gitlab: Extract default build/test jobs templates
[qemu/ar7.git] / linux-user / elfload.c
blob1ab97e38e08b73a11f01eaef43dd33872a00edf5
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
6 #include <sys/shm.h>
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
52 * Personality types.
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
57 enum {
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
84 * Return the base personality without flags.
86 #define personality(pers) (pers & PER_MASK)
88 int info_is_fdpic(struct image_info *info)
90 return info->personality == PER_LINUX_FDPIC;
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA ELFDATA2MSB
105 #else
106 #define ELF_DATA ELFDATA2LSB
107 #endif
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong target_elf_greg_t;
111 #define tswapreg(ptr) tswap64(ptr)
112 #else
113 typedef abi_ulong target_elf_greg_t;
114 #define tswapreg(ptr) tswapal(ptr)
115 #endif
117 #ifdef USE_UID16
118 typedef abi_ushort target_uid_t;
119 typedef abi_ushort target_gid_t;
120 #else
121 typedef abi_uint target_uid_t;
122 typedef abi_uint target_gid_t;
123 #endif
124 typedef abi_int target_pid_t;
126 #ifdef TARGET_I386
128 #define ELF_PLATFORM get_elf_platform()
130 static const char *get_elf_platform(void)
132 static char elf_platform[] = "i386";
133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134 if (family > 6)
135 family = 6;
136 if (family >= 3)
137 elf_platform[1] = '0' + family;
138 return elf_platform;
141 #define ELF_HWCAP get_elf_hwcap()
143 static uint32_t get_elf_hwcap(void)
145 X86CPU *cpu = X86_CPU(thread_cpu);
147 return cpu->env.features[FEAT_1_EDX];
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
153 #define ELF_CLASS ELFCLASS64
154 #define ELF_ARCH EM_X86_64
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
158 regs->rax = 0;
159 regs->rsp = infop->start_stack;
160 regs->rip = infop->entry;
163 #define ELF_NREG 27
164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
167 * Note that ELF_NREG should be 29 as there should be place for
168 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * those.
171 * See linux kernel: arch/x86/include/asm/elf.h
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
175 (*regs)[0] = env->regs[15];
176 (*regs)[1] = env->regs[14];
177 (*regs)[2] = env->regs[13];
178 (*regs)[3] = env->regs[12];
179 (*regs)[4] = env->regs[R_EBP];
180 (*regs)[5] = env->regs[R_EBX];
181 (*regs)[6] = env->regs[11];
182 (*regs)[7] = env->regs[10];
183 (*regs)[8] = env->regs[9];
184 (*regs)[9] = env->regs[8];
185 (*regs)[10] = env->regs[R_EAX];
186 (*regs)[11] = env->regs[R_ECX];
187 (*regs)[12] = env->regs[R_EDX];
188 (*regs)[13] = env->regs[R_ESI];
189 (*regs)[14] = env->regs[R_EDI];
190 (*regs)[15] = env->regs[R_EAX]; /* XXX */
191 (*regs)[16] = env->eip;
192 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193 (*regs)[18] = env->eflags;
194 (*regs)[19] = env->regs[R_ESP];
195 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
204 #else
206 #define ELF_START_MMAP 0x80000000
209 * This is used to ensure we don't load something for the wrong architecture.
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
214 * These are used to set parameters in the core dumps.
216 #define ELF_CLASS ELFCLASS32
217 #define ELF_ARCH EM_386
219 static inline void init_thread(struct target_pt_regs *regs,
220 struct image_info *infop)
222 regs->esp = infop->start_stack;
223 regs->eip = infop->entry;
225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226 starts %edx contains a pointer to a function which might be
227 registered using `atexit'. This provides a mean for the
228 dynamic linker to call DT_FINI functions for shared libraries
229 that have been loaded before the code runs.
231 A value of 0 tells we have no such handler. */
232 regs->edx = 0;
235 #define ELF_NREG 17
236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
239 * Note that ELF_NREG should be 19 as there should be place for
240 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * those.
243 * See linux kernel: arch/x86/include/asm/elf.h
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
247 (*regs)[0] = env->regs[R_EBX];
248 (*regs)[1] = env->regs[R_ECX];
249 (*regs)[2] = env->regs[R_EDX];
250 (*regs)[3] = env->regs[R_ESI];
251 (*regs)[4] = env->regs[R_EDI];
252 (*regs)[5] = env->regs[R_EBP];
253 (*regs)[6] = env->regs[R_EAX];
254 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258 (*regs)[11] = env->regs[R_EAX]; /* XXX */
259 (*regs)[12] = env->eip;
260 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261 (*regs)[14] = env->eflags;
262 (*regs)[15] = env->regs[R_ESP];
263 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
265 #endif
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE 4096
270 #endif
272 #ifdef TARGET_ARM
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
277 #define ELF_START_MMAP 0x80000000
279 #define ELF_ARCH EM_ARM
280 #define ELF_CLASS ELFCLASS32
282 static inline void init_thread(struct target_pt_regs *regs,
283 struct image_info *infop)
285 abi_long stack = infop->start_stack;
286 memset(regs, 0, sizeof(*regs));
288 regs->uregs[16] = ARM_CPU_MODE_USR;
289 if (infop->entry & 1) {
290 regs->uregs[16] |= CPSR_T;
292 regs->uregs[15] = infop->entry & 0xfffffffe;
293 regs->uregs[13] = infop->start_stack;
294 /* FIXME - what to for failure of get_user()? */
295 get_user_ual(regs->uregs[2], stack + 8); /* envp */
296 get_user_ual(regs->uregs[1], stack + 4); /* envp */
297 /* XXX: it seems that r0 is zeroed after ! */
298 regs->uregs[0] = 0;
299 /* For uClinux PIC binaries. */
300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301 regs->uregs[10] = infop->start_data;
303 /* Support ARM FDPIC. */
304 if (info_is_fdpic(infop)) {
305 /* As described in the ABI document, r7 points to the loadmap info
306 * prepared by the kernel. If an interpreter is needed, r8 points
307 * to the interpreter loadmap and r9 points to the interpreter
308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309 * r9 points to the main program PT_DYNAMIC info.
311 regs->uregs[7] = infop->loadmap_addr;
312 if (infop->interpreter_loadmap_addr) {
313 /* Executable is dynamically loaded. */
314 regs->uregs[8] = infop->interpreter_loadmap_addr;
315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316 } else {
317 regs->uregs[8] = 0;
318 regs->uregs[9] = infop->pt_dynamic_addr;
323 #define ELF_NREG 18
324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
328 (*regs)[0] = tswapreg(env->regs[0]);
329 (*regs)[1] = tswapreg(env->regs[1]);
330 (*regs)[2] = tswapreg(env->regs[2]);
331 (*regs)[3] = tswapreg(env->regs[3]);
332 (*regs)[4] = tswapreg(env->regs[4]);
333 (*regs)[5] = tswapreg(env->regs[5]);
334 (*regs)[6] = tswapreg(env->regs[6]);
335 (*regs)[7] = tswapreg(env->regs[7]);
336 (*regs)[8] = tswapreg(env->regs[8]);
337 (*regs)[9] = tswapreg(env->regs[9]);
338 (*regs)[10] = tswapreg(env->regs[10]);
339 (*regs)[11] = tswapreg(env->regs[11]);
340 (*regs)[12] = tswapreg(env->regs[12]);
341 (*regs)[13] = tswapreg(env->regs[13]);
342 (*regs)[14] = tswapreg(env->regs[14]);
343 (*regs)[15] = tswapreg(env->regs[15]);
345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE 4096
352 enum
354 ARM_HWCAP_ARM_SWP = 1 << 0,
355 ARM_HWCAP_ARM_HALF = 1 << 1,
356 ARM_HWCAP_ARM_THUMB = 1 << 2,
357 ARM_HWCAP_ARM_26BIT = 1 << 3,
358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359 ARM_HWCAP_ARM_FPA = 1 << 5,
360 ARM_HWCAP_ARM_VFP = 1 << 6,
361 ARM_HWCAP_ARM_EDSP = 1 << 7,
362 ARM_HWCAP_ARM_JAVA = 1 << 8,
363 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
364 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
365 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
366 ARM_HWCAP_ARM_NEON = 1 << 12,
367 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
369 ARM_HWCAP_ARM_TLS = 1 << 15,
370 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
371 ARM_HWCAP_ARM_IDIVA = 1 << 17,
372 ARM_HWCAP_ARM_IDIVT = 1 << 18,
373 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
374 ARM_HWCAP_ARM_LPAE = 1 << 20,
375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
378 enum {
379 ARM_HWCAP2_ARM_AES = 1 << 0,
380 ARM_HWCAP2_ARM_PMULL = 1 << 1,
381 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
382 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
383 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
386 /* The commpage only exists for 32 bit kernels */
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
390 static bool init_guest_commpage(void)
392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
396 if (addr == MAP_FAILED) {
397 perror("Allocating guest commpage");
398 exit(EXIT_FAILURE);
400 if (addr != want) {
401 return false;
404 /* Set kernel helper versions; rest of page is 0. */
405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408 perror("Protecting guest commpage");
409 exit(EXIT_FAILURE);
411 return true;
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
417 static uint32_t get_elf_hwcap(void)
419 ARMCPU *cpu = ARM_CPU(thread_cpu);
420 uint32_t hwcaps = 0;
422 hwcaps |= ARM_HWCAP_ARM_SWP;
423 hwcaps |= ARM_HWCAP_ARM_HALF;
424 hwcaps |= ARM_HWCAP_ARM_THUMB;
425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
427 /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
431 #define GET_FEATURE_ID(feat, hwcap) \
432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPv3;
448 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPD32;
450 } else {
451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
456 return hwcaps;
459 static uint32_t get_elf_hwcap2(void)
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469 return hwcaps;
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
475 #define ELF_PLATFORM get_elf_platform()
477 static const char *get_elf_platform(void)
479 CPUARMState *env = thread_cpu->env_ptr;
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END "b"
483 #else
484 # define END "l"
485 #endif
487 if (arm_feature(env, ARM_FEATURE_V8)) {
488 return "v8" END;
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 if (arm_feature(env, ARM_FEATURE_M)) {
491 return "v7m" END;
492 } else {
493 return "v7" END;
495 } else if (arm_feature(env, ARM_FEATURE_V6)) {
496 return "v6" END;
497 } else if (arm_feature(env, ARM_FEATURE_V5)) {
498 return "v5" END;
499 } else {
500 return "v4" END;
503 #undef END
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
510 #define ELF_ARCH EM_AARCH64
511 #define ELF_CLASS ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM "aarch64_be"
514 #else
515 # define ELF_PLATFORM "aarch64"
516 #endif
518 static inline void init_thread(struct target_pt_regs *regs,
519 struct image_info *infop)
521 abi_long stack = infop->start_stack;
522 memset(regs, 0, sizeof(*regs));
524 regs->pc = infop->entry & ~0x3ULL;
525 regs->sp = stack;
528 #define ELF_NREG 34
529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532 const CPUARMState *env)
534 int i;
536 for (i = 0; i < 32; i++) {
537 (*regs)[i] = tswapreg(env->xregs[i]);
539 (*regs)[32] = tswapreg(env->pc);
540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE 4096
546 enum {
547 ARM_HWCAP_A64_FP = 1 << 0,
548 ARM_HWCAP_A64_ASIMD = 1 << 1,
549 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
550 ARM_HWCAP_A64_AES = 1 << 3,
551 ARM_HWCAP_A64_PMULL = 1 << 4,
552 ARM_HWCAP_A64_SHA1 = 1 << 5,
553 ARM_HWCAP_A64_SHA2 = 1 << 6,
554 ARM_HWCAP_A64_CRC32 = 1 << 7,
555 ARM_HWCAP_A64_ATOMICS = 1 << 8,
556 ARM_HWCAP_A64_FPHP = 1 << 9,
557 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
558 ARM_HWCAP_A64_CPUID = 1 << 11,
559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
560 ARM_HWCAP_A64_JSCVT = 1 << 13,
561 ARM_HWCAP_A64_FCMA = 1 << 14,
562 ARM_HWCAP_A64_LRCPC = 1 << 15,
563 ARM_HWCAP_A64_DCPOP = 1 << 16,
564 ARM_HWCAP_A64_SHA3 = 1 << 17,
565 ARM_HWCAP_A64_SM3 = 1 << 18,
566 ARM_HWCAP_A64_SM4 = 1 << 19,
567 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
568 ARM_HWCAP_A64_SHA512 = 1 << 21,
569 ARM_HWCAP_A64_SVE = 1 << 22,
570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
571 ARM_HWCAP_A64_DIT = 1 << 24,
572 ARM_HWCAP_A64_USCAT = 1 << 25,
573 ARM_HWCAP_A64_ILRCPC = 1 << 26,
574 ARM_HWCAP_A64_FLAGM = 1 << 27,
575 ARM_HWCAP_A64_SSBS = 1 << 28,
576 ARM_HWCAP_A64_SB = 1 << 29,
577 ARM_HWCAP_A64_PACA = 1 << 30,
578 ARM_HWCAP_A64_PACG = 1UL << 31,
580 ARM_HWCAP2_A64_DCPODP = 1 << 0,
581 ARM_HWCAP2_A64_SVE2 = 1 << 1,
582 ARM_HWCAP2_A64_SVEAES = 1 << 2,
583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
586 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
588 ARM_HWCAP2_A64_FRINT = 1 << 8,
589 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
590 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
591 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
592 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
593 ARM_HWCAP2_A64_I8MM = 1 << 13,
594 ARM_HWCAP2_A64_BF16 = 1 << 14,
595 ARM_HWCAP2_A64_DGH = 1 << 15,
596 ARM_HWCAP2_A64_RNG = 1 << 16,
597 ARM_HWCAP2_A64_BTI = 1 << 17,
598 ARM_HWCAP2_A64_MTE = 1 << 18,
601 #define ELF_HWCAP get_elf_hwcap()
602 #define ELF_HWCAP2 get_elf_hwcap2()
604 #define GET_FEATURE_ID(feat, hwcap) \
605 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
607 static uint32_t get_elf_hwcap(void)
609 ARMCPU *cpu = ARM_CPU(thread_cpu);
610 uint32_t hwcaps = 0;
612 hwcaps |= ARM_HWCAP_A64_FP;
613 hwcaps |= ARM_HWCAP_A64_ASIMD;
614 hwcaps |= ARM_HWCAP_A64_CPUID;
616 /* probe for the extra features */
618 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
619 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
620 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
621 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
622 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
623 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
624 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
625 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
626 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
627 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
628 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
629 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
630 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
631 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
632 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
633 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
634 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
635 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
636 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
637 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
638 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
