gitlab: Extract default build/test jobs templates
[qemu/ar7.git] / softmmu / physmem.c
blobe1da81ed2f9c80c7c60557e241fb1cbd66dc38ef
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
27 #ifdef CONFIG_TCG
28 #include "hw/core/tcg-cpu-ops.h"
29 #endif /* CONFIG_TCG */
31 #include "exec/exec-all.h"
32 #include "exec/target_page.h"
33 #include "hw/qdev-core.h"
34 #include "hw/qdev-properties.h"
35 #include "hw/boards.h"
36 #include "hw/xen/xen.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/timer.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/qemu-print.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/hw_accel.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace/trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "exec/translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "qemu/pmem.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
70 #ifndef _WIN32
71 #include "qemu/mmap-alloc.h"
72 #endif
74 #include "monitor/monitor.h"
76 #ifdef CONFIG_LIBDAXCTL
77 #include <daxctl/libdaxctl.h>
78 #endif
80 //#define DEBUG_SUBPAGE
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
93 static MemoryRegion io_mem_unassigned;
95 typedef struct PhysPageEntry PhysPageEntry;
97 struct PhysPageEntry {
98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
99 uint32_t skip : 6;
100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
101 uint32_t ptr : 26;
104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
106 /* Size of the L2 (and L3, etc) page tables. */
107 #define ADDR_SPACE_BITS 64
109 #define P_L2_BITS 9
110 #define P_L2_SIZE (1 << P_L2_BITS)
112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
114 typedef PhysPageEntry Node[P_L2_SIZE];
116 typedef struct PhysPageMap {
117 struct rcu_head rcu;
119 unsigned sections_nb;
120 unsigned sections_nb_alloc;
121 unsigned nodes_nb;
122 unsigned nodes_nb_alloc;
123 Node *nodes;
124 MemoryRegionSection *sections;
125 } PhysPageMap;
127 struct AddressSpaceDispatch {
128 MemoryRegionSection *mru_section;
129 /* This is a multi-level map on the physical address space.
130 * The bottom level has pointers to MemoryRegionSections.
132 PhysPageEntry phys_map;
133 PhysPageMap map;
136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137 typedef struct subpage_t {
138 MemoryRegion iomem;
139 FlatView *fv;
140 hwaddr base;
141 uint16_t sub_section[];
142 } subpage_t;
144 #define PHYS_SECTION_UNASSIGNED 0
146 static void io_mem_init(void);
147 static void memory_map_init(void);
148 static void tcg_log_global_after_sync(MemoryListener *listener);
149 static void tcg_commit(MemoryListener *listener);
152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153 * @cpu: the CPU whose AddressSpace this is
154 * @as: the AddressSpace itself
155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
158 struct CPUAddressSpace {
159 CPUState *cpu;
160 AddressSpace *as;
161 struct AddressSpaceDispatch *memory_dispatch;
162 MemoryListener tcg_as_listener;
165 struct DirtyBitmapSnapshot {
166 ram_addr_t start;
167 ram_addr_t end;
168 unsigned long dirty[];
171 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
173 static unsigned alloc_hint = 16;
174 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
175 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
176 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
177 alloc_hint = map->nodes_nb_alloc;
181 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
183 unsigned i;
184 uint32_t ret;
185 PhysPageEntry e;
186 PhysPageEntry *p;
188 ret = map->nodes_nb++;
189 p = map->nodes[ret];
190 assert(ret != PHYS_MAP_NODE_NIL);
191 assert(ret != map->nodes_nb_alloc);
193 e.skip = leaf ? 0 : 1;
194 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
195 for (i = 0; i < P_L2_SIZE; ++i) {
196 memcpy(&p[i], &e, sizeof(e));
198 return ret;
201 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
202 hwaddr *index, uint64_t *nb, uint16_t leaf,
203 int level)
205 PhysPageEntry *p;
206 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
208 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
209 lp->ptr = phys_map_node_alloc(map, level == 0);
211 p = map->nodes[lp->ptr];
212 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
214 while (*nb && lp < &p[P_L2_SIZE]) {
215 if ((*index & (step - 1)) == 0 && *nb >= step) {
216 lp->skip = 0;
217 lp->ptr = leaf;
218 *index += step;
219 *nb -= step;
220 } else {
221 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
223 ++lp;
227 static void phys_page_set(AddressSpaceDispatch *d,
228 hwaddr index, uint64_t nb,
229 uint16_t leaf)
231 /* Wildly overreserve - it doesn't matter much. */
232 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
234 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
237 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
238 * and update our entry so we can skip it and go directly to the destination.
240 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
242 unsigned valid_ptr = P_L2_SIZE;
243 int valid = 0;
244 PhysPageEntry *p;
245 int i;
247 if (lp->ptr == PHYS_MAP_NODE_NIL) {
248 return;
251 p = nodes[lp->ptr];
252 for (i = 0; i < P_L2_SIZE; i++) {
253 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
254 continue;
257 valid_ptr = i;
258 valid++;
259 if (p[i].skip) {
260 phys_page_compact(&p[i], nodes);
264 /* We can only compress if there's only one child. */
265 if (valid != 1) {
266 return;
269 assert(valid_ptr < P_L2_SIZE);
271 /* Don't compress if it won't fit in the # of bits we have. */
272 if (P_L2_LEVELS >= (1 << 6) &&
273 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
274 return;
277 lp->ptr = p[valid_ptr].ptr;
278 if (!p[valid_ptr].skip) {
279 /* If our only child is a leaf, make this a leaf. */
280 /* By design, we should have made this node a leaf to begin with so we
281 * should never reach here.
282 * But since it's so simple to handle this, let's do it just in case we
283 * change this rule.
285 lp->skip = 0;
286 } else {
287 lp->skip += p[valid_ptr].skip;
291 void address_space_dispatch_compact(AddressSpaceDispatch *d)
293 if (d->phys_map.skip) {
294 phys_page_compact(&d->phys_map, d->map.nodes);
298 static inline bool section_covers_addr(const MemoryRegionSection *section,
299 hwaddr addr)
301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302 * the section must cover the entire address space.
304 return int128_gethi(section->size) ||
305 range_covers_byte(section->offset_within_address_space,
306 int128_getlo(section->size), addr);
309 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
311 PhysPageEntry lp = d->phys_map, *p;
312 Node *nodes = d->map.nodes;
313 MemoryRegionSection *sections = d->map.sections;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325 if (section_covers_addr(&sections[lp.ptr], addr)) {
326 return &sections[lp.ptr];
327 } else {
328 return &sections[PHYS_SECTION_UNASSIGNED];
332 /* Called from RCU critical section */
333 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
334 hwaddr addr,
335 bool resolve_subpage)
337 MemoryRegionSection *section = qatomic_read(&d->mru_section);
338 subpage_t *subpage;
340 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
341 !section_covers_addr(section, addr)) {
342 section = phys_page_find(d, addr);
343 qatomic_set(&d->mru_section, section);
345 if (resolve_subpage && section->mr->subpage) {
346 subpage = container_of(section->mr, subpage_t, iomem);
347 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
349 return section;
352 /* Called from RCU critical section */
353 static MemoryRegionSection *
354 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
355 hwaddr *plen, bool resolve_subpage)
357 MemoryRegionSection *section;
358 MemoryRegion *mr;
359 Int128 diff;
361 section = address_space_lookup_region(d, addr, resolve_subpage);
362 /* Compute offset within MemoryRegionSection */
363 addr -= section->offset_within_address_space;
365 /* Compute offset within MemoryRegion */
366 *xlat = addr + section->offset_within_region;
368 mr = section->mr;
370 /* MMIO registers can be expected to perform full-width accesses based only
371 * on their address, without considering adjacent registers that could
372 * decode to completely different MemoryRegions. When such registers
373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374 * regions overlap wildly. For this reason we cannot clamp the accesses
375 * here.
377 * If the length is small (as is the case for address_space_ldl/stl),
378 * everything works fine. If the incoming length is large, however,
379 * the caller really has to do the clamping through memory_access_size.
381 if (memory_region_is_ram(mr)) {
382 diff = int128_sub(section->size, int128_make64(addr));
383 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
385 return section;
389 * address_space_translate_iommu - translate an address through an IOMMU
390 * memory region and then through the target address space.
392 * @iommu_mr: the IOMMU memory region that we start the translation from
393 * @addr: the address to be translated through the MMU
394 * @xlat: the translated address offset within the destination memory region.
395 * It cannot be %NULL.
396 * @plen_out: valid read/write length of the translated address. It
397 * cannot be %NULL.
398 * @page_mask_out: page mask for the translated address. This
399 * should only be meaningful for IOMMU translated
400 * addresses, since there may be huge pages that this bit
401 * would tell. It can be %NULL if we don't care about it.
402 * @is_write: whether the translation operation is for write
403 * @is_mmio: whether this can be MMIO, set true if it can
404 * @target_as: the address space targeted by the IOMMU
405 * @attrs: transaction attributes
407 * This function is called from RCU critical section. It is the common
408 * part of flatview_do_translate and address_space_translate_cached.
410 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
411 hwaddr *xlat,
412 hwaddr *plen_out,
413 hwaddr *page_mask_out,
414 bool is_write,
415 bool is_mmio,
416 AddressSpace **target_as,
417 MemTxAttrs attrs)
419 MemoryRegionSection *section;
420 hwaddr page_mask = (hwaddr)-1;
422 do {
423 hwaddr addr = *xlat;
424 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
425 int iommu_idx = 0;
426 IOMMUTLBEntry iotlb;
428 if (imrc->attrs_to_index) {
429 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
432 iotlb = imrc->translate(iommu_mr, addr, is_write ?
433 IOMMU_WO : IOMMU_RO, iommu_idx);
435 if (!(iotlb.perm & (1 << is_write))) {
436 goto unassigned;
439 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
440 | (addr & iotlb.addr_mask));
441 page_mask &= iotlb.addr_mask;
442 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
443 *target_as = iotlb.target_as;
445 section = address_space_translate_internal(
446 address_space_to_dispatch(iotlb.target_as), addr, xlat,
447 plen_out, is_mmio);
449 iommu_mr = memory_region_get_iommu(section->mr);
450 } while (unlikely(iommu_mr));
452 if (page_mask_out) {
453 *page_mask_out = page_mask;
455 return *section;
457 unassigned:
458 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 * flatview_do_translate - translate an address in FlatView
464 * @fv: the flat view that we want to translate on
465 * @addr: the address to be translated in above address space
466 * @xlat: the translated address offset within memory region. It
467 * cannot be @NULL.
468 * @plen_out: valid read/write length of the translated address. It
469 * can be @NULL when we don't care about it.
470 * @page_mask_out: page mask for the translated address. This
471 * should only be meaningful for IOMMU translated
472 * addresses, since there may be huge pages that this bit
473 * would tell. It can be @NULL if we don't care about it.
474 * @is_write: whether the translation operation is for write
475 * @is_mmio: whether this can be MMIO, set true if it can
476 * @target_as: the address space targeted by the IOMMU
477 * @attrs: memory transaction attributes
479 * This function is called from RCU critical section
481 static MemoryRegionSection flatview_do_translate(FlatView *fv,
482 hwaddr addr,
483 hwaddr *xlat,
484 hwaddr *plen_out,
485 hwaddr *page_mask_out,
486 bool is_write,
487 bool is_mmio,
488 AddressSpace **target_as,
489 MemTxAttrs attrs)
491 MemoryRegionSection *section;
492 IOMMUMemoryRegion *iommu_mr;
493 hwaddr plen = (hwaddr)(-1);
495 if (!plen_out) {
496 plen_out = &plen;
499 section = address_space_translate_internal(
500 flatview_to_dispatch(fv), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 if (unlikely(iommu_mr)) {
505 return address_space_translate_iommu(iommu_mr, xlat,
506 plen_out, page_mask_out,
507 is_write, is_mmio,
508 target_as, attrs);
510 if (page_mask_out) {
511 /* Not behind an IOMMU, use default page size. */
512 *page_mask_out = ~TARGET_PAGE_MASK;
515 return *section;
518 /* Called from RCU critical section */
519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520 bool is_write, MemTxAttrs attrs)
522 MemoryRegionSection section;
523 hwaddr xlat, page_mask;
526 * This can never be MMIO, and we don't really care about plen,
527 * but page mask.
