tests: add BlockJobTxn unit test
[qemu/ar7.git] / target-arm / helper.c
blob4ecae61197c7a5c0df70b24fce87eeb38ff579e9
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
17 #ifndef CONFIG_USER_ONLY
18 static bool get_phys_addr(CPUARMState *env, target_ulong address,
19 int access_type, ARMMMUIdx mmu_idx,
20 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
21 target_ulong *page_size, uint32_t *fsr,
22 ARMMMUFaultInfo *fi);
24 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
25 int access_type, ARMMMUIdx mmu_idx,
26 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
27 target_ulong *page_size_ptr, uint32_t *fsr,
28 ARMMMUFaultInfo *fi);
30 /* Definitions for the PMCCNTR and PMCR registers */
31 #define PMCRD 0x8
32 #define PMCRC 0x4
33 #define PMCRE 0x1
34 #endif
36 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
38 int nregs;
40 /* VFP data registers are always little-endian. */
41 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
42 if (reg < nregs) {
43 stfq_le_p(buf, env->vfp.regs[reg]);
44 return 8;
46 if (arm_feature(env, ARM_FEATURE_NEON)) {
47 /* Aliases for Q regs. */
48 nregs += 16;
49 if (reg < nregs) {
50 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
51 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
52 return 16;
55 switch (reg - nregs) {
56 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
57 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
58 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
60 return 0;
63 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
65 int nregs;
67 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
68 if (reg < nregs) {
69 env->vfp.regs[reg] = ldfq_le_p(buf);
70 return 8;
72 if (arm_feature(env, ARM_FEATURE_NEON)) {
73 nregs += 16;
74 if (reg < nregs) {
75 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
76 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
77 return 16;
80 switch (reg - nregs) {
81 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
82 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
83 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
85 return 0;
88 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
90 switch (reg) {
91 case 0 ... 31:
92 /* 128 bit FP register */
93 stfq_le_p(buf, env->vfp.regs[reg * 2]);
94 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
95 return 16;
96 case 32:
97 /* FPSR */
98 stl_p(buf, vfp_get_fpsr(env));
99 return 4;
100 case 33:
101 /* FPCR */
102 stl_p(buf, vfp_get_fpcr(env));
103 return 4;
104 default:
105 return 0;
109 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
111 switch (reg) {
112 case 0 ... 31:
113 /* 128 bit FP register */
114 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
115 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
116 return 16;
117 case 32:
118 /* FPSR */
119 vfp_set_fpsr(env, ldl_p(buf));
120 return 4;
121 case 33:
122 /* FPCR */
123 vfp_set_fpcr(env, ldl_p(buf));
124 return 4;
125 default:
126 return 0;
130 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
132 assert(ri->fieldoffset);
133 if (cpreg_field_is_64bit(ri)) {
134 return CPREG_FIELD64(env, ri);
135 } else {
136 return CPREG_FIELD32(env, ri);
140 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
141 uint64_t value)
143 assert(ri->fieldoffset);
144 if (cpreg_field_is_64bit(ri)) {
145 CPREG_FIELD64(env, ri) = value;
146 } else {
147 CPREG_FIELD32(env, ri) = value;
151 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
153 return (char *)env + ri->fieldoffset;
156 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
158 /* Raw read of a coprocessor register (as needed for migration, etc). */
159 if (ri->type & ARM_CP_CONST) {
160 return ri->resetvalue;
161 } else if (ri->raw_readfn) {
162 return ri->raw_readfn(env, ri);
163 } else if (ri->readfn) {
164 return ri->readfn(env, ri);
165 } else {
166 return raw_read(env, ri);
170 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
171 uint64_t v)
173 /* Raw write of a coprocessor register (as needed for migration, etc).
174 * Note that constant registers are treated as write-ignored; the
175 * caller should check for success by whether a readback gives the
176 * value written.
178 if (ri->type & ARM_CP_CONST) {
179 return;
180 } else if (ri->raw_writefn) {
181 ri->raw_writefn(env, ri, v);
182 } else if (ri->writefn) {
183 ri->writefn(env, ri, v);
184 } else {
185 raw_write(env, ri, v);
189 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
191 /* Return true if the regdef would cause an assertion if you called
192 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
193 * program bug for it not to have the NO_RAW flag).
194 * NB that returning false here doesn't necessarily mean that calling
195 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
196 * read/write access functions which are safe for raw use" from "has
197 * read/write access functions which have side effects but has forgotten
198 * to provide raw access functions".
199 * The tests here line up with the conditions in read/write_raw_cp_reg()
200 * and assertions in raw_read()/raw_write().
202 if ((ri->type & ARM_CP_CONST) ||
203 ri->fieldoffset ||
204 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
205 return false;
207 return true;
210 bool write_cpustate_to_list(ARMCPU *cpu)
212 /* Write the coprocessor state from cpu->env to the (index,value) list. */
213 int i;
214 bool ok = true;
216 for (i = 0; i < cpu->cpreg_array_len; i++) {
217 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
218 const ARMCPRegInfo *ri;
220 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
221 if (!ri) {
222 ok = false;
223 continue;
225 if (ri->type & ARM_CP_NO_RAW) {
226 continue;
228 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
230 return ok;
233 bool write_list_to_cpustate(ARMCPU *cpu)
235 int i;
236 bool ok = true;
238 for (i = 0; i < cpu->cpreg_array_len; i++) {
239 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
240 uint64_t v = cpu->cpreg_values[i];
241 const ARMCPRegInfo *ri;
243 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
244 if (!ri) {
245 ok = false;
246 continue;
248 if (ri->type & ARM_CP_NO_RAW) {
249 continue;
251 /* Write value and confirm it reads back as written
252 * (to catch read-only registers and partially read-only
253 * registers where the incoming migration value doesn't match)
255 write_raw_cp_reg(&cpu->env, ri, v);
256 if (read_raw_cp_reg(&cpu->env, ri) != v) {
257 ok = false;
260 return ok;
263 static void add_cpreg_to_list(gpointer key, gpointer opaque)
265 ARMCPU *cpu = opaque;
266 uint64_t regidx;
267 const ARMCPRegInfo *ri;
269 regidx = *(uint32_t *)key;
270 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
272 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
273 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
274 /* The value array need not be initialized at this point */
275 cpu->cpreg_array_len++;
279 static void count_cpreg(gpointer key, gpointer opaque)
281 ARMCPU *cpu = opaque;
282 uint64_t regidx;
283 const ARMCPRegInfo *ri;
285 regidx = *(uint32_t *)key;
286 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
288 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
289 cpu->cpreg_array_len++;
293 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
295 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
296 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
298 if (aidx > bidx) {
299 return 1;
301 if (aidx < bidx) {
302 return -1;
304 return 0;
307 void init_cpreg_list(ARMCPU *cpu)
309 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
310 * Note that we require cpreg_tuples[] to be sorted by key ID.
312 GList *keys;
313 int arraylen;
315 keys = g_hash_table_get_keys(cpu->cp_regs);
316 keys = g_list_sort(keys, cpreg_key_compare);
318 cpu->cpreg_array_len = 0;
320 g_list_foreach(keys, count_cpreg, cpu);
322 arraylen = cpu->cpreg_array_len;
323 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
324 cpu->cpreg_values = g_new(uint64_t, arraylen);
325 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
326 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
327 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
328 cpu->cpreg_array_len = 0;
330 g_list_foreach(keys, add_cpreg_to_list, cpu);
332 assert(cpu->cpreg_array_len == arraylen);
334 g_list_free(keys);
338 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
339 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
341 * access_el3_aa32ns: Used to check AArch32 register views.
342 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
344 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
345 const ARMCPRegInfo *ri)
347 bool secure = arm_is_secure_below_el3(env);
349 assert(!arm_el_is_aa64(env, 3));
350 if (secure) {
351 return CP_ACCESS_TRAP_UNCATEGORIZED;
353 return CP_ACCESS_OK;
356 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
357 const ARMCPRegInfo *ri)
359 if (!arm_el_is_aa64(env, 3)) {
360 return access_el3_aa32ns(env, ri);
362 return CP_ACCESS_OK;
365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
367 ARMCPU *cpu = arm_env_get_cpu(env);
369 raw_write(env, ri, value);
370 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
375 ARMCPU *cpu = arm_env_get_cpu(env);
377 if (raw_read(env, ri) != value) {
378 /* Unlike real hardware the qemu TLB uses virtual addresses,
379 * not modified virtual addresses, so this causes a TLB flush.
381 tlb_flush(CPU(cpu), 1);
382 raw_write(env, ri, value);
386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
387 uint64_t value)
389 ARMCPU *cpu = arm_env_get_cpu(env);
391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
392 && !extended_addresses_enabled(env)) {
393 /* For VMSA (when not using the LPAE long descriptor page table
394 * format) this register includes the ASID, so do a TLB flush.
395 * For PMSA it is purely a process ID and no action is needed.
397 tlb_flush(CPU(cpu), 1);
399 raw_write(env, ri, value);
402 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
403 uint64_t value)
405 /* Invalidate all (TLBIALL) */
406 ARMCPU *cpu = arm_env_get_cpu(env);
408 tlb_flush(CPU(cpu), 1);
411 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
414 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
415 ARMCPU *cpu = arm_env_get_cpu(env);
417 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
420 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
421 uint64_t value)
423 /* Invalidate by ASID (TLBIASID) */
424 ARMCPU *cpu = arm_env_get_cpu(env);
426 tlb_flush(CPU(cpu), value == 0);
429 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
430 uint64_t value)
432 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
433 ARMCPU *cpu = arm_env_get_cpu(env);
435 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
438 /* IS variants of TLB operations must affect all cores */
439 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
440 uint64_t value)
442 CPUState *other_cs;
444 CPU_FOREACH(other_cs) {
445 tlb_flush(other_cs, 1);
449 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
450 uint64_t value)
452 CPUState *other_cs;
454 CPU_FOREACH(other_cs) {
455 tlb_flush(other_cs, value == 0);
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460 uint64_t value)
462 CPUState *other_cs;
464 CPU_FOREACH(other_cs) {
465 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
469 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
470 uint64_t value)
472 CPUState *other_cs;
474 CPU_FOREACH(other_cs) {
475 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
479 static const ARMCPRegInfo cp_reginfo[] = {
480 /* Define the secure and non-secure FCSE identifier CP registers
481 * separately because there is no secure bank in V8 (no _EL3). This allows
482 * the secure register to be properly reset and migrated. There is also no
483 * v8 EL1 version of the register so the non-secure instance stands alone.
485 { .name = "FCSEIDR(NS)",
486 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
487 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
488 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
489 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
490 { .name = "FCSEIDR(S)",
491 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
492 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
493 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
494 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
495 /* Define the secure and non-secure context identifier CP registers
496 * separately because there is no secure bank in V8 (no _EL3). This allows
497 * the secure register to be properly reset and migrated. In the
498 * non-secure case, the 32-bit register will have reset and migration
499 * disabled during registration as it is handled by the 64-bit instance.
501 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
502 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
503 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
504 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
505 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
506 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
507 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
508 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
509 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
510 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
511 REGINFO_SENTINEL
514 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
515 /* NB: Some of these registers exist in v8 but with more precise
516 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
518 /* MMU Domain access control / MPU write buffer control */
519 { .name = "DACR",
520 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
521 .access = PL1_RW, .resetvalue = 0,
522 .writefn = dacr_write, .raw_writefn = raw_write,
523 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
524 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
525 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
526 * For v6 and v5, these mappings are overly broad.
528 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
529 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
530 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
531 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
532 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
533 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
534 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
535 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
536 /* Cache maintenance ops; some of this space may be overridden later. */
537 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
538 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
539 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
540 REGINFO_SENTINEL
543 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
544 /* Not all pre-v6 cores implemented this WFI, so this is slightly
545 * over-broad.
547 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
548 .access = PL1_W, .type = ARM_CP_WFI },
549 REGINFO_SENTINEL
552 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
553 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
554 * is UNPREDICTABLE; we choose to NOP as most implementations do).
556 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
557 .access = PL1_W, .type = ARM_CP_WFI },
558 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
559 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
560 * OMAPCP will override this space.
562 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
563 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
564 .resetvalue = 0 },
565 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
566 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
567 .resetvalue = 0 },
568 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
569 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
570 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
571 .resetvalue = 0 },
572 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
573 * implementing it as RAZ means the "debug architecture version" bits
574 * will read as a reserved value, which should cause Linux to not try
575 * to use the debug hardware.
577 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
578 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
579 /* MMU TLB control. Note that the wildcarding means we cover not just
580 * the unified TLB ops but also the dside/iside/inner-shareable variants.
582 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
583 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
584 .type = ARM_CP_NO_RAW },
585 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
586 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
587 .type = ARM_CP_NO_RAW },
588 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
589 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
590 .type = ARM_CP_NO_RAW },
591 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
592 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
593 .type = ARM_CP_NO_RAW },
594 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
595 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
596 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
597 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
598 REGINFO_SENTINEL
601 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
604 uint32_t mask = 0;
606 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
607 if (!arm_feature(env, ARM_FEATURE_V8)) {
608 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
609 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
610 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
612 if (arm_feature(env, ARM_FEATURE_VFP)) {
613 /* VFP coprocessor: cp10 & cp11 [23:20] */
614 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
616 if (!arm_feature(env, ARM_FEATURE_NEON)) {
617 /* ASEDIS [31] bit is RAO/WI */
618 value |= (1 << 31);
621 /* VFPv3 and upwards with NEON implement 32 double precision
622 * registers (D0-D31).
624 if (!arm_feature(env, ARM_FEATURE_NEON) ||
625 !arm_feature(env, ARM_FEATURE_VFP3)) {
626 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
627 value |= (1 << 30);
630 value &= mask;
632 env->cp15.cpacr_el1 = value;
635 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
637 if (arm_feature(env, ARM_FEATURE_V8)) {
638 /* Check if CPACR accesses are to be trapped to EL2 */
639 if (arm_current_el(env) == 1 &&
640 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
641 return CP_ACCESS_TRAP_EL2;
642 /* Check if CPACR accesses are to be trapped to EL3 */
643 } else if (arm_current_el(env) < 3 &&
644 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
645 return CP_ACCESS_TRAP_EL3;
649 return CP_ACCESS_OK;
652 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
654 /* Check if CPTR accesses are set to trap to EL3 */
655 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
656 return CP_ACCESS_TRAP_EL3;
659 return CP_ACCESS_OK;
662 static const ARMCPRegInfo v6_cp_reginfo[] = {
663 /* prefetch by MVA in v6, NOP in v7 */
664 { .name = "MVA_prefetch",
665 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
666 .access = PL1_W, .type = ARM_CP_NOP },
667 /* We need to break the TB after ISB to execute self-modifying code
668 * correctly and also to take any pending interrupts immediately.
669 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
671 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
672 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
673 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
674 .access = PL0_W, .type = ARM_CP_NOP },
675 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
676 .access = PL0_W, .type = ARM_CP_NOP },
677 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
678 .access = PL1_RW,
679 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
680 offsetof(CPUARMState, cp15.ifar_ns) },
681 .resetvalue = 0, },
682 /* Watchpoint Fault Address Register : should actually only be present
683 * for 1136, 1176, 11MPCore.
685 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
686 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
687 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
688 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
689 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
690 .resetvalue = 0, .writefn = cpacr_write },
691 REGINFO_SENTINEL
694 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
696 /* Performance monitor registers user accessibility is controlled
697 * by PMUSERENR.
699 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
700 return CP_ACCESS_TRAP;
702 return CP_ACCESS_OK;
705 #ifndef CONFIG_USER_ONLY
707 static inline bool arm_ccnt_enabled(CPUARMState *env)
709 /* This does not support checking PMCCFILTR_EL0 register */
711 if (!(env->cp15.c9_pmcr & PMCRE)) {
712 return false;
715 return true;
718 void pmccntr_sync(CPUARMState *env)
720 uint64_t temp_ticks;
722 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
723 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
725 if (env->cp15.c9_pmcr & PMCRD) {
726 /* Increment once every 64 processor clock cycles */
727 temp_ticks /= 64;
730 if (arm_ccnt_enabled(env)) {
731 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
735 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
736 uint64_t value)
738 pmccntr_sync(env);
740 if (value & PMCRC) {
741 /* The counter has been reset */
742 env->cp15.c15_ccnt = 0;
745 /* only the DP, X, D and E bits are writable */
746 env->cp15.c9_pmcr &= ~0x39;
747 env->cp15.c9_pmcr |= (value & 0x39);
749 pmccntr_sync(env);
752 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
754 uint64_t total_ticks;
756 if (!arm_ccnt_enabled(env)) {
757 /* Counter is disabled, do not change value */
758 return env->cp15.c15_ccnt;
761 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
762 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
764 if (env->cp15.c9_pmcr & PMCRD) {
765 /* Increment once every 64 processor clock cycles */
766 total_ticks /= 64;
768 return total_ticks - env->cp15.c15_ccnt;
771 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
774 uint64_t total_ticks;
776 if (!arm_ccnt_enabled(env)) {
777 /* Counter is disabled, set the absolute value */
778 env->cp15.c15_ccnt = value;
779 return;
782 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
783 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
785 if (env->cp15.c9_pmcr & PMCRD) {
786 /* Increment once every 64 processor clock cycles */
787 total_ticks /= 64;
789 env->cp15.c15_ccnt = total_ticks - value;
792 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
793 uint64_t value)
795 uint64_t cur_val = pmccntr_read(env, NULL);
797 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
800 #else /* CONFIG_USER_ONLY */
802 void pmccntr_sync(CPUARMState *env)
806 #endif
808 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
809 uint64_t value)
811 pmccntr_sync(env);
812 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
813 pmccntr_sync(env);
816 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
817 uint64_t value)
819 value &= (1 << 31);
820 env->cp15.c9_pmcnten |= value;
823 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
824 uint64_t value)
826 value &= (1 << 31);
827 env->cp15.c9_pmcnten &= ~value;
830 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
831 uint64_t value)
833 env->cp15.c9_pmovsr &= ~value;
836 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
837 uint64_t value)
839 env->cp15.c9_pmxevtyper = value & 0xff;
842 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
843 uint64_t value)
845 env->cp15.c9_pmuserenr = value & 1;
848 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
849 uint64_t value)
851 /* We have no event counters so only the C bit can be changed */
852 value &= (1 << 31);
853 env->cp15.c9_pminten |= value;
856 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
857 uint64_t value)
859 value &= (1 << 31);
860 env->cp15.c9_pminten &= ~value;
863 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
864 uint64_t value)
866 /* Note that even though the AArch64 view of this register has bits
867 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
868 * architectural requirements for bits which are RES0 only in some
869 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
870 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
872 raw_write(env, ri, value & ~0x1FULL);
875 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
877 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
878 * For bits that vary between AArch32/64, code needs to check the
879 * current execution mode before directly using the feature bit.
881 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
883 if (!arm_feature(env, ARM_FEATURE_EL2)) {
884 valid_mask &= ~SCR_HCE;
886 /* On ARMv7, SMD (or SCD as it is called in v7) is only
887 * supported if EL2 exists. The bit is UNK/SBZP when
888 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
889 * when EL2 is unavailable.
890 * On ARMv8, this bit is always available.
892 if (arm_feature(env, ARM_FEATURE_V7) &&
893 !arm_feature(env, ARM_FEATURE_V8)) {
894 valid_mask &= ~SCR_SMD;
898 /* Clear all-context RES0 bits. */
899 value &= valid_mask;
900 raw_write(env, ri, value);
903 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
905 ARMCPU *cpu = arm_env_get_cpu(env);
907 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
908 * bank
910 uint32_t index = A32_BANKED_REG_GET(env, csselr,
911 ri->secure & ARM_CP_SECSTATE_S);
913 return cpu->ccsidr[index];
916 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
917 uint64_t value)
919 raw_write(env, ri, value & 0xf);
922 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
924 CPUState *cs = ENV_GET_CPU(env);
925 uint64_t ret = 0;
927 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
928 ret |= CPSR_I;
930 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
931 ret |= CPSR_F;
933 /* External aborts are not possible in QEMU so A bit is always clear */
934 return ret;
937 static const ARMCPRegInfo v7_cp_reginfo[] = {
938 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
939 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
940 .access = PL1_W, .type = ARM_CP_NOP },
941 /* Performance monitors are implementation defined in v7,
942 * but with an ARM recommended set of registers, which we
943 * follow (although we don't actually implement any counters)
945 * Performance registers fall into three categories:
946 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
947 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
948 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
949 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
950 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
952 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
953 .access = PL0_RW, .type = ARM_CP_ALIAS,
954 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
955 .writefn = pmcntenset_write,
956 .accessfn = pmreg_access,
957 .raw_writefn = raw_write },
958 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
960 .access = PL0_RW, .accessfn = pmreg_access,
961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
962 .writefn = pmcntenset_write, .raw_writefn = raw_write },
963 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
964 .access = PL0_RW,
965 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
966 .accessfn = pmreg_access,
967 .writefn = pmcntenclr_write,
968 .type = ARM_CP_ALIAS },
969 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
970 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
971 .access = PL0_RW, .accessfn = pmreg_access,
972 .type = ARM_CP_ALIAS,
973 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
974 .writefn = pmcntenclr_write },
975 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
976 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
977 .accessfn = pmreg_access,
978 .writefn = pmovsr_write,
979 .raw_writefn = raw_write },
980 /* Unimplemented so WI. */
981 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
982 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
983 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
984 * We choose to RAZ/WI.
986 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
987 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
988 .accessfn = pmreg_access },
989 #ifndef CONFIG_USER_ONLY
990 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
991 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
992 .readfn = pmccntr_read, .writefn = pmccntr_write32,
993 .accessfn = pmreg_access },
994 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
995 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
996 .access = PL0_RW, .accessfn = pmreg_access,
997 .type = ARM_CP_IO,
998 .readfn = pmccntr_read, .writefn = pmccntr_write, },
999 #endif
1000 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1001 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1002 .writefn = pmccfiltr_write,
1003 .access = PL0_RW, .accessfn = pmreg_access,
1004 .type = ARM_CP_IO,
1005 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1006 .resetvalue = 0, },
1007 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1008 .access = PL0_RW,
1009 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1010 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1011 .raw_writefn = raw_write },
1012 /* Unimplemented, RAZ/WI. */
1013 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1014 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1015 .accessfn = pmreg_access },
1016 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1017 .access = PL0_R | PL1_RW,
1018 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1019 .resetvalue = 0,
1020 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1021 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1022 .access = PL1_RW,
1023 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1024 .resetvalue = 0,
1025 .writefn = pmintenset_write, .raw_writefn = raw_write },
1026 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1027 .access = PL1_RW, .type = ARM_CP_ALIAS,
1028 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1029 .writefn = pmintenclr_write, },
1030 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1031 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1032 .access = PL1_RW, .writefn = vbar_write,
1033 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1034 offsetof(CPUARMState, cp15.vbar_ns) },
1035 .resetvalue = 0 },
1036 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1037 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1038 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1039 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1040 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1041 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1042 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1043 offsetof(CPUARMState, cp15.csselr_ns) } },
1044 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1045 * just RAZ for all cores:
1047 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1048 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1049 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1050 /* Auxiliary fault status registers: these also are IMPDEF, and we
1051 * choose to RAZ/WI for all cores.