639 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
640 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
642 return hwcaps;
645 static uint32_t get_elf_hwcap2(void)
647 ARMCPU *cpu = ARM_CPU(thread_cpu);
648 uint32_t hwcaps = 0;
650 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
651 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
652 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
653 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
654 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
655 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
656 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
657 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
658 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
659 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
660 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
661 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
662 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
663 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
664 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
665 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
667 return hwcaps;
670 #undef GET_FEATURE_ID
672 #endif /* not TARGET_AARCH64 */
673 #endif /* TARGET_ARM */
675 #ifdef TARGET_SPARC
676 #ifdef TARGET_SPARC64
678 #define ELF_START_MMAP 0x80000000
679 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
680 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
681 #ifndef TARGET_ABI32
682 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
683 #else
684 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
685 #endif
687 #define ELF_CLASS ELFCLASS64
688 #define ELF_ARCH EM_SPARCV9
689 #else
690 #define ELF_START_MMAP 0x80000000
691 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
692 | HWCAP_SPARC_MULDIV)
693 #define ELF_CLASS ELFCLASS32
694 #define ELF_ARCH EM_SPARC
695 #endif /* TARGET_SPARC64 */
697 static inline void init_thread(struct target_pt_regs *regs,
698 struct image_info *infop)
700 /* Note that target_cpu_copy_regs does not read psr/tstate. */
701 regs->pc = infop->entry;
702 regs->npc = regs->pc + 4;
703 regs->y = 0;
704 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
705 - TARGET_STACK_BIAS);
707 #endif /* TARGET_SPARC */
709 #ifdef TARGET_PPC
711 #define ELF_MACHINE PPC_ELF_MACHINE
712 #define ELF_START_MMAP 0x80000000
714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
716 #define elf_check_arch(x) ( (x) == EM_PPC64 )
718 #define ELF_CLASS ELFCLASS64
720 #else
722 #define ELF_CLASS ELFCLASS32
724 #endif
726 #define ELF_ARCH EM_PPC
728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729 See arch/powerpc/include/asm/cputable.h. */
730 enum {
731 QEMU_PPC_FEATURE_32 = 0x80000000,
732 QEMU_PPC_FEATURE_64 = 0x40000000,
733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746 QEMU_PPC_FEATURE_CELL = 0x00010000,
747 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748 QEMU_PPC_FEATURE_SMT = 0x00004000,
749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751 QEMU_PPC_FEATURE_PA6T = 0x00000800,
752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
761 /* Feature definitions in AT_HWCAP2. */
762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
777 #define ELF_HWCAP get_elf_hwcap()
779 static uint32_t get_elf_hwcap(void)
781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
782 uint32_t features = 0;
784 /* We don't have to be terribly complete here; the high points are
785 Altivec/FP/SPE support. Anything else is just a bonus. */
786 #define GET_FEATURE(flag, feature) \
787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
788 #define GET_FEATURE2(flags, feature) \
789 do { \
790 if ((cpu->env.insns_flags2 & flags) == flags) { \
791 features |= feature; \
793 } while (0)
794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806 QEMU_PPC_FEATURE_ARCH_2_06);
807 #undef GET_FEATURE
808 #undef GET_FEATURE2
810 return features;
813 #define ELF_HWCAP2 get_elf_hwcap2()
815 static uint32_t get_elf_hwcap2(void)
817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818 uint32_t features = 0;
820 #define GET_FEATURE(flag, feature) \
821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822 #define GET_FEATURE2(flag, feature) \
823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829 QEMU_PPC_FEATURE2_VEC_CRYPTO);
830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831 QEMU_PPC_FEATURE2_DARN);
833 #undef GET_FEATURE
834 #undef GET_FEATURE2
836 return features;
840 * The requirements here are:
841 * - keep the final alignment of sp (sp & 0xf)
842 * - make sure the 32-bit value at the first 16 byte aligned position of
843 * AUXV is greater than 16 for glibc compatibility.
844 * AT_IGNOREPPC is used for that.
845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
848 #define DLINFO_ARCH_ITEMS 5
849 #define ARCH_DLINFO \
850 do { \
851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
852 /* \
853 * Handle glibc compatibility: these magic entries must \
854 * be at the lowest addresses in the final auxv. \
855 */ \
856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
861 } while (0)
863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
865 _regs->gpr[1] = infop->start_stack;
866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
867 if (get_ppc64_abi(infop) < 2) {
868 uint64_t val;
869 get_user_u64(val, infop->entry + 8);
870 _regs->gpr[2] = val + infop->load_bias;
871 get_user_u64(val, infop->entry);
872 infop->entry = val + infop->load_bias;
873 } else {
874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
876 #endif
877 _regs->nip = infop->entry;
880 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
881 #define ELF_NREG 48
882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
886 int i;
887 target_ulong ccr = 0;
889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
890 (*regs)[i] = tswapreg(env->gpr[i]);
893 (*regs)[32] = tswapreg(env->nip);
894 (*regs)[33] = tswapreg(env->msr);
895 (*regs)[35] = tswapreg(env->ctr);
896 (*regs)[36] = tswapreg(env->lr);
897 (*regs)[37] = tswapreg(env->xer);
899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
902 (*regs)[38] = tswapreg(ccr);
905 #define USE_ELF_CORE_DUMP
906 #define ELF_EXEC_PAGESIZE 4096
908 #endif
910 #ifdef TARGET_MIPS
912 #define ELF_START_MMAP 0x80000000
914 #ifdef TARGET_MIPS64
915 #define ELF_CLASS ELFCLASS64
916 #else
917 #define ELF_CLASS ELFCLASS32
918 #endif
919 #define ELF_ARCH EM_MIPS
921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
923 #ifdef TARGET_ABI_MIPSN32
924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925 #else
926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927 #endif
929 static inline void init_thread(struct target_pt_regs *regs,
930 struct image_info *infop)
932 regs->cp0_status = 2 << CP0St_KSU;
933 regs->cp0_epc = infop->entry;
934 regs->regs[29] = infop->start_stack;
937 /* See linux kernel: arch/mips/include/asm/elf.h. */
938 #define ELF_NREG 45
939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
941 /* See linux kernel: arch/mips/include/asm/reg.h. */
942 enum {
943 #ifdef TARGET_MIPS64
944 TARGET_EF_R0 = 0,
945 #else
946 TARGET_EF_R0 = 6,
947 #endif
948 TARGET_EF_R26 = TARGET_EF_R0 + 26,
949 TARGET_EF_R27 = TARGET_EF_R0 + 27,
950 TARGET_EF_LO = TARGET_EF_R0 + 32,
951 TARGET_EF_HI = TARGET_EF_R0 + 33,
952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
961 int i;
963 for (i = 0; i < TARGET_EF_R0; i++) {
964 (*regs)[i] = 0;
966 (*regs)[TARGET_EF_R0] = 0;
968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
972 (*regs)[TARGET_EF_R26] = 0;
973 (*regs)[TARGET_EF_R27] = 0;
974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE 4096
985 /* See arch/mips/include/uapi/asm/hwcap.h. */
986 enum {
987 HWCAP_MIPS_R6 = (1 << 0),
988 HWCAP_MIPS_MSA = (1 << 1),
989 HWCAP_MIPS_CRC32 = (1 << 2),
990 HWCAP_MIPS_MIPS16 = (1 << 3),
991 HWCAP_MIPS_MDMX = (1 << 4),
992 HWCAP_MIPS_MIPS3D = (1 << 5),
993 HWCAP_MIPS_SMARTMIPS = (1 << 6),
994 HWCAP_MIPS_DSP = (1 << 7),
995 HWCAP_MIPS_DSP2 = (1 << 8),
996 HWCAP_MIPS_DSP3 = (1 << 9),
997 HWCAP_MIPS_MIPS16E2 = (1 << 10),
998 HWCAP_LOONGSON_MMI = (1 << 11),
999 HWCAP_LOONGSON_EXT = (1 << 12),
1000 HWCAP_LOONGSON_EXT2 = (1 << 13),
1001 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1004 #define ELF_HWCAP get_elf_hwcap()
1006 #define GET_FEATURE_INSN(_flag, _hwcap) \
1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013 do { \
1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015 hwcaps |= _hwcap; \
1017 } while (0)
1019 static uint32_t get_elf_hwcap(void)
1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022 uint32_t hwcaps = 0;
1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025 2, HWCAP_MIPS_R6);
1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1027 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1030 return hwcaps;
1033 #undef GET_FEATURE_REG_EQU
1034 #undef GET_FEATURE_REG_SET
1035 #undef GET_FEATURE_INSN
1037 #endif /* TARGET_MIPS */
1039 #ifdef TARGET_MICROBLAZE
1041 #define ELF_START_MMAP 0x80000000
1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1045 #define ELF_CLASS ELFCLASS32
1046 #define ELF_ARCH EM_MICROBLAZE
1048 static inline void init_thread(struct target_pt_regs *regs,
1049 struct image_info *infop)
1051 regs->pc = infop->entry;
1052 regs->r1 = infop->start_stack;
1056 #define ELF_EXEC_PAGESIZE 4096
1058 #define USE_ELF_CORE_DUMP
1059 #define ELF_NREG 38
1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1065 int i, pos = 0;
1067 for (i = 0; i < 32; i++) {
1068 (*regs)[pos++] = tswapreg(env->regs[i]);
1071 (*regs)[pos++] = tswapreg(env->pc);
1072 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1073 (*regs)[pos++] = 0;
1074 (*regs)[pos++] = tswapreg(env->ear);
1075 (*regs)[pos++] = 0;
1076 (*regs)[pos++] = tswapreg(env->esr);
1079 #endif /* TARGET_MICROBLAZE */
1081 #ifdef TARGET_NIOS2
1083 #define ELF_START_MMAP 0x80000000
1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1087 #define ELF_CLASS ELFCLASS32
1088 #define ELF_ARCH EM_ALTERA_NIOS2
1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1092 regs->ea = infop->entry;
1093 regs->sp = infop->start_stack;
1094 regs->estatus = 0x3;
1097 #define ELF_EXEC_PAGESIZE 4096
1099 #define USE_ELF_CORE_DUMP
1100 #define ELF_NREG 49
1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1104 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105 const CPUNios2State *env)
1107 int i;
1109 (*regs)[0] = -1;
1110 for (i = 1; i < 8; i++) /* r0-r7 */
1111 (*regs)[i] = tswapreg(env->regs[i + 7]);
1113 for (i = 8; i < 16; i++) /* r8-r15 */
1114 (*regs)[i] = tswapreg(env->regs[i - 8]);
1116 for (i = 16; i < 24; i++) /* r16-r23 */
1117 (*regs)[i] = tswapreg(env->regs[i + 7]);
1118 (*regs)[24] = -1; /* R_ET */
1119 (*regs)[25] = -1; /* R_BT */
1120 (*regs)[26] = tswapreg(env->regs[R_GP]);
1121 (*regs)[27] = tswapreg(env->regs[R_SP]);
1122 (*regs)[28] = tswapreg(env->regs[R_FP]);
1123 (*regs)[29] = tswapreg(env->regs[R_EA]);
1124 (*regs)[30] = -1; /* R_SSTATUS */
1125 (*regs)[31] = tswapreg(env->regs[R_RA]);
1127 (*regs)[32] = tswapreg(env->regs[R_PC]);
1129 (*regs)[33] = -1; /* R_STATUS */
1130 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1132 for (i = 35; i < 49; i++) /* ... */
1133 (*regs)[i] = -1;
1136 #endif /* TARGET_NIOS2 */
1138 #ifdef TARGET_OPENRISC
1140 #define ELF_START_MMAP 0x08000000
1142 #define ELF_ARCH EM_OPENRISC
1143 #define ELF_CLASS ELFCLASS32
1144 #define ELF_DATA ELFDATA2MSB
1146 static inline void init_thread(struct target_pt_regs *regs,
1147 struct image_info *infop)
1149 regs->pc = infop->entry;
1150 regs->gpr[1] = infop->start_stack;
1153 #define USE_ELF_CORE_DUMP
1154 #define ELF_EXEC_PAGESIZE 8192
1156 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1157 #define ELF_NREG 34 /* gprs and pc, sr */
1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1160 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161 const CPUOpenRISCState *env)
1163 int i;
1165 for (i = 0; i < 32; i++) {
1166 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1168 (*regs)[32] = tswapreg(env->pc);
1169 (*regs)[33] = tswapreg(cpu_get_sr(env));
1171 #define ELF_HWCAP 0
1172 #define ELF_PLATFORM NULL
1174 #endif /* TARGET_OPENRISC */
1176 #ifdef TARGET_SH4
1178 #define ELF_START_MMAP 0x80000000
1180 #define ELF_CLASS ELFCLASS32
1181 #define ELF_ARCH EM_SH
1183 static inline void init_thread(struct target_pt_regs *regs,
1184 struct image_info *infop)
1186 /* Check other registers XXXXX */
1187 regs->pc = infop->entry;
1188 regs->regs[15] = infop->start_stack;
1191 /* See linux kernel: arch/sh/include/asm/elf.h. */
1192 #define ELF_NREG 23
1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1195 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1196 enum {
1197 TARGET_REG_PC = 16,
1198 TARGET_REG_PR = 17,
1199 TARGET_REG_SR = 18,
1200 TARGET_REG_GBR = 19,
1201 TARGET_REG_MACH = 20,
1202 TARGET_REG_MACL = 21,
1203 TARGET_REG_SYSCALL = 22
1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1207 const CPUSH4State *env)
1209 int i;
1211 for (i = 0; i < 16; i++) {
1212 (*regs)[i] = tswapreg(env->gregs[i]);
1215 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1221 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1224 #define USE_ELF_CORE_DUMP
1225 #define ELF_EXEC_PAGESIZE 4096
1227 enum {
1228 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1229 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1230 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1232 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1233 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1234 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1235 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1236 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1237 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1240 #define ELF_HWCAP get_elf_hwcap()
1242 static uint32_t get_elf_hwcap(void)
1244 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245 uint32_t hwcap = 0;
1247 hwcap |= SH_CPU_HAS_FPU;
1249 if (cpu->env.features & SH_FEATURE_SH4A) {
1250 hwcap |= SH_CPU_HAS_LLSC;
1253 return hwcap;
1256 #endif
1258 #ifdef TARGET_CRIS
1260 #define ELF_START_MMAP 0x80000000
1262 #define ELF_CLASS ELFCLASS32
1263 #define ELF_ARCH EM_CRIS
1265 static inline void init_thread(struct target_pt_regs *regs,
1266 struct image_info *infop)
1268 regs->erp = infop->entry;
1271 #define ELF_EXEC_PAGESIZE 8192
1273 #endif
1275 #ifdef TARGET_M68K
1277 #define ELF_START_MMAP 0x80000000
1279 #define ELF_CLASS ELFCLASS32
1280 #define ELF_ARCH EM_68K
1282 /* ??? Does this need to do anything?