529 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
530 NULL, &page_mask, is_write, false, &as,
531 attrs);
533 /* Illegal translation */
534 if (section.mr == &io_mem_unassigned) {
535 goto iotlb_fail;
538 /* Convert memory region offset into address space offset */
539 xlat += section.offset_within_address_space -
540 section.offset_within_region;
542 return (IOMMUTLBEntry) {
543 .target_as = as,
544 .iova = addr & ~page_mask,
545 .translated_addr = xlat & ~page_mask,
546 .addr_mask = page_mask,
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
548 .perm = IOMMU_RW,
551 iotlb_fail:
552 return (IOMMUTLBEntry) {0};
555 /* Called from RCU critical section */
556 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
557 hwaddr *plen, bool is_write,
558 MemTxAttrs attrs)
560 MemoryRegion *mr;
561 MemoryRegionSection section;
562 AddressSpace *as = NULL;
564 /* This can be MMIO, so setup MMIO bit. */
565 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
566 is_write, true, &as, attrs);
567 mr = section.mr;
569 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
570 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
571 *plen = MIN(page, *plen);
574 return mr;
577 typedef struct TCGIOMMUNotifier {
578 IOMMUNotifier n;
579 MemoryRegion *mr;
580 CPUState *cpu;
581 int iommu_idx;
582 bool active;
583 } TCGIOMMUNotifier;
585 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
587 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
589 if (!notifier->active) {
590 return;
592 tlb_flush(notifier->cpu);
593 notifier->active = false;
594 /* We leave the notifier struct on the list to avoid reallocating it later.
595 * Generally the number of IOMMUs a CPU deals with will be small.
596 * In any case we can't unregister the iommu notifier from a notify
597 * callback.
601 static void tcg_register_iommu_notifier(CPUState *cpu,
602 IOMMUMemoryRegion *iommu_mr,
603 int iommu_idx)
605 /* Make sure this CPU has an IOMMU notifier registered for this
606 * IOMMU/IOMMU index combination, so that we can flush its TLB
607 * when the IOMMU tells us the mappings we've cached have changed.
609 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
610 TCGIOMMUNotifier *notifier = NULL;
611 int i;
613 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
614 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
615 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
616 break;
619 if (i == cpu->iommu_notifiers->len) {
620 /* Not found, add a new entry at the end of the array */
621 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
622 notifier = g_new0(TCGIOMMUNotifier, 1);
623 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
625 notifier->mr = mr;
626 notifier->iommu_idx = iommu_idx;
627 notifier->cpu = cpu;
628 /* Rather than trying to register interest in the specific part
629 * of the iommu's address space that we've accessed and then
630 * expand it later as subsequent accesses touch more of it, we
631 * just register interest in the whole thing, on the assumption
632 * that iommu reconfiguration will be rare.
634 iommu_notifier_init(&notifier->n,
635 tcg_iommu_unmap_notify,
636 IOMMU_NOTIFIER_UNMAP,
638 HWADDR_MAX,
639 iommu_idx);
640 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
641 &error_fatal);
644 if (!notifier->active) {
645 notifier->active = true;
649 void tcg_iommu_free_notifier_list(CPUState *cpu)
651 /* Destroy the CPU's notifier list */
652 int i;
653 TCGIOMMUNotifier *notifier;
655 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
656 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
657 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
658 g_free(notifier);
660 g_array_free(cpu->iommu_notifiers, true);
663 void tcg_iommu_init_notifier_list(CPUState *cpu)
665 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
668 /* Called from RCU critical section */
669 MemoryRegionSection *
670 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
671 hwaddr *xlat, hwaddr *plen,
672 MemTxAttrs attrs, int *prot)
674 MemoryRegionSection *section;
675 IOMMUMemoryRegion *iommu_mr;
676 IOMMUMemoryRegionClass *imrc;
677 IOMMUTLBEntry iotlb;
678 int iommu_idx;
679 AddressSpaceDispatch *d =
680 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
682 for (;;) {
683 section = address_space_translate_internal(d, addr, &addr, plen, false);
685 iommu_mr = memory_region_get_iommu(section->mr);
686 if (!iommu_mr) {
687 break;
690 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
692 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
693 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695 * doesn't short-cut its translation table walk.
697 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
698 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
699 | (addr & iotlb.addr_mask));
700 /* Update the caller's prot bits to remove permissions the IOMMU
701 * is giving us a failure response for. If we get down to no
702 * permissions left at all we can give up now.
704 if (!(iotlb.perm & IOMMU_RO)) {
705 *prot &= ~(PAGE_READ | PAGE_EXEC);
707 if (!(iotlb.perm & IOMMU_WO)) {
708 *prot &= ~PAGE_WRITE;
711 if (!*prot) {
712 goto translate_fail;
715 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
718 assert(!memory_region_is_iommu(section->mr));
719 *xlat = addr;
720 return section;
722 translate_fail:
723 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
726 void cpu_address_space_init(CPUState *cpu, int asidx,
727 const char *prefix, MemoryRegion *mr)
729 CPUAddressSpace *newas;
730 AddressSpace *as = g_new0(AddressSpace, 1);
731 char *as_name;
733 assert(mr);
734 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
735 address_space_init(as, mr, as_name);
736 g_free(as_name);
738 /* Target code should have set num_ases before calling us */
739 assert(asidx < cpu->num_ases);
741 if (asidx == 0) {
742 /* address space 0 gets the convenience alias */
743 cpu->as = as;
746 /* KVM cannot currently support multiple address spaces. */
747 assert(asidx == 0 || !kvm_enabled());
749 if (!cpu->cpu_ases) {
750 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
753 newas = &cpu->cpu_ases[asidx];
754 newas->cpu = cpu;
755 newas->as = as;
756 if (tcg_enabled()) {
757 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
758 newas->tcg_as_listener.commit = tcg_commit;
759 memory_listener_register(&newas->tcg_as_listener, as);
763 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
765 /* Return the AddressSpace corresponding to the specified index */
766 return cpu->cpu_ases[asidx].as;
769 /* Add a watchpoint. */
770 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
771 int flags, CPUWatchpoint **watchpoint)
773 CPUWatchpoint *wp;
774 vaddr in_page;
776 /* forbid ranges which are empty or run off the end of the address space */
777 if (len == 0 || (addr + len - 1) < addr) {
778 error_report("tried to set invalid watchpoint at %"
779 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
780 return -EINVAL;
782 wp = g_malloc(sizeof(*wp));
784 wp->vaddr = addr;
785 wp->len = len;
786 wp->flags = flags;
788 /* keep all GDB-injected watchpoints in front */
789 if (flags & BP_GDB) {
790 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
791 } else {
792 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
795 in_page = -(addr | TARGET_PAGE_MASK);
796 if (len <= in_page) {
797 tlb_flush_page(cpu, addr);
798 } else {
799 tlb_flush(cpu);
802 if (watchpoint)
803 *watchpoint = wp;
804 return 0;
807 /* Remove a specific watchpoint. */
808 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
809 int flags)
811 CPUWatchpoint *wp;
813 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
814 if (addr == wp->vaddr && len == wp->len
815 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
816 cpu_watchpoint_remove_by_ref(cpu, wp);
817 return 0;
820 return -ENOENT;
823 /* Remove a specific watchpoint by reference. */
824 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
826 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
828 tlb_flush_page(cpu, watchpoint->vaddr);
830 g_free(watchpoint);
833 /* Remove all matching watchpoints. */
834 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
836 CPUWatchpoint *wp, *next;
838 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
839 if (wp->flags & mask) {
840 cpu_watchpoint_remove_by_ref(cpu, wp);
845 #ifdef CONFIG_TCG
846 /* Return true if this watchpoint address matches the specified
847 * access (ie the address range covered by the watchpoint overlaps
848 * partially or completely with the address range covered by the
849 * access).
851 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
852 vaddr addr, vaddr len)
854 /* We know the lengths are non-zero, but a little caution is
855 * required to avoid errors in the case where the range ends
856 * exactly at the top of the address space and so addr + len
857 * wraps round to zero.
859 vaddr wpend = wp->vaddr + wp->len - 1;
860 vaddr addrend = addr + len - 1;
862 return !(addr > wpend || wp->vaddr > addrend);
865 /* Return flags for watchpoints that match addr + prot. */
866 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
868 CPUWatchpoint *wp;
869 int ret = 0;
871 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
872 if (watchpoint_address_matches(wp, addr, len)) {
873 ret |= wp->flags;
876 return ret;
879 /* Generate a debug exception if a watchpoint has been hit. */
880 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
881 MemTxAttrs attrs, int flags, uintptr_t ra)
883 CPUClass *cc = CPU_GET_CLASS(cpu);
884 CPUWatchpoint *wp;
886 assert(tcg_enabled());
887 if (cpu->watchpoint_hit) {
889 * We re-entered the check after replacing the TB.
890 * Now raise the debug interrupt so that it will
891 * trigger after the current instruction.
893 qemu_mutex_lock_iothread();
894 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
895 qemu_mutex_unlock_iothread();
896 return;
899 if (cc->tcg_ops->adjust_watchpoint_address) {
900 /* this is currently used only by ARM BE32 */
901 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
903 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
904 if (watchpoint_address_matches(wp, addr, len)
905 && (wp->flags & flags)) {
906 if (replay_running_debug()) {
908 * Don't process the watchpoints when we are
909 * in a reverse debugging operation.
911 replay_breakpoint();
912 return;
914 if (flags == BP_MEM_READ) {
915 wp->flags |= BP_WATCHPOINT_HIT_READ;
916 } else {
917 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
919 wp->hitaddr = MAX(addr, wp->vaddr);
920 wp->hitattrs = attrs;
921 if (!cpu->watchpoint_hit) {
922 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
923 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
924 wp->flags &= ~BP_WATCHPOINT_HIT;
925 continue;
927 cpu->watchpoint_hit = wp;
929 mmap_lock();
930 tb_check_watchpoint(cpu, ra);
931 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
932 cpu->exception_index = EXCP_DEBUG;
933 mmap_unlock();
934 cpu_loop_exit_restore(cpu, ra);
935 } else {
936 /* Force execution of one insn next time. */
937 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
938 mmap_unlock();
939 if (ra) {
940 cpu_restore_state(cpu, ra, true);
942 cpu_loop_exit_noexc(cpu);
945 } else {
946 wp->flags &= ~BP_WATCHPOINT_HIT;
951 #endif /* CONFIG_TCG */
953 /* Called from RCU critical section */
954 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
956 RAMBlock *block;
958 block = qatomic_rcu_read(&ram_list.mru_block);
959 if (block && addr - block->offset < block->max_length) {
960 return block;
962 RAMBLOCK_FOREACH(block) {
963 if (addr - block->offset < block->max_length) {
964 goto found;
968 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
969 abort();
971 found:
972 /* It is safe to write mru_block outside the iothread lock. This
973 * is what happens:
975 * mru_block = xxx
976 * rcu_read_unlock()
977 * xxx removed from list
978 * rcu_read_lock()
979 * read mru_block
980 * mru_block = NULL;
981 * call_rcu(reclaim_ramblock, xxx);
982 * rcu_read_unlock()
984 * qatomic_rcu_set is not needed here. The block was already published
985 * when it was placed into the list. Here we're just making an extra
986 * copy of the pointer.