1053 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1054 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1055 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1056 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1057 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1058 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1059 /* MAIR can just read-as-written because we don't implement caches
1060 * and so don't need to care about memory attributes.
1062 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1063 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1064 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1065 .resetvalue = 0 },
1066 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1067 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1068 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1069 .resetvalue = 0 },
1070 /* For non-long-descriptor page tables these are PRRR and NMRR;
1071 * regardless they still act as reads-as-written for QEMU.
1073 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1074 * allows them to assign the correct fieldoffset based on the endianness
1075 * handled in the field definitions.
1077 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1078 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1079 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1080 offsetof(CPUARMState, cp15.mair0_ns) },
1081 .resetfn = arm_cp_reset_ignore },
1082 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1083 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1084 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1085 offsetof(CPUARMState, cp15.mair1_ns) },
1086 .resetfn = arm_cp_reset_ignore },
1087 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1088 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1089 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1090 /* 32 bit ITLB invalidates */
1091 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1092 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1093 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1094 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1095 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1096 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1097 /* 32 bit DTLB invalidates */
1098 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1099 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1100 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1101 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1102 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1103 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1104 /* 32 bit TLB invalidates */
1105 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1106 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1107 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1108 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1109 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1110 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1111 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1112 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1113 REGINFO_SENTINEL
1116 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1117 /* 32 bit TLB invalidates, Inner Shareable */
1118 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1119 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1120 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1121 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1122 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1123 .type = ARM_CP_NO_RAW, .access = PL1_W,
1124 .writefn = tlbiasid_is_write },
1125 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1126 .type = ARM_CP_NO_RAW, .access = PL1_W,
1127 .writefn = tlbimvaa_is_write },
1128 REGINFO_SENTINEL
1131 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1132 uint64_t value)
1134 value &= 1;
1135 env->teecr = value;
1138 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1140 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1141 return CP_ACCESS_TRAP;
1143 return CP_ACCESS_OK;
1146 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1147 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1148 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1149 .resetvalue = 0,
1150 .writefn = teecr_write },
1151 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1152 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1153 .accessfn = teehbr_access, .resetvalue = 0 },
1154 REGINFO_SENTINEL
1157 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1158 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1159 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1160 .access = PL0_RW,
1161 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1162 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1163 .access = PL0_RW,
1164 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1165 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1166 .resetfn = arm_cp_reset_ignore },
1167 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1168 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1169 .access = PL0_R|PL1_W,
1170 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1171 .resetvalue = 0},
1172 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1173 .access = PL0_R|PL1_W,
1174 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1175 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1176 .resetfn = arm_cp_reset_ignore },
1177 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1178 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1179 .access = PL1_RW,
1180 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1181 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1182 .access = PL1_RW,
1183 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1184 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1185 .resetvalue = 0 },
1186 REGINFO_SENTINEL
1189 #ifndef CONFIG_USER_ONLY
1191 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1193 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1194 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1195 return CP_ACCESS_TRAP;
1197 return CP_ACCESS_OK;
1200 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1202 unsigned int cur_el = arm_current_el(env);
1203 bool secure = arm_is_secure(env);
1205 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1206 if (cur_el == 0 &&
1207 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1208 return CP_ACCESS_TRAP;
1211 if (arm_feature(env, ARM_FEATURE_EL2) &&
1212 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1213 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1214 return CP_ACCESS_TRAP_EL2;
1216 return CP_ACCESS_OK;
1219 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1221 unsigned int cur_el = arm_current_el(env);
1222 bool secure = arm_is_secure(env);
1224 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1225 * EL0[PV]TEN is zero.
1227 if (cur_el == 0 &&
1228 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1229 return CP_ACCESS_TRAP;
1232 if (arm_feature(env, ARM_FEATURE_EL2) &&
1233 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1234 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1235 return CP_ACCESS_TRAP_EL2;
1237 return CP_ACCESS_OK;
1240 static CPAccessResult gt_pct_access(CPUARMState *env,
1241 const ARMCPRegInfo *ri)
1243 return gt_counter_access(env, GTIMER_PHYS);
1246 static CPAccessResult gt_vct_access(CPUARMState *env,
1247 const ARMCPRegInfo *ri)
1249 return gt_counter_access(env, GTIMER_VIRT);
1252 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1254 return gt_timer_access(env, GTIMER_PHYS);
1257 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1259 return gt_timer_access(env, GTIMER_VIRT);
1262 static CPAccessResult gt_stimer_access(CPUARMState *env,
1263 const ARMCPRegInfo *ri)
1265 /* The AArch64 register view of the secure physical timer is
1266 * always accessible from EL3, and configurably accessible from
1267 * Secure EL1.
1269 switch (arm_current_el(env)) {
1270 case 1:
1271 if (!arm_is_secure(env)) {
1272 return CP_ACCESS_TRAP;
1274 if (!(env->cp15.scr_el3 & SCR_ST)) {
1275 return CP_ACCESS_TRAP_EL3;
1277 return CP_ACCESS_OK;
1278 case 0:
1279 case 2:
1280 return CP_ACCESS_TRAP;
1281 case 3:
1282 return CP_ACCESS_OK;
1283 default:
1284 g_assert_not_reached();
1288 static uint64_t gt_get_countervalue(CPUARMState *env)
1290 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1293 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1295 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1297 if (gt->ctl & 1) {
1298 /* Timer enabled: calculate and set current ISTATUS, irq, and
1299 * reset timer to when ISTATUS next has to change
1301 uint64_t offset = timeridx == GTIMER_VIRT ?
1302 cpu->env.cp15.cntvoff_el2 : 0;
1303 uint64_t count = gt_get_countervalue(&cpu->env);
1304 /* Note that this must be unsigned 64 bit arithmetic: */
1305 int istatus = count - offset >= gt->cval;
1306 uint64_t nexttick;
1308 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1309 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1310 (istatus && !(gt->ctl & 2)));
1311 if (istatus) {
1312 /* Next transition is when count rolls back over to zero */
1313 nexttick = UINT64_MAX;
1314 } else {
1315 /* Next transition is when we hit cval */
1316 nexttick = gt->cval + offset;
1318 /* Note that the desired next expiry time might be beyond the
1319 * signed-64-bit range of a QEMUTimer -- in this case we just
1320 * set the timer for as far in the future as possible. When the
1321 * timer expires we will reset the timer for any remaining period.
1323 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1324 nexttick = INT64_MAX / GTIMER_SCALE;
1326 timer_mod(cpu->gt_timer[timeridx], nexttick);
1327 } else {
1328 /* Timer disabled: ISTATUS and timer output always clear */
1329 gt->ctl &= ~4;
1330 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1331 timer_del(cpu->gt_timer[timeridx]);
1335 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1336 int timeridx)
1338 ARMCPU *cpu = arm_env_get_cpu(env);
1340 timer_del(cpu->gt_timer[timeridx]);
1343 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1345 return gt_get_countervalue(env);
1348 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1350 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1353 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1354 int timeridx,
1355 uint64_t value)
1357 env->cp15.c14_timer[timeridx].cval = value;
1358 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1361 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1362 int timeridx)
1364 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1366 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1367 (gt_get_countervalue(env) - offset));
1370 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1371 int timeridx,
1372 uint64_t value)
1374 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1376 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1377 sextract64(value, 0, 32);
1378 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1381 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1382 int timeridx,
1383 uint64_t value)
1385 ARMCPU *cpu = arm_env_get_cpu(env);
1386 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1388 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1389 if ((oldval ^ value) & 1) {
1390 /* Enable toggled */
1391 gt_recalc_timer(cpu, timeridx);
1392 } else if ((oldval ^ value) & 2) {
1393 /* IMASK toggled: don't need to recalculate,
1394 * just set the interrupt line based on ISTATUS
1396 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1397 (oldval & 4) && !(value & 2));
1401 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1403 gt_timer_reset(env, ri, GTIMER_PHYS);
1406 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1407 uint64_t value)
1409 gt_cval_write(env, ri, GTIMER_PHYS, value);
1412 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1414 return gt_tval_read(env, ri, GTIMER_PHYS);
1417 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1418 uint64_t value)
1420 gt_tval_write(env, ri, GTIMER_PHYS, value);
1423 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1424 uint64_t value)
1426 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1429 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1431 gt_timer_reset(env, ri, GTIMER_VIRT);
1434 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1435 uint64_t value)
1437 gt_cval_write(env, ri, GTIMER_VIRT, value);
1440 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1442 return gt_tval_read(env, ri, GTIMER_VIRT);
1445 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1446 uint64_t value)
1448 gt_tval_write(env, ri, GTIMER_VIRT, value);
1451 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1452 uint64_t value)
1454 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1457 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1458 uint64_t value)
1460 ARMCPU *cpu = arm_env_get_cpu(env);
1462 raw_write(env, ri, value);
1463 gt_recalc_timer(cpu, GTIMER_VIRT);
1466 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1468 gt_timer_reset(env, ri, GTIMER_HYP);
1471 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1472 uint64_t value)
1474 gt_cval_write(env, ri, GTIMER_HYP, value);
1477 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1479 return gt_tval_read(env, ri, GTIMER_HYP);
1482 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1483 uint64_t value)
1485 gt_tval_write(env, ri, GTIMER_HYP, value);
1488 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1489 uint64_t value)
1491 gt_ctl_write(env, ri, GTIMER_HYP, value);
1494 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1496 gt_timer_reset(env, ri, GTIMER_SEC);
1499 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1500 uint64_t value)
1502 gt_cval_write(env, ri, GTIMER_SEC, value);
1505 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1507 return gt_tval_read(env, ri, GTIMER_SEC);
1510 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1511 uint64_t value)
1513 gt_tval_write(env, ri, GTIMER_SEC, value);
1516 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1517 uint64_t value)
1519 gt_ctl_write(env, ri, GTIMER_SEC, value);
1522 void arm_gt_ptimer_cb(void *opaque)
1524 ARMCPU *cpu = opaque;
1526 gt_recalc_timer(cpu, GTIMER_PHYS);
1529 void arm_gt_vtimer_cb(void *opaque)
1531 ARMCPU *cpu = opaque;
1533 gt_recalc_timer(cpu, GTIMER_VIRT);
1536 void arm_gt_htimer_cb(void *opaque)
1538 ARMCPU *cpu = opaque;
1540 gt_recalc_timer(cpu, GTIMER_HYP);
1543 void arm_gt_stimer_cb(void *opaque)
1545 ARMCPU *cpu = opaque;
1547 gt_recalc_timer(cpu, GTIMER_SEC);
1550 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1551 /* Note that CNTFRQ is purely reads-as-written for the benefit
1552 * of software; writing it doesn't actually change the timer frequency.
1553 * Our reset value matches the fixed frequency we implement the timer at.
1555 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1556 .type = ARM_CP_ALIAS,
1557 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1558 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1560 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1561 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1562 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1563 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1564 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1566 /* overall control: mostly access permissions */
1567 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1568 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1569 .access = PL1_RW,
1570 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1571 .resetvalue = 0,
1573 /* per-timer control */
1574 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1575 .secure = ARM_CP_SECSTATE_NS,
1576 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1577 .accessfn = gt_ptimer_access,
1578 .fieldoffset = offsetoflow32(CPUARMState,
1579 cp15.c14_timer[GTIMER_PHYS].ctl),
1580 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1582 { .name = "CNTP_CTL(S)",
1583 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1584 .secure = ARM_CP_SECSTATE_S,
1585 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1586 .accessfn = gt_ptimer_access,
1587 .fieldoffset = offsetoflow32(CPUARMState,
1588 cp15.c14_timer[GTIMER_SEC].ctl),
1589 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1591 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1592 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1593 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1594 .accessfn = gt_ptimer_access,
1595 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1596 .resetvalue = 0,
1597 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1599 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1600 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1601 .accessfn = gt_vtimer_access,
1602 .fieldoffset = offsetoflow32(CPUARMState,
1603 cp15.c14_timer[GTIMER_VIRT].ctl),
1604 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1606 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1607 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1608 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1609 .accessfn = gt_vtimer_access,
1610 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1611 .resetvalue = 0,
1612 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1614 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1615 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1616 .secure = ARM_CP_SECSTATE_NS,
1617 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1618 .accessfn = gt_ptimer_access,
1619 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1621 { .name = "CNTP_TVAL(S)",
1622 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1623 .secure = ARM_CP_SECSTATE_S,
1624 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1625 .accessfn = gt_ptimer_access,
1626 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1628 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1629 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1630 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1631 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1632 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1634 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1635 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1636 .accessfn = gt_vtimer_access,
1637 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1639 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1640 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1641 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1642 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1643 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1645 /* The counter itself */
1646 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1647 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1648 .accessfn = gt_pct_access,
1649 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1651 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1652 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1653 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1654 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1656 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1657 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1658 .accessfn = gt_vct_access,
1659 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1661 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1662 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1663 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1664 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1666 /* Comparison value, indicating when the timer goes off */
1667 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1668 .secure = ARM_CP_SECSTATE_NS,
1669 .access = PL1_RW | PL0_R,
1670 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1671 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1672 .accessfn = gt_ptimer_access,
1673 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1675 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1676 .secure = ARM_CP_SECSTATE_S,
1677 .access = PL1_RW | PL0_R,
1678 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1679 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1680 .accessfn = gt_ptimer_access,
1681 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1683 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1684 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1685 .access = PL1_RW | PL0_R,
1686 .type = ARM_CP_IO,
1687 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1688 .resetvalue = 0, .accessfn = gt_ptimer_access,
1689 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1691 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1692 .access = PL1_RW | PL0_R,
1693 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1694 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1695 .accessfn = gt_vtimer_access,
1696 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1698 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1699 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1700 .access = PL1_RW | PL0_R,
1701 .type = ARM_CP_IO,
1702 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1703 .resetvalue = 0, .accessfn = gt_vtimer_access,
1704 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1706 /* Secure timer -- this is actually restricted to only EL3
1707 * and configurably Secure-EL1 via the accessfn.
1709 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1710 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1711 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1712 .accessfn = gt_stimer_access,
1713 .readfn = gt_sec_tval_read,
1714 .writefn = gt_sec_tval_write,
1715 .resetfn = gt_sec_timer_reset,
1717 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1718 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1719 .type = ARM_CP_IO, .access = PL1_RW,
1720 .accessfn = gt_stimer_access,
1721 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1722 .resetvalue = 0,
1723 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1725 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1726 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1727 .type = ARM_CP_IO, .access = PL1_RW,
1728 .accessfn = gt_stimer_access,
1729 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1730 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1732 REGINFO_SENTINEL
1735 #else
1736 /* In user-mode none of the generic timer registers are accessible,
1737 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1738 * so instead just don't register any of them.
1740 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1741 REGINFO_SENTINEL
1744 #endif
1746 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1748 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1749 raw_write(env, ri, value);
1750 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1751 raw_write(env, ri, value & 0xfffff6ff);
1752 } else {
1753 raw_write(env, ri, value & 0xfffff1ff);
1757 #ifndef CONFIG_USER_ONLY
1758 /* get_phys_addr() isn't present for user-mode-only targets */
1760 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1762 if (ri->opc2 & 4) {
1763 /* The ATS12NSO* operations must trap to EL3 if executed in
1764 * Secure EL1 (which can only happen if EL3 is AArch64).
1765 * They are simply UNDEF if executed from NS EL1.
1766 * They function normally from EL2 or EL3.
1768 if (arm_current_el(env) == 1) {
1769 if (arm_is_secure_below_el3(env)) {
1770 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1772 return CP_ACCESS_TRAP_UNCATEGORIZED;
1775 return CP_ACCESS_OK;
1778 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1779 int access_type, ARMMMUIdx mmu_idx)
1781 hwaddr phys_addr;
1782 target_ulong page_size;
1783 int prot;
1784 uint32_t fsr;
1785 bool ret;
1786 uint64_t par64;
1787 MemTxAttrs attrs = {};
1788 ARMMMUFaultInfo fi = {};
1790 ret = get_phys_addr(env, value, access_type, mmu_idx,
1791 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
1792 if (extended_addresses_enabled(env)) {
1793 /* fsr is a DFSR/IFSR value for the long descriptor
1794 * translation table format, but with WnR always clear.
1795 * Convert it to a 64-bit PAR.
1797 par64 = (1 << 11); /* LPAE bit always set */
1798 if (!ret) {
1799 par64 |= phys_addr & ~0xfffULL;
1800 if (!attrs.secure) {
1801 par64 |= (1 << 9); /* NS */
1803 /* We don't set the ATTR or SH fields in the PAR. */
1804 } else {
1805 par64 |= 1; /* F */
1806 par64 |= (fsr & 0x3f) << 1; /* FS */
1807 /* Note that S2WLK and FSTAGE are always zero, because we don't
1808 * implement virtualization and therefore there can't be a stage 2
1809 * fault.
1812 } else {
1813 /* fsr is a DFSR/IFSR value for the short descriptor
1814 * translation table format (with WnR always clear).
1815 * Convert it to a 32-bit PAR.
1817 if (!ret) {
1818 /* We do not set any attribute bits in the PAR */
1819 if (page_size == (1 << 24)
1820 && arm_feature(env, ARM_FEATURE_V7)) {
1821 par64 = (phys_addr & 0xff000000) | (1 << 1);
1822 } else {
1823 par64 = phys_addr & 0xfffff000;
1825 if (!attrs.secure) {
1826 par64 |= (1 << 9); /* NS */
1828 } else {
1829 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1830 ((fsr & 0xf) << 1) | 1;
1833 return par64;
1836 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1838 int access_type = ri->opc2 & 1;
1839 uint64_t par64;
1840 ARMMMUIdx mmu_idx;
1841 int el = arm_current_el(env);
1842 bool secure = arm_is_secure_below_el3(env);
1844 switch (ri->opc2 & 6) {
1845 case 0:
1846 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1847 switch (el) {
1848 case 3:
1849 mmu_idx = ARMMMUIdx_S1E3;
1850 break;
1851 case 2:
1852 mmu_idx = ARMMMUIdx_S1NSE1;
1853 break;
1854 case 1:
1855 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1856 break;
1857 default:
1858 g_assert_not_reached();
1860 break;
1861 case 2:
1862 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1863 switch (el) {
1864 case 3:
1865 mmu_idx = ARMMMUIdx_S1SE0;
1866 break;
1867 case 2:
1868 mmu_idx = ARMMMUIdx_S1NSE0;
1869 break;
1870 case 1:
1871 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1872 break;
1873 default:
1874 g_assert_not_reached();
1876 break;
1877 case 4:
1878 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1879 mmu_idx = ARMMMUIdx_S12NSE1;
1880 break;
1881 case 6:
1882 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1883 mmu_idx = ARMMMUIdx_S12NSE0;
1884 break;
1885 default:
1886 g_assert_not_reached();
1889 par64 = do_ats_write(env, value, access_type, mmu_idx);
1891 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1894 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895 uint64_t value)
1897 int access_type = ri->opc2 & 1;
1898 uint64_t par64;
1900 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
1902 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1905 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
1907 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
1908 return CP_ACCESS_TRAP;
1910 return CP_ACCESS_OK;
1913 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1914 uint64_t value)
1916 int access_type = ri->opc2 & 1;
1917 ARMMMUIdx mmu_idx;
1918 int secure = arm_is_secure_below_el3(env);
1920 switch (ri->opc2 & 6) {
1921 case 0:
1922 switch (ri->opc1) {
1923 case 0: /* AT S1E1R, AT S1E1W */
1924 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1925 break;
1926 case 4: /* AT S1E2R, AT S1E2W */
1927 mmu_idx = ARMMMUIdx_S1E2;
1928 break;
1929 case 6: /* AT S1E3R, AT S1E3W */
1930 mmu_idx = ARMMMUIdx_S1E3;
1931 break;
1932 default:
1933 g_assert_not_reached();
1935 break;
1936 case 2: /* AT S1E0R, AT S1E0W */
1937 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1938 break;
1939 case 4: /* AT S12E1R, AT S12E1W */
1940 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
1941 break;
1942 case 6: /* AT S12E0R, AT S12E0W */
1943 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
1944 break;
1945 default:
1946 g_assert_not_reached();
1949 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1951 #endif
1953 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1954 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1955 .access = PL1_RW, .resetvalue = 0,
1956 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1957 offsetoflow32(CPUARMState, cp15.par_ns) },
1958 .writefn = par_write },
1959 #ifndef CONFIG_USER_ONLY
1960 /* This underdecoding is safe because the reginfo is NO_RAW. */
1961 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1962 .access = PL1_W, .accessfn = ats_access,
1963 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1964 #endif
1965 REGINFO_SENTINEL
1968 /* Return basic MPU access permission bits. */
1969 static uint32_t simple_mpu_ap_bits(uint32_t val)
1971 uint32_t ret;
1972 uint32_t mask;
1973 int i;
1974 ret = 0;
1975 mask = 3;
1976 for (i = 0; i < 16; i += 2) {
1977 ret |= (val >> i) & mask;
1978 mask <<= 2;
1980 return ret;
1983 /* Pad basic MPU access permission bits to extended format. */
1984 static uint32_t extended_mpu_ap_bits(uint32_t val)
1986 uint32_t ret;
1987 uint32_t mask;
1988 int i;
1989 ret = 0;
1990 mask = 3;
1991 for (i = 0; i < 16; i += 2) {
1992 ret |= (val & mask) << i;
1993 mask <<= 2;
1995 return ret;
1998 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1999 uint64_t value)
2001 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2004 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2006 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2009 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010 uint64_t value)
2012 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2015 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2017 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2020 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2022 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2024 if (!u32p) {
2025 return 0;
2028 u32p += env->cp15.c6_rgnr;
2029 return *u32p;
2032 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2033 uint64_t value)
2035 ARMCPU *cpu = arm_env_get_cpu(env);
2036 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2038 if (!u32p) {
2039 return;
2042 u32p += env->cp15.c6_rgnr;
2043 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2044 *u32p = value;
2047 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2049 ARMCPU *cpu = arm_env_get_cpu(env);
2050 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2052 if (!u32p) {
2053 return;
2056 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2059 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2060 uint64_t value)
2062 ARMCPU *cpu = arm_env_get_cpu(env);
2063 uint32_t nrgs = cpu->pmsav7_dregion;
2065 if (value >= nrgs) {
2066 qemu_log_mask(LOG_GUEST_ERROR,
2067 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2068 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2069 return;
2072 raw_write(env, ri, value);
2075 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2076 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2077 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2078 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2079 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2080 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2081 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2082 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2083 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2084 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2085 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2086 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2087 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2088 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2089 .access = PL1_RW,
2090 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2091 .writefn = pmsav7_rgnr_write },
2092 REGINFO_SENTINEL
2095 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2096 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2097 .access = PL1_RW, .type = ARM_CP_ALIAS,
2098 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2099 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2100 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2101 .access = PL1_RW, .type = ARM_CP_ALIAS,
2102 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2103 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2104 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2105 .access = PL1_RW,
2106 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2107 .resetvalue = 0, },
2108 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2109 .access = PL1_RW,
2110 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2111 .resetvalue = 0, },
2112 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2113 .access = PL1_RW,
2114 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2115 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2116 .access = PL1_RW,
2117 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2118 /* Protection region base and size registers */
2119 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2120 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2121 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2122 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2123 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2124 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2125 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2126 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2127 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2128 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2129 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2130 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2131 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2132 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2133 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2134 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2135 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2136 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2137 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2138 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2139 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2140 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2141 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2142 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2143 REGINFO_SENTINEL
2146 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2147 uint64_t value)
2149 TCR *tcr = raw_ptr(env, ri);
2150 int maskshift = extract32(value, 0, 3);
2152 if (!arm_feature(env, ARM_FEATURE_V8)) {
2153 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2154 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2155 * using Long-desciptor translation table format */
2156 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2157 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2158 /* In an implementation that includes the Security Extensions
2159 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2160 * Short-descriptor translation table format.