1283 #define ELF_PLAT_INIT(_r) */
1285 static inline void init_thread(struct target_pt_regs *regs,
1286 struct image_info *infop)
1288 regs->usp = infop->start_stack;
1289 regs->sr = 0;
1290 regs->pc = infop->entry;
1293 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1294 #define ELF_NREG 20
1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1299 (*regs)[0] = tswapreg(env->dregs[1]);
1300 (*regs)[1] = tswapreg(env->dregs[2]);
1301 (*regs)[2] = tswapreg(env->dregs[3]);
1302 (*regs)[3] = tswapreg(env->dregs[4]);
1303 (*regs)[4] = tswapreg(env->dregs[5]);
1304 (*regs)[5] = tswapreg(env->dregs[6]);
1305 (*regs)[6] = tswapreg(env->dregs[7]);
1306 (*regs)[7] = tswapreg(env->aregs[0]);
1307 (*regs)[8] = tswapreg(env->aregs[1]);
1308 (*regs)[9] = tswapreg(env->aregs[2]);
1309 (*regs)[10] = tswapreg(env->aregs[3]);
1310 (*regs)[11] = tswapreg(env->aregs[4]);
1311 (*regs)[12] = tswapreg(env->aregs[5]);
1312 (*regs)[13] = tswapreg(env->aregs[6]);
1313 (*regs)[14] = tswapreg(env->dregs[0]);
1314 (*regs)[15] = tswapreg(env->aregs[7]);
1315 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316 (*regs)[17] = tswapreg(env->sr);
1317 (*regs)[18] = tswapreg(env->pc);
1318 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1321 #define USE_ELF_CORE_DUMP
1322 #define ELF_EXEC_PAGESIZE 8192
1324 #endif
1326 #ifdef TARGET_ALPHA
1328 #define ELF_START_MMAP (0x30000000000ULL)
1330 #define ELF_CLASS ELFCLASS64
1331 #define ELF_ARCH EM_ALPHA
1333 static inline void init_thread(struct target_pt_regs *regs,
1334 struct image_info *infop)
1336 regs->pc = infop->entry;
1337 regs->ps = 8;
1338 regs->usp = infop->start_stack;
1341 #define ELF_EXEC_PAGESIZE 8192
1343 #endif /* TARGET_ALPHA */
1345 #ifdef TARGET_S390X
1347 #define ELF_START_MMAP (0x20000000000ULL)
1349 #define ELF_CLASS ELFCLASS64
1350 #define ELF_DATA ELFDATA2MSB
1351 #define ELF_ARCH EM_S390
1353 #include "elf.h"
1355 #define ELF_HWCAP get_elf_hwcap()
1357 #define GET_FEATURE(_feat, _hwcap) \
1358 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1360 static uint32_t get_elf_hwcap(void)
1363 * Let's assume we always have esan3 and zarch.
1364 * 31-bit processes can use 64-bit registers (high gprs).
1366 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1368 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374 hwcap |= HWCAP_S390_ETF3EH;
1376 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1378 return hwcap;
1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1383 regs->psw.addr = infop->entry;
1384 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385 regs->gprs[15] = infop->start_stack;
1388 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1389 #define ELF_NREG 27
1390 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1392 enum {
1393 TARGET_REG_PSWM = 0,
1394 TARGET_REG_PSWA = 1,
1395 TARGET_REG_GPRS = 2,
1396 TARGET_REG_ARS = 18,
1397 TARGET_REG_ORIG_R2 = 26,
1400 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1401 const CPUS390XState *env)
1403 int i;
1404 uint32_t *aregs;
1406 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1407 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1408 for (i = 0; i < 16; i++) {
1409 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1411 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1412 for (i = 0; i < 16; i++) {
1413 aregs[i] = tswap32(env->aregs[i]);
1415 (*regs)[TARGET_REG_ORIG_R2] = 0;
1418 #define USE_ELF_CORE_DUMP
1419 #define ELF_EXEC_PAGESIZE 4096
1421 #endif /* TARGET_S390X */
1423 #ifdef TARGET_RISCV
1425 #define ELF_START_MMAP 0x80000000
1426 #define ELF_ARCH EM_RISCV
1428 #ifdef TARGET_RISCV32
1429 #define ELF_CLASS ELFCLASS32
1430 #else
1431 #define ELF_CLASS ELFCLASS64
1432 #endif
1434 static inline void init_thread(struct target_pt_regs *regs,
1435 struct image_info *infop)
1437 regs->sepc = infop->entry;
1438 regs->sp = infop->start_stack;
1441 #define ELF_EXEC_PAGESIZE 4096
1443 #endif /* TARGET_RISCV */
1445 #ifdef TARGET_HPPA
1447 #define ELF_START_MMAP 0x80000000
1448 #define ELF_CLASS ELFCLASS32
1449 #define ELF_ARCH EM_PARISC
1450 #define ELF_PLATFORM "PARISC"
1451 #define STACK_GROWS_DOWN 0
1452 #define STACK_ALIGNMENT 64
1454 static inline void init_thread(struct target_pt_regs *regs,
1455 struct image_info *infop)
1457 regs->iaoq[0] = infop->entry;
1458 regs->iaoq[1] = infop->entry + 4;
1459 regs->gr[23] = 0;
1460 regs->gr[24] = infop->arg_start;
1461 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1462 /* The top-of-stack contains a linkage buffer. */
1463 regs->gr[30] = infop->start_stack + 64;
1464 regs->gr[31] = infop->entry;
1467 #endif /* TARGET_HPPA */
1469 #ifdef TARGET_XTENSA
1471 #define ELF_START_MMAP 0x20000000
1473 #define ELF_CLASS ELFCLASS32
1474 #define ELF_ARCH EM_XTENSA
1476 static inline void init_thread(struct target_pt_regs *regs,
1477 struct image_info *infop)
1479 regs->windowbase = 0;
1480 regs->windowstart = 1;
1481 regs->areg[1] = infop->start_stack;
1482 regs->pc = infop->entry;
1485 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1486 #define ELF_NREG 128
1487 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1489 enum {
1490 TARGET_REG_PC,
1491 TARGET_REG_PS,
1492 TARGET_REG_LBEG,
1493 TARGET_REG_LEND,
1494 TARGET_REG_LCOUNT,
1495 TARGET_REG_SAR,
1496 TARGET_REG_WINDOWSTART,
1497 TARGET_REG_WINDOWBASE,
1498 TARGET_REG_THREADPTR,
1499 TARGET_REG_AR0 = 64,
1502 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1503 const CPUXtensaState *env)
1505 unsigned i;
1507 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1508 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1509 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1510 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1511 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1512 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1513 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1514 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1515 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1516 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1517 for (i = 0; i < env->config->nareg; ++i) {
1518 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1522 #define USE_ELF_CORE_DUMP
1523 #define ELF_EXEC_PAGESIZE 4096
1525 #endif /* TARGET_XTENSA */
1527 #ifdef TARGET_HEXAGON
1529 #define ELF_START_MMAP 0x20000000
1531 #define ELF_CLASS ELFCLASS32
1532 #define ELF_ARCH EM_HEXAGON
1534 static inline void init_thread(struct target_pt_regs *regs,
1535 struct image_info *infop)
1537 regs->sepc = infop->entry;
1538 regs->sp = infop->start_stack;
1541 #endif /* TARGET_HEXAGON */
1543 #ifndef ELF_PLATFORM
1544 #define ELF_PLATFORM (NULL)
1545 #endif
1547 #ifndef ELF_MACHINE
1548 #define ELF_MACHINE ELF_ARCH
1549 #endif
1551 #ifndef elf_check_arch
1552 #define elf_check_arch(x) ((x) == ELF_ARCH)
1553 #endif
1555 #ifndef elf_check_abi
1556 #define elf_check_abi(x) (1)
1557 #endif
1559 #ifndef ELF_HWCAP
1560 #define ELF_HWCAP 0
1561 #endif
1563 #ifndef STACK_GROWS_DOWN
1564 #define STACK_GROWS_DOWN 1
1565 #endif
1567 #ifndef STACK_ALIGNMENT
1568 #define STACK_ALIGNMENT 16
1569 #endif
1571 #ifdef TARGET_ABI32
1572 #undef ELF_CLASS
1573 #define ELF_CLASS ELFCLASS32
1574 #undef bswaptls
1575 #define bswaptls(ptr) bswap32s(ptr)
1576 #endif
1578 #include "elf.h"
1580 /* We must delay the following stanzas until after "elf.h". */
1581 #if defined(TARGET_AARCH64)
1583 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1584 const uint32_t *data,
1585 struct image_info *info,
1586 Error **errp)
1588 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1589 if (pr_datasz != sizeof(uint32_t)) {
1590 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1591 return false;
1593 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1594 info->note_flags = *data;
1596 return true;
1598 #define ARCH_USE_GNU_PROPERTY 1
1600 #else
1602 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1603 const uint32_t *data,
1604 struct image_info *info,
1605 Error **errp)
1607 g_assert_not_reached();
1609 #define ARCH_USE_GNU_PROPERTY 0
1611 #endif
1613 struct exec
1615 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1616 unsigned int a_text; /* length of text, in bytes */
1617 unsigned int a_data; /* length of data, in bytes */
1618 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1619 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1620 unsigned int a_entry; /* start address */
1621 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1622 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1626 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1627 #define OMAGIC 0407
1628 #define NMAGIC 0410
1629 #define ZMAGIC 0413
1630 #define QMAGIC 0314
1632 /* Necessary parameters */
1633 #define TARGET_ELF_EXEC_PAGESIZE \
1634 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1635 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1636 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1637 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1638 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1639 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1641 #define DLINFO_ITEMS 16
1643 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1645 memcpy(to, from, n);
1648 #ifdef BSWAP_NEEDED
1649 static void bswap_ehdr(struct elfhdr *ehdr)
1651 bswap16s(&ehdr->e_type); /* Object file type */
1652 bswap16s(&ehdr->e_machine); /* Architecture */
1653 bswap32s(&ehdr->e_version); /* Object file version */
1654 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1655 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1656 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1657 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1658 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1659 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1660 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1661 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1662 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1663 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1666 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1668 int i;
1669 for (i = 0; i < phnum; ++i, ++phdr) {
1670 bswap32s(&phdr->p_type); /* Segment type */
1671 bswap32s(&phdr->p_flags); /* Segment flags */
1672 bswaptls(&phdr->p_offset); /* Segment file offset */
1673 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1674 bswaptls(&phdr->p_paddr); /* Segment physical address */
1675 bswaptls(&phdr->p_filesz); /* Segment size in file */
1676 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1677 bswaptls(&phdr->p_align); /* Segment alignment */
1681 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1683 int i;
1684 for (i = 0; i < shnum; ++i, ++shdr) {
1685 bswap32s(&shdr->sh_name);
1686 bswap32s(&shdr->sh_type);
1687 bswaptls(&shdr->sh_flags);
1688 bswaptls(&shdr->sh_addr);
1689 bswaptls(&shdr->sh_offset);
1690 bswaptls(&shdr->sh_size);
1691 bswap32s(&shdr->sh_link);
1692 bswap32s(&shdr->sh_info);
1693 bswaptls(&shdr->sh_addralign);
1694 bswaptls(&shdr->sh_entsize);
1698 static void bswap_sym(struct elf_sym *sym)
1700 bswap32s(&sym->st_name);
1701 bswaptls(&sym->st_value);
1702 bswaptls(&sym->st_size);
1703 bswap16s(&sym->st_shndx);
1706 #ifdef TARGET_MIPS
1707 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1709 bswap16s(&abiflags->version);
1710 bswap32s(&abiflags->ases);
1711 bswap32s(&abiflags->isa_ext);
1712 bswap32s(&abiflags->flags1);
1713 bswap32s(&abiflags->flags2);
1715 #endif
1716 #else
1717 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1718 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1719 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1720 static inline void bswap_sym(struct elf_sym *sym) { }
1721 #ifdef TARGET_MIPS
1722 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1723 #endif
1724 #endif
1726 #ifdef USE_ELF_CORE_DUMP
1727 static int elf_core_dump(int, const CPUArchState *);
1728 #endif /* USE_ELF_CORE_DUMP */
1729 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1731 /* Verify the portions of EHDR within E_IDENT for the target.