988 ram_list.mru_block = block;
989 return block;
992 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
994 CPUState *cpu;
995 ram_addr_t start1;
996 RAMBlock *block;
997 ram_addr_t end;
999 assert(tcg_enabled());
1000 end = TARGET_PAGE_ALIGN(start + length);
1001 start &= TARGET_PAGE_MASK;
1003 RCU_READ_LOCK_GUARD();
1004 block = qemu_get_ram_block(start);
1005 assert(block == qemu_get_ram_block(end - 1));
1006 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1007 CPU_FOREACH(cpu) {
1008 tlb_reset_dirty(cpu, start1, length);
1012 /* Note: start and end must be within the same ram block. */
1013 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1014 ram_addr_t length,
1015 unsigned client)
1017 DirtyMemoryBlocks *blocks;
1018 unsigned long end, page, start_page;
1019 bool dirty = false;
1020 RAMBlock *ramblock;
1021 uint64_t mr_offset, mr_size;
1023 if (length == 0) {
1024 return false;
1027 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1028 start_page = start >> TARGET_PAGE_BITS;
1029 page = start_page;
1031 WITH_RCU_READ_LOCK_GUARD() {
1032 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1033 ramblock = qemu_get_ram_block(start);
1034 /* Range sanity check on the ramblock */
1035 assert(start >= ramblock->offset &&
1036 start + length <= ramblock->offset + ramblock->used_length);
1038 while (page < end) {
1039 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1040 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1041 unsigned long num = MIN(end - page,
1042 DIRTY_MEMORY_BLOCK_SIZE - offset);
1044 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1045 offset, num);
1046 page += num;
1049 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1050 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1051 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1054 if (dirty && tcg_enabled()) {
1055 tlb_reset_dirty_range_all(start, length);
1058 return dirty;
1061 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1062 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1064 DirtyMemoryBlocks *blocks;
1065 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1066 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1067 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1068 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1069 DirtyBitmapSnapshot *snap;
1070 unsigned long page, end, dest;
1072 snap = g_malloc0(sizeof(*snap) +
1073 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1074 snap->start = first;
1075 snap->end = last;
1077 page = first >> TARGET_PAGE_BITS;
1078 end = last >> TARGET_PAGE_BITS;
1079 dest = 0;
1081 WITH_RCU_READ_LOCK_GUARD() {
1082 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1084 while (page < end) {
1085 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1086 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1087 unsigned long num = MIN(end - page,
1088 DIRTY_MEMORY_BLOCK_SIZE - offset);
1090 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1091 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1092 offset >>= BITS_PER_LEVEL;
1094 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1095 blocks->blocks[idx] + offset,
1096 num);
1097 page += num;
1098 dest += num >> BITS_PER_LEVEL;
1102 if (tcg_enabled()) {
1103 tlb_reset_dirty_range_all(start, length);
1106 memory_region_clear_dirty_bitmap(mr, offset, length);
1108 return snap;
1111 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1112 ram_addr_t start,
1113 ram_addr_t length)
1115 unsigned long page, end;
1117 assert(start >= snap->start);
1118 assert(start + length <= snap->end);
1120 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1121 page = (start - snap->start) >> TARGET_PAGE_BITS;
1123 while (page < end) {
1124 if (test_bit(page, snap->dirty)) {
1125 return true;
1127 page++;
1129 return false;
1132 /* Called from RCU critical section */
1133 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1134 MemoryRegionSection *section)
1136 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1137 return section - d->map.sections;
1140 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1141 uint16_t section);
1142 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1144 static uint16_t phys_section_add(PhysPageMap *map,
1145 MemoryRegionSection *section)
1147 /* The physical section number is ORed with a page-aligned
1148 * pointer to produce the iotlb entries. Thus it should
1149 * never overflow into the page-aligned value.
1151 assert(map->sections_nb < TARGET_PAGE_SIZE);
1153 if (map->sections_nb == map->sections_nb_alloc) {
1154 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1155 map->sections = g_renew(MemoryRegionSection, map->sections,
1156 map->sections_nb_alloc);
1158 map->sections[map->sections_nb] = *section;
1159 memory_region_ref(section->mr);
1160 return map->sections_nb++;
1163 static void phys_section_destroy(MemoryRegion *mr)
1165 bool have_sub_page = mr->subpage;
1167 memory_region_unref(mr);
1169 if (have_sub_page) {
1170 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1171 object_unref(OBJECT(&subpage->iomem));
1172 g_free(subpage);
1176 static void phys_sections_free(PhysPageMap *map)
1178 while (map->sections_nb > 0) {
1179 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1180 phys_section_destroy(section->mr);
1182 g_free(map->sections);
1183 g_free(map->nodes);
1186 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1188 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1189 subpage_t *subpage;
1190 hwaddr base = section->offset_within_address_space
1191 & TARGET_PAGE_MASK;
1192 MemoryRegionSection *existing = phys_page_find(d, base);
1193 MemoryRegionSection subsection = {
1194 .offset_within_address_space = base,
1195 .size = int128_make64(TARGET_PAGE_SIZE),
1197 hwaddr start, end;
1199 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1201 if (!(existing->mr->subpage)) {
1202 subpage = subpage_init(fv, base);
1203 subsection.fv = fv;
1204 subsection.mr = &subpage->iomem;
1205 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1206 phys_section_add(&d->map, &subsection));
1207 } else {
1208 subpage = container_of(existing->mr, subpage_t, iomem);
1210 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1211 end = start + int128_get64(section->size) - 1;
1212 subpage_register(subpage, start, end,
1213 phys_section_add(&d->map, section));
1217 static void register_multipage(FlatView *fv,
1218 MemoryRegionSection *section)
1220 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1221 hwaddr start_addr = section->offset_within_address_space;
1222 uint16_t section_index = phys_section_add(&d->map, section);
1223 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1224 TARGET_PAGE_BITS));
1226 assert(num_pages);
1227 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1231 * The range in *section* may look like this:
1233 * |s|PPPPPPP|s|
1235 * where s stands for subpage and P for page.
1237 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1239 MemoryRegionSection remain = *section;
1240 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1242 /* register first subpage */
1243 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1244 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1245 - remain.offset_within_address_space;
1247 MemoryRegionSection now = remain;
1248 now.size = int128_min(int128_make64(left), now.size);
1249 register_subpage(fv, &now);
1250 if (int128_eq(remain.size, now.size)) {
1251 return;
1253 remain.size = int128_sub(remain.size, now.size);
1254 remain.offset_within_address_space += int128_get64(now.size);
1255 remain.offset_within_region += int128_get64(now.size);
1258 /* register whole pages */
1259 if (int128_ge(remain.size, page_size)) {
1260 MemoryRegionSection now = remain;
1261 now.size = int128_and(now.size, int128_neg(page_size));
1262 register_multipage(fv, &now);
1263 if (int128_eq(remain.size, now.size)) {
1264 return;
1266 remain.size = int128_sub(remain.size, now.size);
1267 remain.offset_within_address_space += int128_get64(now.size);
1268 remain.offset_within_region += int128_get64(now.size);
1271 /* register last subpage */
1272 register_subpage(fv, &remain);
1275 void qemu_flush_coalesced_mmio_buffer(void)
1277 if (kvm_enabled())
1278 kvm_flush_coalesced_mmio_buffer();
1281 void qemu_mutex_lock_ramlist(void)
1283 qemu_mutex_lock(&ram_list.mutex);
1286 void qemu_mutex_unlock_ramlist(void)
1288 qemu_mutex_unlock(&ram_list.mutex);
1291 void ram_block_dump(Monitor *mon)
1293 RAMBlock *block;
1294 char *psize;
1296 RCU_READ_LOCK_GUARD();
1297 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1298 "Block Name", "PSize", "Offset", "Used", "Total");
1299 RAMBLOCK_FOREACH(block) {
1300 psize = size_to_str(block->page_size);
1301 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1302 " 0x%016" PRIx64 "\n", block->idstr, psize,
1303 (uint64_t)block->offset,
1304 (uint64_t)block->used_length,
1305 (uint64_t)block->max_length);
1306 g_free(psize);
1310 #ifdef __linux__
1312 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1313 * may or may not name the same files / on the same filesystem now as
1314 * when we actually open and map them. Iterate over the file
1315 * descriptors instead, and use qemu_fd_getpagesize().
1317 static int find_min_backend_pagesize(Object *obj, void *opaque)
1319 long *hpsize_min = opaque;
1321 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1322 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1323 long hpsize = host_memory_backend_pagesize(backend);
1325 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1326 *hpsize_min = hpsize;
1330 return 0;
1333 static int find_max_backend_pagesize(Object *obj, void *opaque)
1335 long *hpsize_max = opaque;
1337 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1338 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1339 long hpsize = host_memory_backend_pagesize(backend);
1341 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1342 *hpsize_max = hpsize;
1346 return 0;
1350 * TODO: We assume right now that all mapped host memory backends are
1351 * used as RAM, however some might be used for different purposes.
1353 long qemu_minrampagesize(void)
1355 long hpsize = LONG_MAX;
1356 Object *memdev_root = object_resolve_path("/objects", NULL);
1358 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1359 return hpsize;
1362 long qemu_maxrampagesize(void)
1364 long pagesize = 0;
1365 Object *memdev_root = object_resolve_path("/objects", NULL);
1367 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1368 return pagesize;
1370 #else
1371 long qemu_minrampagesize(void)
1373 return qemu_real_host_page_size;
1375 long qemu_maxrampagesize(void)
1377 return qemu_real_host_page_size;
1379 #endif
1381 #ifdef CONFIG_POSIX
1382 static int64_t get_file_size(int fd)
1384 int64_t size;
1385 #if defined(__linux__)
1386 struct stat st;
1388 if (fstat(fd, &st) < 0) {
1389 return -errno;
1392 /* Special handling for devdax character devices */
1393 if (S_ISCHR(st.st_mode)) {
1394 g_autofree char *subsystem_path = NULL;
1395 g_autofree char *subsystem = NULL;
1397 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1398 major(st.st_rdev), minor(st.st_rdev));
1399 subsystem = g_file_read_link(subsystem_path, NULL);
1401 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1402 g_autofree char *size_path = NULL;
1403 g_autofree char *size_str = NULL;
1405 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1406 major(st.st_rdev), minor(st.st_rdev));
1408 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1409 return g_ascii_strtoll(size_str, NULL, 0);
1413 #endif /* defined(__linux__) */
1415 /* st.st_size may be zero for special files yet lseek(2) works */
1416 size = lseek(fd, 0, SEEK_END);
1417 if (size < 0) {
1418 return -errno;
1420 return size;
1423 static int64_t get_file_align(int fd)
1425 int64_t align = -1;
1426 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1427 struct stat st;
1429 if (fstat(fd, &st) < 0) {
1430 return -errno;
1433 /* Special handling for devdax character devices */
1434 if (S_ISCHR(st.st_mode)) {
1435 g_autofree char *path = NULL;
1436 g_autofree char *rpath = NULL;
1437 struct daxctl_ctx *ctx;
1438 struct daxctl_region *region;
1439 int rc = 0;
1441 path = g_strdup_printf("/sys/dev/char/%d:%d",
1442 major(st.st_rdev), minor(st.st_rdev));
1443 rpath = realpath(path, NULL);
1445 rc = daxctl_new(&ctx);
1446 if (rc) {
1447 return -1;
1450 daxctl_region_foreach(ctx, region) {
1451 if (strstr(rpath, daxctl_region_get_path(region))) {
1452 align = daxctl_region_get_align(region);
1453 break;
1456 daxctl_unref(ctx);
1458 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1460 return align;
1463 static int file_ram_open(const char *path,
1464 const char *region_name,
1465 bool readonly,
1466 bool *created,
1467 Error **errp)
1469 char *filename;
1470 char *sanitized_name;
1471 char *c;
1472 int fd = -1;
1474 *created = false;
1475 for (;;) {
1476 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1477 if (fd >= 0) {
1478 /* @path names an existing file, use it */
1479 break;
1481 if (errno == ENOENT) {
1482 /* @path names a file that doesn't exist, create it */
1483 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1484 if (fd >= 0) {
1485 *created = true;
1486 break;
1488 } else if (errno == EISDIR) {
1489 /* @path names a directory, create a file there */
1490 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1491 sanitized_name = g_strdup(region_name);
1492 for (c = sanitized_name; *c != '\0'; c++) {
1493 if (*c == '/') {
1494 *c = '_';
1498 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1499 sanitized_name);
1500 g_free(sanitized_name);
1502 fd = mkstemp(filename);
1503 if (fd >= 0) {
1504 unlink(filename);
1505 g_free(filename);
1506 break;
1508 g_free(filename);
1510 if (errno != EEXIST && errno != EINTR) {
1511 error_setg_errno(errp, errno,
1512 "can't open backing store %s for guest RAM",
1513 path);
1514 return -1;
1517 * Try again on EINTR and EEXIST. The latter happens when
1518 * something else creates the file between our two open().