2162 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2163 } else {
2164 value &= TTBCR_N;
2168 /* Update the masks corresponding to the TCR bank being written
2169 * Note that we always calculate mask and base_mask, but
2170 * they are only used for short-descriptor tables (ie if EAE is 0);
2171 * for long-descriptor tables the TCR fields are used differently
2172 * and the mask and base_mask values are meaningless.
2174 tcr->raw_tcr = value;
2175 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2176 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2179 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2180 uint64_t value)
2182 ARMCPU *cpu = arm_env_get_cpu(env);
2184 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2185 /* With LPAE the TTBCR could result in a change of ASID
2186 * via the TTBCR.A1 bit, so do a TLB flush.
2188 tlb_flush(CPU(cpu), 1);
2190 vmsa_ttbcr_raw_write(env, ri, value);
2193 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2195 TCR *tcr = raw_ptr(env, ri);
2197 /* Reset both the TCR as well as the masks corresponding to the bank of
2198 * the TCR being reset.
2200 tcr->raw_tcr = 0;
2201 tcr->mask = 0;
2202 tcr->base_mask = 0xffffc000u;
2205 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2206 uint64_t value)
2208 ARMCPU *cpu = arm_env_get_cpu(env);
2209 TCR *tcr = raw_ptr(env, ri);
2211 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2212 tlb_flush(CPU(cpu), 1);
2213 tcr->raw_tcr = value;
2216 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2217 uint64_t value)
2219 /* 64 bit accesses to the TTBRs can change the ASID and so we
2220 * must flush the TLB.
2222 if (cpreg_field_is_64bit(ri)) {
2223 ARMCPU *cpu = arm_env_get_cpu(env);
2225 tlb_flush(CPU(cpu), 1);
2227 raw_write(env, ri, value);
2230 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2231 uint64_t value)
2233 ARMCPU *cpu = arm_env_get_cpu(env);
2234 CPUState *cs = CPU(cpu);
2236 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2237 if (raw_read(env, ri) != value) {
2238 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2239 ARMMMUIdx_S2NS, -1);
2240 raw_write(env, ri, value);
2244 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2245 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2246 .access = PL1_RW, .type = ARM_CP_ALIAS,
2247 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2248 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2249 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2250 .access = PL1_RW, .resetvalue = 0,
2251 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2252 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2253 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2254 .access = PL1_RW, .resetvalue = 0,
2255 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2256 offsetof(CPUARMState, cp15.dfar_ns) } },
2257 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2259 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2260 .resetvalue = 0, },
2261 REGINFO_SENTINEL
2264 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2265 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2266 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2267 .access = PL1_RW,
2268 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2269 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2270 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2271 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2272 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2273 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2274 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2275 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2276 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2277 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2278 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2279 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2280 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2281 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2282 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2283 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2284 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2285 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2286 .raw_writefn = vmsa_ttbcr_raw_write,
2287 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2288 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2289 REGINFO_SENTINEL
2292 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2293 uint64_t value)
2295 env->cp15.c15_ticonfig = value & 0xe7;
2296 /* The OS_TYPE bit in this register changes the reported CPUID! */
2297 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2298 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2301 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2302 uint64_t value)
2304 env->cp15.c15_threadid = value & 0xffff;
2307 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2308 uint64_t value)
2310 /* Wait-for-interrupt (deprecated) */
2311 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2314 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2315 uint64_t value)
2317 /* On OMAP there are registers indicating the max/min index of dcache lines
2318 * containing a dirty line; cache flush operations have to reset these.
2320 env->cp15.c15_i_max = 0x000;
2321 env->cp15.c15_i_min = 0xff0;
2324 static const ARMCPRegInfo omap_cp_reginfo[] = {
2325 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2326 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2327 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2328 .resetvalue = 0, },
2329 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2330 .access = PL1_RW, .type = ARM_CP_NOP },
2331 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2332 .access = PL1_RW,
2333 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2334 .writefn = omap_ticonfig_write },
2335 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2336 .access = PL1_RW,
2337 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2338 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2339 .access = PL1_RW, .resetvalue = 0xff0,
2340 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2341 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2342 .access = PL1_RW,
2343 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2344 .writefn = omap_threadid_write },
2345 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2346 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2347 .type = ARM_CP_NO_RAW,
2348 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2349 /* TODO: Peripheral port remap register:
2350 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2351 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2352 * when MMU is off.
2354 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2355 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2356 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2357 .writefn = omap_cachemaint_write },
2358 { .name = "C9", .cp = 15, .crn = 9,
2359 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2360 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2361 REGINFO_SENTINEL
2364 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2365 uint64_t value)
2367 env->cp15.c15_cpar = value & 0x3fff;
2370 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2371 { .name = "XSCALE_CPAR",
2372 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2373 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2374 .writefn = xscale_cpar_write, },
2375 { .name = "XSCALE_AUXCR",
2376 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2377 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2378 .resetvalue = 0, },
2379 /* XScale specific cache-lockdown: since we have no cache we NOP these
2380 * and hope the guest does not really rely on cache behaviour.
2382 { .name = "XSCALE_LOCK_ICACHE_LINE",
2383 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2384 .access = PL1_W, .type = ARM_CP_NOP },
2385 { .name = "XSCALE_UNLOCK_ICACHE",
2386 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2387 .access = PL1_W, .type = ARM_CP_NOP },
2388 { .name = "XSCALE_DCACHE_LOCK",
2389 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2390 .access = PL1_RW, .type = ARM_CP_NOP },
2391 { .name = "XSCALE_UNLOCK_DCACHE",
2392 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2393 .access = PL1_W, .type = ARM_CP_NOP },
2394 REGINFO_SENTINEL
2397 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2398 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2399 * implementation of this implementation-defined space.
2400 * Ideally this should eventually disappear in favour of actually
2401 * implementing the correct behaviour for all cores.
2403 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2404 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2405 .access = PL1_RW,
2406 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2407 .resetvalue = 0 },
2408 REGINFO_SENTINEL
2411 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2412 /* Cache status: RAZ because we have no cache so it's always clean */
2413 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2414 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2415 .resetvalue = 0 },
2416 REGINFO_SENTINEL
2419 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2420 /* We never have a a block transfer operation in progress */
2421 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2422 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2423 .resetvalue = 0 },
2424 /* The cache ops themselves: these all NOP for QEMU */
2425 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2426 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2427 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2428 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2429 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2430 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2431 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2432 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2433 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2434 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2435 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2436 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2437 REGINFO_SENTINEL
2440 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2441 /* The cache test-and-clean instructions always return (1 << 30)
2442 * to indicate that there are no dirty cache lines.
2444 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2445 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2446 .resetvalue = (1 << 30) },
2447 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2448 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2449 .resetvalue = (1 << 30) },
2450 REGINFO_SENTINEL
2453 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2454 /* Ignore ReadBuffer accesses */
2455 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2456 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2457 .access = PL1_RW, .resetvalue = 0,
2458 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2459 REGINFO_SENTINEL
2462 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2464 ARMCPU *cpu = arm_env_get_cpu(env);
2465 unsigned int cur_el = arm_current_el(env);
2466 bool secure = arm_is_secure(env);
2468 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2469 return env->cp15.vpidr_el2;
2471 return raw_read(env, ri);
2474 static uint64_t mpidr_read_val(CPUARMState *env)
2476 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2477 uint64_t mpidr = cpu->mp_affinity;
2479 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2480 mpidr |= (1U << 31);
2481 /* Cores which are uniprocessor (non-coherent)
2482 * but still implement the MP extensions set
2483 * bit 30. (For instance, Cortex-R5).
2485 if (cpu->mp_is_up) {
2486 mpidr |= (1u << 30);
2489 return mpidr;
2492 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2494 unsigned int cur_el = arm_current_el(env);
2495 bool secure = arm_is_secure(env);
2497 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2498 return env->cp15.vmpidr_el2;
2500 return mpidr_read_val(env);
2503 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2504 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2505 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2506 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2507 REGINFO_SENTINEL
2510 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2511 /* NOP AMAIR0/1 */
2512 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2513 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2514 .access = PL1_RW, .type = ARM_CP_CONST,
2515 .resetvalue = 0 },
2516 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2517 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2518 .access = PL1_RW, .type = ARM_CP_CONST,
2519 .resetvalue = 0 },
2520 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2521 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2522 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2523 offsetof(CPUARMState, cp15.par_ns)} },
2524 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2525 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2526 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2527 offsetof(CPUARMState, cp15.ttbr0_ns) },
2528 .writefn = vmsa_ttbr_write, },
2529 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2530 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2531 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2532 offsetof(CPUARMState, cp15.ttbr1_ns) },
2533 .writefn = vmsa_ttbr_write, },
2534 REGINFO_SENTINEL
2537 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2539 return vfp_get_fpcr(env);
2542 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2543 uint64_t value)
2545 vfp_set_fpcr(env, value);
2548 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2550 return vfp_get_fpsr(env);
2553 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554 uint64_t value)
2556 vfp_set_fpsr(env, value);
2559 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2561 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2562 return CP_ACCESS_TRAP;
2564 return CP_ACCESS_OK;
2567 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2568 uint64_t value)
2570 env->daif = value & PSTATE_DAIF;
2573 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2574 const ARMCPRegInfo *ri)
2576 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2577 * SCTLR_EL1.UCI is set.
2579 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2580 return CP_ACCESS_TRAP;
2582 return CP_ACCESS_OK;
2585 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2586 * Page D4-1736 (DDI0487A.b)
2589 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2590 uint64_t value)
2592 ARMCPU *cpu = arm_env_get_cpu(env);
2593 CPUState *cs = CPU(cpu);
2595 if (arm_is_secure_below_el3(env)) {
2596 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2597 } else {
2598 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2602 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2603 uint64_t value)
2605 bool sec = arm_is_secure_below_el3(env);
2606 CPUState *other_cs;
2608 CPU_FOREACH(other_cs) {
2609 if (sec) {
2610 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2611 } else {
2612 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2613 ARMMMUIdx_S12NSE0, -1);
2618 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2619 uint64_t value)
2621 /* Note that the 'ALL' scope must invalidate both stage 1 and
2622 * stage 2 translations, whereas most other scopes only invalidate
2623 * stage 1 translations.
2625 ARMCPU *cpu = arm_env_get_cpu(env);
2626 CPUState *cs = CPU(cpu);
2628 if (arm_is_secure_below_el3(env)) {
2629 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2630 } else {
2631 if (arm_feature(env, ARM_FEATURE_EL2)) {
2632 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2633 ARMMMUIdx_S2NS, -1);
2634 } else {
2635 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2640 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2641 uint64_t value)
2643 ARMCPU *cpu = arm_env_get_cpu(env);
2644 CPUState *cs = CPU(cpu);
2646 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2649 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2650 uint64_t value)
2652 ARMCPU *cpu = arm_env_get_cpu(env);
2653 CPUState *cs = CPU(cpu);
2655 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2658 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2659 uint64_t value)
2661 /* Note that the 'ALL' scope must invalidate both stage 1 and
2662 * stage 2 translations, whereas most other scopes only invalidate
2663 * stage 1 translations.
2665 bool sec = arm_is_secure_below_el3(env);
2666 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2667 CPUState *other_cs;
2669 CPU_FOREACH(other_cs) {
2670 if (sec) {
2671 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2672 } else if (has_el2) {
2673 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2674 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2675 } else {
2676 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2677 ARMMMUIdx_S12NSE0, -1);
2682 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2683 uint64_t value)
2685 CPUState *other_cs;
2687 CPU_FOREACH(other_cs) {
2688 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2692 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2693 uint64_t value)
2695 CPUState *other_cs;
2697 CPU_FOREACH(other_cs) {
2698 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2702 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2703 uint64_t value)
2705 /* Invalidate by VA, EL1&0 (AArch64 version).
2706 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2707 * since we don't support flush-for-specific-ASID-only or
2708 * flush-last-level-only.
2710 ARMCPU *cpu = arm_env_get_cpu(env);
2711 CPUState *cs = CPU(cpu);
2712 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2714 if (arm_is_secure_below_el3(env)) {
2715 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2716 ARMMMUIdx_S1SE0, -1);
2717 } else {
2718 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2719 ARMMMUIdx_S12NSE0, -1);
2723 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2724 uint64_t value)
2726 /* Invalidate by VA, EL2
2727 * Currently handles both VAE2 and VALE2, since we don't support
2728 * flush-last-level-only.
2730 ARMCPU *cpu = arm_env_get_cpu(env);
2731 CPUState *cs = CPU(cpu);
2732 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2734 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2737 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2738 uint64_t value)
2740 /* Invalidate by VA, EL3
2741 * Currently handles both VAE3 and VALE3, since we don't support
2742 * flush-last-level-only.
2744 ARMCPU *cpu = arm_env_get_cpu(env);
2745 CPUState *cs = CPU(cpu);
2746 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2748 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2751 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2752 uint64_t value)
2754 bool sec = arm_is_secure_below_el3(env);
2755 CPUState *other_cs;
2756 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2758 CPU_FOREACH(other_cs) {
2759 if (sec) {
2760 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2761 ARMMMUIdx_S1SE0, -1);
2762 } else {
2763 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2764 ARMMMUIdx_S12NSE0, -1);
2769 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2770 uint64_t value)
2772 CPUState *other_cs;
2773 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2775 CPU_FOREACH(other_cs) {
2776 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2780 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2781 uint64_t value)
2783 CPUState *other_cs;
2784 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2786 CPU_FOREACH(other_cs) {
2787 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2791 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792 uint64_t value)
2794 /* Invalidate by IPA. This has to invalidate any structures that
2795 * contain only stage 2 translation information, but does not need
2796 * to apply to structures that contain combined stage 1 and stage 2
2797 * translation information.
2798 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2800 ARMCPU *cpu = arm_env_get_cpu(env);
2801 CPUState *cs = CPU(cpu);
2802 uint64_t pageaddr;
2804 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2805 return;
2808 pageaddr = sextract64(value << 12, 0, 48);
2810 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2813 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2814 uint64_t value)
2816 CPUState *other_cs;
2817 uint64_t pageaddr;
2819 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2820 return;
2823 pageaddr = sextract64(value << 12, 0, 48);
2825 CPU_FOREACH(other_cs) {
2826 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2830 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2832 /* We don't implement EL2, so the only control on DC ZVA is the
2833 * bit in the SCTLR which can prohibit access for EL0.
2835 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2836 return CP_ACCESS_TRAP;
2838 return CP_ACCESS_OK;
2841 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2843 ARMCPU *cpu = arm_env_get_cpu(env);
2844 int dzp_bit = 1 << 4;
2846 /* DZP indicates whether DC ZVA access is allowed */
2847 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2848 dzp_bit = 0;
2850 return cpu->dcz_blocksize | dzp_bit;
2853 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2855 if (!(env->pstate & PSTATE_SP)) {
2856 /* Access to SP_EL0 is undefined if it's being used as
2857 * the stack pointer.
2859 return CP_ACCESS_TRAP_UNCATEGORIZED;
2861 return CP_ACCESS_OK;
2864 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2866 return env->pstate & PSTATE_SP;
2869 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2871 update_spsel(env, val);
2874 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2875 uint64_t value)
2877 ARMCPU *cpu = arm_env_get_cpu(env);
2879 if (raw_read(env, ri) == value) {
2880 /* Skip the TLB flush if nothing actually changed; Linux likes
2881 * to do a lot of pointless SCTLR writes.
2883 return;
2886 raw_write(env, ri, value);
2887 /* ??? Lots of these bits are not implemented. */
2888 /* This may enable/disable the MMU, so do a TLB flush. */
2889 tlb_flush(CPU(cpu), 1);
2892 static const ARMCPRegInfo v8_cp_reginfo[] = {
2893 /* Minimal set of EL0-visible registers. This will need to be expanded
2894 * significantly for system emulation of AArch64 CPUs.
2896 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2897 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2898 .access = PL0_RW, .type = ARM_CP_NZCV },
2899 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2900 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2901 .type = ARM_CP_NO_RAW,
2902 .access = PL0_RW, .accessfn = aa64_daif_access,
2903 .fieldoffset = offsetof(CPUARMState, daif),
2904 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2905 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2906 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2907 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2908 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2909 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2910 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2911 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2912 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2913 .access = PL0_R, .type = ARM_CP_NO_RAW,
2914 .readfn = aa64_dczid_read },
2915 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2916 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2917 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2918 #ifndef CONFIG_USER_ONLY
2919 /* Avoid overhead of an access check that always passes in user-mode */
2920 .accessfn = aa64_zva_access,
2921 #endif
2923 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2924 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2925 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2926 /* Cache ops: all NOPs since we don't emulate caches */
2927 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2928 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2929 .access = PL1_W, .type = ARM_CP_NOP },
2930 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2931 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2932 .access = PL1_W, .type = ARM_CP_NOP },
2933 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2934 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2935 .access = PL0_W, .type = ARM_CP_NOP,
2936 .accessfn = aa64_cacheop_access },
2937 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2938 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2939 .access = PL1_W, .type = ARM_CP_NOP },
2940 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2942 .access = PL1_W, .type = ARM_CP_NOP },
2943 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2944 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2945 .access = PL0_W, .type = ARM_CP_NOP,
2946 .accessfn = aa64_cacheop_access },
2947 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2948 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2949 .access = PL1_W, .type = ARM_CP_NOP },
2950 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2951 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2952 .access = PL0_W, .type = ARM_CP_NOP,
2953 .accessfn = aa64_cacheop_access },
2954 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2955 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2956 .access = PL0_W, .type = ARM_CP_NOP,
2957 .accessfn = aa64_cacheop_access },
2958 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2960 .access = PL1_W, .type = ARM_CP_NOP },
2961 /* TLBI operations */
2962 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2963 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2964 .access = PL1_W, .type = ARM_CP_NO_RAW,
2965 .writefn = tlbi_aa64_vmalle1is_write },
2966 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2967 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2968 .access = PL1_W, .type = ARM_CP_NO_RAW,
2969 .writefn = tlbi_aa64_vae1is_write },
2970 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2972 .access = PL1_W, .type = ARM_CP_NO_RAW,
2973 .writefn = tlbi_aa64_vmalle1is_write },
2974 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2976 .access = PL1_W, .type = ARM_CP_NO_RAW,
2977 .writefn = tlbi_aa64_vae1is_write },
2978 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2979 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2980 .access = PL1_W, .type = ARM_CP_NO_RAW,
2981 .writefn = tlbi_aa64_vae1is_write },
2982 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2983 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2984 .access = PL1_W, .type = ARM_CP_NO_RAW,
2985 .writefn = tlbi_aa64_vae1is_write },
2986 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2987 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2988 .access = PL1_W, .type = ARM_CP_NO_RAW,
2989 .writefn = tlbi_aa64_vmalle1_write },
2990 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2991 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2992 .access = PL1_W, .type = ARM_CP_NO_RAW,
2993 .writefn = tlbi_aa64_vae1_write },
2994 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2995 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2996 .access = PL1_W, .type = ARM_CP_NO_RAW,
2997 .writefn = tlbi_aa64_vmalle1_write },
2998 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2999 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3000 .access = PL1_W, .type = ARM_CP_NO_RAW,
3001 .writefn = tlbi_aa64_vae1_write },
3002 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3003 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3004 .access = PL1_W, .type = ARM_CP_NO_RAW,
3005 .writefn = tlbi_aa64_vae1_write },
3006 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3007 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3008 .access = PL1_W, .type = ARM_CP_NO_RAW,
3009 .writefn = tlbi_aa64_vae1_write },
3010 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3011 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3012 .access = PL2_W, .type = ARM_CP_NO_RAW,
3013 .writefn = tlbi_aa64_ipas2e1is_write },
3014 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3015 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3016 .access = PL2_W, .type = ARM_CP_NO_RAW,
3017 .writefn = tlbi_aa64_ipas2e1is_write },
3018 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3019 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3020 .access = PL2_W, .type = ARM_CP_NO_RAW,
3021 .writefn = tlbi_aa64_alle1is_write },
3022 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3023 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3024 .access = PL2_W, .type = ARM_CP_NO_RAW,
3025 .writefn = tlbi_aa64_alle1is_write },
3026 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3027 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3028 .access = PL2_W, .type = ARM_CP_NO_RAW,
3029 .writefn = tlbi_aa64_ipas2e1_write },
3030 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3031 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3032 .access = PL2_W, .type = ARM_CP_NO_RAW,
3033 .writefn = tlbi_aa64_ipas2e1_write },
3034 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3035 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3036 .access = PL2_W, .type = ARM_CP_NO_RAW,
3037 .writefn = tlbi_aa64_alle1_write },
3038 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3039 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3040 .access = PL2_W, .type = ARM_CP_NO_RAW,
3041 .writefn = tlbi_aa64_alle1is_write },
3042 #ifndef CONFIG_USER_ONLY
3043 /* 64 bit address translation operations */
3044 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3045 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3046 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3047 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3048 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3049 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3050 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3051 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3052 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3053 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3054 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3055 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3056 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3057 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3058 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3059 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3060 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3061 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3062 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3063 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3064 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3065 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3066 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3067 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3068 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3069 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3070 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3071 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3072 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3073 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3074 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3075 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3076 .type = ARM_CP_ALIAS,
3077 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3078 .access = PL1_RW, .resetvalue = 0,
3079 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3080 .writefn = par_write },
3081 #endif
3082 /* TLB invalidate last level of translation table walk */
3083 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3084 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3085 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3086 .type = ARM_CP_NO_RAW, .access = PL1_W,
3087 .writefn = tlbimvaa_is_write },
3088 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3089 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3090 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3091 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3092 /* 32 bit cache operations */
3093 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3094 .type = ARM_CP_NOP, .access = PL1_W },
3095 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3096 .type = ARM_CP_NOP, .access = PL1_W },
3097 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3098 .type = ARM_CP_NOP, .access = PL1_W },
3099 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3100 .type = ARM_CP_NOP, .access = PL1_W },
3101 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3102 .type = ARM_CP_NOP, .access = PL1_W },
3103 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3104 .type = ARM_CP_NOP, .access = PL1_W },
3105 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3106 .type = ARM_CP_NOP, .access = PL1_W },
3107 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3108 .type = ARM_CP_NOP, .access = PL1_W },
3109 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3110 .type = ARM_CP_NOP, .access = PL1_W },
3111 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3112 .type = ARM_CP_NOP, .access = PL1_W },
3113 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3114 .type = ARM_CP_NOP, .access = PL1_W },
3115 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3116 .type = ARM_CP_NOP, .access = PL1_W },
3117 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3118 .type = ARM_CP_NOP, .access = PL1_W },
3119 /* MMU Domain access control / MPU write buffer control */
3120 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3121 .access = PL1_RW, .resetvalue = 0,
3122 .writefn = dacr_write, .raw_writefn = raw_write,
3123 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3124 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3125 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3126 .type = ARM_CP_ALIAS,
3127 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3128 .access = PL1_RW,
3129 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3130 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3131 .type = ARM_CP_ALIAS,
3132 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3133 .access = PL1_RW,
3134 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3135 /* We rely on the access checks not allowing the guest to write to the
3136 * state field when SPSel indicates that it's being used as the stack
3137 * pointer.