1732 This can be performed before bswapping the entire header. */
1733 static bool elf_check_ident(struct elfhdr *ehdr)
1735 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1736 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1737 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1738 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1739 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1740 && ehdr->e_ident[EI_DATA] == ELF_DATA
1741 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1744 /* Verify the portions of EHDR outside of E_IDENT for the target.
1745 This has to wait until after bswapping the header. */
1746 static bool elf_check_ehdr(struct elfhdr *ehdr)
1748 return (elf_check_arch(ehdr->e_machine)
1749 && elf_check_abi(ehdr->e_flags)
1750 && ehdr->e_ehsize == sizeof(struct elfhdr)
1751 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1752 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1756 * 'copy_elf_strings()' copies argument/envelope strings from user
1757 * memory to free pages in kernel mem. These are in a format ready
1758 * to be put directly into the top of new user memory.
1761 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1762 abi_ulong p, abi_ulong stack_limit)
1764 char *tmp;
1765 int len, i;
1766 abi_ulong top = p;
1768 if (!p) {
1769 return 0; /* bullet-proofing */
1772 if (STACK_GROWS_DOWN) {
1773 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1774 for (i = argc - 1; i >= 0; --i) {
1775 tmp = argv[i];
1776 if (!tmp) {
1777 fprintf(stderr, "VFS: argc is wrong");
1778 exit(-1);
1780 len = strlen(tmp) + 1;
1781 tmp += len;
1783 if (len > (p - stack_limit)) {
1784 return 0;
1786 while (len) {
1787 int bytes_to_copy = (len > offset) ? offset : len;
1788 tmp -= bytes_to_copy;
1789 p -= bytes_to_copy;
1790 offset -= bytes_to_copy;
1791 len -= bytes_to_copy;
1793 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1795 if (offset == 0) {
1796 memcpy_to_target(p, scratch, top - p);
1797 top = p;
1798 offset = TARGET_PAGE_SIZE;
1802 if (p != top) {
1803 memcpy_to_target(p, scratch + offset, top - p);
1805 } else {
1806 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1807 for (i = 0; i < argc; ++i) {
1808 tmp = argv[i];
1809 if (!tmp) {
1810 fprintf(stderr, "VFS: argc is wrong");
1811 exit(-1);
1813 len = strlen(tmp) + 1;
1814 if (len > (stack_limit - p)) {
1815 return 0;
1817 while (len) {
1818 int bytes_to_copy = (len > remaining) ? remaining : len;
1820 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1822 tmp += bytes_to_copy;
1823 remaining -= bytes_to_copy;
1824 p += bytes_to_copy;
1825 len -= bytes_to_copy;
1827 if (remaining == 0) {
1828 memcpy_to_target(top, scratch, p - top);
1829 top = p;
1830 remaining = TARGET_PAGE_SIZE;
1834 if (p != top) {
1835 memcpy_to_target(top, scratch, p - top);
1839 return p;
1842 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1843 * argument/environment space. Newer kernels (>2.6.33) allow more,
1844 * dependent on stack size, but guarantee at least 32 pages for
1845 * backwards compatibility.
1847 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1849 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1850 struct image_info *info)
1852 abi_ulong size, error, guard;
1854 size = guest_stack_size;
1855 if (size < STACK_LOWER_LIMIT) {
1856 size = STACK_LOWER_LIMIT;
1858 guard = TARGET_PAGE_SIZE;
1859 if (guard < qemu_real_host_page_size) {
1860 guard = qemu_real_host_page_size;
1863 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1864 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1865 if (error == -1) {
1866 perror("mmap stack");
1867 exit(-1);
1870 /* We reserve one extra page at the top of the stack as guard. */
1871 if (STACK_GROWS_DOWN) {
1872 target_mprotect(error, guard, PROT_NONE);
1873 info->stack_limit = error + guard;
1874 return info->stack_limit + size - sizeof(void *);
1875 } else {
1876 target_mprotect(error + size, guard, PROT_NONE);
1877 info->stack_limit = error + size;
1878 return error;
1882 /* Map and zero the bss. We need to explicitly zero any fractional pages
1883 after the data section (i.e. bss). */
1884 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1886 uintptr_t host_start, host_map_start, host_end;
1888 last_bss = TARGET_PAGE_ALIGN(last_bss);
1890 /* ??? There is confusion between qemu_real_host_page_size and
1891 qemu_host_page_size here and elsewhere in target_mmap, which
1892 may lead to the end of the data section mapping from the file
1893 not being mapped. At least there was an explicit test and
1894 comment for that here, suggesting that "the file size must
1895 be known". The comment probably pre-dates the introduction
1896 of the fstat system call in target_mmap which does in fact
1897 find out the size. What isn't clear is if the workaround
1898 here is still actually needed. For now, continue with it,
1899 but merge it with the "normal" mmap that would allocate the bss. */
1901 host_start = (uintptr_t) g2h_untagged(elf_bss);
1902 host_end = (uintptr_t) g2h_untagged(last_bss);
1903 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1905 if (host_map_start < host_end) {
1906 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1907 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1908 if (p == MAP_FAILED) {
1909 perror("cannot mmap brk");
1910 exit(-1);
1914 /* Ensure that the bss page(s) are valid */
1915 if ((page_get_flags(last_bss-1) & prot) != prot) {
1916 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1919 if (host_start < host_map_start) {
1920 memset((void *)host_start, 0, host_map_start - host_start);
1924 #ifdef TARGET_ARM
1925 static int elf_is_fdpic(struct elfhdr *exec)
1927 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1929 #else
1930 /* Default implementation, always false. */
1931 static int elf_is_fdpic(struct elfhdr *exec)
1933 return 0;
1935 #endif
1937 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1939 uint16_t n;
1940 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1942 /* elf32_fdpic_loadseg */
1943 n = info->nsegs;
1944 while (n--) {
1945 sp -= 12;
1946 put_user_u32(loadsegs[n].addr, sp+0);
1947 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1948 put_user_u32(loadsegs[n].p_memsz, sp+8);
1951 /* elf32_fdpic_loadmap */
1952 sp -= 4;
1953 put_user_u16(0, sp+0); /* version */
1954 put_user_u16(info->nsegs, sp+2); /* nsegs */
1956 info->personality = PER_LINUX_FDPIC;
1957 info->loadmap_addr = sp;
1959 return sp;
1962 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1963 struct elfhdr *exec,
1964 struct image_info *info,
1965 struct image_info *interp_info)
1967 abi_ulong sp;
1968 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1969 int size;
1970 int i;
1971 abi_ulong u_rand_bytes;
1972 uint8_t k_rand_bytes[16];
1973 abi_ulong u_platform;
1974 const char *k_platform;
1975 const int n = sizeof(elf_addr_t);
1977 sp = p;
1979 /* Needs to be before we load the env/argc/... */
1980 if (elf_is_fdpic(exec)) {
1981 /* Need 4 byte alignment for these structs */
1982 sp &= ~3;
1983 sp = loader_build_fdpic_loadmap(info, sp);
1984 info->other_info = interp_info;
1985 if (interp_info) {
1986 interp_info->other_info = info;
1987 sp = loader_build_fdpic_loadmap(interp_info, sp);
1988 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1989 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1990 } else {
1991 info->interpreter_loadmap_addr = 0;
1992 info->interpreter_pt_dynamic_addr = 0;
1996 u_platform = 0;
1997 k_platform = ELF_PLATFORM;
1998 if (k_platform) {
1999 size_t len = strlen(k_platform) + 1;
2000 if (STACK_GROWS_DOWN) {
2001 sp -= (len + n - 1) & ~(n - 1);
2002 u_platform = sp;
2003 /* FIXME - check return value of memcpy_to_target() for failure */
2004 memcpy_to_target(sp, k_platform, len);
2005 } else {
2006 memcpy_to_target(sp, k_platform, len);
2007 u_platform = sp;
2008 sp += len + 1;
2012 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2013 * the argv and envp pointers.
2015 if (STACK_GROWS_DOWN) {
2016 sp = QEMU_ALIGN_DOWN(sp, 16);
2017 } else {
2018 sp = QEMU_ALIGN_UP(sp, 16);
2022 * Generate 16 random bytes for userspace PRNG seeding.
2024 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2025 if (STACK_GROWS_DOWN) {
2026 sp -= 16;
2027 u_rand_bytes = sp;
2028 /* FIXME - check return value of memcpy_to_target() for failure */
2029 memcpy_to_target(sp, k_rand_bytes, 16);
2030 } else {
2031 memcpy_to_target(sp, k_rand_bytes, 16);
2032 u_rand_bytes = sp;
2033 sp += 16;
2036 size = (DLINFO_ITEMS + 1) * 2;
2037 if (k_platform)
2038 size += 2;
2039 #ifdef DLINFO_ARCH_ITEMS
2040 size += DLINFO_ARCH_ITEMS * 2;
2041 #endif
2042 #ifdef ELF_HWCAP2
2043 size += 2;
2044 #endif
2045 info->auxv_len = size * n;
2047 size += envc + argc + 2;
2048 size += 1; /* argc itself */
2049 size *= n;
2051 /* Allocate space and finalize stack alignment for entry now. */
2052 if (STACK_GROWS_DOWN) {
2053 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2054 sp = u_argc;
2055 } else {
2056 u_argc = sp;
2057 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2060 u_argv = u_argc + n;
2061 u_envp = u_argv + (argc + 1) * n;
2062 u_auxv = u_envp + (envc + 1) * n;
2063 info->saved_auxv = u_auxv;
2064 info->arg_start = u_argv;
2065 info->arg_end = u_argv + argc * n;
2067 /* This is correct because Linux defines
2068 * elf_addr_t as Elf32_Off / Elf64_Off
2070 #define NEW_AUX_ENT(id, val) do { \
2071 put_user_ual(id, u_auxv); u_auxv += n; \
2072 put_user_ual(val, u_auxv); u_auxv += n; \
2073 } while(0)
2075 #ifdef ARCH_DLINFO
2077 * ARCH_DLINFO must come first so platform specific code can enforce
2078 * special alignment requirements on the AUXV if necessary (eg. PPC).
2080 ARCH_DLINFO;
2081 #endif
2082 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2083 * on info->auxv_len will trigger.
2085 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2086 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2087 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2088 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2089 /* Target doesn't support host page size alignment */
2090 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2091 } else {
2092 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2093 qemu_host_page_size)));
2095 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2096 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2097 NEW_AUX_ENT(AT_ENTRY, info->entry);
2098 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2099 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2100 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2101 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2102 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2103 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2104 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2105 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2106 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2108 #ifdef ELF_HWCAP2
2109 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2110 #endif
2112 if (u_platform) {
2113 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2115 NEW_AUX_ENT (AT_NULL, 0);
2116 #undef NEW_AUX_ENT
2118 /* Check that our initial calculation of the auxv length matches how much
2119 * we actually put into it.