1522 return fd;
1525 static void *file_ram_alloc(RAMBlock *block,
1526 ram_addr_t memory,
1527 int fd,
1528 bool readonly,
1529 bool truncate,
1530 off_t offset,
1531 Error **errp)
1533 void *area;
1535 block->page_size = qemu_fd_getpagesize(fd);
1536 if (block->mr->align % block->page_size) {
1537 error_setg(errp, "alignment 0x%" PRIx64
1538 " must be multiples of page size 0x%zx",
1539 block->mr->align, block->page_size);
1540 return NULL;
1541 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1542 error_setg(errp, "alignment 0x%" PRIx64
1543 " must be a power of two", block->mr->align);
1544 return NULL;
1546 block->mr->align = MAX(block->page_size, block->mr->align);
1547 #if defined(__s390x__)
1548 if (kvm_enabled()) {
1549 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1551 #endif
1553 if (memory < block->page_size) {
1554 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1555 "or larger than page size 0x%zx",
1556 memory, block->page_size);
1557 return NULL;
1560 memory = ROUND_UP(memory, block->page_size);
1563 * ftruncate is not supported by hugetlbfs in older
1564 * hosts, so don't bother bailing out on errors.
1565 * If anything goes wrong with it under other filesystems,
1566 * mmap will fail.
1568 * Do not truncate the non-empty backend file to avoid corrupting
1569 * the existing data in the file. Disabling shrinking is not
1570 * enough. For example, the current vNVDIMM implementation stores
1571 * the guest NVDIMM labels at the end of the backend file. If the
1572 * backend file is later extended, QEMU will not be able to find
1573 * those labels. Therefore, extending the non-empty backend file
1574 * is disabled as well.
1576 if (truncate && ftruncate(fd, memory)) {
1577 perror("ftruncate");
1580 area = qemu_ram_mmap(fd, memory, block->mr->align, readonly,
1581 block->flags & RAM_SHARED, block->flags & RAM_PMEM,
1582 offset);
1583 if (area == MAP_FAILED) {
1584 error_setg_errno(errp, errno,
1585 "unable to map backing store for guest RAM");
1586 return NULL;
1589 block->fd = fd;
1590 return area;
1592 #endif
1594 /* Allocate space within the ram_addr_t space that governs the
1595 * dirty bitmaps.
1596 * Called with the ramlist lock held.
1598 static ram_addr_t find_ram_offset(ram_addr_t size)
1600 RAMBlock *block, *next_block;
1601 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1603 assert(size != 0); /* it would hand out same offset multiple times */
1605 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1606 return 0;
1609 RAMBLOCK_FOREACH(block) {
1610 ram_addr_t candidate, next = RAM_ADDR_MAX;
1612 /* Align blocks to start on a 'long' in the bitmap
1613 * which makes the bitmap sync'ing take the fast path.
1615 candidate = block->offset + block->max_length;
1616 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1618 /* Search for the closest following block
1619 * and find the gap.
1621 RAMBLOCK_FOREACH(next_block) {
1622 if (next_block->offset >= candidate) {
1623 next = MIN(next, next_block->offset);
1627 /* If it fits remember our place and remember the size
1628 * of gap, but keep going so that we might find a smaller
1629 * gap to fill so avoiding fragmentation.
1631 if (next - candidate >= size && next - candidate < mingap) {
1632 offset = candidate;
1633 mingap = next - candidate;
1636 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1639 if (offset == RAM_ADDR_MAX) {
1640 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1641 (uint64_t)size);
1642 abort();
1645 trace_find_ram_offset(size, offset);
1647 return offset;
1650 static unsigned long last_ram_page(void)
1652 RAMBlock *block;
1653 ram_addr_t last = 0;
1655 RCU_READ_LOCK_GUARD();
1656 RAMBLOCK_FOREACH(block) {
1657 last = MAX(last, block->offset + block->max_length);
1659 return last >> TARGET_PAGE_BITS;
1662 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1664 int ret;
1666 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1667 if (!machine_dump_guest_core(current_machine)) {
1668 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1669 if (ret) {
1670 perror("qemu_madvise");
1671 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1672 "but dump_guest_core=off specified\n");
1677 const char *qemu_ram_get_idstr(RAMBlock *rb)
1679 return rb->idstr;
1682 void *qemu_ram_get_host_addr(RAMBlock *rb)
1684 return rb->host;
1687 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1689 return rb->offset;
1692 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1694 return rb->used_length;
1697 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1699 return rb->max_length;
1702 bool qemu_ram_is_shared(RAMBlock *rb)
1704 return rb->flags & RAM_SHARED;
1707 /* Note: Only set at the start of postcopy */
1708 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1710 return rb->flags & RAM_UF_ZEROPAGE;
1713 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1715 rb->flags |= RAM_UF_ZEROPAGE;
1718 bool qemu_ram_is_migratable(RAMBlock *rb)
1720 return rb->flags & RAM_MIGRATABLE;
1723 void qemu_ram_set_migratable(RAMBlock *rb)
1725 rb->flags |= RAM_MIGRATABLE;
1728 void qemu_ram_unset_migratable(RAMBlock *rb)
1730 rb->flags &= ~RAM_MIGRATABLE;
1733 /* Called with iothread lock held. */
1734 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1736 RAMBlock *block;
1738 assert(new_block);
1739 assert(!new_block->idstr[0]);
1741 if (dev) {
1742 char *id = qdev_get_dev_path(dev);
1743 if (id) {
1744 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1745 g_free(id);
1748 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1750 RCU_READ_LOCK_GUARD();
1751 RAMBLOCK_FOREACH(block) {
1752 if (block != new_block &&
1753 !strcmp(block->idstr, new_block->idstr)) {
1754 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1755 new_block->idstr);
1756 abort();
1761 /* Called with iothread lock held. */
1762 void qemu_ram_unset_idstr(RAMBlock *block)
1764 /* FIXME: arch_init.c assumes that this is not called throughout
1765 * migration. Ignore the problem since hot-unplug during migration
1766 * does not work anyway.
1768 if (block) {
1769 memset(block->idstr, 0, sizeof(block->idstr));
1773 size_t qemu_ram_pagesize(RAMBlock *rb)
1775 return rb->page_size;
1778 /* Returns the largest size of page in use */
1779 size_t qemu_ram_pagesize_largest(void)
1781 RAMBlock *block;
1782 size_t largest = 0;
1784 RAMBLOCK_FOREACH(block) {
1785 largest = MAX(largest, qemu_ram_pagesize(block));
1788 return largest;
1791 static int memory_try_enable_merging(void *addr, size_t len)
1793 if (!machine_mem_merge(current_machine)) {
1794 /* disabled by the user */
1795 return 0;
1798 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1802 * Resizing RAM while migrating can result in the migration being canceled.
1803 * Care has to be taken if the guest might have already detected the memory.
1805 * As memory core doesn't know how is memory accessed, it is up to
1806 * resize callback to update device state and/or add assertions to detect
1807 * misuse, if necessary.
1809 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1811 const ram_addr_t oldsize = block->used_length;
1812 const ram_addr_t unaligned_size = newsize;
1814 assert(block);
1816 newsize = HOST_PAGE_ALIGN(newsize);
1818 if (block->used_length == newsize) {
1820 * We don't have to resize the ram block (which only knows aligned
1821 * sizes), however, we have to notify if the unaligned size changed.
1823 if (unaligned_size != memory_region_size(block->mr)) {
1824 memory_region_set_size(block->mr, unaligned_size);
1825 if (block->resized) {
1826 block->resized(block->idstr, unaligned_size, block->host);
1829 return 0;
1832 if (!(block->flags & RAM_RESIZEABLE)) {
1833 error_setg_errno(errp, EINVAL,
1834 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1835 " != 0x" RAM_ADDR_FMT, block->idstr,
1836 newsize, block->used_length);
1837 return -EINVAL;
1840 if (block->max_length < newsize) {
1841 error_setg_errno(errp, EINVAL,
1842 "Size too large: %s: 0x" RAM_ADDR_FMT
1843 " > 0x" RAM_ADDR_FMT, block->idstr,
1844 newsize, block->max_length);
1845 return -EINVAL;
1848 /* Notify before modifying the ram block and touching the bitmaps. */
1849 if (block->host) {
1850 ram_block_notify_resize(block->host, oldsize, newsize);
1853 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1854 block->used_length = newsize;
1855 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1856 DIRTY_CLIENTS_ALL);
1857 memory_region_set_size(block->mr, unaligned_size);
1858 if (block->resized) {
1859 block->resized(block->idstr, unaligned_size, block->host);
1861 return 0;
1865 * Trigger sync on the given ram block for range [start, start + length]
1866 * with the backing store if one is available.
1867 * Otherwise no-op.
1868 * @Note: this is supposed to be a synchronous op.
1870 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1872 /* The requested range should fit in within the block range */
1873 g_assert((start + length) <= block->used_length);
1875 #ifdef CONFIG_LIBPMEM
1876 /* The lack of support for pmem should not block the sync */
1877 if (ramblock_is_pmem(block)) {
1878 void *addr = ramblock_ptr(block, start);
1879 pmem_persist(addr, length);
1880 return;
1882 #endif
1883 if (block->fd >= 0) {
1885 * Case there is no support for PMEM or the memory has not been
1886 * specified as persistent (or is not one) - use the msync.