3139 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3140 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3141 .access = PL1_RW, .accessfn = sp_el0_access,
3142 .type = ARM_CP_ALIAS,
3143 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3144 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3145 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3146 .access = PL2_RW, .type = ARM_CP_ALIAS,
3147 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3148 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3149 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3150 .type = ARM_CP_NO_RAW,
3151 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3152 REGINFO_SENTINEL
3155 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3156 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3157 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3159 .access = PL2_RW,
3160 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3161 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3162 .type = ARM_CP_NO_RAW,
3163 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3164 .access = PL2_RW,
3165 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3166 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3167 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3168 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3169 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3170 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3171 .access = PL2_RW, .type = ARM_CP_CONST,
3172 .resetvalue = 0 },
3173 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3174 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3175 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3176 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3177 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3178 .access = PL2_RW, .type = ARM_CP_CONST,
3179 .resetvalue = 0 },
3180 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3181 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3182 .access = PL2_RW, .type = ARM_CP_CONST,
3183 .resetvalue = 0 },
3184 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3185 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3186 .access = PL2_RW, .type = ARM_CP_CONST,
3187 .resetvalue = 0 },
3188 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3189 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3190 .access = PL2_RW, .type = ARM_CP_CONST,
3191 .resetvalue = 0 },
3192 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3193 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3194 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3195 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3196 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3197 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3198 .type = ARM_CP_CONST, .resetvalue = 0 },
3199 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3200 .cp = 15, .opc1 = 6, .crm = 2,
3201 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3202 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3203 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3204 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3206 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3207 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3208 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3209 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3210 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3211 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3212 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3213 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3214 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3215 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3216 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3217 .resetvalue = 0 },
3218 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3219 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3220 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3221 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3222 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3223 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3224 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3225 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3226 .resetvalue = 0 },
3227 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3228 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3229 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3230 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3231 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3232 .resetvalue = 0 },
3233 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3234 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3235 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3236 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3237 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3238 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3239 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3240 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3241 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3242 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3243 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3244 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3245 .type = ARM_CP_CONST, .resetvalue = 0 },
3246 REGINFO_SENTINEL
3249 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3251 ARMCPU *cpu = arm_env_get_cpu(env);
3252 uint64_t valid_mask = HCR_MASK;
3254 if (arm_feature(env, ARM_FEATURE_EL3)) {
3255 valid_mask &= ~HCR_HCD;
3256 } else {
3257 valid_mask &= ~HCR_TSC;
3260 /* Clear RES0 bits. */
3261 value &= valid_mask;
3263 /* These bits change the MMU setup:
3264 * HCR_VM enables stage 2 translation
3265 * HCR_PTW forbids certain page-table setups
3266 * HCR_DC Disables stage1 and enables stage2 translation
3268 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3269 tlb_flush(CPU(cpu), 1);
3271 raw_write(env, ri, value);
3274 static const ARMCPRegInfo el2_cp_reginfo[] = {
3275 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3276 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3277 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3278 .writefn = hcr_write },
3279 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3280 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3281 .access = PL2_RW, .resetvalue = 0,
3282 .writefn = dacr_write, .raw_writefn = raw_write,
3283 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3284 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3285 .type = ARM_CP_ALIAS,
3286 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3287 .access = PL2_RW,
3288 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3289 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3290 .type = ARM_CP_ALIAS,
3291 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3292 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3293 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3294 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3295 .access = PL2_RW, .resetvalue = 0,
3296 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3297 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3298 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3299 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3300 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3301 .type = ARM_CP_ALIAS,
3302 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3303 .access = PL2_RW,
3304 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3305 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3306 .type = ARM_CP_ALIAS,
3307 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3308 .access = PL2_RW,
3309 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3310 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3311 .type = ARM_CP_ALIAS,
3312 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3313 .access = PL2_RW,
3314 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3315 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3316 .type = ARM_CP_ALIAS,
3317 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3318 .access = PL2_RW,
3319 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3320 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3321 .type = ARM_CP_ALIAS,
3322 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3323 .access = PL2_RW,
3324 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3325 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3326 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3327 .access = PL2_RW, .writefn = vbar_write,
3328 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3329 .resetvalue = 0 },
3330 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3331 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3332 .access = PL3_RW, .type = ARM_CP_ALIAS,
3333 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3334 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3335 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3336 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3337 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3338 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3339 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3340 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3341 .resetvalue = 0 },
3342 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3343 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3344 .access = PL2_RW, .type = ARM_CP_ALIAS,
3345 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3346 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3347 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3348 .access = PL2_RW, .type = ARM_CP_CONST,
3349 .resetvalue = 0 },
3350 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3351 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3352 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3353 .access = PL2_RW, .type = ARM_CP_CONST,
3354 .resetvalue = 0 },
3355 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3356 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3357 .access = PL2_RW, .type = ARM_CP_CONST,
3358 .resetvalue = 0 },
3359 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3360 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3361 .access = PL2_RW, .type = ARM_CP_CONST,
3362 .resetvalue = 0 },
3363 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3364 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3365 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3366 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3367 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3368 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3369 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3370 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3371 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3372 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3373 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3374 .access = PL2_RW, .type = ARM_CP_ALIAS,
3375 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3376 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3377 .cp = 15, .opc1 = 6, .crm = 2,
3378 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3379 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3380 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3381 .writefn = vttbr_write },
3382 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3384 .access = PL2_RW, .writefn = vttbr_write,
3385 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3386 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3387 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3388 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3389 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3390 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3391 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3392 .access = PL2_RW, .resetvalue = 0,
3393 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3394 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3395 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3396 .access = PL2_RW, .resetvalue = 0,
3397 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3398 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3399 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3400 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3401 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3402 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3403 .type = ARM_CP_NO_RAW, .access = PL2_W,
3404 .writefn = tlbi_aa64_alle2_write },
3405 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3406 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3407 .type = ARM_CP_NO_RAW, .access = PL2_W,
3408 .writefn = tlbi_aa64_vae2_write },
3409 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3410 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3411 .access = PL2_W, .type = ARM_CP_NO_RAW,
3412 .writefn = tlbi_aa64_vae2_write },
3413 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3414 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3415 .access = PL2_W, .type = ARM_CP_NO_RAW,
3416 .writefn = tlbi_aa64_alle2is_write },
3417 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3418 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3419 .type = ARM_CP_NO_RAW, .access = PL2_W,
3420 .writefn = tlbi_aa64_vae2is_write },
3421 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3422 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3423 .access = PL2_W, .type = ARM_CP_NO_RAW,
3424 .writefn = tlbi_aa64_vae2is_write },
3425 #ifndef CONFIG_USER_ONLY
3426 /* Unlike the other EL2-related AT operations, these must
3427 * UNDEF from EL3 if EL2 is not implemented, which is why we
3428 * define them here rather than with the rest of the AT ops.
3430 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3431 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3432 .access = PL2_W, .accessfn = at_s1e2_access,
3433 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3434 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3436 .access = PL2_W, .accessfn = at_s1e2_access,
3437 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3438 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3439 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3440 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3441 * to behave as if SCR.NS was 1.
3443 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3444 .access = PL2_W,
3445 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3446 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3447 .access = PL2_W,
3448 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3449 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3450 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3451 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3452 * reset values as IMPDEF. We choose to reset to 3 to comply with
3453 * both ARMv7 and ARMv8.
3455 .access = PL2_RW, .resetvalue = 3,
3456 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3457 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3459 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3460 .writefn = gt_cntvoff_write,
3461 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3462 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3463 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3464 .writefn = gt_cntvoff_write,
3465 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3466 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3468 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3469 .type = ARM_CP_IO, .access = PL2_RW,
3470 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3471 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3472 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3473 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3474 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3475 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3476 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3477 .type = ARM_CP_IO, .access = PL2_RW,
3478 .resetfn = gt_hyp_timer_reset,
3479 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3480 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3481 .type = ARM_CP_IO,
3482 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3483 .access = PL2_RW,
3484 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3485 .resetvalue = 0,
3486 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3487 #endif
3488 /* The only field of MDCR_EL2 that has a defined architectural reset value
3489 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3490 * don't impelment any PMU event counters, so using zero as a reset
3491 * value for MDCR_EL2 is okay
3493 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3494 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3495 .access = PL2_RW, .resetvalue = 0,
3496 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3497 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3498 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3499 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3500 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3501 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3502 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3503 .access = PL2_RW,
3504 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3505 REGINFO_SENTINEL
3508 static const ARMCPRegInfo el3_cp_reginfo[] = {
3509 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3510 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3511 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3512 .resetvalue = 0, .writefn = scr_write },
3513 { .name = "SCR", .type = ARM_CP_ALIAS,
3514 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3515 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3516 .writefn = scr_write },
3517 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3518 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3519 .access = PL3_RW, .resetvalue = 0,
3520 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3521 { .name = "SDER",
3522 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3523 .access = PL3_RW, .resetvalue = 0,
3524 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3525 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3526 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
3527 .access = PL3_W | PL1_R, .resetvalue = 0,
3528 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
3529 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3530 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
3531 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3532 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3533 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3534 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3535 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3536 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
3537 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3538 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3539 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3540 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3541 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3542 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3543 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3544 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3545 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3546 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3547 .type = ARM_CP_ALIAS,
3548 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3549 .access = PL3_RW,
3550 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3551 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3552 .type = ARM_CP_ALIAS,
3553 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3554 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3555 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3556 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3557 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3558 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3559 .type = ARM_CP_ALIAS,
3560 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3561 .access = PL3_RW,
3562 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3563 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3564 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3565 .access = PL3_RW, .writefn = vbar_write,
3566 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3567 .resetvalue = 0 },
3568 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3569 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3570 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3571 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3572 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3573 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3574 .access = PL3_RW, .resetvalue = 0,
3575 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3576 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3577 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3578 .access = PL3_RW, .type = ARM_CP_CONST,
3579 .resetvalue = 0 },
3580 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3581 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3582 .access = PL3_RW, .type = ARM_CP_CONST,
3583 .resetvalue = 0 },
3584 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3585 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3586 .access = PL3_RW, .type = ARM_CP_CONST,
3587 .resetvalue = 0 },
3588 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3589 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3590 .access = PL3_W, .type = ARM_CP_NO_RAW,
3591 .writefn = tlbi_aa64_alle3is_write },
3592 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3593 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3594 .access = PL3_W, .type = ARM_CP_NO_RAW,
3595 .writefn = tlbi_aa64_vae3is_write },
3596 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3597 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3598 .access = PL3_W, .type = ARM_CP_NO_RAW,
3599 .writefn = tlbi_aa64_vae3is_write },
3600 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3601 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3602 .access = PL3_W, .type = ARM_CP_NO_RAW,
3603 .writefn = tlbi_aa64_alle3_write },
3604 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3605 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3606 .access = PL3_W, .type = ARM_CP_NO_RAW,
3607 .writefn = tlbi_aa64_vae3_write },
3608 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3609 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3610 .access = PL3_W, .type = ARM_CP_NO_RAW,
3611 .writefn = tlbi_aa64_vae3_write },
3612 REGINFO_SENTINEL
3615 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
3617 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3618 * but the AArch32 CTR has its own reginfo struct)
3620 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3621 return CP_ACCESS_TRAP;
3623 return CP_ACCESS_OK;
3626 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3627 uint64_t value)
3629 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3630 * read via a bit in OSLSR_EL1.
3632 int oslock;
3634 if (ri->state == ARM_CP_STATE_AA32) {
3635 oslock = (value == 0xC5ACCE55);
3636 } else {
3637 oslock = value & 1;
3640 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
3643 static const ARMCPRegInfo debug_cp_reginfo[] = {
3644 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3645 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3646 * unlike DBGDRAR it is never accessible from EL0.
3647 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3648 * accessor.
3650 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3651 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3652 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3653 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3654 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3655 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3656 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3657 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3658 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3659 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3660 .access = PL1_RW,
3661 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3662 .resetvalue = 0 },
3663 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3664 * We don't implement the configurable EL0 access.
3666 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3667 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3668 .type = ARM_CP_ALIAS,
3669 .access = PL1_R,
3670 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3671 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3672 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3673 .access = PL1_W, .type = ARM_CP_NO_RAW,
3674 .writefn = oslar_write },
3675 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
3676 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
3677 .access = PL1_R, .resetvalue = 10,
3678 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
3679 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3680 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3681 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3682 .access = PL1_RW, .type = ARM_CP_NOP },
3683 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3684 * implement vector catch debug events yet.
3686 { .name = "DBGVCR",
3687 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3688 .access = PL1_RW, .type = ARM_CP_NOP },
3689 REGINFO_SENTINEL
3692 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3693 /* 64 bit access versions of the (dummy) debug registers */
3694 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3695 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3696 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3697 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3698 REGINFO_SENTINEL
3701 void hw_watchpoint_update(ARMCPU *cpu, int n)
3703 CPUARMState *env = &cpu->env;
3704 vaddr len = 0;
3705 vaddr wvr = env->cp15.dbgwvr[n];
3706 uint64_t wcr = env->cp15.dbgwcr[n];
3707 int mask;
3708 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3710 if (env->cpu_watchpoint[n]) {
3711 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3712 env->cpu_watchpoint[n] = NULL;
3715 if (!extract64(wcr, 0, 1)) {
3716 /* E bit clear : watchpoint disabled */
3717 return;
3720 switch (extract64(wcr, 3, 2)) {
3721 case 0:
3722 /* LSC 00 is reserved and must behave as if the wp is disabled */
3723 return;
3724 case 1:
3725 flags |= BP_MEM_READ;
3726 break;
3727 case 2:
3728 flags |= BP_MEM_WRITE;
3729 break;
3730 case 3:
3731 flags |= BP_MEM_ACCESS;
3732 break;
3735 /* Attempts to use both MASK and BAS fields simultaneously are
3736 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3737 * thus generating a watchpoint for every byte in the masked region.
3739 mask = extract64(wcr, 24, 4);
3740 if (mask == 1 || mask == 2) {
3741 /* Reserved values of MASK; we must act as if the mask value was
3742 * some non-reserved value, or as if the watchpoint were disabled.
3743 * We choose the latter.
3745 return;
3746 } else if (mask) {
3747 /* Watchpoint covers an aligned area up to 2GB in size */
3748 len = 1ULL << mask;
3749 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3750 * whether the watchpoint fires when the unmasked bits match; we opt
3751 * to generate the exceptions.
3753 wvr &= ~(len - 1);
3754 } else {
3755 /* Watchpoint covers bytes defined by the byte address select bits */
3756 int bas = extract64(wcr, 5, 8);
3757 int basstart;
3759 if (bas == 0) {
3760 /* This must act as if the watchpoint is disabled */
3761 return;
3764 if (extract64(wvr, 2, 1)) {
3765 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3766 * ignored, and BAS[3:0] define which bytes to watch.
3768 bas &= 0xf;
3770 /* The BAS bits are supposed to be programmed to indicate a contiguous
3771 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3772 * we fire for each byte in the word/doubleword addressed by the WVR.
3773 * We choose to ignore any non-zero bits after the first range of 1s.
3775 basstart = ctz32(bas);
3776 len = cto32(bas >> basstart);
3777 wvr += basstart;
3780 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3781 &env->cpu_watchpoint[n]);
3784 void hw_watchpoint_update_all(ARMCPU *cpu)
3786 int i;
3787 CPUARMState *env = &cpu->env;
3789 /* Completely clear out existing QEMU watchpoints and our array, to
3790 * avoid possible stale entries following migration load.
3792 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3793 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3795 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3796 hw_watchpoint_update(cpu, i);
3800 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3801 uint64_t value)
3803 ARMCPU *cpu = arm_env_get_cpu(env);
3804 int i = ri->crm;
3806 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3807 * register reads and behaves as if values written are sign extended.
3808 * Bits [1:0] are RES0.
3810 value = sextract64(value, 0, 49) & ~3ULL;
3812 raw_write(env, ri, value);
3813 hw_watchpoint_update(cpu, i);
3816 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3817 uint64_t value)
3819 ARMCPU *cpu = arm_env_get_cpu(env);
3820 int i = ri->crm;
3822 raw_write(env, ri, value);
3823 hw_watchpoint_update(cpu, i);
3826 void hw_breakpoint_update(ARMCPU *cpu, int n)
3828 CPUARMState *env = &cpu->env;
3829 uint64_t bvr = env->cp15.dbgbvr[n];
3830 uint64_t bcr = env->cp15.dbgbcr[n];
3831 vaddr addr;
3832 int bt;
3833 int flags = BP_CPU;
3835 if (env->cpu_breakpoint[n]) {
3836 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
3837 env->cpu_breakpoint[n] = NULL;
3840 if (!extract64(bcr, 0, 1)) {
3841 /* E bit clear : watchpoint disabled */
3842 return;
3845 bt = extract64(bcr, 20, 4);
3847 switch (bt) {
3848 case 4: /* unlinked address mismatch (reserved if AArch64) */
3849 case 5: /* linked address mismatch (reserved if AArch64) */
3850 qemu_log_mask(LOG_UNIMP,
3851 "arm: address mismatch breakpoint types not implemented");
3852 return;
3853 case 0: /* unlinked address match */
3854 case 1: /* linked address match */
3856 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3857 * we behave as if the register was sign extended. Bits [1:0] are
3858 * RES0. The BAS field is used to allow setting breakpoints on 16
3859 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3860 * a bp will fire if the addresses covered by the bp and the addresses
3861 * covered by the insn overlap but the insn doesn't start at the
3862 * start of the bp address range. We choose to require the insn and
3863 * the bp to have the same address. The constraints on writing to
3864 * BAS enforced in dbgbcr_write mean we have only four cases:
3865 * 0b0000 => no breakpoint
3866 * 0b0011 => breakpoint on addr
3867 * 0b1100 => breakpoint on addr + 2
3868 * 0b1111 => breakpoint on addr
3869 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3871 int bas = extract64(bcr, 5, 4);
3872 addr = sextract64(bvr, 0, 49) & ~3ULL;
3873 if (bas == 0) {
3874 return;
3876 if (bas == 0xc) {
3877 addr += 2;
3879 break;
3881 case 2: /* unlinked context ID match */
3882 case 8: /* unlinked VMID match (reserved if no EL2) */
3883 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3884 qemu_log_mask(LOG_UNIMP,
3885 "arm: unlinked context breakpoint types not implemented");
3886 return;
3887 case 9: /* linked VMID match (reserved if no EL2) */
3888 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3889 case 3: /* linked context ID match */
3890 default:
3891 /* We must generate no events for Linked context matches (unless
3892 * they are linked to by some other bp/wp, which is handled in
3893 * updates for the linking bp/wp). We choose to also generate no events
3894 * for reserved values.
3896 return;
3899 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3902 void hw_breakpoint_update_all(ARMCPU *cpu)
3904 int i;
3905 CPUARMState *env = &cpu->env;
3907 /* Completely clear out existing QEMU breakpoints and our array, to
3908 * avoid possible stale entries following migration load.
3910 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3911 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3913 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3914 hw_breakpoint_update(cpu, i);
3918 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3919 uint64_t value)
3921 ARMCPU *cpu = arm_env_get_cpu(env);
3922 int i = ri->crm;
3924 raw_write(env, ri, value);
3925 hw_breakpoint_update(cpu, i);
3928 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929 uint64_t value)
3931 ARMCPU *cpu = arm_env_get_cpu(env);
3932 int i = ri->crm;
3934 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3935 * copy of BAS[0].
3937 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3938 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3940 raw_write(env, ri, value);
3941 hw_breakpoint_update(cpu, i);
3944 static void define_debug_regs(ARMCPU *cpu)
3946 /* Define v7 and v8 architectural debug registers.
3947 * These are just dummy implementations for now.