2121 assert(info->auxv_len == u_auxv - info->saved_auxv);
2123 put_user_ual(argc, u_argc);
2125 p = info->arg_strings;
2126 for (i = 0; i < argc; ++i) {
2127 put_user_ual(p, u_argv);
2128 u_argv += n;
2129 p += target_strlen(p) + 1;
2131 put_user_ual(0, u_argv);
2133 p = info->env_strings;
2134 for (i = 0; i < envc; ++i) {
2135 put_user_ual(p, u_envp);
2136 u_envp += n;
2137 p += target_strlen(p) + 1;
2139 put_user_ual(0, u_envp);
2141 return sp;
2144 #ifndef ARM_COMMPAGE
2145 #define ARM_COMMPAGE 0
2146 #define init_guest_commpage() true
2147 #endif
2149 static void pgb_fail_in_use(const char *image_name)
2151 error_report("%s: requires virtual address space that is in use "
2152 "(omit the -B option or choose a different value)",
2153 image_name);
2154 exit(EXIT_FAILURE);
2157 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2158 abi_ulong guest_hiaddr, long align)
2160 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2161 void *addr, *test;
2163 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2164 fprintf(stderr, "Requested guest base %p does not satisfy "
2165 "host minimum alignment (0x%lx)\n",
2166 (void *)guest_base, align);
2167 exit(EXIT_FAILURE);
2170 /* Sanity check the guest binary. */
2171 if (reserved_va) {
2172 if (guest_hiaddr > reserved_va) {
2173 error_report("%s: requires more than reserved virtual "
2174 "address space (0x%" PRIx64 " > 0x%lx)",
2175 image_name, (uint64_t)guest_hiaddr, reserved_va);
2176 exit(EXIT_FAILURE);
2178 } else {
2179 #if HOST_LONG_BITS < TARGET_ABI_BITS
2180 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2181 error_report("%s: requires more virtual address space "
2182 "than the host can provide (0x%" PRIx64 ")",
2183 image_name, (uint64_t)guest_hiaddr - guest_base);
2184 exit(EXIT_FAILURE);
2186 #endif
2190 * Expand the allocation to the entire reserved_va.
2191 * Exclude the mmap_min_addr hole.
2193 if (reserved_va) {
2194 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2195 : mmap_min_addr - guest_base);
2196 guest_hiaddr = reserved_va;
2199 /* Reserve the address space for the binary, or reserved_va. */
2200 test = g2h_untagged(guest_loaddr);
2201 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2202 if (test != addr) {
2203 pgb_fail_in_use(image_name);
2208 * pgd_find_hole_fallback: potential mmap address
2209 * @guest_size: size of available space
2210 * @brk: location of break
2211 * @align: memory alignment
2213 * This is a fallback method for finding a hole in the host address
2214 * space if we don't have the benefit of being able to access
2215 * /proc/self/map. It can potentially take a very long time as we can
2216 * only dumbly iterate up the host address space seeing if the
2217 * allocation would work.
2219 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2220 long align, uintptr_t offset)
2222 uintptr_t base;
2224 /* Start (aligned) at the bottom and work our way up */
2225 base = ROUND_UP(mmap_min_addr, align);
2227 while (true) {
2228 uintptr_t align_start, end;
2229 align_start = ROUND_UP(base, align);
2230 end = align_start + guest_size + offset;
2232 /* if brk is anywhere in the range give ourselves some room to grow. */
2233 if (align_start <= brk && brk < end) {
2234 base = brk + (16 * MiB);
2235 continue;
2236 } else if (align_start + guest_size < align_start) {
2237 /* we have run out of space */
2238 return -1;
2239 } else {
2240 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2241 MAP_FIXED_NOREPLACE;
2242 void * mmap_start = mmap((void *) align_start, guest_size,
2243 PROT_NONE, flags, -1, 0);
2244 if (mmap_start != MAP_FAILED) {
2245 munmap(mmap_start, guest_size);
2246 if (mmap_start == (void *) align_start) {
2247 return (uintptr_t) mmap_start + offset;
2250 base += qemu_host_page_size;
2255 /* Return value for guest_base, or -1 if no hole found. */
2256 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2257 long align, uintptr_t offset)
2259 GSList *maps, *iter;
2260 uintptr_t this_start, this_end, next_start, brk;
2261 intptr_t ret = -1;
2263 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2265 maps = read_self_maps();
2267 /* Read brk after we've read the maps, which will malloc. */
2268 brk = (uintptr_t)sbrk(0);
2270 if (!maps) {
2271 ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2272 return ret == -1 ? -1 : ret - guest_loaddr;
2275 /* The first hole is before the first map entry. */
2276 this_start = mmap_min_addr;
2278 for (iter = maps; iter;
2279 this_start = next_start, iter = g_slist_next(iter)) {
2280 uintptr_t align_start, hole_size;
2282 this_end = ((MapInfo *)iter->data)->start;
2283 next_start = ((MapInfo *)iter->data)->end;
2284 align_start = ROUND_UP(this_start + offset, align);
2286 /* Skip holes that are too small. */
2287 if (align_start >= this_end) {
2288 continue;
2290 hole_size = this_end - align_start;
2291 if (hole_size < guest_size) {
2292 continue;
2295 /* If this hole contains brk, give ourselves some room to grow. */
2296 if (this_start <= brk && brk < this_end) {
2297 hole_size -= guest_size;
2298 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2299 align_start += 1 * GiB;
2300 } else if (hole_size >= 16 * MiB) {
2301 align_start += 16 * MiB;
2302 } else {
2303 align_start = (this_end - guest_size) & -align;
2304 if (align_start < this_start) {
2305 continue;
2310 /* Record the lowest successful match. */
2311 if (ret < 0) {
2312 ret = align_start - guest_loaddr;
2314 /* If this hole contains the identity map, select it. */
2315 if (align_start <= guest_loaddr &&
2316 guest_loaddr + guest_size <= this_end) {
2317 ret = 0;
2319 /* If this hole ends above the identity map, stop looking. */
2320 if (this_end >= guest_loaddr) {
2321 break;
2324 free_self_maps(maps);
2326 return ret;
2329 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2330 abi_ulong orig_hiaddr, long align)
2332 uintptr_t loaddr = orig_loaddr;
2333 uintptr_t hiaddr = orig_hiaddr;
2334 uintptr_t offset = 0;
2335 uintptr_t addr;
2337 if (hiaddr != orig_hiaddr) {
2338 error_report("%s: requires virtual address space that the "
2339 "host cannot provide (0x%" PRIx64 ")",
2340 image_name, (uint64_t)orig_hiaddr);
2341 exit(EXIT_FAILURE);
2344 loaddr &= -align;
2345 if (ARM_COMMPAGE) {
2347 * Extend the allocation to include the commpage.
2348 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2349 * need to ensure there is space bellow the guest_base so we
2350 * can map the commpage in the place needed when the address
2351 * arithmetic wraps around.
2353 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2354 hiaddr = (uintptr_t) 4 << 30;
2355 } else {
2356 offset = -(ARM_COMMPAGE & -align);
2360 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2361 if (addr == -1) {
2363 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2364 * that can satisfy both. But as the normal arm32 link base address
2365 * is ~32k, and we extend down to include the commpage, making the
2366 * overhead only ~96k, this is unlikely.
2368 error_report("%s: Unable to allocate %#zx bytes of "
2369 "virtual address space", image_name,
2370 (size_t)(hiaddr - loaddr));
2371 exit(EXIT_FAILURE);
2374 guest_base = addr;
2377 static void pgb_dynamic(const char *image_name, long align)
2380 * The executable is dynamic and does not require a fixed address.
2381 * All we need is a commpage that satisfies align.
2382 * If we do not need a commpage, leave guest_base == 0.
2384 if (ARM_COMMPAGE) {
2385 uintptr_t addr, commpage;
2387 /* 64-bit hosts should have used reserved_va. */
2388 assert(sizeof(uintptr_t) == 4);
2391 * By putting the commpage at the first hole, that puts guest_base
2392 * just above that, and maximises the positive guest addresses.
2394 commpage = ARM_COMMPAGE & -align;
2395 addr = pgb_find_hole(commpage, -commpage, align, 0);
2396 assert(addr != -1);
2397 guest_base = addr;
2401 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2402 abi_ulong guest_hiaddr, long align)
2404 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2405 void *addr, *test;
2407 if (guest_hiaddr > reserved_va) {
2408 error_report("%s: requires more than reserved virtual "
2409 "address space (0x%" PRIx64 " > 0x%lx)",
2410 image_name, (uint64_t)guest_hiaddr, reserved_va);
2411 exit(EXIT_FAILURE);
2414 /* Widen the "image" to the entire reserved address space. */
2415 pgb_static(image_name, 0, reserved_va, align);
2417 /* osdep.h defines this as 0 if it's missing */
2418 flags |= MAP_FIXED_NOREPLACE;
2420 /* Reserve the memory on the host. */
2421 assert(guest_base != 0);
2422 test = g2h_untagged(0);
2423 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2424 if (addr == MAP_FAILED || addr != test) {
2425 error_report("Unable to reserve 0x%lx bytes of virtual address "
2426 "space at %p (%s) for use as guest address space (check your"
2427 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2428 "using -R option)", reserved_va, test, strerror(errno));
2429 exit(EXIT_FAILURE);
2433 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2434 abi_ulong guest_hiaddr)
2436 /* In order to use host shmat, we must be able to honor SHMLBA. */
2437 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2439 if (have_guest_base) {
2440 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2441 } else if (reserved_va) {
2442 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2443 } else if (guest_loaddr) {
2444 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2445 } else {
2446 pgb_dynamic(image_name, align);
2449 /* Reserve and initialize the commpage. */
2450 if (!init_guest_commpage()) {
2452 * With have_guest_base, the user has selected the address and
2453 * we are trying to work with that. Otherwise, we have selected
2454 * free space and init_guest_commpage must succeeded.
2456 assert(have_guest_base);
2457 pgb_fail_in_use(image_name);
2460 assert(QEMU_IS_ALIGNED(guest_base, align));
2461 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2462 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2465 enum {
2466 /* The string "GNU\0" as a magic number. */
2467 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2468 NOTE_DATA_SZ = 1 * KiB,
2469 NOTE_NAME_SZ = 4,
2470 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2474 * Process a single gnu_property entry.
2475 * Return false for error.
2477 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2478 struct image_info *info, bool have_prev_type,
2479 uint32_t *prev_type, Error **errp)
2481 uint32_t pr_type, pr_datasz, step;
2483 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2484 goto error_data;
2486 datasz -= *off;
2487 data += *off / sizeof(uint32_t);
2489 if (datasz < 2 * sizeof(uint32_t)) {
2490 goto error_data;
2492 pr_type = data[0];
2493 pr_datasz = data[1];
2494 data += 2;
2495 datasz -= 2 * sizeof(uint32_t);
2496 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2497 if (step > datasz) {
2498 goto error_data;
2501 /* Properties are supposed to be unique and sorted on pr_type. */
2502 if (have_prev_type && pr_type <= *prev_type) {
2503 if (pr_type == *prev_type) {
2504 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2505 } else {
2506 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2508 return false;
2510 *prev_type = pr_type;
2512 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2513 return false;
2516 *off += 2 * sizeof(uint32_t) + step;
2517 return true;
2519 error_data:
2520 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2521 return false;
2524 /* Process NT_GNU_PROPERTY_TYPE_0. */
2525 static bool parse_elf_properties(int image_fd,
2526 struct image_info *info,
2527 const struct elf_phdr *phdr,
2528 char bprm_buf[BPRM_BUF_SIZE],
2529 Error **errp)
2531 union {
2532 struct elf_note nhdr;
2533 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2534 } note;
2536 int n, off, datasz;
2537 bool have_prev_type;
2538 uint32_t prev_type;
2540 /* Unless the arch requires properties, ignore them. */
2541 if (!ARCH_USE_GNU_PROPERTY) {
2542 return true;
2545 /* If the properties are crazy large, that's too bad. */
2546 n = phdr->p_filesz;
2547 if (n > sizeof(note)) {
2548 error_setg(errp, "PT_GNU_PROPERTY too large");
2549 return false;
2551 if (n < sizeof(note.nhdr)) {
2552 error_setg(errp, "PT_GNU_PROPERTY too small");
2553 return false;
2556 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2557 memcpy(&note, bprm_buf + phdr->p_offset, n);
2558 } else {
2559 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2560 if (len != n) {
2561 error_setg_errno(errp, errno, "Error reading file header");
2562 return false;
2567 * The contents of a valid PT_GNU_PROPERTY is a sequence
2568 * of uint32_t -- swap them all now.
2570 #ifdef BSWAP_NEEDED
2571 for (int i = 0; i < n / 4; i++) {
2572 bswap32s(note.data + i);
2574 #endif
2577 * Note that nhdr is 3 words, and that the "name" described by namesz
2578 * immediately follows nhdr and is thus at the 4th word. Further, all
2579 * of the inputs to the kernel's round_up are multiples of 4.
2581 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2582 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2583 note.data[3] != GNU0_MAGIC) {
2584 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2585 return false;
2587 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2589 datasz = note.nhdr.n_descsz + off;
2590 if (datasz > n) {
2591 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2592 return false;
2595 have_prev_type = false;
2596 prev_type = 0;
2597 while (1) {
2598 if (off == datasz) {
2599 return true; /* end, exit ok */
2601 if (!parse_elf_property(note.data, &off, datasz, info,
2602 have_prev_type, &prev_type, errp)) {
2603 return false;
2605 have_prev_type = true;
2609 /* Load an ELF image into the address space.
2611 IMAGE_NAME is the filename of the image, to use in error messages.
2612 IMAGE_FD is the open file descriptor for the image.
2614 BPRM_BUF is a copy of the beginning of the file; this of course
2615 contains the elf file header at offset 0. It is assumed that this
2616 buffer is sufficiently aligned to present no problems to the host
2617 in accessing data at aligned offsets within the buffer.