1887 * Less optimal but still achieves the same goal
1889 void *addr = ramblock_ptr(block, start);
1890 if (qemu_msync(addr, length, block->fd)) {
1891 warn_report("%s: failed to sync memory range: start: "
1892 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1893 __func__, start, length);
1898 /* Called with ram_list.mutex held */
1899 static void dirty_memory_extend(ram_addr_t old_ram_size,
1900 ram_addr_t new_ram_size)
1902 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1903 DIRTY_MEMORY_BLOCK_SIZE);
1904 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1905 DIRTY_MEMORY_BLOCK_SIZE);
1906 int i;
1908 /* Only need to extend if block count increased */
1909 if (new_num_blocks <= old_num_blocks) {
1910 return;
1913 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1914 DirtyMemoryBlocks *old_blocks;
1915 DirtyMemoryBlocks *new_blocks;
1916 int j;
1918 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1919 new_blocks = g_malloc(sizeof(*new_blocks) +
1920 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1922 if (old_num_blocks) {
1923 memcpy(new_blocks->blocks, old_blocks->blocks,
1924 old_num_blocks * sizeof(old_blocks->blocks[0]));
1927 for (j = old_num_blocks; j < new_num_blocks; j++) {
1928 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1931 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1933 if (old_blocks) {
1934 g_free_rcu(old_blocks, rcu);
1939 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1941 RAMBlock *block;
1942 RAMBlock *last_block = NULL;
1943 ram_addr_t old_ram_size, new_ram_size;
1944 Error *err = NULL;
1946 old_ram_size = last_ram_page();
1948 qemu_mutex_lock_ramlist();
1949 new_block->offset = find_ram_offset(new_block->max_length);
1951 if (!new_block->host) {
1952 if (xen_enabled()) {
1953 xen_ram_alloc(new_block->offset, new_block->max_length,
1954 new_block->mr, &err);
1955 if (err) {
1956 error_propagate(errp, err);
1957 qemu_mutex_unlock_ramlist();
1958 return;
1960 } else {
1961 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1962 &new_block->mr->align,
1963 shared);
1964 if (!new_block->host) {
1965 error_setg_errno(errp, errno,
1966 "cannot set up guest memory '%s'",
1967 memory_region_name(new_block->mr));
1968 qemu_mutex_unlock_ramlist();
1969 return;
1971 memory_try_enable_merging(new_block->host, new_block->max_length);
1975 new_ram_size = MAX(old_ram_size,
1976 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1977 if (new_ram_size > old_ram_size) {
1978 dirty_memory_extend(old_ram_size, new_ram_size);
1980 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1981 * QLIST (which has an RCU-friendly variant) does not have insertion at
1982 * tail, so save the last element in last_block.
1984 RAMBLOCK_FOREACH(block) {
1985 last_block = block;
1986 if (block->max_length < new_block->max_length) {
1987 break;
1990 if (block) {
1991 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1992 } else if (last_block) {
1993 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1994 } else { /* list is empty */
1995 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1997 ram_list.mru_block = NULL;
1999 /* Write list before version */
2000 smp_wmb();
2001 ram_list.version++;
2002 qemu_mutex_unlock_ramlist();
2004 cpu_physical_memory_set_dirty_range(new_block->offset,
2005 new_block->used_length,
2006 DIRTY_CLIENTS_ALL);
2008 if (new_block->host) {
2009 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2010 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2012 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2013 * Configure it unless the machine is a qtest server, in which case
2014 * KVM is not used and it may be forked (eg for fuzzing purposes).
2016 if (!qtest_enabled()) {
2017 qemu_madvise(new_block->host, new_block->max_length,
2018 QEMU_MADV_DONTFORK);
2020 ram_block_notify_add(new_block->host, new_block->used_length,
2021 new_block->max_length);
2025 #ifdef CONFIG_POSIX
2026 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2027 uint32_t ram_flags, int fd, off_t offset,
2028 bool readonly, Error **errp)
2030 RAMBlock *new_block;
2031 Error *local_err = NULL;
2032 int64_t file_size, file_align;
2034 /* Just support these ram flags by now. */
2035 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2037 if (xen_enabled()) {
2038 error_setg(errp, "-mem-path not supported with Xen");
2039 return NULL;
2042 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2043 error_setg(errp,
2044 "host lacks kvm mmu notifiers, -mem-path unsupported");
2045 return NULL;
2048 size = HOST_PAGE_ALIGN(size);
2049 file_size = get_file_size(fd);
2050 if (file_size > 0 && file_size < size) {
2051 error_setg(errp, "backing store size 0x%" PRIx64
2052 " does not match 'size' option 0x" RAM_ADDR_FMT,
2053 file_size, size);
2054 return NULL;
2057 file_align = get_file_align(fd);
2058 if (file_align > 0 && mr && file_align > mr->align) {
2059 error_setg(errp, "backing store align 0x%" PRIx64
2060 " is larger than 'align' option 0x%" PRIx64,
2061 file_align, mr->align);
2062 return NULL;
2065 new_block = g_malloc0(sizeof(*new_block));
2066 new_block->mr = mr;
2067 new_block->used_length = size;
2068 new_block->max_length = size;
2069 new_block->flags = ram_flags;
2070 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2071 !file_size, offset, errp);
2072 if (!new_block->host) {
2073 g_free(new_block);
2074 return NULL;
2077 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2078 if (local_err) {
2079 g_free(new_block);
2080 error_propagate(errp, local_err);
2081 return NULL;
2083 return new_block;
2088 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2089 uint32_t ram_flags, const char *mem_path,
2090 bool readonly, Error **errp)
2092 int fd;
2093 bool created;
2094 RAMBlock *block;
2096 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2097 errp);
2098 if (fd < 0) {
2099 return NULL;
2102 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2103 if (!block) {
2104 if (created) {
2105 unlink(mem_path);
2107 close(fd);
2108 return NULL;
2111 return block;
2113 #endif
2115 static
2116 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2117 void (*resized)(const char*,
2118 uint64_t length,
2119 void *host),
2120 void *host, bool resizeable, bool share,
2121 MemoryRegion *mr, Error **errp)
2123 RAMBlock *new_block;
2124 Error *local_err = NULL;
2126 size = HOST_PAGE_ALIGN(size);
2127 max_size = HOST_PAGE_ALIGN(max_size);
2128 new_block = g_malloc0(sizeof(*new_block));
2129 new_block->mr = mr;
2130 new_block->resized = resized;
2131 new_block->used_length = size;
2132 new_block->max_length = max_size;
2133 assert(max_size >= size);
2134 new_block->fd = -1;
2135 new_block->page_size = qemu_real_host_page_size;
2136 new_block->host = host;
2137 if (host) {
2138 new_block->flags |= RAM_PREALLOC;
2140 if (resizeable) {
2141 new_block->flags |= RAM_RESIZEABLE;
2143 ram_block_add(new_block, &local_err, share);
2144 if (local_err) {
2145 g_free(new_block);
2146 error_propagate(errp, local_err);
2147 return NULL;
2149 return new_block;
2152 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2153 MemoryRegion *mr, Error **errp)
2155 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2156 false, mr, errp);
2159 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2160 MemoryRegion *mr, Error **errp)
2162 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2163 share, mr, errp);
2166 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2167 void (*resized)(const char*,
2168 uint64_t length,
2169 void *host),
2170 MemoryRegion *mr, Error **errp)
2172 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2173 false, mr, errp);
2176 static void reclaim_ramblock(RAMBlock *block)
2178 if (block->flags & RAM_PREALLOC) {
2180 } else if (xen_enabled()) {
2181 xen_invalidate_map_cache_entry(block->host);
2182 #ifndef _WIN32
2183 } else if (block->fd >= 0) {
2184 qemu_ram_munmap(block->fd, block->host, block->max_length);
2185 close(block->fd);
2186 #endif
2187 } else {
2188 qemu_anon_ram_free(block->host, block->max_length);
2190 g_free(block);
2193 void qemu_ram_free(RAMBlock *block)
2195 if (!block) {
2196 return;
2199 if (block->host) {
2200 ram_block_notify_remove(block->host, block->used_length,
2201 block->max_length);
2204 qemu_mutex_lock_ramlist();
2205 QLIST_REMOVE_RCU(block, next);
2206 ram_list.mru_block = NULL;
2207 /* Write list before version */
2208 smp_wmb();
2209 ram_list.version++;
2210 call_rcu(block, reclaim_ramblock, rcu);
2211 qemu_mutex_unlock_ramlist();
2214 #ifndef _WIN32
2215 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2217 RAMBlock *block;
2218 ram_addr_t offset;
2219 int flags;
2220 void *area, *vaddr;
2222 RAMBLOCK_FOREACH(block) {
2223 offset = addr - block->offset;
2224 if (offset < block->max_length) {
2225 vaddr = ramblock_ptr(block, offset);
2226 if (block->flags & RAM_PREALLOC) {
2228 } else if (xen_enabled()) {
2229 abort();
2230 } else {
2231 flags = MAP_FIXED;
2232 if (block->fd >= 0) {
2233 flags |= (block->flags & RAM_SHARED ?
2234 MAP_SHARED : MAP_PRIVATE);
2235 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2236 flags, block->fd, offset);
2237 } else {
2238 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2239 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2240 flags, -1, 0);
2242 if (area != vaddr) {
2243 error_report("Could not remap addr: "
2244 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2245 length, addr);
2246 exit(1);
2248 memory_try_enable_merging(vaddr, length);
2249 qemu_ram_setup_dump(vaddr, length);
2254 #endif /* !_WIN32 */
2256 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2257 * This should not be used for general purpose DMA. Use address_space_map
2258 * or address_space_rw instead. For local memory (e.g. video ram) that the
2259 * device owns, use memory_region_get_ram_ptr.
2261 * Called within RCU critical section.
2263 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2265 RAMBlock *block = ram_block;
2267 if (block == NULL) {
2268 block = qemu_get_ram_block(addr);
2269 addr -= block->offset;
2272 if (xen_enabled() && block->host == NULL) {
2273 /* We need to check if the requested address is in the RAM
2274 * because we don't want to map the entire memory in QEMU.
2275 * In that case just map until the end of the page.
2277 if (block->offset == 0) {
2278 return xen_map_cache(addr, 0, 0, false);
2281 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2283 return ramblock_ptr(block, addr);
2286 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2287 * but takes a size argument.
2289 * Called within RCU critical section.
2291 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2292 hwaddr *size, bool lock)
2294 RAMBlock *block = ram_block;
2295 if (*size == 0) {
2296 return NULL;
2299 if (block == NULL) {
2300 block = qemu_get_ram_block(addr);
2301 addr -= block->offset;
2303 *size = MIN(*size, block->max_length - addr);
2305 if (xen_enabled() && block->host == NULL) {
2306 /* We need to check if the requested address is in the RAM
2307 * because we don't want to map the entire memory in QEMU.
2308 * In that case just map the requested area.
2310 if (block->offset == 0) {
2311 return xen_map_cache(addr, *size, lock, lock);
2314 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2317 return ramblock_ptr(block, addr);
2320 /* Return the offset of a hostpointer within a ramblock */
2321 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2323 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2324 assert((uintptr_t)host >= (uintptr_t)rb->host);
2325 assert(res < rb->max_length);
2327 return res;
2331 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2332 * in that RAMBlock.
2334 * ptr: Host pointer to look up
2335 * round_offset: If true round the result offset down to a page boundary
2336 * *ram_addr: set to result ram_addr
2337 * *offset: set to result offset within the RAMBlock
2339 * Returns: RAMBlock (or NULL if not found)
2341 * By the time this function returns, the returned pointer is not protected
2342 * by RCU anymore. If the caller is not within an RCU critical section and
2343 * does not hold the iothread lock, it must have other means of protecting the
2344 * pointer, such as a reference to the region that includes the incoming
2345 * ram_addr_t.