3949 int i;
3950 int wrps, brps, ctx_cmps;
3951 ARMCPRegInfo dbgdidr = {
3952 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3953 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3956 /* Note that all these register fields hold "number of Xs minus 1". */
3957 brps = extract32(cpu->dbgdidr, 24, 4);
3958 wrps = extract32(cpu->dbgdidr, 28, 4);
3959 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3961 assert(ctx_cmps <= brps);
3963 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3964 * of the debug registers such as number of breakpoints;
3965 * check that if they both exist then they agree.
3967 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3968 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3969 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3970 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3973 define_one_arm_cp_reg(cpu, &dbgdidr);
3974 define_arm_cp_regs(cpu, debug_cp_reginfo);
3976 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3977 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3980 for (i = 0; i < brps + 1; i++) {
3981 ARMCPRegInfo dbgregs[] = {
3982 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3983 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3984 .access = PL1_RW,
3985 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3986 .writefn = dbgbvr_write, .raw_writefn = raw_write
3988 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3989 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3990 .access = PL1_RW,
3991 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3992 .writefn = dbgbcr_write, .raw_writefn = raw_write
3994 REGINFO_SENTINEL
3996 define_arm_cp_regs(cpu, dbgregs);
3999 for (i = 0; i < wrps + 1; i++) {
4000 ARMCPRegInfo dbgregs[] = {
4001 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4002 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4003 .access = PL1_RW,
4004 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4005 .writefn = dbgwvr_write, .raw_writefn = raw_write
4007 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4008 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4009 .access = PL1_RW,
4010 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4011 .writefn = dbgwcr_write, .raw_writefn = raw_write
4013 REGINFO_SENTINEL
4015 define_arm_cp_regs(cpu, dbgregs);
4019 void register_cp_regs_for_features(ARMCPU *cpu)
4021 /* Register all the coprocessor registers based on feature bits */
4022 CPUARMState *env = &cpu->env;
4023 if (arm_feature(env, ARM_FEATURE_M)) {
4024 /* M profile has no coprocessor registers */
4025 return;
4028 define_arm_cp_regs(cpu, cp_reginfo);
4029 if (!arm_feature(env, ARM_FEATURE_V8)) {
4030 /* Must go early as it is full of wildcards that may be
4031 * overridden by later definitions.
4033 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4036 if (arm_feature(env, ARM_FEATURE_V6)) {
4037 /* The ID registers all have impdef reset values */
4038 ARMCPRegInfo v6_idregs[] = {
4039 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4041 .access = PL1_R, .type = ARM_CP_CONST,
4042 .resetvalue = cpu->id_pfr0 },
4043 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4045 .access = PL1_R, .type = ARM_CP_CONST,
4046 .resetvalue = cpu->id_pfr1 },
4047 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4048 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4049 .access = PL1_R, .type = ARM_CP_CONST,
4050 .resetvalue = cpu->id_dfr0 },
4051 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4052 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4053 .access = PL1_R, .type = ARM_CP_CONST,
4054 .resetvalue = cpu->id_afr0 },
4055 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4057 .access = PL1_R, .type = ARM_CP_CONST,
4058 .resetvalue = cpu->id_mmfr0 },
4059 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4061 .access = PL1_R, .type = ARM_CP_CONST,
4062 .resetvalue = cpu->id_mmfr1 },
4063 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4064 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4065 .access = PL1_R, .type = ARM_CP_CONST,
4066 .resetvalue = cpu->id_mmfr2 },
4067 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4068 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4069 .access = PL1_R, .type = ARM_CP_CONST,
4070 .resetvalue = cpu->id_mmfr3 },
4071 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4072 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4073 .access = PL1_R, .type = ARM_CP_CONST,
4074 .resetvalue = cpu->id_isar0 },
4075 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4076 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4077 .access = PL1_R, .type = ARM_CP_CONST,
4078 .resetvalue = cpu->id_isar1 },
4079 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4081 .access = PL1_R, .type = ARM_CP_CONST,
4082 .resetvalue = cpu->id_isar2 },
4083 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4084 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4085 .access = PL1_R, .type = ARM_CP_CONST,
4086 .resetvalue = cpu->id_isar3 },
4087 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4088 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4089 .access = PL1_R, .type = ARM_CP_CONST,
4090 .resetvalue = cpu->id_isar4 },
4091 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4093 .access = PL1_R, .type = ARM_CP_CONST,
4094 .resetvalue = cpu->id_isar5 },
4095 /* 6..7 are as yet unallocated and must RAZ */
4096 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
4097 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
4098 .resetvalue = 0 },
4099 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
4100 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
4101 .resetvalue = 0 },
4102 REGINFO_SENTINEL
4104 define_arm_cp_regs(cpu, v6_idregs);
4105 define_arm_cp_regs(cpu, v6_cp_reginfo);
4106 } else {
4107 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4109 if (arm_feature(env, ARM_FEATURE_V6K)) {
4110 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4112 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4113 !arm_feature(env, ARM_FEATURE_MPU)) {
4114 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4116 if (arm_feature(env, ARM_FEATURE_V7)) {
4117 /* v7 performance monitor control register: same implementor
4118 * field as main ID register, and we implement only the cycle
4119 * count register.
4121 #ifndef CONFIG_USER_ONLY
4122 ARMCPRegInfo pmcr = {
4123 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4124 .access = PL0_RW,
4125 .type = ARM_CP_IO | ARM_CP_ALIAS,
4126 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4127 .accessfn = pmreg_access, .writefn = pmcr_write,
4128 .raw_writefn = raw_write,
4130 ARMCPRegInfo pmcr64 = {
4131 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4132 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4133 .access = PL0_RW, .accessfn = pmreg_access,
4134 .type = ARM_CP_IO,
4135 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4136 .resetvalue = cpu->midr & 0xff000000,
4137 .writefn = pmcr_write, .raw_writefn = raw_write,
4139 define_one_arm_cp_reg(cpu, &pmcr);
4140 define_one_arm_cp_reg(cpu, &pmcr64);
4141 #endif
4142 ARMCPRegInfo clidr = {
4143 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4144 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4145 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4147 define_one_arm_cp_reg(cpu, &clidr);
4148 define_arm_cp_regs(cpu, v7_cp_reginfo);
4149 define_debug_regs(cpu);
4150 } else {
4151 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4153 if (arm_feature(env, ARM_FEATURE_V8)) {
4154 /* AArch64 ID registers, which all have impdef reset values */
4155 ARMCPRegInfo v8_idregs[] = {
4156 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4157 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4158 .access = PL1_R, .type = ARM_CP_CONST,
4159 .resetvalue = cpu->id_aa64pfr0 },
4160 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4161 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4162 .access = PL1_R, .type = ARM_CP_CONST,
4163 .resetvalue = cpu->id_aa64pfr1},
4164 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4166 .access = PL1_R, .type = ARM_CP_CONST,
4167 /* We mask out the PMUVer field, because we don't currently
4168 * implement the PMU. Not advertising it prevents the guest
4169 * from trying to use it and getting UNDEFs on registers we
4170 * don't implement.
4172 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4173 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4175 .access = PL1_R, .type = ARM_CP_CONST,
4176 .resetvalue = cpu->id_aa64dfr1 },
4177 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4179 .access = PL1_R, .type = ARM_CP_CONST,
4180 .resetvalue = cpu->id_aa64afr0 },
4181 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4183 .access = PL1_R, .type = ARM_CP_CONST,
4184 .resetvalue = cpu->id_aa64afr1 },
4185 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4187 .access = PL1_R, .type = ARM_CP_CONST,
4188 .resetvalue = cpu->id_aa64isar0 },
4189 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4191 .access = PL1_R, .type = ARM_CP_CONST,
4192 .resetvalue = cpu->id_aa64isar1 },
4193 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4194 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4195 .access = PL1_R, .type = ARM_CP_CONST,
4196 .resetvalue = cpu->id_aa64mmfr0 },
4197 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4199 .access = PL1_R, .type = ARM_CP_CONST,
4200 .resetvalue = cpu->id_aa64mmfr1 },
4201 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4203 .access = PL1_R, .type = ARM_CP_CONST,
4204 .resetvalue = cpu->mvfr0 },
4205 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4207 .access = PL1_R, .type = ARM_CP_CONST,
4208 .resetvalue = cpu->mvfr1 },
4209 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4210 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4211 .access = PL1_R, .type = ARM_CP_CONST,
4212 .resetvalue = cpu->mvfr2 },
4213 REGINFO_SENTINEL
4215 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4216 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4217 !arm_feature(env, ARM_FEATURE_EL2)) {
4218 ARMCPRegInfo rvbar = {
4219 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4220 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4221 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4223 define_one_arm_cp_reg(cpu, &rvbar);
4225 define_arm_cp_regs(cpu, v8_idregs);
4226 define_arm_cp_regs(cpu, v8_cp_reginfo);
4228 if (arm_feature(env, ARM_FEATURE_EL2)) {
4229 uint64_t vmpidr_def = mpidr_read_val(env);
4230 ARMCPRegInfo vpidr_regs[] = {
4231 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4232 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4233 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4234 .resetvalue = cpu->midr,
4235 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4236 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4237 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4238 .access = PL2_RW, .resetvalue = cpu->midr,
4239 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4240 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4241 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4242 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4243 .resetvalue = vmpidr_def,
4244 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4245 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4246 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4247 .access = PL2_RW,
4248 .resetvalue = vmpidr_def,
4249 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4250 REGINFO_SENTINEL
4252 define_arm_cp_regs(cpu, vpidr_regs);
4253 define_arm_cp_regs(cpu, el2_cp_reginfo);
4254 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4255 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4256 ARMCPRegInfo rvbar = {
4257 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4258 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4259 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4261 define_one_arm_cp_reg(cpu, &rvbar);
4263 } else {
4264 /* If EL2 is missing but higher ELs are enabled, we need to
4265 * register the no_el2 reginfos.
4267 if (arm_feature(env, ARM_FEATURE_EL3)) {
4268 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4269 * of MIDR_EL1 and MPIDR_EL1.
4271 ARMCPRegInfo vpidr_regs[] = {
4272 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4273 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4274 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4275 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4276 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4277 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4278 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4279 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4280 .type = ARM_CP_NO_RAW,
4281 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4282 REGINFO_SENTINEL
4284 define_arm_cp_regs(cpu, vpidr_regs);
4285 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4288 if (arm_feature(env, ARM_FEATURE_EL3)) {
4289 define_arm_cp_regs(cpu, el3_cp_reginfo);
4290 ARMCPRegInfo rvbar = {
4291 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4292 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4293 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
4295 define_one_arm_cp_reg(cpu, &rvbar);
4297 if (arm_feature(env, ARM_FEATURE_MPU)) {
4298 if (arm_feature(env, ARM_FEATURE_V6)) {
4299 /* PMSAv6 not implemented */
4300 assert(arm_feature(env, ARM_FEATURE_V7));
4301 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4302 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4303 } else {
4304 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4306 } else {
4307 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4308 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4310 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4311 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4313 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4314 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4316 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4317 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4319 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4320 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4322 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4323 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4325 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4326 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4328 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4329 define_arm_cp_regs(cpu, omap_cp_reginfo);
4331 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4332 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4334 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4335 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4337 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4338 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4340 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4341 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4343 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4344 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4345 * be read-only (ie write causes UNDEF exception).
4348 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4349 /* Pre-v8 MIDR space.
4350 * Note that the MIDR isn't a simple constant register because
4351 * of the TI925 behaviour where writes to another register can
4352 * cause the MIDR value to change.
4354 * Unimplemented registers in the c15 0 0 0 space default to
4355 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4356 * and friends override accordingly.
4358 { .name = "MIDR",
4359 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4360 .access = PL1_R, .resetvalue = cpu->midr,
4361 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4362 .readfn = midr_read,
4363 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4364 .type = ARM_CP_OVERRIDE },
4365 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4366 { .name = "DUMMY",
4367 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4368 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4369 { .name = "DUMMY",
4370 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4371 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4372 { .name = "DUMMY",
4373 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4374 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4375 { .name = "DUMMY",
4376 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4377 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4378 { .name = "DUMMY",
4379 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4380 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4381 REGINFO_SENTINEL
4383 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4384 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4385 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4386 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4387 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4388 .readfn = midr_read },
4389 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4390 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4391 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4392 .access = PL1_R, .resetvalue = cpu->midr },
4393 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4394 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4395 .access = PL1_R, .resetvalue = cpu->midr },
4396 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4398 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4399 REGINFO_SENTINEL
4401 ARMCPRegInfo id_cp_reginfo[] = {
4402 /* These are common to v8 and pre-v8 */
4403 { .name = "CTR",
4404 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4405 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4406 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4407 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4408 .access = PL0_R, .accessfn = ctr_el0_access,
4409 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4410 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4411 { .name = "TCMTR",
4412 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4413 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4414 REGINFO_SENTINEL
4416 /* TLBTR is specific to VMSA */
4417 ARMCPRegInfo id_tlbtr_reginfo = {
4418 .name = "TLBTR",
4419 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4420 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4422 /* MPUIR is specific to PMSA V6+ */
4423 ARMCPRegInfo id_mpuir_reginfo = {
4424 .name = "MPUIR",
4425 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4426 .access = PL1_R, .type = ARM_CP_CONST,
4427 .resetvalue = cpu->pmsav7_dregion << 8
4429 ARMCPRegInfo crn0_wi_reginfo = {
4430 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4431 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4432 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4434 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4435 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4436 ARMCPRegInfo *r;
4437 /* Register the blanket "writes ignored" value first to cover the
4438 * whole space. Then update the specific ID registers to allow write
4439 * access, so that they ignore writes rather than causing them to
4440 * UNDEF.
4442 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4443 for (r = id_pre_v8_midr_cp_reginfo;
4444 r->type != ARM_CP_SENTINEL; r++) {
4445 r->access = PL1_RW;
4447 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4448 r->access = PL1_RW;
4450 id_tlbtr_reginfo.access = PL1_RW;
4451 id_tlbtr_reginfo.access = PL1_RW;
4453 if (arm_feature(env, ARM_FEATURE_V8)) {
4454 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4455 } else {
4456 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4458 define_arm_cp_regs(cpu, id_cp_reginfo);
4459 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4460 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4461 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4462 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4466 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4467 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4470 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4471 ARMCPRegInfo auxcr_reginfo[] = {
4472 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4473 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4474 .access = PL1_RW, .type = ARM_CP_CONST,
4475 .resetvalue = cpu->reset_auxcr },
4476 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4477 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4478 .access = PL2_RW, .type = ARM_CP_CONST,
4479 .resetvalue = 0 },
4480 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4481 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4482 .access = PL3_RW, .type = ARM_CP_CONST,
4483 .resetvalue = 0 },
4484 REGINFO_SENTINEL
4486 define_arm_cp_regs(cpu, auxcr_reginfo);
4489 if (arm_feature(env, ARM_FEATURE_CBAR)) {
4490 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4491 /* 32 bit view is [31:18] 0...0 [43:32]. */
4492 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4493 | extract64(cpu->reset_cbar, 32, 12);
4494 ARMCPRegInfo cbar_reginfo[] = {
4495 { .name = "CBAR",
4496 .type = ARM_CP_CONST,
4497 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4498 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4499 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4500 .type = ARM_CP_CONST,
4501 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4502 .access = PL1_R, .resetvalue = cbar32 },
4503 REGINFO_SENTINEL
4505 /* We don't implement a r/w 64 bit CBAR currently */
4506 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4507 define_arm_cp_regs(cpu, cbar_reginfo);
4508 } else {
4509 ARMCPRegInfo cbar = {
4510 .name = "CBAR",
4511 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4512 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4513 .fieldoffset = offsetof(CPUARMState,
4514 cp15.c15_config_base_address)
4516 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4517 cbar.access = PL1_R;
4518 cbar.fieldoffset = 0;
4519 cbar.type = ARM_CP_CONST;
4521 define_one_arm_cp_reg(cpu, &cbar);
4525 /* Generic registers whose values depend on the implementation */
4527 ARMCPRegInfo sctlr = {
4528 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4529 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4530 .access = PL1_RW,
4531 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4532 offsetof(CPUARMState, cp15.sctlr_ns) },
4533 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4534 .raw_writefn = raw_write,
4536 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4537 /* Normally we would always end the TB on an SCTLR write, but Linux
4538 * arch/arm/mach-pxa/sleep.S expects two instructions following
4539 * an MMU enable to execute from cache. Imitate this behaviour.
4541 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4543 define_one_arm_cp_reg(cpu, &sctlr);
4547 ARMCPU *cpu_arm_init(const char *cpu_model)
4549 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4552 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4554 CPUState *cs = CPU(cpu);
4555 CPUARMState *env = &cpu->env;
4557 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4558 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4559 aarch64_fpu_gdb_set_reg,
4560 34, "aarch64-fpu.xml", 0);
4561 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4562 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4563 51, "arm-neon.xml", 0);
4564 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4565 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4566 35, "arm-vfp3.xml", 0);
4567 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4568 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4569 19, "arm-vfp.xml", 0);
4573 /* Sort alphabetically by type name, except for "any". */
4574 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
4576 ObjectClass *class_a = (ObjectClass *)a;
4577 ObjectClass *class_b = (ObjectClass *)b;
4578 const char *name_a, *name_b;
4580 name_a = object_class_get_name(class_a);
4581 name_b = object_class_get_name(class_b);
4582 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4583 return 1;
4584 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4585 return -1;
4586 } else {
4587 return strcmp(name_a, name_b);
4591 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
4593 ObjectClass *oc = data;
4594 CPUListState *s = user_data;
4595 const char *typename;
4596 char *name;
4598 typename = object_class_get_name(oc);
4599 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4600 (*s->cpu_fprintf)(s->file, " %s\n",
4601 name);
4602 g_free(name);
4605 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4607 CPUListState s = {
4608 .file = f,
4609 .cpu_fprintf = cpu_fprintf,
4611 GSList *list;
4613 list = object_class_get_list(TYPE_ARM_CPU, false);
4614 list = g_slist_sort(list, arm_cpu_list_compare);
4615 (*cpu_fprintf)(f, "Available CPUs:\n");
4616 g_slist_foreach(list, arm_cpu_list_entry, &s);
4617 g_slist_free(list);
4618 #ifdef CONFIG_KVM
4619 /* The 'host' CPU type is dynamically registered only if KVM is
4620 * enabled, so we have to special-case it here:
4622 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4623 #endif
4626 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4628 ObjectClass *oc = data;
4629 CpuDefinitionInfoList **cpu_list = user_data;
4630 CpuDefinitionInfoList *entry;
4631 CpuDefinitionInfo *info;
4632 const char *typename;
4634 typename = object_class_get_name(oc);
4635 info = g_malloc0(sizeof(*info));
4636 info->name = g_strndup(typename,
4637 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4639 entry = g_malloc0(sizeof(*entry));
4640 entry->value = info;
4641 entry->next = *cpu_list;
4642 *cpu_list = entry;
4645 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4647 CpuDefinitionInfoList *cpu_list = NULL;
4648 GSList *list;
4650 list = object_class_get_list(TYPE_ARM_CPU, false);
4651 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4652 g_slist_free(list);
4654 return cpu_list;
4657 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
4658 void *opaque, int state, int secstate,
4659 int crm, int opc1, int opc2)
4661 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4662 * add a single reginfo struct to the hash table.
4664 uint32_t *key = g_new(uint32_t, 1);
4665 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4666 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
4667 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4669 /* Reset the secure state to the specific incoming state. This is
4670 * necessary as the register may have been defined with both states.
4672 r2->secure = secstate;
4674 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4675 /* Register is banked (using both entries in array).
4676 * Overwriting fieldoffset as the array is only used to define
4677 * banked registers but later only fieldoffset is used.
4679 r2->fieldoffset = r->bank_fieldoffsets[ns];
4682 if (state == ARM_CP_STATE_AA32) {
4683 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4684 /* If the register is banked then we don't need to migrate or
4685 * reset the 32-bit instance in certain cases:
4687 * 1) If the register has both 32-bit and 64-bit instances then we
4688 * can count on the 64-bit instance taking care of the
4689 * non-secure bank.
4690 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4691 * taking care of the secure bank. This requires that separate
4692 * 32 and 64-bit definitions are provided.
4694 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4695 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
4696 r2->type |= ARM_CP_ALIAS;
4698 } else if ((secstate != r->secure) && !ns) {
4699 /* The register is not banked so we only want to allow migration of
4700 * the non-secure instance.
4702 r2->type |= ARM_CP_ALIAS;
4705 if (r->state == ARM_CP_STATE_BOTH) {
4706 /* We assume it is a cp15 register if the .cp field is left unset.
4708 if (r2->cp == 0) {
4709 r2->cp = 15;
4712 #ifdef HOST_WORDS_BIGENDIAN
4713 if (r2->fieldoffset) {
4714 r2->fieldoffset += sizeof(uint32_t);
4716 #endif
4719 if (state == ARM_CP_STATE_AA64) {
4720 /* To allow abbreviation of ARMCPRegInfo
4721 * definitions, we treat cp == 0 as equivalent to
4722 * the value for "standard guest-visible sysreg".
4723 * STATE_BOTH definitions are also always "standard
4724 * sysreg" in their AArch64 view (the .cp value may
4725 * be non-zero for the benefit of the AArch32 view).
4727 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
4728 r2->cp = CP_REG_ARM64_SYSREG_CP;
4730 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4731 r2->opc0, opc1, opc2);
4732 } else {
4733 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
4735 if (opaque) {
4736 r2->opaque = opaque;
4738 /* reginfo passed to helpers is correct for the actual access,
4739 * and is never ARM_CP_STATE_BOTH:
4741 r2->state = state;
4742 /* Make sure reginfo passed to helpers for wildcarded regs
4743 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4745 r2->crm = crm;
4746 r2->opc1 = opc1;
4747 r2->opc2 = opc2;
4748 /* By convention, for wildcarded registers only the first
4749 * entry is used for migration; the others are marked as
4750 * ALIAS so we don't try to transfer the register
4751 * multiple times. Special registers (ie NOP/WFI) are
4752 * never migratable and not even raw-accessible.
4754 if ((r->type & ARM_CP_SPECIAL)) {
4755 r2->type |= ARM_CP_NO_RAW;
4757 if (((r->crm == CP_ANY) && crm != 0) ||
4758 ((r->opc1 == CP_ANY) && opc1 != 0) ||
4759 ((r->opc2 == CP_ANY) && opc2 != 0)) {
4760 r2->type |= ARM_CP_ALIAS;
4763 /* Check that raw accesses are either forbidden or handled. Note that
4764 * we can't assert this earlier because the setup of fieldoffset for
4765 * banked registers has to be done first.