2619 On return: INFO values will be filled in, as necessary or available. */
2621 static void load_elf_image(const char *image_name, int image_fd,
2622 struct image_info *info, char **pinterp_name,
2623 char bprm_buf[BPRM_BUF_SIZE])
2625 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2626 struct elf_phdr *phdr;
2627 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2628 int i, retval, prot_exec;
2629 Error *err = NULL;
2631 /* First of all, some simple consistency checks */
2632 if (!elf_check_ident(ehdr)) {
2633 error_setg(&err, "Invalid ELF image for this architecture");
2634 goto exit_errmsg;
2636 bswap_ehdr(ehdr);
2637 if (!elf_check_ehdr(ehdr)) {
2638 error_setg(&err, "Invalid ELF image for this architecture");
2639 goto exit_errmsg;
2642 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2643 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2644 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2645 } else {
2646 phdr = (struct elf_phdr *) alloca(i);
2647 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2648 if (retval != i) {
2649 goto exit_read;
2652 bswap_phdr(phdr, ehdr->e_phnum);
2654 info->nsegs = 0;
2655 info->pt_dynamic_addr = 0;
2657 mmap_lock();
2660 * Find the maximum size of the image and allocate an appropriate
2661 * amount of memory to handle that. Locate the interpreter, if any.
2663 loaddr = -1, hiaddr = 0;
2664 info->alignment = 0;
2665 for (i = 0; i < ehdr->e_phnum; ++i) {
2666 struct elf_phdr *eppnt = phdr + i;
2667 if (eppnt->p_type == PT_LOAD) {
2668 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2669 if (a < loaddr) {
2670 loaddr = a;
2672 a = eppnt->p_vaddr + eppnt->p_memsz;
2673 if (a > hiaddr) {
2674 hiaddr = a;
2676 ++info->nsegs;
2677 info->alignment |= eppnt->p_align;
2678 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2679 g_autofree char *interp_name = NULL;
2681 if (*pinterp_name) {
2682 error_setg(&err, "Multiple PT_INTERP entries");
2683 goto exit_errmsg;
2686 interp_name = g_malloc(eppnt->p_filesz);
2688 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2689 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2690 eppnt->p_filesz);
2691 } else {
2692 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2693 eppnt->p_offset);
2694 if (retval != eppnt->p_filesz) {
2695 goto exit_read;
2698 if (interp_name[eppnt->p_filesz - 1] != 0) {
2699 error_setg(&err, "Invalid PT_INTERP entry");
2700 goto exit_errmsg;
2702 *pinterp_name = g_steal_pointer(&interp_name);
2703 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2704 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2705 goto exit_errmsg;
2710 if (pinterp_name != NULL) {
2712 * This is the main executable.
2714 * Reserve extra space for brk.
2715 * We hold on to this space while placing the interpreter
2716 * and the stack, lest they be placed immediately after
2717 * the data segment and block allocation from the brk.
2719 * 16MB is chosen as "large enough" without being so large
2720 * as to allow the result to not fit with a 32-bit guest on
2721 * a 32-bit host.
2723 info->reserve_brk = 16 * MiB;
2724 hiaddr += info->reserve_brk;
2726 if (ehdr->e_type == ET_EXEC) {
2728 * Make sure that the low address does not conflict with
2729 * MMAP_MIN_ADDR or the QEMU application itself.
2731 probe_guest_base(image_name, loaddr, hiaddr);
2732 } else {
2734 * The binary is dynamic, but we still need to
2735 * select guest_base. In this case we pass a size.
2737 probe_guest_base(image_name, 0, hiaddr - loaddr);
2742 * Reserve address space for all of this.
2744 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2745 * exactly the address range that is required.
2747 * Otherwise this is ET_DYN, and we are searching for a location
2748 * that can hold the memory space required. If the image is
2749 * pre-linked, LOADDR will be non-zero, and the kernel should
2750 * honor that address if it happens to be free.
2752 * In both cases, we will overwrite pages in this range with mappings
2753 * from the executable.
2755 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2756 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2757 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2758 -1, 0);
2759 if (load_addr == -1) {
2760 goto exit_mmap;
2762 load_bias = load_addr - loaddr;
2764 if (elf_is_fdpic(ehdr)) {
2765 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2766 g_malloc(sizeof(*loadsegs) * info->nsegs);
2768 for (i = 0; i < ehdr->e_phnum; ++i) {
2769 switch (phdr[i].p_type) {
2770 case PT_DYNAMIC:
2771 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2772 break;
2773 case PT_LOAD:
2774 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2775 loadsegs->p_vaddr = phdr[i].p_vaddr;
2776 loadsegs->p_memsz = phdr[i].p_memsz;
2777 ++loadsegs;
2778 break;
2783 info->load_bias = load_bias;
2784 info->code_offset = load_bias;
2785 info->data_offset = load_bias;
2786 info->load_addr = load_addr;
2787 info->entry = ehdr->e_entry + load_bias;
2788 info->start_code = -1;
2789 info->end_code = 0;
2790 info->start_data = -1;
2791 info->end_data = 0;
2792 info->brk = 0;
2793 info->elf_flags = ehdr->e_flags;
2795 prot_exec = PROT_EXEC;
2796 #ifdef TARGET_AARCH64
2798 * If the BTI feature is present, this indicates that the executable
2799 * pages of the startup binary should be mapped with PROT_BTI, so that
2800 * branch targets are enforced.
2802 * The startup binary is either the interpreter or the static executable.
2803 * The interpreter is responsible for all pages of a dynamic executable.
2805 * Elf notes are backward compatible to older cpus.
2806 * Do not enable BTI unless it is supported.
2808 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2809 && (pinterp_name == NULL || *pinterp_name == 0)
2810 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2811 prot_exec |= TARGET_PROT_BTI;
2813 #endif
2815 for (i = 0; i < ehdr->e_phnum; i++) {
2816 struct elf_phdr *eppnt = phdr + i;
2817 if (eppnt->p_type == PT_LOAD) {
2818 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2819 int elf_prot = 0;
2821 if (eppnt->p_flags & PF_R) {
2822 elf_prot |= PROT_READ;
2824 if (eppnt->p_flags & PF_W) {
2825 elf_prot |= PROT_WRITE;
2827 if (eppnt->p_flags & PF_X) {
2828 elf_prot |= prot_exec;
2831 vaddr = load_bias + eppnt->p_vaddr;
2832 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2833 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2835 vaddr_ef = vaddr + eppnt->p_filesz;
2836 vaddr_em = vaddr + eppnt->p_memsz;
2839 * Some segments may be completely empty, with a non-zero p_memsz
2840 * but no backing file segment.
2842 if (eppnt->p_filesz != 0) {
2843 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2844 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2845 MAP_PRIVATE | MAP_FIXED,
2846 image_fd, eppnt->p_offset - vaddr_po);
2848 if (error == -1) {
2849 goto exit_mmap;
2853 * If the load segment requests extra zeros (e.g. bss), map it.
2855 if (eppnt->p_filesz < eppnt->p_memsz) {
2856 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2858 } else if (eppnt->p_memsz != 0) {
2859 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2860 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2861 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2862 -1, 0);
2864 if (error == -1) {
2865 goto exit_mmap;
2869 /* Find the full program boundaries. */
2870 if (elf_prot & PROT_EXEC) {
2871 if (vaddr < info->start_code) {
2872 info->start_code = vaddr;
2874 if (vaddr_ef > info->end_code) {
2875 info->end_code = vaddr_ef;
2878 if (elf_prot & PROT_WRITE) {
2879 if (vaddr < info->start_data) {
2880 info->start_data = vaddr;
2882 if (vaddr_ef > info->end_data) {
2883 info->end_data = vaddr_ef;
2886 if (vaddr_em > info->brk) {
2887 info->brk = vaddr_em;
2889 #ifdef TARGET_MIPS
2890 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2891 Mips_elf_abiflags_v0 abiflags;
2892 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2893 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2894 goto exit_errmsg;
2896 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2897 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2898 sizeof(Mips_elf_abiflags_v0));
2899 } else {
2900 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2901 eppnt->p_offset);
2902 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2903 goto exit_read;
2906 bswap_mips_abiflags(&abiflags);
2907 info->fp_abi = abiflags.fp_abi;
2908 #endif
2912 if (info->end_data == 0) {
2913 info->start_data = info->end_code;
2914 info->end_data = info->end_code;
2917 if (qemu_log_enabled()) {
2918 load_symbols(ehdr, image_fd, load_bias);
2921 mmap_unlock();
2923 close(image_fd);
2924 return;
2926 exit_read:
2927 if (retval >= 0) {
2928 error_setg(&err, "Incomplete read of file header");
2929 } else {
2930 error_setg_errno(&err, errno, "Error reading file header");
2932 goto exit_errmsg;
2933 exit_mmap:
2934 error_setg_errno(&err, errno, "Error mapping file");
2935 goto exit_errmsg;
2936 exit_errmsg:
2937 error_reportf_err(err, "%s: ", image_name);
2938 exit(-1);
2941 static void load_elf_interp(const char *filename, struct image_info *info,
2942 char bprm_buf[BPRM_BUF_SIZE])
2944 int fd, retval;
2945 Error *err = NULL;
2947 fd = open(path(filename), O_RDONLY);
2948 if (fd < 0) {
2949 error_setg_file_open(&err, errno, filename);
2950 error_report_err(err);
2951 exit(-1);
2954 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2955 if (retval < 0) {
2956 error_setg_errno(&err, errno, "Error reading file header");
2957 error_reportf_err(err, "%s: ", filename);
2958 exit(-1);
2961 if (retval < BPRM_BUF_SIZE) {
2962 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2965 load_elf_image(filename, fd, info, NULL, bprm_buf);
2968 static int symfind(const void *s0, const void *s1)
2970 target_ulong addr = *(target_ulong *)s0;
2971 struct elf_sym *sym = (struct elf_sym *)s1;
2972 int result = 0;
2973 if (addr < sym->st_value) {
2974 result = -1;
2975 } else if (addr >= sym->st_value + sym->st_size) {
2976 result = 1;
2978 return result;
2981 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2983 #if ELF_CLASS == ELFCLASS32
2984 struct elf_sym *syms = s->disas_symtab.elf32;
2985 #else
2986 struct elf_sym *syms = s->disas_symtab.elf64;
2987 #endif
2989 // binary search
2990 struct elf_sym *sym;
2992 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2993 if (sym != NULL) {
2994 return s->disas_strtab + sym->st_name;
2997 return "";
3000 /* FIXME: This should use elf_ops.h */
3001 static int symcmp(const void *s0, const void *s1)
3003 struct elf_sym *sym0 = (struct elf_sym *)s0;
3004 struct elf_sym *sym1 = (struct elf_sym *)s1;
3005 return (sym0->st_value < sym1->st_value)
3006 ? -1
3007 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3010 /* Best attempt to load symbols from this ELF object. */
3011 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3013 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3014 uint64_t segsz;
3015 struct elf_shdr *shdr;
3016 char *strings = NULL;
3017 struct syminfo *s = NULL;
3018 struct elf_sym *new_syms, *syms = NULL;
3020 shnum = hdr->e_shnum;
3021 i = shnum * sizeof(struct elf_shdr);
3022 shdr = (struct elf_shdr *)alloca(i);
3023 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3024 return;
3027 bswap_shdr(shdr, shnum);
3028 for (i = 0; i < shnum; ++i) {
3029 if (shdr[i].sh_type == SHT_SYMTAB) {
3030 sym_idx = i;
3031 str_idx = shdr[i].sh_link;
3032 goto found;
3036 /* There will be no symbol table if the file was stripped. */
3037 return;
3039 found:
3040 /* Now know where the strtab and symtab are. Snarf them. */
3041 s = g_try_new(struct syminfo, 1);
3042 if (!s) {
3043 goto give_up;
3046 segsz = shdr[str_idx].sh_size;
3047 s->disas_strtab = strings = g_try_malloc(segsz);
3048 if (!strings ||
3049 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3050 goto give_up;
3053 segsz = shdr[sym_idx].sh_size;
3054 syms = g_try_malloc(segsz);
3055 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3056 goto give_up;
3059 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3060 /* Implausibly large symbol table: give up rather than ploughing
3061 * on with the number of symbols calculation overflowing
3063 goto give_up;
3065 nsyms = segsz / sizeof(struct elf_sym);
3066 for (i = 0; i < nsyms; ) {
3067 bswap_sym(syms + i);
3068 /* Throw away entries which we do not need. */
3069 if (syms[i].st_shndx == SHN_UNDEF
3070 || syms[i].st_shndx >= SHN_LORESERVE
3071 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3072 if (i < --nsyms) {
3073 syms[i] = syms[nsyms];
3075 } else {
3076 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3077 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3078 syms[i].st_value &= ~(target_ulong)1;
3079 #endif
3080 syms[i].st_value += load_bias;
3081 i++;
3085 /* No "useful" symbol. */
3086 if (nsyms == 0) {
3087 goto give_up;
3090 /* Attempt to free the storage associated with the local symbols
3091 that we threw away. Whether or not this has any effect on the
3092 memory allocation depends on the malloc implementation and how
3093 many symbols we managed to discard. */
3094 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3095 if (new_syms == NULL) {
3096 goto give_up;
3098 syms = new_syms;
3100 qsort(syms, nsyms, sizeof(*syms), symcmp);
3102 s->disas_num_syms = nsyms;
3103 #if ELF_CLASS == ELFCLASS32
3104 s->disas_symtab.elf32 = syms;
3105 #else
3106 s->disas_symtab.elf64 = syms;
3107 #endif
3108 s->lookup_symbol = lookup_symbolxx;
3109 s->next = syminfos;
3110 syminfos = s;
3112 return;
3114 give_up:
3115 g_free(s);
3116 g_free(strings);
3117 g_free(syms);
3120 uint32_t get_elf_eflags(int fd)
3122 struct elfhdr ehdr;
3123 off_t offset;
3124 int ret;
3126 /* Read ELF header */
3127 offset = lseek(fd, 0, SEEK_SET);
3128 if (offset == (off_t) -1) {
3129 return 0;
3131 ret = read(fd, &ehdr, sizeof(ehdr));
3132 if (ret < sizeof(ehdr)) {
3133 return 0;
3135 offset = lseek(fd, offset, SEEK_SET);
3136 if (offset == (off_t) -1) {
3137 return 0;
3140 /* Check ELF signature */
3141 if (!elf_check_ident(&ehdr)) {
3142 return 0;
3145 /* check header */
3146 bswap_ehdr(&ehdr);
3147 if (!elf_check_ehdr(&ehdr)) {
3148 return 0;
3151 /* return architecture id */
3152 return ehdr.e_flags;
3155 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3157 struct image_info interp_info;
3158 struct elfhdr elf_ex;
3159 char *elf_interpreter = NULL;
3160 char *scratch;
3162 memset(&interp_info, 0, sizeof(interp_info));
3163 #ifdef TARGET_MIPS
3164 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3165 #endif
3167 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3169 load_elf_image(bprm->filename, bprm->fd, info,
3170 &elf_interpreter, bprm->buf);
3172 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3173 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3174 when we load the interpreter. */
3175 elf_ex = *(struct elfhdr *)bprm->buf;
3177 /* Do this so that we can load the interpreter, if need be. We will
3178 change some of these later */
3179 bprm->p = setup_arg_pages(bprm, info);
3181 scratch = g_new0(char, TARGET_PAGE_SIZE);
3182 if (STACK_GROWS_DOWN) {
3183 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3184 bprm->p, info->stack_limit);
3185 info->file_string = bprm->p;
3186 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3187 bprm->p, info->stack_limit);
3188 info->env_strings = bprm->p;
3189 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3190 bprm->p, info->stack_limit);
3191 info->arg_strings = bprm->p;
3192 } else {
3193 info->arg_strings = bprm->p;
3194 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3195 bprm->p, info->stack_limit);
3196 info->env_strings = bprm->p;
3197 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3198 bprm->p, info->stack_limit);
3199 info->file_string = bprm->p;
3200 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3201 bprm->p, info->stack_limit);
3204 g_free(scratch);
3206 if (!bprm->p) {
3207 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3208 exit(-1);
3211 if (elf_interpreter) {
3212 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3214 /* If the program interpreter is one of these two, then assume
3215 an iBCS2 image. Otherwise assume a native linux image. */
3217 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3218 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3219 info->personality = PER_SVR4;
3221 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3222 and some applications "depend" upon this behavior. Since
3223 we do not have the power to recompile these, we emulate
3224 the SVr4 behavior. Sigh. */
3225 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3226 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3228 #ifdef TARGET_MIPS
3229 info->interp_fp_abi = interp_info.fp_abi;
3230 #endif
3233 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3234 info, (elf_interpreter ? &interp_info : NULL));
3235 info->start_stack = bprm->p;
3237 /* If we have an interpreter, set that as the program's entry point.