2347 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2348 ram_addr_t *offset)
2350 RAMBlock *block;
2351 uint8_t *host = ptr;
2353 if (xen_enabled()) {
2354 ram_addr_t ram_addr;
2355 RCU_READ_LOCK_GUARD();
2356 ram_addr = xen_ram_addr_from_mapcache(ptr);
2357 block = qemu_get_ram_block(ram_addr);
2358 if (block) {
2359 *offset = ram_addr - block->offset;
2361 return block;
2364 RCU_READ_LOCK_GUARD();
2365 block = qatomic_rcu_read(&ram_list.mru_block);
2366 if (block && block->host && host - block->host < block->max_length) {
2367 goto found;
2370 RAMBLOCK_FOREACH(block) {
2371 /* This case append when the block is not mapped. */
2372 if (block->host == NULL) {
2373 continue;
2375 if (host - block->host < block->max_length) {
2376 goto found;
2380 return NULL;
2382 found:
2383 *offset = (host - block->host);
2384 if (round_offset) {
2385 *offset &= TARGET_PAGE_MASK;
2387 return block;
2391 * Finds the named RAMBlock
2393 * name: The name of RAMBlock to find
2395 * Returns: RAMBlock (or NULL if not found)
2397 RAMBlock *qemu_ram_block_by_name(const char *name)
2399 RAMBlock *block;
2401 RAMBLOCK_FOREACH(block) {
2402 if (!strcmp(name, block->idstr)) {
2403 return block;
2407 return NULL;
2410 /* Some of the softmmu routines need to translate from a host pointer
2411 (typically a TLB entry) back to a ram offset. */
2412 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2414 RAMBlock *block;
2415 ram_addr_t offset;
2417 block = qemu_ram_block_from_host(ptr, false, &offset);
2418 if (!block) {
2419 return RAM_ADDR_INVALID;
2422 return block->offset + offset;
2425 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2426 MemTxAttrs attrs, void *buf, hwaddr len);
2427 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2428 const void *buf, hwaddr len);
2429 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2430 bool is_write, MemTxAttrs attrs);
2432 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2433 unsigned len, MemTxAttrs attrs)
2435 subpage_t *subpage = opaque;
2436 uint8_t buf[8];
2437 MemTxResult res;
2439 #if defined(DEBUG_SUBPAGE)
2440 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2441 subpage, len, addr);
2442 #endif
2443 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2444 if (res) {
2445 return res;
2447 *data = ldn_p(buf, len);
2448 return MEMTX_OK;
2451 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2452 uint64_t value, unsigned len, MemTxAttrs attrs)
2454 subpage_t *subpage = opaque;
2455 uint8_t buf[8];
2457 #if defined(DEBUG_SUBPAGE)
2458 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2459 " value %"PRIx64"\n",
2460 __func__, subpage, len, addr, value);
2461 #endif
2462 stn_p(buf, len, value);
2463 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2466 static bool subpage_accepts(void *opaque, hwaddr addr,
2467 unsigned len, bool is_write,
2468 MemTxAttrs attrs)
2470 subpage_t *subpage = opaque;
2471 #if defined(DEBUG_SUBPAGE)
2472 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2473 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2474 #endif
2476 return flatview_access_valid(subpage->fv, addr + subpage->base,
2477 len, is_write, attrs);
2480 static const MemoryRegionOps subpage_ops = {
2481 .read_with_attrs = subpage_read,
2482 .write_with_attrs = subpage_write,
2483 .impl.min_access_size = 1,
2484 .impl.max_access_size = 8,
2485 .valid.min_access_size = 1,
2486 .valid.max_access_size = 8,
2487 .valid.accepts = subpage_accepts,
2488 .endianness = DEVICE_NATIVE_ENDIAN,
2491 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2492 uint16_t section)
2494 int idx, eidx;
2496 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2497 return -1;
2498 idx = SUBPAGE_IDX(start);
2499 eidx = SUBPAGE_IDX(end);
2500 #if defined(DEBUG_SUBPAGE)
2501 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2502 __func__, mmio, start, end, idx, eidx, section);
2503 #endif
2504 for (; idx <= eidx; idx++) {
2505 mmio->sub_section[idx] = section;
2508 return 0;
2511 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2513 subpage_t *mmio;
2515 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2516 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2517 mmio->fv = fv;
2518 mmio->base = base;
2519 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2520 NULL, TARGET_PAGE_SIZE);
2521 mmio->iomem.subpage = true;
2522 #if defined(DEBUG_SUBPAGE)
2523 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2524 mmio, base, TARGET_PAGE_SIZE);
2525 #endif
2527 return mmio;
2530 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2532 assert(fv);
2533 MemoryRegionSection section = {
2534 .fv = fv,
2535 .mr = mr,
2536 .offset_within_address_space = 0,
2537 .offset_within_region = 0,
2538 .size = int128_2_64(),
2541 return phys_section_add(map, &section);
2544 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2545 hwaddr index, MemTxAttrs attrs)
2547 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2548 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2549 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2550 MemoryRegionSection *sections = d->map.sections;
2552 return &sections[index & ~TARGET_PAGE_MASK];
2555 static void io_mem_init(void)
2557 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2558 NULL, UINT64_MAX);
2561 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2563 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2564 uint16_t n;
2566 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2567 assert(n == PHYS_SECTION_UNASSIGNED);
2569 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2571 return d;
2574 void address_space_dispatch_free(AddressSpaceDispatch *d)
2576 phys_sections_free(&d->map);
2577 g_free(d);
2580 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2584 static void tcg_log_global_after_sync(MemoryListener *listener)
2586 CPUAddressSpace *cpuas;
2588 /* Wait for the CPU to end the current TB. This avoids the following
2589 * incorrect race:
2591 * vCPU migration
2592 * ---------------------- -------------------------
2593 * TLB check -> slow path
2594 * notdirty_mem_write
2595 * write to RAM
2596 * mark dirty
2597 * clear dirty flag
2598 * TLB check -> fast path
2599 * read memory
2600 * write to RAM
2602 * by pushing the migration thread's memory read after the vCPU thread has
2603 * written the memory.
2605 if (replay_mode == REPLAY_MODE_NONE) {
2607 * VGA can make calls to this function while updating the screen.
2608 * In record/replay mode this causes a deadlock, because
2609 * run_on_cpu waits for rr mutex. Therefore no races are possible
2610 * in this case and no need for making run_on_cpu when
2611 * record/replay is not enabled.
2613 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2614 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2618 static void tcg_commit(MemoryListener *listener)
2620 CPUAddressSpace *cpuas;
2621 AddressSpaceDispatch *d;
2623 assert(tcg_enabled());
2624 /* since each CPU stores ram addresses in its TLB cache, we must
2625 reset the modified entries */
2626 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2627 cpu_reloading_memory_map();
2628 /* The CPU and TLB are protected by the iothread lock.
2629 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2630 * may have split the RCU critical section.
2632 d = address_space_to_dispatch(cpuas->as);
2633 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2634 tlb_flush(cpuas->cpu);
2637 static void memory_map_init(void)
2639 system_memory = g_malloc(sizeof(*system_memory));
2641 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2642 address_space_init(&address_space_memory, system_memory, "memory");
2644 system_io = g_malloc(sizeof(*system_io));
2645 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2646 65536);
2647 address_space_init(&address_space_io, system_io, "I/O");
2650 MemoryRegion *get_system_memory(void)
2652 return system_memory;
2655 MemoryRegion *get_system_io(void)
2657 return system_io;
2660 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2661 hwaddr length)
2663 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2664 addr += memory_region_get_ram_addr(mr);
2666 /* No early return if dirty_log_mask is or becomes 0, because
2667 * cpu_physical_memory_set_dirty_range will still call
2668 * xen_modified_memory.
2670 if (dirty_log_mask) {
2671 dirty_log_mask =
2672 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2674 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2675 assert(tcg_enabled());
2676 tb_invalidate_phys_range(addr, addr + length);
2677 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2679 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2682 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2685 * In principle this function would work on other memory region types too,
2686 * but the ROM device use case is the only one where this operation is
2687 * necessary. Other memory regions should use the
2688 * address_space_read/write() APIs.
2690 assert(memory_region_is_romd(mr));
2692 invalidate_and_set_dirty(mr, addr, size);
2695 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2697 unsigned access_size_max = mr->ops->valid.max_access_size;
2699 /* Regions are assumed to support 1-4 byte accesses unless
2700 otherwise specified. */
2701 if (access_size_max == 0) {
2702 access_size_max = 4;
2705 /* Bound the maximum access by the alignment of the address. */
2706 if (!mr->ops->impl.unaligned) {
2707 unsigned align_size_max = addr & -addr;
2708 if (align_size_max != 0 && align_size_max < access_size_max) {
2709 access_size_max = align_size_max;
2713 /* Don't attempt accesses larger than the maximum. */
2714 if (l > access_size_max) {
2715 l = access_size_max;
2717 l = pow2floor(l);
2719 return l;
2722 static bool prepare_mmio_access(MemoryRegion *mr)
2724 bool release_lock = false;
2726 if (!qemu_mutex_iothread_locked()) {
2727 qemu_mutex_lock_iothread();
2728 release_lock = true;
2730 if (mr->flush_coalesced_mmio) {
2731 qemu_flush_coalesced_mmio_buffer();
2734 return release_lock;
2737 /* Called within RCU critical section. */
2738 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2739 MemTxAttrs attrs,
2740 const void *ptr,
2741 hwaddr len, hwaddr addr1,
2742 hwaddr l, MemoryRegion *mr)
2744 uint8_t *ram_ptr;
2745 uint64_t val;
2746 MemTxResult result = MEMTX_OK;
2747 bool release_lock = false;
2748 const uint8_t *buf = ptr;
2750 for (;;) {
2751 if (!memory_access_is_direct(mr, true)) {
2752 release_lock |= prepare_mmio_access(mr);
2753 l = memory_access_size(mr, l, addr1);
2754 /* XXX: could force current_cpu to NULL to avoid
2755 potential bugs */
2756 val = ldn_he_p(buf, l);
2757 result |= memory_region_dispatch_write(mr, addr1, val,
2758 size_memop(l), attrs);
2759 } else {
2760 /* RAM case */
2761 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2762 memcpy(ram_ptr, buf, l);
2763 invalidate_and_set_dirty(mr, addr1, l);
2766 if (release_lock) {
2767 qemu_mutex_unlock_iothread();
2768 release_lock = false;
2771 len -= l;
2772 buf += l;
2773 addr += l;
2775 if (!len) {
2776 break;
2779 l = len;
2780 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2783 return result;
2786 /* Called from RCU critical section. */
2787 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2788 const void *buf, hwaddr len)
2790 hwaddr l;
2791 hwaddr addr1;
2792 MemoryRegion *mr;
2793 MemTxResult result = MEMTX_OK;
2795 l = len;
2796 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2797 result = flatview_write_continue(fv, addr, attrs, buf, len,
2798 addr1, l, mr);
2800 return result;
2803 /* Called within RCU critical section. */
2804 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2805 MemTxAttrs attrs, void *ptr,
2806 hwaddr len, hwaddr addr1, hwaddr l,
2807 MemoryRegion *mr)
2809 uint8_t *ram_ptr;
2810 uint64_t val;
2811 MemTxResult result = MEMTX_OK;
2812 bool release_lock = false;
2813 uint8_t *buf = ptr;
2815 fuzz_dma_read_cb(addr, len, mr);
2816 for (;;) {
2817 if (!memory_access_is_direct(mr, false)) {
2818 /* I/O case */
2819 release_lock |= prepare_mmio_access(mr);
2820 l = memory_access_size(mr, l, addr1);
2821 result |= memory_region_dispatch_read(mr, addr1, &val,
2822 size_memop(l), attrs);
2823 stn_he_p(buf, l, val);
2824 } else {
2825 /* RAM case */
2826 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2827 memcpy(buf, ram_ptr, l);
2830 if (release_lock) {
2831 qemu_mutex_unlock_iothread();
2832 release_lock = false;
2835 len -= l;
2836 buf += l;
2837 addr += l;
2839 if (!len) {
2840 break;
2843 l = len;
2844 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2847 return result;
2850 /* Called from RCU critical section. */
2851 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2852 MemTxAttrs attrs, void *buf, hwaddr len)
2854 hwaddr l;
2855 hwaddr addr1;
2856 MemoryRegion *mr;
2858 l = len;
2859 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2860 return flatview_read_continue(fv, addr, attrs, buf, len,
2861 addr1, l, mr);
2864 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2865 MemTxAttrs attrs, void *buf, hwaddr len)
2867 MemTxResult result = MEMTX_OK;
2868 FlatView *fv;
2870 if (len > 0) {
2871 RCU_READ_LOCK_GUARD();
2872 fv = address_space_to_flatview(as);
2873 result = flatview_read(fv, addr, attrs, buf, len);
2876 return result;
2879 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2880 MemTxAttrs attrs,
2881 const void *buf, hwaddr len)
2883 MemTxResult result = MEMTX_OK;
2884 FlatView *fv;
2886 if (len > 0) {
2887 RCU_READ_LOCK_GUARD();
2888 fv = address_space_to_flatview(as);
2889 result = flatview_write(fv, addr, attrs, buf, len);
2892 return result;
2895 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2896 void *buf, hwaddr len, bool is_write)
2898 if (is_write) {
2899 return address_space_write(as, addr, attrs, buf, len);
2900 } else {
2901 return address_space_read_full(as, addr, attrs, buf, len);
2905 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2906 hwaddr len, bool is_write)
2908 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2909 buf, len, is_write);
2912 enum write_rom_type {
2913 WRITE_DATA,
2914 FLUSH_CACHE,
2917 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2918 hwaddr addr,
2919 MemTxAttrs attrs,
2920 const void *ptr,
2921 hwaddr len,
2922 enum write_rom_type type)
2924 hwaddr l;
2925 uint8_t *ram_ptr;
2926 hwaddr addr1;
2927 MemoryRegion *mr;
2928 const uint8_t *buf = ptr;
2930 RCU_READ_LOCK_GUARD();
2931 while (len > 0) {
2932 l = len;
2933 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2935 if (!(memory_region_is_ram(mr) ||
2936 memory_region_is_romd(mr))) {
2937 l = memory_access_size(mr, l, addr1);
2938 } else {
2939 /* ROM/RAM case */
2940 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2941 switch (type) {
2942 case WRITE_DATA:
2943 memcpy(ram_ptr, buf, l);
2944 invalidate_and_set_dirty(mr, addr1, l);
2945 break;
2946 case FLUSH_CACHE:
2947 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2948 break;
2951 len -= l;
2952 buf += l;
2953 addr += l;
2955 return MEMTX_OK;
2958 /* used for ROM loading : can write in RAM and ROM */
2959 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2960 MemTxAttrs attrs,
2961 const void *buf, hwaddr len)
2963 return address_space_write_rom_internal(as, addr, attrs,
2964 buf, len, WRITE_DATA);
2967 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2970 * This function should do the same thing as an icache flush that was
2971 * triggered from within the guest. For TCG we are always cache coherent,
2972 * so there is no need to flush anything. For KVM / Xen we need to flush
2973 * the host's instruction cache at least.