4767 if (!(r2->type & ARM_CP_NO_RAW)) {
4768 assert(!raw_accessors_invalid(r2));
4771 /* Overriding of an existing definition must be explicitly
4772 * requested.
4774 if (!(r->type & ARM_CP_OVERRIDE)) {
4775 ARMCPRegInfo *oldreg;
4776 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
4777 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
4778 fprintf(stderr, "Register redefined: cp=%d %d bit "
4779 "crn=%d crm=%d opc1=%d opc2=%d, "
4780 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
4781 r2->crn, r2->crm, r2->opc1, r2->opc2,
4782 oldreg->name, r2->name);
4783 g_assert_not_reached();
4786 g_hash_table_insert(cpu->cp_regs, key, r2);
4790 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
4791 const ARMCPRegInfo *r, void *opaque)
4793 /* Define implementations of coprocessor registers.
4794 * We store these in a hashtable because typically
4795 * there are less than 150 registers in a space which
4796 * is 16*16*16*8*8 = 262144 in size.
4797 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4798 * If a register is defined twice then the second definition is
4799 * used, so this can be used to define some generic registers and
4800 * then override them with implementation specific variations.
4801 * At least one of the original and the second definition should
4802 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4803 * against accidental use.
4805 * The state field defines whether the register is to be
4806 * visible in the AArch32 or AArch64 execution state. If the
4807 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4808 * reginfo structure for the AArch32 view, which sees the lower
4809 * 32 bits of the 64 bit register.
4811 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4812 * be wildcarded. AArch64 registers are always considered to be 64
4813 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4814 * the register, if any.
4816 int crm, opc1, opc2, state;
4817 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
4818 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
4819 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
4820 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
4821 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
4822 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
4823 /* 64 bit registers have only CRm and Opc1 fields */
4824 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
4825 /* op0 only exists in the AArch64 encodings */
4826 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
4827 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4828 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
4829 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4830 * encodes a minimum access level for the register. We roll this
4831 * runtime check into our general permission check code, so check
4832 * here that the reginfo's specified permissions are strict enough
4833 * to encompass the generic architectural permission check.
4835 if (r->state != ARM_CP_STATE_AA32) {
4836 int mask = 0;
4837 switch (r->opc1) {
4838 case 0: case 1: case 2:
4839 /* min_EL EL1 */
4840 mask = PL1_RW;
4841 break;
4842 case 3:
4843 /* min_EL EL0 */
4844 mask = PL0_RW;
4845 break;
4846 case 4:
4847 /* min_EL EL2 */
4848 mask = PL2_RW;
4849 break;
4850 case 5:
4851 /* unallocated encoding, so not possible */
4852 assert(false);
4853 break;
4854 case 6:
4855 /* min_EL EL3 */
4856 mask = PL3_RW;
4857 break;
4858 case 7:
4859 /* min_EL EL1, secure mode only (we don't check the latter) */
4860 mask = PL1_RW;
4861 break;
4862 default:
4863 /* broken reginfo with out-of-range opc1 */
4864 assert(false);
4865 break;
4867 /* assert our permissions are not too lax (stricter is fine) */
4868 assert((r->access & ~mask) == 0);
4871 /* Check that the register definition has enough info to handle
4872 * reads and writes if they are permitted.
4874 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
4875 if (r->access & PL3_R) {
4876 assert((r->fieldoffset ||
4877 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4878 r->readfn);
4880 if (r->access & PL3_W) {
4881 assert((r->fieldoffset ||
4882 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4883 r->writefn);
4886 /* Bad type field probably means missing sentinel at end of reg list */
4887 assert(cptype_valid(r->type));
4888 for (crm = crmmin; crm <= crmmax; crm++) {
4889 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
4890 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
4891 for (state = ARM_CP_STATE_AA32;
4892 state <= ARM_CP_STATE_AA64; state++) {
4893 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4894 continue;
4896 if (state == ARM_CP_STATE_AA32) {
4897 /* Under AArch32 CP registers can be common
4898 * (same for secure and non-secure world) or banked.
4900 switch (r->secure) {
4901 case ARM_CP_SECSTATE_S:
4902 case ARM_CP_SECSTATE_NS:
4903 add_cpreg_to_hashtable(cpu, r, opaque, state,
4904 r->secure, crm, opc1, opc2);
4905 break;
4906 default:
4907 add_cpreg_to_hashtable(cpu, r, opaque, state,
4908 ARM_CP_SECSTATE_S,
4909 crm, opc1, opc2);
4910 add_cpreg_to_hashtable(cpu, r, opaque, state,
4911 ARM_CP_SECSTATE_NS,
4912 crm, opc1, opc2);
4913 break;
4915 } else {
4916 /* AArch64 registers get mapped to non-secure instance
4917 * of AArch32 */
4918 add_cpreg_to_hashtable(cpu, r, opaque, state,
4919 ARM_CP_SECSTATE_NS,
4920 crm, opc1, opc2);
4928 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4929 const ARMCPRegInfo *regs, void *opaque)
4931 /* Define a whole list of registers */
4932 const ARMCPRegInfo *r;
4933 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4934 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4938 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4940 return g_hash_table_lookup(cpregs, &encoded_cp);
4943 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4944 uint64_t value)
4946 /* Helper coprocessor write function for write-ignore registers */
4949 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4951 /* Helper coprocessor write function for read-as-zero registers */
4952 return 0;
4955 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4957 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4960 static int bad_mode_switch(CPUARMState *env, int mode)
4962 /* Return true if it is not valid for us to switch to
4963 * this CPU mode (ie all the UNPREDICTABLE cases in
4964 * the ARM ARM CPSRWriteByInstr pseudocode).
4966 switch (mode) {
4967 case ARM_CPU_MODE_USR:
4968 case ARM_CPU_MODE_SYS:
4969 case ARM_CPU_MODE_SVC:
4970 case ARM_CPU_MODE_ABT:
4971 case ARM_CPU_MODE_UND:
4972 case ARM_CPU_MODE_IRQ:
4973 case ARM_CPU_MODE_FIQ:
4974 return 0;
4975 case ARM_CPU_MODE_MON:
4976 return !arm_is_secure(env);
4977 default:
4978 return 1;
4982 uint32_t cpsr_read(CPUARMState *env)
4984 int ZF;
4985 ZF = (env->ZF == 0);
4986 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4987 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4988 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4989 | ((env->condexec_bits & 0xfc) << 8)
4990 | (env->GE << 16) | (env->daif & CPSR_AIF);
4993 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4995 uint32_t changed_daif;
4997 if (mask & CPSR_NZCV) {
4998 env->ZF = (~val) & CPSR_Z;
4999 env->NF = val;
5000 env->CF = (val >> 29) & 1;
5001 env->VF = (val << 3) & 0x80000000;
5003 if (mask & CPSR_Q)
5004 env->QF = ((val & CPSR_Q) != 0);
5005 if (mask & CPSR_T)
5006 env->thumb = ((val & CPSR_T) != 0);
5007 if (mask & CPSR_IT_0_1) {
5008 env->condexec_bits &= ~3;
5009 env->condexec_bits |= (val >> 25) & 3;
5011 if (mask & CPSR_IT_2_7) {
5012 env->condexec_bits &= 3;
5013 env->condexec_bits |= (val >> 8) & 0xfc;
5015 if (mask & CPSR_GE) {
5016 env->GE = (val >> 16) & 0xf;
5019 /* In a V7 implementation that includes the security extensions but does
5020 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5021 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5022 * bits respectively.
5024 * In a V8 implementation, it is permitted for privileged software to
5025 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5027 if (!arm_feature(env, ARM_FEATURE_V8) &&
5028 arm_feature(env, ARM_FEATURE_EL3) &&
5029 !arm_feature(env, ARM_FEATURE_EL2) &&
5030 !arm_is_secure(env)) {
5032 changed_daif = (env->daif ^ val) & mask;
5034 if (changed_daif & CPSR_A) {
5035 /* Check to see if we are allowed to change the masking of async
5036 * abort exceptions from a non-secure state.
5038 if (!(env->cp15.scr_el3 & SCR_AW)) {
5039 qemu_log_mask(LOG_GUEST_ERROR,
5040 "Ignoring attempt to switch CPSR_A flag from "
5041 "non-secure world with SCR.AW bit clear\n");
5042 mask &= ~CPSR_A;
5046 if (changed_daif & CPSR_F) {
5047 /* Check to see if we are allowed to change the masking of FIQ
5048 * exceptions from a non-secure state.
5050 if (!(env->cp15.scr_el3 & SCR_FW)) {
5051 qemu_log_mask(LOG_GUEST_ERROR,
5052 "Ignoring attempt to switch CPSR_F flag from "
5053 "non-secure world with SCR.FW bit clear\n");
5054 mask &= ~CPSR_F;
5057 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5058 * If this bit is set software is not allowed to mask
5059 * FIQs, but is allowed to set CPSR_F to 0.
5061 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5062 (val & CPSR_F)) {
5063 qemu_log_mask(LOG_GUEST_ERROR,
5064 "Ignoring attempt to enable CPSR_F flag "
5065 "(non-maskable FIQ [NMFI] support enabled)\n");
5066 mask &= ~CPSR_F;
5071 env->daif &= ~(CPSR_AIF & mask);
5072 env->daif |= val & CPSR_AIF & mask;
5074 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
5075 if (bad_mode_switch(env, val & CPSR_M)) {
5076 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
5077 * We choose to ignore the attempt and leave the CPSR M field
5078 * untouched.
5080 mask &= ~CPSR_M;
5081 } else {
5082 switch_mode(env, val & CPSR_M);
5085 mask &= ~CACHED_CPSR_BITS;
5086 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5089 /* Sign/zero extend */
5090 uint32_t HELPER(sxtb16)(uint32_t x)
5092 uint32_t res;
5093 res = (uint16_t)(int8_t)x;
5094 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5095 return res;
5098 uint32_t HELPER(uxtb16)(uint32_t x)
5100 uint32_t res;
5101 res = (uint16_t)(uint8_t)x;
5102 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5103 return res;
5106 uint32_t HELPER(clz)(uint32_t x)
5108 return clz32(x);
5111 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5113 if (den == 0)
5114 return 0;
5115 if (num == INT_MIN && den == -1)
5116 return INT_MIN;
5117 return num / den;
5120 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5122 if (den == 0)
5123 return 0;
5124 return num / den;
5127 uint32_t HELPER(rbit)(uint32_t x)
5129 return revbit32(x);
5132 #if defined(CONFIG_USER_ONLY)
5134 /* These should probably raise undefined insn exceptions. */
5135 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5137 ARMCPU *cpu = arm_env_get_cpu(env);
5139 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5142 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5144 ARMCPU *cpu = arm_env_get_cpu(env);
5146 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5147 return 0;
5150 void switch_mode(CPUARMState *env, int mode)
5152 ARMCPU *cpu = arm_env_get_cpu(env);
5154 if (mode != ARM_CPU_MODE_USR) {
5155 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5159 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5161 ARMCPU *cpu = arm_env_get_cpu(env);
5163 cpu_abort(CPU(cpu), "banked r13 write\n");
5166 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5168 ARMCPU *cpu = arm_env_get_cpu(env);
5170 cpu_abort(CPU(cpu), "banked r13 read\n");
5171 return 0;
5174 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5175 uint32_t cur_el, bool secure)
5177 return 1;
5180 void aarch64_sync_64_to_32(CPUARMState *env)
5182 g_assert_not_reached();
5185 #else
5187 /* Map CPU modes onto saved register banks. */
5188 int bank_number(int mode)
5190 switch (mode) {
5191 case ARM_CPU_MODE_USR:
5192 case ARM_CPU_MODE_SYS:
5193 return BANK_USRSYS;
5194 case ARM_CPU_MODE_SVC:
5195 return BANK_SVC;
5196 case ARM_CPU_MODE_ABT:
5197 return BANK_ABT;
5198 case ARM_CPU_MODE_UND:
5199 return BANK_UND;
5200 case ARM_CPU_MODE_IRQ:
5201 return BANK_IRQ;
5202 case ARM_CPU_MODE_FIQ:
5203 return BANK_FIQ;
5204 case ARM_CPU_MODE_HYP:
5205 return BANK_HYP;
5206 case ARM_CPU_MODE_MON:
5207 return BANK_MON;
5209 g_assert_not_reached();
5212 void switch_mode(CPUARMState *env, int mode)
5214 int old_mode;
5215 int i;
5217 old_mode = env->uncached_cpsr & CPSR_M;
5218 if (mode == old_mode)
5219 return;
5221 if (old_mode == ARM_CPU_MODE_FIQ) {
5222 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5223 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5224 } else if (mode == ARM_CPU_MODE_FIQ) {
5225 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5226 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5229 i = bank_number(old_mode);
5230 env->banked_r13[i] = env->regs[13];
5231 env->banked_r14[i] = env->regs[14];
5232 env->banked_spsr[i] = env->spsr;
5234 i = bank_number(mode);
5235 env->regs[13] = env->banked_r13[i];
5236 env->regs[14] = env->banked_r14[i];
5237 env->spsr = env->banked_spsr[i];
5240 /* Physical Interrupt Target EL Lookup Table
5242 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5244 * The below multi-dimensional table is used for looking up the target
5245 * exception level given numerous condition criteria. Specifically, the
5246 * target EL is based on SCR and HCR routing controls as well as the
5247 * currently executing EL and secure state.
5249 * Dimensions:
5250 * target_el_table[2][2][2][2][2][4]
5251 * | | | | | +--- Current EL
5252 * | | | | +------ Non-secure(0)/Secure(1)
5253 * | | | +--------- HCR mask override
5254 * | | +------------ SCR exec state control
5255 * | +--------------- SCR mask override
5256 * +------------------ 32-bit(0)/64-bit(1) EL3
5258 * The table values are as such:
5259 * 0-3 = EL0-EL3
5260 * -1 = Cannot occur
5262 * The ARM ARM target EL table includes entries indicating that an "exception
5263 * is not taken". The two cases where this is applicable are:
5264 * 1) An exception is taken from EL3 but the SCR does not have the exception
5265 * routed to EL3.
5266 * 2) An exception is taken from EL2 but the HCR does not have the exception
5267 * routed to EL2.
5268 * In these two cases, the below table contain a target of EL1. This value is
5269 * returned as it is expected that the consumer of the table data will check
5270 * for "target EL >= current EL" to ensure the exception is not taken.
5272 * SCR HCR
5273 * 64 EA AMO From
5274 * BIT IRQ IMO Non-secure Secure
5275 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5277 static const int8_t target_el_table[2][2][2][2][2][4] = {
5278 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5279 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5280 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5281 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5282 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5283 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5284 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5285 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5286 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5287 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5288 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5289 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5290 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5291 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5292 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5293 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5297 * Determine the target EL for physical exceptions
5299 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5300 uint32_t cur_el, bool secure)
5302 CPUARMState *env = cs->env_ptr;
5303 int rw;
5304 int scr;
5305 int hcr;
5306 int target_el;
5307 /* Is the highest EL AArch64? */
5308 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5310 if (arm_feature(env, ARM_FEATURE_EL3)) {
5311 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5312 } else {
5313 /* Either EL2 is the highest EL (and so the EL2 register width
5314 * is given by is64); or there is no EL2 or EL3, in which case
5315 * the value of 'rw' does not affect the table lookup anyway.
5317 rw = is64;
5320 switch (excp_idx) {
5321 case EXCP_IRQ:
5322 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5323 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5324 break;
5325 case EXCP_FIQ:
5326 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5327 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5328 break;
5329 default:
5330 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5331 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5332 break;
5335 /* If HCR.TGE is set then HCR is treated as being 1 */
5336 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5338 /* Perform a table-lookup for the target EL given the current state */
5339 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5341 assert(target_el > 0);
5343 return target_el;
5346 static void v7m_push(CPUARMState *env, uint32_t val)
5348 CPUState *cs = CPU(arm_env_get_cpu(env));
5350 env->regs[13] -= 4;
5351 stl_phys(cs->as, env->regs[13], val);
5354 static uint32_t v7m_pop(CPUARMState *env)
5356 CPUState *cs = CPU(arm_env_get_cpu(env));
5357 uint32_t val;
5359 val = ldl_phys(cs->as, env->regs[13]);
5360 env->regs[13] += 4;
5361 return val;
5364 /* Switch to V7M main or process stack pointer. */
5365 static void switch_v7m_sp(CPUARMState *env, int process)
5367 uint32_t tmp;
5368 if (env->v7m.current_sp != process) {
5369 tmp = env->v7m.other_sp;
5370 env->v7m.other_sp = env->regs[13];
5371 env->regs[13] = tmp;
5372 env->v7m.current_sp = process;
5376 static void do_v7m_exception_exit(CPUARMState *env)
5378 uint32_t type;
5379 uint32_t xpsr;
5381 type = env->regs[15];
5382 if (env->v7m.exception != 0)
5383 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5385 /* Switch to the target stack. */
5386 switch_v7m_sp(env, (type & 4) != 0);
5387 /* Pop registers. */
5388 env->regs[0] = v7m_pop(env);
5389 env->regs[1] = v7m_pop(env);
5390 env->regs[2] = v7m_pop(env);
5391 env->regs[3] = v7m_pop(env);
5392 env->regs[12] = v7m_pop(env);
5393 env->regs[14] = v7m_pop(env);
5394 env->regs[15] = v7m_pop(env);
5395 if (env->regs[15] & 1) {
5396 qemu_log_mask(LOG_GUEST_ERROR,
5397 "M profile return from interrupt with misaligned "
5398 "PC is UNPREDICTABLE\n");
5399 /* Actual hardware seems to ignore the lsbit, and there are several
5400 * RTOSes out there which incorrectly assume the r15 in the stack
5401 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5403 env->regs[15] &= ~1U;
5405 xpsr = v7m_pop(env);
5406 xpsr_write(env, xpsr, 0xfffffdff);
5407 /* Undo stack alignment. */
5408 if (xpsr & 0x200)
5409 env->regs[13] |= 4;
5410 /* ??? The exception return type specifies Thread/Handler mode. However
5411 this is also implied by the xPSR value. Not sure what to do
5412 if there is a mismatch. */
5413 /* ??? Likewise for mismatches between the CONTROL register and the stack
5414 pointer. */
5417 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5419 ARMCPU *cpu = ARM_CPU(cs);
5420 CPUARMState *env = &cpu->env;
5421 uint32_t xpsr = xpsr_read(env);
5422 uint32_t lr;
5423 uint32_t addr;
5425 arm_log_exception(cs->exception_index);
5427 lr = 0xfffffff1;
5428 if (env->v7m.current_sp)
5429 lr |= 4;
5430 if (env->v7m.exception == 0)
5431 lr |= 8;
5433 /* For exceptions we just mark as pending on the NVIC, and let that
5434 handle it. */
5435 /* TODO: Need to escalate if the current priority is higher than the
5436 one we're raising. */
5437 switch (cs->exception_index) {
5438 case EXCP_UDEF:
5439 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
5440 return;
5441 case EXCP_SWI:
5442 /* The PC already points to the next instruction. */
5443 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
5444 return;
5445 case EXCP_PREFETCH_ABORT:
5446 case EXCP_DATA_ABORT:
5447 /* TODO: if we implemented the MPU registers, this is where we
5448 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5450 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
5451 return;
5452 case EXCP_BKPT:
5453 if (semihosting_enabled()) {
5454 int nr;
5455 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5456 if (nr == 0xab) {
5457 env->regs[15] += 2;
5458 qemu_log_mask(CPU_LOG_INT,
5459 "...handling as semihosting call 0x%x\n",
5460 env->regs[0]);
5461 env->regs[0] = do_arm_semihosting(env);
5462 return;
5465 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
5466 return;
5467 case EXCP_IRQ:
5468 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
5469 break;
5470 case EXCP_EXCEPTION_EXIT:
5471 do_v7m_exception_exit(env);
5472 return;
5473 default:
5474 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5475 return; /* Never happens. Keep compiler happy. */
5478 /* Align stack pointer. */
5479 /* ??? Should only do this if Configuration Control Register
5480 STACKALIGN bit is set. */
5481 if (env->regs[13] & 4) {
5482 env->regs[13] -= 4;
5483 xpsr |= 0x200;
5485 /* Switch to the handler mode. */
5486 v7m_push(env, xpsr);
5487 v7m_push(env, env->regs[15]);
5488 v7m_push(env, env->regs[14]);
5489 v7m_push(env, env->regs[12]);
5490 v7m_push(env, env->regs[3]);
5491 v7m_push(env, env->regs[2]);
5492 v7m_push(env, env->regs[1]);
5493 v7m_push(env, env->regs[0]);
5494 switch_v7m_sp(env, 0);
5495 /* Clear IT bits */
5496 env->condexec_bits = 0;
5497 env->regs[14] = lr;
5498 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
5499 env->regs[15] = addr & 0xfffffffe;
5500 env->thumb = addr & 1;
5503 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5504 * register set. This is necessary when switching between AArch32 and AArch64
5505 * execution state.
5507 void aarch64_sync_32_to_64(CPUARMState *env)
5509 int i;
5510 uint32_t mode = env->uncached_cpsr & CPSR_M;
5512 /* We can blanket copy R[0:7] to X[0:7] */
5513 for (i = 0; i < 8; i++) {
5514 env->xregs[i] = env->regs[i];
5517 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5518 * Otherwise, they come from the banked user regs.
5520 if (mode == ARM_CPU_MODE_FIQ) {
5521 for (i = 8; i < 13; i++) {
5522 env->xregs[i] = env->usr_regs[i - 8];
5524 } else {
5525 for (i = 8; i < 13; i++) {
5526 env->xregs[i] = env->regs[i];
5530 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5531 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5532 * from the mode banked register.
5534 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5535 env->xregs[13] = env->regs[13];
5536 env->xregs[14] = env->regs[14];
5537 } else {
5538 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5539 /* HYP is an exception in that it is copied from r14 */
5540 if (mode == ARM_CPU_MODE_HYP) {
5541 env->xregs[14] = env->regs[14];
5542 } else {
5543 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5547 if (mode == ARM_CPU_MODE_HYP) {
5548 env->xregs[15] = env->regs[13];
5549 } else {
5550 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5553 if (mode == ARM_CPU_MODE_IRQ) {
5554 env->xregs[16] = env->regs[14];
5555 env->xregs[17] = env->regs[13];
5556 } else {
5557 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5558 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5561 if (mode == ARM_CPU_MODE_SVC) {
5562 env->xregs[18] = env->regs[14];
5563 env->xregs[19] = env->regs[13];
5564 } else {
5565 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5566 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5569 if (mode == ARM_CPU_MODE_ABT) {
5570 env->xregs[20] = env->regs[14];
5571 env->xregs[21] = env->regs[13];
5572 } else {
5573 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5574 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5577 if (mode == ARM_CPU_MODE_UND) {
5578 env->xregs[22] = env->regs[14];
5579 env->xregs[23] = env->regs[13];
5580 } else {
5581 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5582 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5585 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5586 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5587 * FIQ bank for r8-r14.
