IMX6UL_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
849 /* Add the CCM as a subregion at offset 0 */
850 memory_region_add_subregion(&s->container, 0, &s->ioccm);
852 /* We initialize an IO memory region for the ANALOG part */
853 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6ul_analog_ops, s,
854 TYPE_IMX6UL_CCM ".analog",
855 CCM_ANALOG_MAX * sizeof(uint32_t));
857 /* Add the ANALOG as a subregion at offset 0x4000 */
858 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
860 sysbus_init_mmio(sd, &s->container);
863 static void imx6ul_ccm_class_init(ObjectClass *klass, void *data)
865 DeviceClass *dc = DEVICE_CLASS(klass);
866 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
868 dc->reset = imx6ul_ccm_reset;
869 dc->vmsd = &vmstate_imx6ul_ccm;
870 dc->desc = "i.MX6UL Clock Control Module";
872 ccm->get_clock_frequency = imx6ul_ccm_get_clock_frequency;
875 static const TypeInfo imx6ul_ccm_info = {
876 .name = TYPE_IMX6UL_CCM,
877 .parent = TYPE_IMX_CCM,
878 .instance_size = sizeof(IMX6ULCCMState),
879 .instance_init = imx6ul_ccm_init,
880 .class_init = imx6ul_ccm_class_init,
883 static void imx6ul_ccm_register_types(void)
885 type_register_static(&imx6ul_ccm_info);
888 type_init(imx6ul_ccm_register_types)