3238 Copy the load_bias as well, to help PPC64 interpret the entry
3239 point as a function descriptor. Do this after creating elf tables
3240 so that we copy the original program entry point into the AUXV. */
3241 if (elf_interpreter) {
3242 info->load_bias = interp_info.load_bias;
3243 info->entry = interp_info.entry;
3244 g_free(elf_interpreter);
3247 #ifdef USE_ELF_CORE_DUMP
3248 bprm->core_dump = &elf_core_dump;
3249 #endif
3252 * If we reserved extra space for brk, release it now.
3253 * The implementation of do_brk in syscalls.c expects to be able
3254 * to mmap pages in this space.
3256 if (info->reserve_brk) {
3257 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3258 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3259 target_munmap(start_brk, end_brk - start_brk);
3262 return 0;
3265 #ifdef USE_ELF_CORE_DUMP
3267 * Definitions to generate Intel SVR4-like core files.
3268 * These mostly have the same names as the SVR4 types with "target_elf_"
3269 * tacked on the front to prevent clashes with linux definitions,
3270 * and the typedef forms have been avoided. This is mostly like
3271 * the SVR4 structure, but more Linuxy, with things that Linux does
3272 * not support and which gdb doesn't really use excluded.
3274 * Fields we don't dump (their contents is zero) in linux-user qemu
3275 * are marked with XXX.
3277 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3279 * Porting ELF coredump for target is (quite) simple process. First you
3280 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3281 * the target resides):
3283 * #define USE_ELF_CORE_DUMP
3285 * Next you define type of register set used for dumping. ELF specification
3286 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3288 * typedef <target_regtype> target_elf_greg_t;
3289 * #define ELF_NREG <number of registers>
3290 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3292 * Last step is to implement target specific function that copies registers
3293 * from given cpu into just specified register set. Prototype is:
3295 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3296 * const CPUArchState *env);
3298 * Parameters:
3299 * regs - copy register values into here (allocated and zeroed by caller)
3300 * env - copy registers from here
3302 * Example for ARM target is provided in this file.
3305 /* An ELF note in memory */
3306 struct memelfnote {
3307 const char *name;
3308 size_t namesz;
3309 size_t namesz_rounded;
3310 int type;
3311 size_t datasz;
3312 size_t datasz_rounded;
3313 void *data;
3314 size_t notesz;
3317 struct target_elf_siginfo {
3318 abi_int si_signo; /* signal number */
3319 abi_int si_code; /* extra code */
3320 abi_int si_errno; /* errno */
3323 struct target_elf_prstatus {
3324 struct target_elf_siginfo pr_info; /* Info associated with signal */
3325 abi_short pr_cursig; /* Current signal */
3326 abi_ulong pr_sigpend; /* XXX */
3327 abi_ulong pr_sighold; /* XXX */
3328 target_pid_t pr_pid;
3329 target_pid_t pr_ppid;
3330 target_pid_t pr_pgrp;
3331 target_pid_t pr_sid;
3332 struct target_timeval pr_utime; /* XXX User time */
3333 struct target_timeval pr_stime; /* XXX System time */
3334 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3335 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3336 target_elf_gregset_t pr_reg; /* GP registers */
3337 abi_int pr_fpvalid; /* XXX */
3340 #define ELF_PRARGSZ (80) /* Number of chars for args */
3342 struct target_elf_prpsinfo {
3343 char pr_state; /* numeric process state */
3344 char pr_sname; /* char for pr_state */
3345 char pr_zomb; /* zombie */
3346 char pr_nice; /* nice val */
3347 abi_ulong pr_flag; /* flags */
3348 target_uid_t pr_uid;
3349 target_gid_t pr_gid;
3350 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3351 /* Lots missing */
3352 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3353 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3356 /* Here is the structure in which status of each thread is captured. */
3357 struct elf_thread_status {
3358 QTAILQ_ENTRY(elf_thread_status) ets_link;
3359 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3360 #if 0
3361 elf_fpregset_t fpu; /* NT_PRFPREG */
3362 struct task_struct *thread;
3363 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3364 #endif
3365 struct memelfnote notes[1];
3366 int num_notes;
3369 struct elf_note_info {
3370 struct memelfnote *notes;
3371 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3372 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3374 QTAILQ_HEAD(, elf_thread_status) thread_list;
3375 #if 0
3377 * Current version of ELF coredump doesn't support
3378 * dumping fp regs etc.
3380 elf_fpregset_t *fpu;
3381 elf_fpxregset_t *xfpu;
3382 int thread_status_size;
3383 #endif
3384 int notes_size;
3385 int numnote;
3388 struct vm_area_struct {
3389 target_ulong vma_start; /* start vaddr of memory region */
3390 target_ulong vma_end; /* end vaddr of memory region */
3391 abi_ulong vma_flags; /* protection etc. flags for the region */
3392 QTAILQ_ENTRY(vm_area_struct) vma_link;
3395 struct mm_struct {
3396 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3397 int mm_count; /* number of mappings */
3400 static struct mm_struct *vma_init(void);
3401 static void vma_delete(struct mm_struct *);
3402 static int vma_add_mapping(struct mm_struct *, target_ulong,
3403 target_ulong, abi_ulong);
3404 static int vma_get_mapping_count(const struct mm_struct *);
3405 static struct vm_area_struct *vma_first(const struct mm_struct *);
3406 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3407 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3408 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3409 unsigned long flags);
3411 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3412 static void fill_note(struct memelfnote *, const char *, int,
3413 unsigned int, void *);
3414 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3415 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3416 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3417 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3418 static size_t note_size(const struct memelfnote *);
3419 static void free_note_info(struct elf_note_info *);
3420 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3421 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3423 static int dump_write(int, const void *, size_t);
3424 static int write_note(struct memelfnote *, int);
3425 static int write_note_info(struct elf_note_info *, int);
3427 #ifdef BSWAP_NEEDED
3428 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3430 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3431 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3432 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3433 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3434 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3435 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3436 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3437 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3438 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3439 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3440 /* cpu times are not filled, so we skip them */
3441 /* regs should be in correct format already */
3442 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3445 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3447 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3448 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3449 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3450 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3451 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3452 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3453 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3456 static void bswap_note(struct elf_note *en)
3458 bswap32s(&en->n_namesz);
3459 bswap32s(&en->n_descsz);
3460 bswap32s(&en->n_type);
3462 #else
3463 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3464 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3465 static inline void bswap_note(struct elf_note *en) { }
3466 #endif /* BSWAP_NEEDED */
3469 * Minimal support for linux memory regions. These are needed
3470 * when we are finding out what memory exactly belongs to
3471 * emulated process. No locks needed here, as long as
3472 * thread that received the signal is stopped.
3475 static struct mm_struct *vma_init(void)
3477 struct mm_struct *mm;
3479 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3480 return (NULL);
3482 mm->mm_count = 0;
3483 QTAILQ_INIT(&mm->mm_mmap);
3485 return (mm);
3488 static void vma_delete(struct mm_struct *mm)
3490 struct vm_area_struct *vma;
3492 while ((vma = vma_first(mm)) != NULL) {
3493 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3494 g_free(vma);
3496 g_free(mm);
3499 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3500 target_ulong end, abi_ulong flags)
3502 struct vm_area_struct *vma;
3504 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3505 return (-1);
3507 vma->vma_start = start;
3508 vma->vma_end = end;
3509 vma->vma_flags = flags;
3511 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3512 mm->mm_count++;
3514 return (0);
3517 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3519 return (QTAILQ_FIRST(&mm->mm_mmap));
3522 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3524 return (QTAILQ_NEXT(vma, vma_link));
3527 static int vma_get_mapping_count(const struct mm_struct *mm)
3529 return (mm->mm_count);
3533 * Calculate file (dump) size of given memory region.
3535 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3537 /* if we cannot even read the first page, skip it */
3538 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3539 return (0);
3542 * Usually we don't dump executable pages as they contain
3543 * non-writable code that debugger can read directly from
3544 * target library etc. However, thread stacks are marked
3545 * also executable so we read in first page of given region
3546 * and check whether it contains elf header. If there is
3547 * no elf header, we dump it.
3549 if (vma->vma_flags & PROT_EXEC) {
3550 char page[TARGET_PAGE_SIZE];
3552 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3553 return 0;
3555 if ((page[EI_MAG0] == ELFMAG0) &&
3556 (page[EI_MAG1] == ELFMAG1) &&
3557 (page[EI_MAG2] == ELFMAG2) &&
3558 (page[EI_MAG3] == ELFMAG3)) {
3560 * Mappings are possibly from ELF binary. Don't dump
3561 * them.
3563 return (0);
3567 return (vma->vma_end - vma->vma_start);
3570 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3571 unsigned long flags)
3573 struct mm_struct *mm = (struct mm_struct *)priv;
3575 vma_add_mapping(mm, start, end, flags);
3576 return (0);
3579 static void fill_note(struct memelfnote *note, const char *name, int type,
3580 unsigned int sz, void *data)
3582 unsigned int namesz;
3584 namesz = strlen(name) + 1;
3585 note->name = name;
3586 note->namesz = namesz;
3587 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3588 note->type = type;
3589 note->datasz = sz;
3590 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3592 note->data = data;
3595 * We calculate rounded up note size here as specified by
3596 * ELF document.