5589 if (mode == ARM_CPU_MODE_FIQ) {
5590 for (i = 24; i < 31; i++) {
5591 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5593 } else {
5594 for (i = 24; i < 29; i++) {
5595 env->xregs[i] = env->fiq_regs[i - 24];
5597 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5598 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5601 env->pc = env->regs[15];
5604 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5605 * register set. This is necessary when switching between AArch32 and AArch64
5606 * execution state.
5608 void aarch64_sync_64_to_32(CPUARMState *env)
5610 int i;
5611 uint32_t mode = env->uncached_cpsr & CPSR_M;
5613 /* We can blanket copy X[0:7] to R[0:7] */
5614 for (i = 0; i < 8; i++) {
5615 env->regs[i] = env->xregs[i];
5618 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5619 * Otherwise, we copy x8-x12 into the banked user regs.
5621 if (mode == ARM_CPU_MODE_FIQ) {
5622 for (i = 8; i < 13; i++) {
5623 env->usr_regs[i - 8] = env->xregs[i];
5625 } else {
5626 for (i = 8; i < 13; i++) {
5627 env->regs[i] = env->xregs[i];
5631 /* Registers r13 & r14 depend on the current mode.
5632 * If we are in a given mode, we copy the corresponding x registers to r13
5633 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5634 * for the mode.
5636 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5637 env->regs[13] = env->xregs[13];
5638 env->regs[14] = env->xregs[14];
5639 } else {
5640 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5642 /* HYP is an exception in that it does not have its own banked r14 but
5643 * shares the USR r14
5645 if (mode == ARM_CPU_MODE_HYP) {
5646 env->regs[14] = env->xregs[14];
5647 } else {
5648 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5652 if (mode == ARM_CPU_MODE_HYP) {
5653 env->regs[13] = env->xregs[15];
5654 } else {
5655 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5658 if (mode == ARM_CPU_MODE_IRQ) {
5659 env->regs[14] = env->xregs[16];
5660 env->regs[13] = env->xregs[17];
5661 } else {
5662 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5663 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
5666 if (mode == ARM_CPU_MODE_SVC) {
5667 env->regs[14] = env->xregs[18];
5668 env->regs[13] = env->xregs[19];
5669 } else {
5670 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5671 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
5674 if (mode == ARM_CPU_MODE_ABT) {
5675 env->regs[14] = env->xregs[20];
5676 env->regs[13] = env->xregs[21];
5677 } else {
5678 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5679 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
5682 if (mode == ARM_CPU_MODE_UND) {
5683 env->regs[14] = env->xregs[22];
5684 env->regs[13] = env->xregs[23];
5685 } else {
5686 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5687 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
5690 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5691 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5692 * FIQ bank for r8-r14.
5694 if (mode == ARM_CPU_MODE_FIQ) {
5695 for (i = 24; i < 31; i++) {
5696 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5698 } else {
5699 for (i = 24; i < 29; i++) {
5700 env->fiq_regs[i - 24] = env->xregs[i];
5702 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5703 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5706 env->regs[15] = env->pc;
5709 /* Handle a CPU exception. */
5710 void arm_cpu_do_interrupt(CPUState *cs)
5712 ARMCPU *cpu = ARM_CPU(cs);
5713 CPUARMState *env = &cpu->env;
5714 uint32_t addr;
5715 uint32_t mask;
5716 int new_mode;
5717 uint32_t offset;
5718 uint32_t moe;
5720 assert(!IS_M(env));
5722 arm_log_exception(cs->exception_index);
5724 if (arm_is_psci_call(cpu, cs->exception_index)) {
5725 arm_handle_psci_call(cpu);
5726 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
5727 return;
5730 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5731 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5732 case EC_BREAKPOINT:
5733 case EC_BREAKPOINT_SAME_EL:
5734 moe = 1;
5735 break;
5736 case EC_WATCHPOINT:
5737 case EC_WATCHPOINT_SAME_EL:
5738 moe = 10;
5739 break;
5740 case EC_AA32_BKPT:
5741 moe = 3;
5742 break;
5743 case EC_VECTORCATCH:
5744 moe = 5;
5745 break;
5746 default:
5747 moe = 0;
5748 break;
5751 if (moe) {
5752 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5755 /* TODO: Vectored interrupt controller. */
5756 switch (cs->exception_index) {
5757 case EXCP_UDEF:
5758 new_mode = ARM_CPU_MODE_UND;
5759 addr = 0x04;
5760 mask = CPSR_I;
5761 if (env->thumb)
5762 offset = 2;
5763 else
5764 offset = 4;
5765 break;
5766 case EXCP_SWI:
5767 if (semihosting_enabled()) {
5768 /* Check for semihosting interrupt. */
5769 if (env->thumb) {
5770 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
5771 & 0xff;
5772 } else {
5773 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
5774 & 0xffffff;
5776 /* Only intercept calls from privileged modes, to provide some
5777 semblance of security. */
5778 if (((mask == 0x123456 && !env->thumb)
5779 || (mask == 0xab && env->thumb))
5780 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5781 qemu_log_mask(CPU_LOG_INT,
5782 "...handling as semihosting call 0x%x\n",
5783 env->regs[0]);
5784 env->regs[0] = do_arm_semihosting(env);
5785 return;
5788 new_mode = ARM_CPU_MODE_SVC;
5789 addr = 0x08;
5790 mask = CPSR_I;
5791 /* The PC already points to the next instruction. */
5792 offset = 0;
5793 break;
5794 case EXCP_BKPT:
5795 /* See if this is a semihosting syscall. */
5796 if (env->thumb && semihosting_enabled()) {
5797 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5798 if (mask == 0xab
5799 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5800 env->regs[15] += 2;
5801 qemu_log_mask(CPU_LOG_INT,
5802 "...handling as semihosting call 0x%x\n",
5803 env->regs[0]);
5804 env->regs[0] = do_arm_semihosting(env);
5805 return;
5808 env->exception.fsr = 2;
5809 /* Fall through to prefetch abort. */
5810 case EXCP_PREFETCH_ABORT:
5811 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
5812 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
5813 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
5814 env->exception.fsr, (uint32_t)env->exception.vaddress);
5815 new_mode = ARM_CPU_MODE_ABT;
5816 addr = 0x0c;
5817 mask = CPSR_A | CPSR_I;
5818 offset = 4;
5819 break;
5820 case EXCP_DATA_ABORT:
5821 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
5822 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
5823 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
5824 env->exception.fsr,
5825 (uint32_t)env->exception.vaddress);
5826 new_mode = ARM_CPU_MODE_ABT;
5827 addr = 0x10;
5828 mask = CPSR_A | CPSR_I;
5829 offset = 8;
5830 break;
5831 case EXCP_IRQ:
5832 new_mode = ARM_CPU_MODE_IRQ;
5833 addr = 0x18;
5834 /* Disable IRQ and imprecise data aborts. */
5835 mask = CPSR_A | CPSR_I;
5836 offset = 4;
5837 if (env->cp15.scr_el3 & SCR_IRQ) {
5838 /* IRQ routed to monitor mode */
5839 new_mode = ARM_CPU_MODE_MON;
5840 mask |= CPSR_F;
5842 break;
5843 case EXCP_FIQ:
5844 new_mode = ARM_CPU_MODE_FIQ;
5845 addr = 0x1c;
5846 /* Disable FIQ, IRQ and imprecise data aborts. */
5847 mask = CPSR_A | CPSR_I | CPSR_F;
5848 if (env->cp15.scr_el3 & SCR_FIQ) {
5849 /* FIQ routed to monitor mode */
5850 new_mode = ARM_CPU_MODE_MON;
5852 offset = 4;
5853 break;
5854 case EXCP_SMC:
5855 new_mode = ARM_CPU_MODE_MON;
5856 addr = 0x08;
5857 mask = CPSR_A | CPSR_I | CPSR_F;
5858 offset = 0;
5859 break;
5860 default:
5861 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5862 return; /* Never happens. Keep compiler happy. */
5865 if (new_mode == ARM_CPU_MODE_MON) {
5866 addr += env->cp15.mvbar;
5867 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
5868 /* High vectors. When enabled, base address cannot be remapped. */
5869 addr += 0xffff0000;
5870 } else {
5871 /* ARM v7 architectures provide a vector base address register to remap
5872 * the interrupt vector table.
5873 * This register is only followed in non-monitor mode, and is banked.
5874 * Note: only bits 31:5 are valid.
5876 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
5879 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
5880 env->cp15.scr_el3 &= ~SCR_NS;
5883 switch_mode (env, new_mode);
5884 /* For exceptions taken to AArch32 we must clear the SS bit in both
5885 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5887 env->uncached_cpsr &= ~PSTATE_SS;
5888 env->spsr = cpsr_read(env);
5889 /* Clear IT bits. */
5890 env->condexec_bits = 0;
5891 /* Switch to the new mode, and to the correct instruction set. */
5892 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
5893 env->daif |= mask;
5894 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5895 * and we should just guard the thumb mode on V4 */
5896 if (arm_feature(env, ARM_FEATURE_V4T)) {
5897 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
5899 env->regs[14] = env->regs[15] + offset;
5900 env->regs[15] = addr;
5901 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
5905 /* Return the exception level which controls this address translation regime */
5906 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
5908 switch (mmu_idx) {
5909 case ARMMMUIdx_S2NS:
5910 case ARMMMUIdx_S1E2:
5911 return 2;
5912 case ARMMMUIdx_S1E3:
5913 return 3;
5914 case ARMMMUIdx_S1SE0:
5915 return arm_el_is_aa64(env, 3) ? 1 : 3;
5916 case ARMMMUIdx_S1SE1:
5917 case ARMMMUIdx_S1NSE0:
5918 case ARMMMUIdx_S1NSE1:
5919 return 1;
5920 default:
5921 g_assert_not_reached();
5925 /* Return true if this address translation regime is secure */
5926 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
5928 switch (mmu_idx) {
5929 case ARMMMUIdx_S12NSE0:
5930 case ARMMMUIdx_S12NSE1:
5931 case ARMMMUIdx_S1NSE0:
5932 case ARMMMUIdx_S1NSE1:
5933 case ARMMMUIdx_S1E2:
5934 case ARMMMUIdx_S2NS:
5935 return false;
5936 case ARMMMUIdx_S1E3:
5937 case ARMMMUIdx_S1SE0:
5938 case ARMMMUIdx_S1SE1:
5939 return true;
5940 default:
5941 g_assert_not_reached();
5945 /* Return the SCTLR value which controls this address translation regime */
5946 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
5948 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
5951 /* Return true if the specified stage of address translation is disabled */
5952 static inline bool regime_translation_disabled(CPUARMState *env,
5953 ARMMMUIdx mmu_idx)
5955 if (mmu_idx == ARMMMUIdx_S2NS) {
5956 return (env->cp15.hcr_el2 & HCR_VM) == 0;
5958 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
5961 /* Return the TCR controlling this translation regime */
5962 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
5964 if (mmu_idx == ARMMMUIdx_S2NS) {
5965 return &env->cp15.vtcr_el2;
5967 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
5970 /* Return the TTBR associated with this translation regime */
5971 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
5972 int ttbrn)
5974 if (mmu_idx == ARMMMUIdx_S2NS) {
5975 return env->cp15.vttbr_el2;
5977 if (ttbrn == 0) {
5978 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
5979 } else {
5980 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5984 /* Return true if the translation regime is using LPAE format page tables */
5985 static inline bool regime_using_lpae_format(CPUARMState *env,
5986 ARMMMUIdx mmu_idx)
5988 int el = regime_el(env, mmu_idx);
5989 if (el == 2 || arm_el_is_aa64(env, el)) {
5990 return true;
5992 if (arm_feature(env, ARM_FEATURE_LPAE)
5993 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5994 return true;
5996 return false;
5999 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6001 switch (mmu_idx) {
6002 case ARMMMUIdx_S1SE0:
6003 case ARMMMUIdx_S1NSE0:
6004 return true;
6005 default:
6006 return false;
6007 case ARMMMUIdx_S12NSE0:
6008 case ARMMMUIdx_S12NSE1:
6009 g_assert_not_reached();
6013 /* Translate section/page access permissions to page
6014 * R/W protection flags
6016 * @env: CPUARMState
6017 * @mmu_idx: MMU index indicating required translation regime
6018 * @ap: The 3-bit access permissions (AP[2:0])
6019 * @domain_prot: The 2-bit domain access permissions
6021 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6022 int ap, int domain_prot)
6024 bool is_user = regime_is_user(env, mmu_idx);
6026 if (domain_prot == 3) {
6027 return PAGE_READ | PAGE_WRITE;
6030 switch (ap) {
6031 case 0:
6032 if (arm_feature(env, ARM_FEATURE_V7)) {
6033 return 0;
6035 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6036 case SCTLR_S:
6037 return is_user ? 0 : PAGE_READ;
6038 case SCTLR_R:
6039 return PAGE_READ;
6040 default:
6041 return 0;
6043 case 1:
6044 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6045 case 2:
6046 if (is_user) {
6047 return PAGE_READ;
6048 } else {
6049 return PAGE_READ | PAGE_WRITE;
6051 case 3:
6052 return PAGE_READ | PAGE_WRITE;
6053 case 4: /* Reserved. */
6054 return 0;
6055 case 5:
6056 return is_user ? 0 : PAGE_READ;
6057 case 6:
6058 return PAGE_READ;
6059 case 7:
6060 if (!arm_feature(env, ARM_FEATURE_V6K)) {
6061 return 0;
6063 return PAGE_READ;
6064 default:
6065 g_assert_not_reached();
6069 /* Translate section/page access permissions to page
6070 * R/W protection flags.
6072 * @ap: The 2-bit simple AP (AP[2:1])
6073 * @is_user: TRUE if accessing from PL0
6075 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6077 switch (ap) {
6078 case 0:
6079 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6080 case 1:
6081 return PAGE_READ | PAGE_WRITE;
6082 case 2:
6083 return is_user ? 0 : PAGE_READ;
6084 case 3:
6085 return PAGE_READ;
6086 default:
6087 g_assert_not_reached();
6091 static inline int
6092 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6094 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6097 /* Translate S2 section/page access permissions to protection flags
6099 * @env: CPUARMState
6100 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6101 * @xn: XN (execute-never) bit
6103 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6105 int prot = 0;
6107 if (s2ap & 1) {
6108 prot |= PAGE_READ;
6110 if (s2ap & 2) {
6111 prot |= PAGE_WRITE;
6113 if (!xn) {
6114 prot |= PAGE_EXEC;
6116 return prot;
6119 /* Translate section/page access permissions to protection flags
6121 * @env: CPUARMState
6122 * @mmu_idx: MMU index indicating required translation regime
6123 * @is_aa64: TRUE if AArch64
6124 * @ap: The 2-bit simple AP (AP[2:1])
6125 * @ns: NS (non-secure) bit
6126 * @xn: XN (execute-never) bit
6127 * @pxn: PXN (privileged execute-never) bit
6129 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6130 int ap, int ns, int xn, int pxn)
6132 bool is_user = regime_is_user(env, mmu_idx);
6133 int prot_rw, user_rw;
6134 bool have_wxn;
6135 int wxn = 0;
6137 assert(mmu_idx != ARMMMUIdx_S2NS);
6139 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6140 if (is_user) {
6141 prot_rw = user_rw;
6142 } else {
6143 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6146 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6147 return prot_rw;
6150 /* TODO have_wxn should be replaced with
6151 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6152 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6153 * compatible processors have EL2, which is required for [U]WXN.
6155 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6157 if (have_wxn) {
6158 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6161 if (is_aa64) {
6162 switch (regime_el(env, mmu_idx)) {
6163 case 1:
6164 if (!is_user) {
6165 xn = pxn || (user_rw & PAGE_WRITE);
6167 break;
6168 case 2:
6169 case 3:
6170 break;
6172 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6173 switch (regime_el(env, mmu_idx)) {
6174 case 1:
6175 case 3:
6176 if (is_user) {
6177 xn = xn || !(user_rw & PAGE_READ);
6178 } else {
6179 int uwxn = 0;
6180 if (have_wxn) {
6181 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6183 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6184 (uwxn && (user_rw & PAGE_WRITE));
6186 break;
6187 case 2:
6188 break;
6190 } else {
6191 xn = wxn = 0;
6194 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6195 return prot_rw;
6197 return prot_rw | PAGE_EXEC;
6200 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6201 uint32_t *table, uint32_t address)
6203 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6204 TCR *tcr = regime_tcr(env, mmu_idx);
6206 if (address & tcr->mask) {
6207 if (tcr->raw_tcr & TTBCR_PD1) {
6208 /* Translation table walk disabled for TTBR1 */
6209 return false;
6211 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6212 } else {
6213 if (tcr->raw_tcr & TTBCR_PD0) {
6214 /* Translation table walk disabled for TTBR0 */
6215 return false;
6217 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6219 *table |= (address >> 18) & 0x3ffc;
6220 return true;
6223 /* Translate a S1 pagetable walk through S2 if needed. */
6224 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6225 hwaddr addr, MemTxAttrs txattrs,
6226 uint32_t *fsr,
6227 ARMMMUFaultInfo *fi)
6229 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6230 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6231 target_ulong s2size;
6232 hwaddr s2pa;
6233 int s2prot;
6234 int ret;
6236 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
6237 &txattrs, &s2prot, &s2size, fsr, fi);
6238 if (ret) {
6239 fi->s2addr = addr;
6240 fi->stage2 = true;
6241 fi->s1ptw = true;
6242 return ~0;
6244 addr = s2pa;
6246 return addr;
6249 /* All loads done in the course of a page table walk go through here.
6250 * TODO: rather than ignoring errors from physical memory reads (which
6251 * are external aborts in ARM terminology) we should propagate this
6252 * error out so that we can turn it into a Data Abort if this walk
6253 * was being done for a CPU load/store or an address translation instruction
6254 * (but not if it was for a debug access).
6256 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6257 ARMMMUIdx mmu_idx, uint32_t *fsr,
6258 ARMMMUFaultInfo *fi)
6260 ARMCPU *cpu = ARM_CPU(cs);
6261 CPUARMState *env = &cpu->env;
6262 MemTxAttrs attrs = {};
6264 attrs.secure = is_secure;
6265 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6266 if (fi->s1ptw) {
6267 return 0;
6269 return address_space_ldl(cs->as, addr, attrs, NULL);
6272 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6273 ARMMMUIdx mmu_idx, uint32_t *fsr,
6274 ARMMMUFaultInfo *fi)
6276 ARMCPU *cpu = ARM_CPU(cs);
6277 CPUARMState *env = &cpu->env;
6278 MemTxAttrs attrs = {};
6280 attrs.secure = is_secure;
6281 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6282 if (fi->s1ptw) {
6283 return 0;
6285 return address_space_ldq(cs->as, addr, attrs, NULL);
6288 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6289 int access_type, ARMMMUIdx mmu_idx,
6290 hwaddr *phys_ptr, int *prot,
6291 target_ulong *page_size, uint32_t *fsr,
6292 ARMMMUFaultInfo *fi)
6294 CPUState *cs = CPU(arm_env_get_cpu(env));
6295 int code;
6296 uint32_t table;
6297 uint32_t desc;
6298 int type;
6299 int ap;
6300 int domain = 0;
6301 int domain_prot;
6302 hwaddr phys_addr;
6303 uint32_t dacr;
6305 /* Pagetable walk. */
6306 /* Lookup l1 descriptor. */
6307 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6308 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6309 code = 5;
6310 goto do_fault;
6312 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6313 mmu_idx, fsr, fi);
6314 type = (desc & 3);
6315 domain = (desc >> 5) & 0x0f;
6316 if (regime_el(env, mmu_idx) == 1) {
6317 dacr = env->cp15.dacr_ns;
6318 } else {
6319 dacr = env->cp15.dacr_s;
6321 domain_prot = (dacr >> (domain * 2)) & 3;
6322 if (type == 0) {
6323 /* Section translation fault. */
6324 code = 5;
6325 goto do_fault;
6327 if (domain_prot == 0 || domain_prot == 2) {
6328 if (type == 2)
6329 code = 9; /* Section domain fault. */
6330 else
6331 code = 11; /* Page domain fault. */
6332 goto do_fault;
6334 if (type == 2) {
6335 /* 1Mb section. */
6336 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6337 ap = (desc >> 10) & 3;
6338 code = 13;
6339 *page_size = 1024 * 1024;
6340 } else {
6341 /* Lookup l2 entry. */
6342 if (type == 1) {
6343 /* Coarse pagetable. */
6344 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6345 } else {
6346 /* Fine pagetable. */
6347 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6349 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6350 mmu_idx, fsr, fi);
6351 switch (desc & 3) {
6352 case 0: /* Page translation fault. */
6353 code = 7;
6354 goto do_fault;
6355 case 1: /* 64k page. */
6356 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6357 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
6358 *page_size = 0x10000;
6359 break;
6360 case 2: /* 4k page. */
6361 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6362 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
6363 *page_size = 0x1000;
6364 break;
6365 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6366 if (type == 1) {
6367 /* ARMv6/XScale extended small page format */
6368 if (arm_feature(env, ARM_FEATURE_XSCALE)
6369 || arm_feature(env, ARM_FEATURE_V6)) {
6370 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6371 *page_size = 0x1000;
6372 } else {
6373 /* UNPREDICTABLE in ARMv5; we choose to take a
6374 * page translation fault.
6376 code = 7;
6377 goto do_fault;
6379 } else {
6380 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
6381 *page_size = 0x400;
6383 ap = (desc >> 4) & 3;
6384 break;
6385 default:
6386 /* Never happens, but compiler isn't smart enough to tell. */
6387 abort();
6389 code = 15;
6391 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6392 *prot |= *prot ? PAGE_EXEC : 0;
6393 if (!(*prot & (1 << access_type))) {
6394 /* Access permission fault. */
6395 goto do_fault;
6397 *phys_ptr = phys_addr;
6398 return false;
6399 do_fault:
6400 *fsr = code | (domain << 4);
6401 return true;
6404 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
6405 int access_type, ARMMMUIdx mmu_idx,
6406 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6407 target_ulong *page_size, uint32_t *fsr,
6408 ARMMMUFaultInfo *fi)
6410 CPUState *cs = CPU(arm_env_get_cpu(env));
6411 int code;
6412 uint32_t table;
6413 uint32_t desc;
6414 uint32_t xn;
6415 uint32_t pxn = 0;
6416 int type;
6417 int ap;
6418 int domain = 0;
6419 int domain_prot;
6420 hwaddr phys_addr;
6421 uint32_t dacr;
6422 bool ns;
6424 /* Pagetable walk. */
6425 /* Lookup l1 descriptor. */
6426 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6427 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6428 code = 5;
6429 goto do_fault;
6431 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6432 mmu_idx, fsr, fi);
6433 type = (desc & 3);
6434 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
6435 /* Section translation fault, or attempt to use the encoding
6436 * which is Reserved on implementations without PXN.