2975 if (tcg_enabled()) {
2976 return;
2979 address_space_write_rom_internal(&address_space_memory,
2980 start, MEMTXATTRS_UNSPECIFIED,
2981 NULL, len, FLUSH_CACHE);
2984 typedef struct {
2985 MemoryRegion *mr;
2986 void *buffer;
2987 hwaddr addr;
2988 hwaddr len;
2989 bool in_use;
2990 } BounceBuffer;
2992 static BounceBuffer bounce;
2994 typedef struct MapClient {
2995 QEMUBH *bh;
2996 QLIST_ENTRY(MapClient) link;
2997 } MapClient;
2999 QemuMutex map_client_list_lock;
3000 static QLIST_HEAD(, MapClient) map_client_list
3001 = QLIST_HEAD_INITIALIZER(map_client_list);
3003 static void cpu_unregister_map_client_do(MapClient *client)
3005 QLIST_REMOVE(client, link);
3006 g_free(client);
3009 static void cpu_notify_map_clients_locked(void)
3011 MapClient *client;
3013 while (!QLIST_EMPTY(&map_client_list)) {
3014 client = QLIST_FIRST(&map_client_list);
3015 qemu_bh_schedule(client->bh);
3016 cpu_unregister_map_client_do(client);
3020 void cpu_register_map_client(QEMUBH *bh)
3022 MapClient *client = g_malloc(sizeof(*client));
3024 qemu_mutex_lock(&map_client_list_lock);
3025 client->bh = bh;
3026 QLIST_INSERT_HEAD(&map_client_list, client, link);
3027 if (!qatomic_read(&bounce.in_use)) {
3028 cpu_notify_map_clients_locked();
3030 qemu_mutex_unlock(&map_client_list_lock);
3033 void cpu_exec_init_all(void)
3035 qemu_mutex_init(&ram_list.mutex);
3036 /* The data structures we set up here depend on knowing the page size,
3037 * so no more changes can be made after this point.
3038 * In an ideal world, nothing we did before we had finished the
3039 * machine setup would care about the target page size, and we could
3040 * do this much later, rather than requiring board models to state
3041 * up front what their requirements are.
3043 finalize_target_page_bits();
3044 io_mem_init();
3045 memory_map_init();
3046 qemu_mutex_init(&map_client_list_lock);
3049 void cpu_unregister_map_client(QEMUBH *bh)
3051 MapClient *client;
3053 qemu_mutex_lock(&map_client_list_lock);
3054 QLIST_FOREACH(client, &map_client_list, link) {
3055 if (client->bh == bh) {
3056 cpu_unregister_map_client_do(client);
3057 break;
3060 qemu_mutex_unlock(&map_client_list_lock);
3063 static void cpu_notify_map_clients(void)
3065 qemu_mutex_lock(&map_client_list_lock);
3066 cpu_notify_map_clients_locked();
3067 qemu_mutex_unlock(&map_client_list_lock);
3070 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3071 bool is_write, MemTxAttrs attrs)
3073 MemoryRegion *mr;
3074 hwaddr l, xlat;
3076 while (len > 0) {
3077 l = len;
3078 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3079 if (!memory_access_is_direct(mr, is_write)) {
3080 l = memory_access_size(mr, l, addr);
3081 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3082 return false;
3086 len -= l;
3087 addr += l;
3089 return true;
3092 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3093 hwaddr len, bool is_write,
3094 MemTxAttrs attrs)
3096 FlatView *fv;
3097 bool result;
3099 RCU_READ_LOCK_GUARD();
3100 fv = address_space_to_flatview(as);
3101 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3102 return result;
3105 static hwaddr
3106 flatview_extend_translation(FlatView *fv, hwaddr addr,
3107 hwaddr target_len,
3108 MemoryRegion *mr, hwaddr base, hwaddr len,
3109 bool is_write, MemTxAttrs attrs)
3111 hwaddr done = 0;
3112 hwaddr xlat;
3113 MemoryRegion *this_mr;
3115 for (;;) {
3116 target_len -= len;
3117 addr += len;
3118 done += len;
3119 if (target_len == 0) {
3120 return done;
3123 len = target_len;
3124 this_mr = flatview_translate(fv, addr, &xlat,
3125 &len, is_write, attrs);
3126 if (this_mr != mr || xlat != base + done) {
3127 return done;
3132 /* Map a physical memory region into a host virtual address.
3133 * May map a subset of the requested range, given by and returned in *plen.
3134 * May return NULL if resources needed to perform the mapping are exhausted.
3135 * Use only for reads OR writes - not for read-modify-write operations.
3136 * Use cpu_register_map_client() to know when retrying the map operation is
3137 * likely to succeed.
3139 void *address_space_map(AddressSpace *as,
3140 hwaddr addr,
3141 hwaddr *plen,
3142 bool is_write,
3143 MemTxAttrs attrs)
3145 hwaddr len = *plen;
3146 hwaddr l, xlat;
3147 MemoryRegion *mr;
3148 void *ptr;
3149 FlatView *fv;
3151 if (len == 0) {
3152 return NULL;
3155 l = len;
3156 RCU_READ_LOCK_GUARD();
3157 fv = address_space_to_flatview(as);
3158 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3160 if (!memory_access_is_direct(mr, is_write)) {
3161 if (qatomic_xchg(&bounce.in_use, true)) {
3162 *plen = 0;
3163 return NULL;
3165 /* Avoid unbounded allocations */
3166 l = MIN(l, TARGET_PAGE_SIZE);
3167 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3168 bounce.addr = addr;
3169 bounce.len = l;
3171 memory_region_ref(mr);
3172 bounce.mr = mr;
3173 if (!is_write) {
3174 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3175 bounce.buffer, l);
3178 *plen = l;
3179 return bounce.buffer;
3183 memory_region_ref(mr);
3184 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3185 l, is_write, attrs);
3186 fuzz_dma_read_cb(addr, *plen, mr);
3187 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3189 return ptr;
3192 /* Unmaps a memory region previously mapped by address_space_map().
3193 * Will also mark the memory as dirty if is_write is true. access_len gives
3194 * the amount of memory that was actually read or written by the caller.
3196 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3197 bool is_write, hwaddr access_len)
3199 if (buffer != bounce.buffer) {
3200 MemoryRegion *mr;
3201 ram_addr_t addr1;
3203 mr = memory_region_from_host(buffer, &addr1);
3204 assert(mr != NULL);
3205 if (is_write) {
3206 invalidate_and_set_dirty(mr, addr1, access_len);
3208 if (xen_enabled()) {
3209 xen_invalidate_map_cache_entry(buffer);
3211 memory_region_unref(mr);
3212 return;
3214 if (is_write) {
3215 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3216 bounce.buffer, access_len);
3218 qemu_vfree(bounce.buffer);
3219 bounce.buffer = NULL;
3220 memory_region_unref(bounce.mr);
3221 qatomic_mb_set(&bounce.in_use, false);
3222 cpu_notify_map_clients();
3225 void *cpu_physical_memory_map(hwaddr addr,
3226 hwaddr *plen,
3227 bool is_write)
3229 return address_space_map(&address_space_memory, addr, plen, is_write,
3230 MEMTXATTRS_UNSPECIFIED);
3233 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3234 bool is_write, hwaddr access_len)
3236 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3239 #define ARG1_DECL AddressSpace *as
3240 #define ARG1 as
3241 #define SUFFIX
3242 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3243 #define RCU_READ_LOCK(...) rcu_read_lock()
3244 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3245 #include "memory_ldst.c.inc"
3247 int64_t address_space_cache_init(MemoryRegionCache *cache,
3248 AddressSpace *as,
3249 hwaddr addr,
3250 hwaddr len,
3251 bool is_write)
3253 AddressSpaceDispatch *d;
3254 hwaddr l;
3255 MemoryRegion *mr;
3256 Int128 diff;
3258 assert(len > 0);
3260 l = len;
3261 cache->fv = address_space_get_flatview(as);
3262 d = flatview_to_dispatch(cache->fv);
3263 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3266 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3267 * Take that into account to compute how many bytes are there between
3268 * cache->xlat and the end of the section.