3598 note->notesz = sizeof (struct elf_note) +
3599 note->namesz_rounded + note->datasz_rounded;
3602 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3603 uint32_t flags)
3605 (void) memset(elf, 0, sizeof(*elf));
3607 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3608 elf->e_ident[EI_CLASS] = ELF_CLASS;
3609 elf->e_ident[EI_DATA] = ELF_DATA;
3610 elf->e_ident[EI_VERSION] = EV_CURRENT;
3611 elf->e_ident[EI_OSABI] = ELF_OSABI;
3613 elf->e_type = ET_CORE;
3614 elf->e_machine = machine;
3615 elf->e_version = EV_CURRENT;
3616 elf->e_phoff = sizeof(struct elfhdr);
3617 elf->e_flags = flags;
3618 elf->e_ehsize = sizeof(struct elfhdr);
3619 elf->e_phentsize = sizeof(struct elf_phdr);
3620 elf->e_phnum = segs;
3622 bswap_ehdr(elf);
3625 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3627 phdr->p_type = PT_NOTE;
3628 phdr->p_offset = offset;
3629 phdr->p_vaddr = 0;
3630 phdr->p_paddr = 0;
3631 phdr->p_filesz = sz;
3632 phdr->p_memsz = 0;
3633 phdr->p_flags = 0;
3634 phdr->p_align = 0;
3636 bswap_phdr(phdr, 1);
3639 static size_t note_size(const struct memelfnote *note)
3641 return (note->notesz);
3644 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3645 const TaskState *ts, int signr)
3647 (void) memset(prstatus, 0, sizeof (*prstatus));
3648 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3649 prstatus->pr_pid = ts->ts_tid;
3650 prstatus->pr_ppid = getppid();
3651 prstatus->pr_pgrp = getpgrp();
3652 prstatus->pr_sid = getsid(0);
3654 bswap_prstatus(prstatus);
3657 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3659 char *base_filename;
3660 unsigned int i, len;
3662 (void) memset(psinfo, 0, sizeof (*psinfo));
3664 len = ts->info->env_strings - ts->info->arg_strings;
3665 if (len >= ELF_PRARGSZ)
3666 len = ELF_PRARGSZ - 1;
3667 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3668 return -EFAULT;
3670 for (i = 0; i < len; i++)
3671 if (psinfo->pr_psargs[i] == 0)
3672 psinfo->pr_psargs[i] = ' ';
3673 psinfo->pr_psargs[len] = 0;
3675 psinfo->pr_pid = getpid();
3676 psinfo->pr_ppid = getppid();
3677 psinfo->pr_pgrp = getpgrp();
3678 psinfo->pr_sid = getsid(0);
3679 psinfo->pr_uid = getuid();
3680 psinfo->pr_gid = getgid();
3682 base_filename = g_path_get_basename(ts->bprm->filename);
3684 * Using strncpy here is fine: at max-length,
3685 * this field is not NUL-terminated.
3687 (void) strncpy(psinfo->pr_fname, base_filename,
3688 sizeof(psinfo->pr_fname));
3690 g_free(base_filename);
3691 bswap_psinfo(psinfo);
3692 return (0);
3695 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3697 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3698 elf_addr_t orig_auxv = auxv;
3699 void *ptr;
3700 int len = ts->info->auxv_len;
3703 * Auxiliary vector is stored in target process stack. It contains
3704 * {type, value} pairs that we need to dump into note. This is not
3705 * strictly necessary but we do it here for sake of completeness.
3708 /* read in whole auxv vector and copy it to memelfnote */
3709 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3710 if (ptr != NULL) {
3711 fill_note(note, "CORE", NT_AUXV, len, ptr);
3712 unlock_user(ptr, auxv, len);
3717 * Constructs name of coredump file. We have following convention
3718 * for the name:
3719 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3721 * Returns the filename
3723 static char *core_dump_filename(const TaskState *ts)
3725 g_autoptr(GDateTime) now = g_date_time_new_now_local();
3726 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3727 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3729 return g_strdup_printf("qemu_%s_%s_%d.core",
3730 base_filename, nowstr, (int)getpid());
3733 static int dump_write(int fd, const void *ptr, size_t size)
3735 const char *bufp = (const char *)ptr;
3736 ssize_t bytes_written, bytes_left;
3737 struct rlimit dumpsize;
3738 off_t pos;
3740 bytes_written = 0;
3741 getrlimit(RLIMIT_CORE, &dumpsize);
3742 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3743 if (errno == ESPIPE) { /* not a seekable stream */
3744 bytes_left = size;
3745 } else {
3746 return pos;
3748 } else {
3749 if (dumpsize.rlim_cur <= pos) {
3750 return -1;
3751 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3752 bytes_left = size;
3753 } else {
3754 size_t limit_left=dumpsize.rlim_cur - pos;
3755 bytes_left = limit_left >= size ? size : limit_left ;
3760 * In normal conditions, single write(2) should do but
3761 * in case of socket etc. this mechanism is more portable.
3763 do {
3764 bytes_written = write(fd, bufp, bytes_left);
3765 if (bytes_written < 0) {
3766 if (errno == EINTR)
3767 continue;
3768 return (-1);
3769 } else if (bytes_written == 0) { /* eof */
3770 return (-1);
3772 bufp += bytes_written;
3773 bytes_left -= bytes_written;
3774 } while (bytes_left > 0);
3776 return (0);
3779 static int write_note(struct memelfnote *men, int fd)
3781 struct elf_note en;
3783 en.n_namesz = men->namesz;
3784 en.n_type = men->type;
3785 en.n_descsz = men->datasz;
3787 bswap_note(&en);
3789 if (dump_write(fd, &en, sizeof(en)) != 0)
3790 return (-1);
3791 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3792 return (-1);
3793 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3794 return (-1);
3796 return (0);
3799 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3801 CPUState *cpu = env_cpu((CPUArchState *)env);
3802 TaskState *ts = (TaskState *)cpu->opaque;
3803 struct elf_thread_status *ets;
3805 ets = g_malloc0(sizeof (*ets));
3806 ets->num_notes = 1; /* only prstatus is dumped */
3807 fill_prstatus(&ets->prstatus, ts, 0);
3808 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3809 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3810 &ets->prstatus);
3812 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3814 info->notes_size += note_size(&ets->notes[0]);
3817 static void init_note_info(struct elf_note_info *info)
3819 /* Initialize the elf_note_info structure so that it is at
3820 * least safe to call free_note_info() on it. Must be
3821 * called before calling fill_note_info().
3823 memset(info, 0, sizeof (*info));
3824 QTAILQ_INIT(&info->thread_list);
3827 static int fill_note_info(struct elf_note_info *info,
3828 long signr, const CPUArchState *env)
3830 #define NUMNOTES 3
3831 CPUState *cpu = env_cpu((CPUArchState *)env);
3832 TaskState *ts = (TaskState *)cpu->opaque;
3833 int i;
3835 info->notes = g_new0(struct memelfnote, NUMNOTES);
3836 if (info->notes == NULL)
3837 return (-ENOMEM);
3838 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3839 if (info->prstatus == NULL)
3840 return (-ENOMEM);
3841 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3842 if (info->prstatus == NULL)
3843 return (-ENOMEM);
3846 * First fill in status (and registers) of current thread
3847 * including process info & aux vector.
3849 fill_prstatus(info->prstatus, ts, signr);
3850 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3851 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3852 sizeof (*info->prstatus), info->prstatus);
3853 fill_psinfo(info->psinfo, ts);
3854 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3855 sizeof (*info->psinfo), info->psinfo);
3856 fill_auxv_note(&info->notes[2], ts);
3857 info->numnote = 3;
3859 info->notes_size = 0;
3860 for (i = 0; i < info->numnote; i++)
3861 info->notes_size += note_size(&info->notes[i]);
3863 /* read and fill status of all threads */
3864 cpu_list_lock();
3865 CPU_FOREACH(cpu) {
3866 if (cpu == thread_cpu) {
3867 continue;
3869 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3871 cpu_list_unlock();
3873 return (0);
3876 static void free_note_info(struct elf_note_info *info)
3878 struct elf_thread_status *ets;
3880 while (!QTAILQ_EMPTY(&info->thread_list)) {
3881 ets = QTAILQ_FIRST(&info->thread_list);
3882 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3883 g_free(ets);
3886 g_free(info->prstatus);
3887 g_free(info->psinfo);
3888 g_free(info->notes);
3891 static int write_note_info(struct elf_note_info *info, int fd)
3893 struct elf_thread_status *ets;
3894 int i, error = 0;
3896 /* write prstatus, psinfo and auxv for current thread */
3897 for (i = 0; i < info->numnote; i++)
3898 if ((error = write_note(&info->notes[i], fd)) != 0)
3899 return (error);
3901 /* write prstatus for each thread */
3902 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3903 if ((error = write_note(&ets->notes[0], fd)) != 0)
3904 return (error);
3907 return (0);
3911 * Write out ELF coredump.
3913 * See documentation of ELF object file format in:
3914 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3916 * Coredump format in linux is following:
3918 * 0 +----------------------+ \
3919 * | ELF header | ET_CORE |
3920 * +----------------------+ |
3921 * | ELF program headers | |--- headers
3922 * | - NOTE section | |
3923 * | - PT_LOAD sections | |
3924 * +----------------------+ /
3925 * | NOTEs: |
3926 * | - NT_PRSTATUS |
3927 * | - NT_PRSINFO |
3928 * | - NT_AUXV |
3929 * +----------------------+ <-- aligned to target page
3930 * | Process memory dump |
3931 * : :
3932 * . .
3933 * : :
3934 * | |
3935 * +----------------------+
3937 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3938 * NT_PRSINFO -> struct elf_prpsinfo
3939 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3941 * Format follows System V format as close as possible. Current
3942 * version limitations are as follows:
3943 * - no floating point registers are dumped
3945 * Function returns 0 in case of success, negative errno otherwise.
3947 * TODO: make this work also during runtime: it should be
3948 * possible to force coredump from running process and then
3949 * continue processing. For example qemu could set up SIGUSR2
3950 * handler (provided that target process haven't registered
3951 * handler for that) that does the dump when signal is received.
3953 static int elf_core_dump(int signr, const CPUArchState *env)
3955 const CPUState *cpu = env_cpu((CPUArchState *)env);
3956 const TaskState *ts = (const TaskState *)cpu->opaque;
3957 struct vm_area_struct *vma = NULL;
3958 g_autofree char *corefile = NULL;
3959 struct elf_note_info info;
3960 struct elfhdr elf;
3961 struct elf_phdr phdr;
3962 struct rlimit dumpsize;
3963 struct mm_struct *mm = NULL;
3964 off_t offset = 0, data_offset = 0;
3965 int segs = 0;
3966 int fd = -1;
3968 init_note_info(&info);
3970 errno = 0;
3971 getrlimit(RLIMIT_CORE, &dumpsize);
3972 if (dumpsize.rlim_cur == 0)
3973 return 0;
3975 corefile = core_dump_filename(ts);
3977 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3978 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3979 return (-errno);
3982 * Walk through target process memory mappings and
3983 * set up structure containing this information. After
3984 * this point vma_xxx functions can be used.
3986 if ((mm = vma_init()) == NULL)
3987 goto out;
3989 walk_memory_regions(mm, vma_walker);
3990 segs = vma_get_mapping_count(mm);
3993 * Construct valid coredump ELF header. We also
3994 * add one more segment for notes.
3996 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3997 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3998 goto out;
4000 /* fill in the in-memory version of notes */
4001 if (fill_note_info(&info, signr, env) < 0)
4002 goto out;
4004 offset += sizeof (elf); /* elf header */
4005 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4007 /* write out notes program header */
4008 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4010 offset += info.notes_size;
4011 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4012 goto out;
4015 * ELF specification wants data to start at page boundary so
4016 * we align it here.
4018 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4021 * Write program headers for memory regions mapped in
4022 * the target process.
4024 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4025 (void) memset(&phdr, 0, sizeof (phdr));
4027 phdr.p_type = PT_LOAD;
4028 phdr.p_offset = offset;
4029 phdr.p_vaddr = vma->vma_start;
4030 phdr.p_paddr = 0;
4031 phdr.p_filesz = vma_dump_size(vma);
4032 offset += phdr.p_filesz;
4033 phdr.p_memsz = vma->vma_end - vma->vma_start;
4034 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4035 if (vma->vma_flags & PROT_WRITE)
4036 phdr.p_flags |= PF_W;
4037 if (vma->vma_flags & PROT_EXEC)
4038 phdr.p_flags |= PF_X;
4039 phdr.p_align = ELF_EXEC_PAGESIZE;
4041 bswap_phdr(&phdr, 1);
4042 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4043 goto out;
4048 * Next we write notes just after program headers. No
4049 * alignment needed here.
4051 if (write_note_info(&info, fd) < 0)
4052 goto out;
4054 /* align data to page boundary */
4055 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4056 goto out;
4059 * Finally we can dump process memory into corefile as well.
4061 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4062 abi_ulong addr;
4063 abi_ulong end;
4065 end = vma->vma_start + vma_dump_size(vma);
4067 for (addr = vma->vma_start; addr < end;
4068 addr += TARGET_PAGE_SIZE) {
4069 char page[TARGET_PAGE_SIZE];
4070 int error;
4073 * Read in page from target process memory and
4074 * write it to coredump file.
4076 error = copy_from_user(page, addr, sizeof (page));
4077 if (error != 0) {
4078 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4079 addr);
4080 errno = -error;
4081 goto out;
4083 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4084 goto out;
4088 out:
4089 free_note_info(&info);
4090 if (mm != NULL)
4091 vma_delete(mm);
4092 (void) close(fd);
4094 if (errno != 0)
4095 return (-errno);
4096 return (0);
4098 #endif /* USE_ELF_CORE_DUMP */
4100 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4102 init_thread(regs, infop);