3270 diff = int128_sub(cache->mrs.size,
3271 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3272 l = int128_get64(int128_min(diff, int128_make64(l)));
3274 mr = cache->mrs.mr;
3275 memory_region_ref(mr);
3276 if (memory_access_is_direct(mr, is_write)) {
3277 /* We don't care about the memory attributes here as we're only
3278 * doing this if we found actual RAM, which behaves the same
3279 * regardless of attributes; so UNSPECIFIED is fine.
3281 l = flatview_extend_translation(cache->fv, addr, len, mr,
3282 cache->xlat, l, is_write,
3283 MEMTXATTRS_UNSPECIFIED);
3284 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3285 } else {
3286 cache->ptr = NULL;
3289 cache->len = l;
3290 cache->is_write = is_write;
3291 return l;
3294 void address_space_cache_invalidate(MemoryRegionCache *cache,
3295 hwaddr addr,
3296 hwaddr access_len)
3298 assert(cache->is_write);
3299 if (likely(cache->ptr)) {
3300 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3304 void address_space_cache_destroy(MemoryRegionCache *cache)
3306 if (!cache->mrs.mr) {
3307 return;
3310 if (xen_enabled()) {
3311 xen_invalidate_map_cache_entry(cache->ptr);
3313 memory_region_unref(cache->mrs.mr);
3314 flatview_unref(cache->fv);
3315 cache->mrs.mr = NULL;
3316 cache->fv = NULL;
3319 /* Called from RCU critical section. This function has the same
3320 * semantics as address_space_translate, but it only works on a
3321 * predefined range of a MemoryRegion that was mapped with
3322 * address_space_cache_init.
3324 static inline MemoryRegion *address_space_translate_cached(
3325 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3326 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3328 MemoryRegionSection section;
3329 MemoryRegion *mr;
3330 IOMMUMemoryRegion *iommu_mr;
3331 AddressSpace *target_as;
3333 assert(!cache->ptr);
3334 *xlat = addr + cache->xlat;
3336 mr = cache->mrs.mr;
3337 iommu_mr = memory_region_get_iommu(mr);
3338 if (!iommu_mr) {
3339 /* MMIO region. */
3340 return mr;
3343 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3344 NULL, is_write, true,
3345 &target_as, attrs);
3346 return section.mr;
3349 /* Called from RCU critical section. address_space_read_cached uses this
3350 * out of line function when the target is an MMIO or IOMMU region.
3352 MemTxResult
3353 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3354 void *buf, hwaddr len)
3356 hwaddr addr1, l;
3357 MemoryRegion *mr;
3359 l = len;
3360 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3361 MEMTXATTRS_UNSPECIFIED);
3362 return flatview_read_continue(cache->fv,
3363 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3364 addr1, l, mr);
3367 /* Called from RCU critical section. address_space_write_cached uses this
3368 * out of line function when the target is an MMIO or IOMMU region.
3370 MemTxResult
3371 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3372 const void *buf, hwaddr len)
3374 hwaddr addr1, l;
3375 MemoryRegion *mr;
3377 l = len;
3378 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3379 MEMTXATTRS_UNSPECIFIED);
3380 return flatview_write_continue(cache->fv,
3381 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3382 addr1, l, mr);
3385 #define ARG1_DECL MemoryRegionCache *cache
3386 #define ARG1 cache
3387 #define SUFFIX _cached_slow
3388 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3389 #define RCU_READ_LOCK() ((void)0)
3390 #define RCU_READ_UNLOCK() ((void)0)
3391 #include "memory_ldst.c.inc"
3393 /* virtual memory access for debug (includes writing to ROM) */
3394 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3395 void *ptr, target_ulong len, bool is_write)
3397 hwaddr phys_addr;
3398 target_ulong l, page;
3399 uint8_t *buf = ptr;
3401 cpu_synchronize_state(cpu);
3402 while (len > 0) {
3403 int asidx;
3404 MemTxAttrs attrs;
3405 MemTxResult res;
3407 page = addr & TARGET_PAGE_MASK;
3408 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3409 asidx = cpu_asidx_from_attrs(cpu, attrs);
3410 /* if no physical page mapped, return an error */
3411 if (phys_addr == -1)
3412 return -1;
3413 l = (page + TARGET_PAGE_SIZE) - addr;
3414 if (l > len)
3415 l = len;
3416 phys_addr += (addr & ~TARGET_PAGE_MASK);
3417 if (is_write) {
3418 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3419 attrs, buf, l);
3420 } else {
3421 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3422 attrs, buf, l);
3424 if (res != MEMTX_OK) {
3425 return -1;
3427 len -= l;
3428 buf += l;
3429 addr += l;
3431 return 0;
3435 * Allows code that needs to deal with migration bitmaps etc to still be built
3436 * target independent.
3438 size_t qemu_target_page_size(void)
3440 return TARGET_PAGE_SIZE;
3443 int qemu_target_page_bits(void)
3445 return TARGET_PAGE_BITS;
3448 int qemu_target_page_bits_min(void)
3450 return TARGET_PAGE_BITS_MIN;
3453 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3455 MemoryRegion*mr;
3456 hwaddr l = 1;
3457 bool res;
3459 RCU_READ_LOCK_GUARD();
3460 mr = address_space_translate(&address_space_memory,
3461 phys_addr, &phys_addr, &l, false,
3462 MEMTXATTRS_UNSPECIFIED);
3464 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3465 return res;
3468 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3470 RAMBlock *block;
3471 int ret = 0;
3473 RCU_READ_LOCK_GUARD();
3474 RAMBLOCK_FOREACH(block) {
3475 ret = func(block, opaque);
3476 if (ret) {
3477 break;
3480 return ret;
3484 * Unmap pages of memory from start to start+length such that
3485 * they a) read as 0, b) Trigger whatever fault mechanism
3486 * the OS provides for postcopy.
3487 * The pages must be unmapped by the end of the function.
3488 * Returns: 0 on success, none-0 on failure
3491 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3493 int ret = -1;
3495 uint8_t *host_startaddr = rb->host + start;
3497 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3498 error_report("ram_block_discard_range: Unaligned start address: %p",
3499 host_startaddr);
3500 goto err;
3503 if ((start + length) <= rb->max_length) {
3504 bool need_madvise, need_fallocate;
3505 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3506 error_report("ram_block_discard_range: Unaligned length: %zx",
3507 length);
3508 goto err;
3511 errno = ENOTSUP; /* If we are missing MADVISE etc */
3513 /* The logic here is messy;
3514 * madvise DONTNEED fails for hugepages
3515 * fallocate works on hugepages and shmem
3517 need_madvise = (rb->page_size == qemu_host_page_size);
3518 need_fallocate = rb->fd != -1;
3519 if (need_fallocate) {
3520 /* For a file, this causes the area of the file to be zero'd
3521 * if read, and for hugetlbfs also causes it to be unmapped
3522 * so a userfault will trigger.
3524 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3525 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3526 start, length);
3527 if (ret) {
3528 ret = -errno;
3529 error_report("ram_block_discard_range: Failed to fallocate "
3530 "%s:%" PRIx64 " +%zx (%d)",
3531 rb->idstr, start, length, ret);
3532 goto err;
3534 #else
3535 ret = -ENOSYS;
3536 error_report("ram_block_discard_range: fallocate not available/file"
3537 "%s:%" PRIx64 " +%zx (%d)",
3538 rb->idstr, start, length, ret);
3539 goto err;
3540 #endif
3542 if (need_madvise) {
3543 /* For normal RAM this causes it to be unmapped,
3544 * for shared memory it causes the local mapping to disappear
3545 * and to fall back on the file contents (which we just
3546 * fallocate'd away).
3548 #if defined(CONFIG_MADVISE)
3549 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3550 if (ret) {
3551 ret = -errno;
3552 error_report("ram_block_discard_range: Failed to discard range "
3553 "%s:%" PRIx64 " +%zx (%d)",
3554 rb->idstr, start, length, ret);
3555 goto err;
3557 #else
3558 ret = -ENOSYS;
3559 error_report("ram_block_discard_range: MADVISE not available"
3560 "%s:%" PRIx64 " +%zx (%d)",
3561 rb->idstr, start, length, ret);
3562 goto err;
3563 #endif
3565 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3566 need_madvise, need_fallocate, ret);
3567 } else {
3568 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3569 "/%zx/" RAM_ADDR_FMT")",
3570 rb->idstr, start, length, rb->max_length);
3573 err:
3574 return ret;
3577 bool ramblock_is_pmem(RAMBlock *rb)
3579 return rb->flags & RAM_PMEM;
3582 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3584 if (start == end - 1) {
3585 qemu_printf("\t%3d ", start);
3586 } else {
3587 qemu_printf("\t%3d..%-3d ", start, end - 1);
3589 qemu_printf(" skip=%d ", skip);
3590 if (ptr == PHYS_MAP_NODE_NIL) {
3591 qemu_printf(" ptr=NIL");
3592 } else if (!skip) {
3593 qemu_printf(" ptr=#%d", ptr);
3594 } else {
3595 qemu_printf(" ptr=[%d]", ptr);
3597 qemu_printf("\n");
3600 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3601 int128_sub((size), int128_one())) : 0)
3603 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3605 int i;
3607 qemu_printf(" Dispatch\n");
3608 qemu_printf(" Physical sections\n");
3610 for (i = 0; i < d->map.sections_nb; ++i) {
3611 MemoryRegionSection *s = d->map.sections + i;
3612 const char *names[] = { " [unassigned]", " [not dirty]",
3613 " [ROM]", " [watch]" };
3615 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3616 " %s%s%s%s%s",
3618 s->offset_within_address_space,
3619 s->offset_within_address_space + MR_SIZE(s->mr->size),
3620 s->mr->name ? s->mr->name : "(noname)",
3621 i < ARRAY_SIZE(names) ? names[i] : "",
3622 s->mr == root ? " [ROOT]" : "",
3623 s == d->mru_section ? " [MRU]" : "",
3624 s->mr->is_iommu ? " [iommu]" : "");
3626 if (s->mr->alias) {
3627 qemu_printf(" alias=%s", s->mr->alias->name ?
3628 s->mr->alias->name : "noname");
3630 qemu_printf("\n");
3633 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3634 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3635 for (i = 0; i < d->map.nodes_nb; ++i) {
3636 int j, jprev;
3637 PhysPageEntry prev;
3638 Node *n = d->map.nodes + i;
3640 qemu_printf(" [%d]\n", i);
3642 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3643 PhysPageEntry *pe = *n + j;
3645 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3646 continue;
3649 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3651 jprev = j;
3652 prev = *pe;
3655 if (jprev != ARRAY_SIZE(*n)) {
3656 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3662 * If positive, discarding RAM is disabled. If negative, discarding RAM is
3663 * required to work and cannot be disabled.
3665 static int ram_block_discard_disabled;
3667 int ram_block_discard_disable(bool state)
3669 int old;
3671 if (!state) {
3672 qatomic_dec(&ram_block_discard_disabled);
3673 return 0;
3676 do {
3677 old = qatomic_read(&ram_block_discard_disabled);
3678 if (old < 0) {
3679 return -EBUSY;
3681 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3682 old, old + 1) != old);
3683 return 0;
3686 int ram_block_discard_require(bool state)
3688 int old;
3690 if (!state) {
3691 qatomic_inc(&ram_block_discard_disabled);
3692 return 0;
3695 do {
3696 old = qatomic_read(&ram_block_discard_disabled);
3697 if (old > 0) {
3698 return -EBUSY;
3700 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3701 old, old - 1) != old);
3702 return 0;
3705 bool ram_block_discard_is_disabled(void)
3707 return qatomic_read(&ram_block_discard_disabled) > 0;
3710 bool ram_block_discard_is_required(void)
3712 return qatomic_read(&ram_block_discard_disabled) < 0;