6438 code = 5;
6439 goto do_fault;
6441 if ((type == 1) || !(desc & (1 << 18))) {
6442 /* Page or Section. */
6443 domain = (desc >> 5) & 0x0f;
6445 if (regime_el(env, mmu_idx) == 1) {
6446 dacr = env->cp15.dacr_ns;
6447 } else {
6448 dacr = env->cp15.dacr_s;
6450 domain_prot = (dacr >> (domain * 2)) & 3;
6451 if (domain_prot == 0 || domain_prot == 2) {
6452 if (type != 1) {
6453 code = 9; /* Section domain fault. */
6454 } else {
6455 code = 11; /* Page domain fault. */
6457 goto do_fault;
6459 if (type != 1) {
6460 if (desc & (1 << 18)) {
6461 /* Supersection. */
6462 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
6463 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
6464 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
6465 *page_size = 0x1000000;
6466 } else {
6467 /* Section. */
6468 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6469 *page_size = 0x100000;
6471 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
6472 xn = desc & (1 << 4);
6473 pxn = desc & 1;
6474 code = 13;
6475 ns = extract32(desc, 19, 1);
6476 } else {
6477 if (arm_feature(env, ARM_FEATURE_PXN)) {
6478 pxn = (desc >> 2) & 1;
6480 ns = extract32(desc, 3, 1);
6481 /* Lookup l2 entry. */
6482 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6483 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6484 mmu_idx, fsr, fi);
6485 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
6486 switch (desc & 3) {
6487 case 0: /* Page translation fault. */
6488 code = 7;
6489 goto do_fault;
6490 case 1: /* 64k page. */
6491 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6492 xn = desc & (1 << 15);
6493 *page_size = 0x10000;
6494 break;
6495 case 2: case 3: /* 4k page. */
6496 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6497 xn = desc & 1;
6498 *page_size = 0x1000;
6499 break;
6500 default:
6501 /* Never happens, but compiler isn't smart enough to tell. */
6502 abort();
6504 code = 15;
6506 if (domain_prot == 3) {
6507 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6508 } else {
6509 if (pxn && !regime_is_user(env, mmu_idx)) {
6510 xn = 1;
6512 if (xn && access_type == 2)
6513 goto do_fault;
6515 if (arm_feature(env, ARM_FEATURE_V6K) &&
6516 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
6517 /* The simplified model uses AP[0] as an access control bit. */
6518 if ((ap & 1) == 0) {
6519 /* Access flag fault. */
6520 code = (code == 15) ? 6 : 3;
6521 goto do_fault;
6523 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6524 } else {
6525 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6527 if (*prot && !xn) {
6528 *prot |= PAGE_EXEC;
6530 if (!(*prot & (1 << access_type))) {
6531 /* Access permission fault. */
6532 goto do_fault;
6535 if (ns) {
6536 /* The NS bit will (as required by the architecture) have no effect if
6537 * the CPU doesn't support TZ or this is a non-secure translation
6538 * regime, because the attribute will already be non-secure.
6540 attrs->secure = false;
6542 *phys_ptr = phys_addr;
6543 return false;
6544 do_fault:
6545 *fsr = code | (domain << 4);
6546 return true;
6549 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6550 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6552 typedef enum {
6553 translation_fault = 1,
6554 access_fault = 2,
6555 permission_fault = 3,
6556 } MMUFaultType;
6559 * check_s2_startlevel
6560 * @cpu: ARMCPU
6561 * @is_aa64: True if the translation regime is in AArch64 state
6562 * @startlevel: Suggested starting level
6563 * @inputsize: Bitsize of IPAs
6564 * @stride: Page-table stride (See the ARM ARM)
6566 * Returns true if the suggested starting level is OK and false otherwise.
6568 static bool check_s2_startlevel(ARMCPU *cpu, bool is_aa64, int level,
6569 int inputsize, int stride)
6571 /* Negative levels are never allowed. */
6572 if (level < 0) {
6573 return false;
6576 if (is_aa64) {
6577 unsigned int pamax = arm_pamax(cpu);
6579 switch (stride) {
6580 case 13: /* 64KB Pages. */
6581 if (level == 0 || (level == 1 && pamax <= 42)) {
6582 return false;
6584 break;
6585 case 11: /* 16KB Pages. */
6586 if (level == 0 || (level == 1 && pamax <= 40)) {
6587 return false;
6589 break;
6590 case 9: /* 4KB Pages. */
6591 if (level == 0 && pamax <= 42) {
6592 return false;
6594 break;
6595 default:
6596 g_assert_not_reached();
6598 } else {
6599 const int grainsize = stride + 3;
6600 int startsizecheck;
6602 /* AArch32 only supports 4KB pages. Assert on that. */
6603 assert(stride == 9);
6605 if (level == 0) {
6606 return false;
6609 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
6610 if (startsizecheck < 1 || startsizecheck > stride + 4) {
6611 return false;
6614 return true;
6617 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
6618 int access_type, ARMMMUIdx mmu_idx,
6619 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
6620 target_ulong *page_size_ptr, uint32_t *fsr,
6621 ARMMMUFaultInfo *fi)
6623 ARMCPU *cpu = arm_env_get_cpu(env);
6624 CPUState *cs = CPU(cpu);
6625 /* Read an LPAE long-descriptor translation table. */
6626 MMUFaultType fault_type = translation_fault;
6627 uint32_t level = 1;
6628 uint32_t epd = 0;
6629 int32_t t0sz, t1sz;
6630 uint32_t tg;
6631 uint64_t ttbr;
6632 int ttbr_select;
6633 hwaddr descaddr, descmask;
6634 uint32_t tableattrs;
6635 target_ulong page_size;
6636 uint32_t attrs;
6637 int32_t stride = 9;
6638 int32_t va_size = 32;
6639 int inputsize;
6640 int32_t tbi = 0;
6641 TCR *tcr = regime_tcr(env, mmu_idx);
6642 int ap, ns, xn, pxn;
6643 uint32_t el = regime_el(env, mmu_idx);
6644 bool ttbr1_valid = true;
6646 /* TODO:
6647 * This code does not handle the different format TCR for VTCR_EL2.
6648 * This code also does not support shareability levels.
6649 * Attribute and permission bit handling should also be checked when adding
6650 * support for those page table walks.
6652 if (arm_el_is_aa64(env, el)) {
6653 va_size = 64;
6654 if (el > 1) {
6655 if (mmu_idx != ARMMMUIdx_S2NS) {
6656 tbi = extract64(tcr->raw_tcr, 20, 1);
6658 } else {
6659 if (extract64(address, 55, 1)) {
6660 tbi = extract64(tcr->raw_tcr, 38, 1);
6661 } else {
6662 tbi = extract64(tcr->raw_tcr, 37, 1);
6665 tbi *= 8;
6667 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6668 * invalid.
6670 if (el > 1) {
6671 ttbr1_valid = false;
6673 } else {
6674 /* There is no TTBR1 for EL2 */
6675 if (el == 2) {
6676 ttbr1_valid = false;
6680 /* Determine whether this address is in the region controlled by
6681 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6682 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6683 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6685 if (va_size == 64) {
6686 /* AArch64 translation. */
6687 t0sz = extract32(tcr->raw_tcr, 0, 6);
6688 t0sz = MIN(t0sz, 39);
6689 t0sz = MAX(t0sz, 16);
6690 } else if (mmu_idx != ARMMMUIdx_S2NS) {
6691 /* AArch32 stage 1 translation. */
6692 t0sz = extract32(tcr->raw_tcr, 0, 3);
6693 } else {
6694 /* AArch32 stage 2 translation. */
6695 bool sext = extract32(tcr->raw_tcr, 4, 1);
6696 bool sign = extract32(tcr->raw_tcr, 3, 1);
6697 t0sz = sextract32(tcr->raw_tcr, 0, 4);
6699 /* If the sign-extend bit is not the same as t0sz[3], the result
6700 * is unpredictable. Flag this as a guest error. */
6701 if (sign != sext) {
6702 qemu_log_mask(LOG_GUEST_ERROR,
6703 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
6706 t1sz = extract32(tcr->raw_tcr, 16, 6);
6707 if (va_size == 64) {
6708 t1sz = MIN(t1sz, 39);
6709 t1sz = MAX(t1sz, 16);
6711 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
6712 /* there is a ttbr0 region and we are in it (high bits all zero) */
6713 ttbr_select = 0;
6714 } else if (ttbr1_valid && t1sz &&
6715 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
6716 /* there is a ttbr1 region and we are in it (high bits all one) */
6717 ttbr_select = 1;
6718 } else if (!t0sz) {
6719 /* ttbr0 region is "everything not in the ttbr1 region" */
6720 ttbr_select = 0;
6721 } else if (!t1sz && ttbr1_valid) {
6722 /* ttbr1 region is "everything not in the ttbr0 region" */
6723 ttbr_select = 1;
6724 } else {
6725 /* in the gap between the two regions, this is a Translation fault */
6726 fault_type = translation_fault;
6727 goto do_fault;
6730 /* Note that QEMU ignores shareability and cacheability attributes,
6731 * so we don't need to do anything with the SH, ORGN, IRGN fields
6732 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6733 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6734 * implement any ASID-like capability so we can ignore it (instead
6735 * we will always flush the TLB any time the ASID is changed).
6737 if (ttbr_select == 0) {
6738 ttbr = regime_ttbr(env, mmu_idx, 0);
6739 if (el < 2) {
6740 epd = extract32(tcr->raw_tcr, 7, 1);
6742 inputsize = va_size - t0sz;
6744 tg = extract32(tcr->raw_tcr, 14, 2);
6745 if (tg == 1) { /* 64KB pages */
6746 stride = 13;
6748 if (tg == 2) { /* 16KB pages */
6749 stride = 11;
6751 } else {
6752 /* We should only be here if TTBR1 is valid */
6753 assert(ttbr1_valid);
6755 ttbr = regime_ttbr(env, mmu_idx, 1);
6756 epd = extract32(tcr->raw_tcr, 23, 1);
6757 inputsize = va_size - t1sz;
6759 tg = extract32(tcr->raw_tcr, 30, 2);
6760 if (tg == 3) { /* 64KB pages */
6761 stride = 13;
6763 if (tg == 1) { /* 16KB pages */
6764 stride = 11;
6768 /* Here we should have set up all the parameters for the translation:
6769 * va_size, inputsize, ttbr, epd, stride, tbi
6772 if (epd) {
6773 /* Translation table walk disabled => Translation fault on TLB miss
6774 * Note: This is always 0 on 64-bit EL2 and EL3.
6776 goto do_fault;
6779 if (mmu_idx != ARMMMUIdx_S2NS) {
6780 /* The starting level depends on the virtual address size (which can
6781 * be up to 48 bits) and the translation granule size. It indicates
6782 * the number of strides (stride bits at a time) needed to
6783 * consume the bits of the input address. In the pseudocode this is:
6784 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6785 * where their 'inputsize' is our 'inputsize', 'grainsize' is
6786 * our 'stride + 3' and 'stride' is our 'stride'.
6787 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6788 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
6789 * = 4 - (inputsize - 4) / stride;
6791 level = 4 - (inputsize - 4) / stride;
6792 } else {
6793 /* For stage 2 translations the starting level is specified by the
6794 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
6796 int startlevel = extract32(tcr->raw_tcr, 6, 2);
6797 bool ok;
6799 if (va_size == 32 || stride == 9) {
6800 /* AArch32 or 4KB pages */
6801 level = 2 - startlevel;
6802 } else {
6803 /* 16KB or 64KB pages */
6804 level = 3 - startlevel;
6807 /* Check that the starting level is valid. */
6808 ok = check_s2_startlevel(cpu, va_size == 64, level,
6809 inputsize, stride);
6810 if (!ok) {
6811 /* AArch64 reports these as level 0 faults.
6812 * AArch32 reports these as level 1 faults.
6814 level = va_size == 64 ? 0 : 1;
6815 fault_type = translation_fault;
6816 goto do_fault;
6820 /* Clear the vaddr bits which aren't part of the within-region address,
6821 * so that we don't have to special case things when calculating the
6822 * first descriptor address.
6824 if (va_size != inputsize) {
6825 address &= (1ULL << inputsize) - 1;
6828 descmask = (1ULL << (stride + 3)) - 1;
6830 /* Now we can extract the actual base address from the TTBR */
6831 descaddr = extract64(ttbr, 0, 48);
6832 descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1);
6834 /* Secure accesses start with the page table in secure memory and
6835 * can be downgraded to non-secure at any step. Non-secure accesses
6836 * remain non-secure. We implement this by just ORing in the NSTable/NS
6837 * bits at each step.
6839 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
6840 for (;;) {
6841 uint64_t descriptor;
6842 bool nstable;
6844 descaddr |= (address >> (stride * (4 - level))) & descmask;
6845 descaddr &= ~7ULL;
6846 nstable = extract32(tableattrs, 4, 1);
6847 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
6848 if (fi->s1ptw) {
6849 goto do_fault;
6852 if (!(descriptor & 1) ||
6853 (!(descriptor & 2) && (level == 3))) {
6854 /* Invalid, or the Reserved level 3 encoding */
6855 goto do_fault;
6857 descaddr = descriptor & 0xfffffff000ULL;
6859 if ((descriptor & 2) && (level < 3)) {
6860 /* Table entry. The top five bits are attributes which may
6861 * propagate down through lower levels of the table (and
6862 * which are all arranged so that 0 means "no effect", so
6863 * we can gather them up by ORing in the bits at each level).
6865 tableattrs |= extract64(descriptor, 59, 5);
6866 level++;
6867 continue;
6869 /* Block entry at level 1 or 2, or page entry at level 3.
6870 * These are basically the same thing, although the number
6871 * of bits we pull in from the vaddr varies.
6873 page_size = (1ULL << ((stride * (4 - level)) + 3));
6874 descaddr |= (address & (page_size - 1));
6875 /* Extract attributes from the descriptor */
6876 attrs = extract64(descriptor, 2, 10)
6877 | (extract64(descriptor, 52, 12) << 10);
6879 if (mmu_idx == ARMMMUIdx_S2NS) {
6880 /* Stage 2 table descriptors do not include any attribute fields */
6881 break;
6883 /* Merge in attributes from table descriptors */
6884 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
6885 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
6886 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6887 * means "force PL1 access only", which means forcing AP[1] to 0.
6889 if (extract32(tableattrs, 2, 1)) {
6890 attrs &= ~(1 << 4);
6892 attrs |= nstable << 3; /* NS */
6893 break;
6895 /* Here descaddr is the final physical address, and attributes
6896 * are all in attrs.
6898 fault_type = access_fault;
6899 if ((attrs & (1 << 8)) == 0) {
6900 /* Access flag */
6901 goto do_fault;
6904 ap = extract32(attrs, 4, 2);
6905 xn = extract32(attrs, 12, 1);
6907 if (mmu_idx == ARMMMUIdx_S2NS) {
6908 ns = true;
6909 *prot = get_S2prot(env, ap, xn);
6910 } else {
6911 ns = extract32(attrs, 3, 1);
6912 pxn = extract32(attrs, 11, 1);
6913 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
6916 fault_type = permission_fault;
6917 if (!(*prot & (1 << access_type))) {
6918 goto do_fault;
6921 if (ns) {
6922 /* The NS bit will (as required by the architecture) have no effect if
6923 * the CPU doesn't support TZ or this is a non-secure translation
6924 * regime, because the attribute will already be non-secure.
6926 txattrs->secure = false;
6928 *phys_ptr = descaddr;
6929 *page_size_ptr = page_size;
6930 return false;
6932 do_fault:
6933 /* Long-descriptor format IFSR/DFSR value */
6934 *fsr = (1 << 9) | (fault_type << 2) | level;
6935 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
6936 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
6937 return true;
6940 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
6941 ARMMMUIdx mmu_idx,
6942 int32_t address, int *prot)
6944 *prot = PAGE_READ | PAGE_WRITE;
6945 switch (address) {
6946 case 0xF0000000 ... 0xFFFFFFFF:
6947 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
6948 *prot |= PAGE_EXEC;
6950 break;
6951 case 0x00000000 ... 0x7FFFFFFF:
6952 *prot |= PAGE_EXEC;
6953 break;
6958 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
6959 int access_type, ARMMMUIdx mmu_idx,
6960 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6962 ARMCPU *cpu = arm_env_get_cpu(env);
6963 int n;
6964 bool is_user = regime_is_user(env, mmu_idx);
6966 *phys_ptr = address;
6967 *prot = 0;
6969 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
6970 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6971 } else { /* MPU enabled */
6972 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
6973 /* region search */
6974 uint32_t base = env->pmsav7.drbar[n];
6975 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
6976 uint32_t rmask;
6977 bool srdis = false;
6979 if (!(env->pmsav7.drsr[n] & 0x1)) {
6980 continue;
6983 if (!rsize) {
6984 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
6985 continue;
6987 rsize++;
6988 rmask = (1ull << rsize) - 1;
6990 if (base & rmask) {
6991 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
6992 "to DRSR region size, mask = %" PRIx32,
6993 base, rmask);
6994 continue;
6997 if (address < base || address > base + rmask) {
6998 continue;
7001 /* Region matched */
7003 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7004 int i, snd;
7005 uint32_t srdis_mask;
7007 rsize -= 3; /* sub region size (power of 2) */
7008 snd = ((address - base) >> rsize) & 0x7;
7009 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7011 srdis_mask = srdis ? 0x3 : 0x0;
7012 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7013 /* This will check in groups of 2, 4 and then 8, whether
7014 * the subregion bits are consistent. rsize is incremented
7015 * back up to give the region size, considering consistent
7016 * adjacent subregions as one region. Stop testing if rsize
7017 * is already big enough for an entire QEMU page.
7019 int snd_rounded = snd & ~(i - 1);
7020 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7021 snd_rounded + 8, i);
7022 if (srdis_mask ^ srdis_multi) {
7023 break;
7025 srdis_mask = (srdis_mask << i) | srdis_mask;
7026 rsize++;
7029 if (rsize < TARGET_PAGE_BITS) {
7030 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7031 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7032 rsize, TARGET_PAGE_BITS);
7033 continue;
7035 if (srdis) {
7036 continue;
7038 break;
7041 if (n == -1) { /* no hits */
7042 if (cpu->pmsav7_dregion &&
7043 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7044 /* background fault */
7045 *fsr = 0;
7046 return true;
7048 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7049 } else { /* a MPU hit! */
7050 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7052 if (is_user) { /* User mode AP bit decoding */
7053 switch (ap) {
7054 case 0:
7055 case 1:
7056 case 5:
7057 break; /* no access */
7058 case 3:
7059 *prot |= PAGE_WRITE;
7060 /* fall through */
7061 case 2:
7062 case 6:
7063 *prot |= PAGE_READ | PAGE_EXEC;
7064 break;
7065 default:
7066 qemu_log_mask(LOG_GUEST_ERROR,
7067 "Bad value for AP bits in DRACR %"
7068 PRIx32 "\n", ap);
7070 } else { /* Priv. mode AP bits decoding */
7071 switch (ap) {
7072 case 0:
7073 break; /* no access */
7074 case 1:
7075 case 2:
7076 case 3:
7077 *prot |= PAGE_WRITE;
7078 /* fall through */
7079 case 5:
7080 case 6:
7081 *prot |= PAGE_READ | PAGE_EXEC;
7082 break;
7083 default:
7084 qemu_log_mask(LOG_GUEST_ERROR,
7085 "Bad value for AP bits in DRACR %"
7086 PRIx32 "\n", ap);
7090 /* execute never */
7091 if (env->pmsav7.dracr[n] & (1 << 12)) {
7092 *prot &= ~PAGE_EXEC;
7097 *fsr = 0x00d; /* Permission fault */
7098 return !(*prot & (1 << access_type));
7101 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7102 int access_type, ARMMMUIdx mmu_idx,
7103 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7105 int n;
7106 uint32_t mask;
7107 uint32_t base;
7108 bool is_user = regime_is_user(env, mmu_idx);
7110 *phys_ptr = address;
7111 for (n = 7; n >= 0; n--) {
7112 base = env->cp15.c6_region[n];
7113 if ((base & 1) == 0) {
7114 continue;
7116 mask = 1 << ((base >> 1) & 0x1f);
7117 /* Keep this shift separate from the above to avoid an
7118 (undefined) << 32. */
7119 mask = (mask << 1) - 1;
7120 if (((base ^ address) & ~mask) == 0) {
7121 break;
7124 if (n < 0) {
7125 *fsr = 2;
7126 return true;
7129 if (access_type == 2) {
7130 mask = env->cp15.pmsav5_insn_ap;
7131 } else {
7132 mask = env->cp15.pmsav5_data_ap;
7134 mask = (mask >> (n * 4)) & 0xf;
7135 switch (mask) {
7136 case 0:
7137 *fsr = 1;
7138 return true;
7139 case 1:
7140 if (is_user) {
7141 *fsr = 1;
7142 return true;
7144 *prot = PAGE_READ | PAGE_WRITE;
7145 break;
7146 case 2:
7147 *prot = PAGE_READ;
7148 if (!is_user) {
7149 *prot |= PAGE_WRITE;
7151 break;
7152 case 3:
7153 *prot = PAGE_READ | PAGE_WRITE;
7154 break;
7155 case 5:
7156 if (is_user) {
7157 *fsr = 1;
7158 return true;
7160 *prot = PAGE_READ;
7161 break;
7162 case 6:
7163 *prot = PAGE_READ;
7164 break;
7165 default:
7166 /* Bad permission. */
7167 *fsr = 1;
7168 return true;
7170 *prot |= PAGE_EXEC;
7171 return false;
7174 /* get_phys_addr - get the physical address for this virtual address
7176 * Find the physical address corresponding to the given virtual address,
7177 * by doing a translation table walk on MMU based systems or using the
7178 * MPU state on MPU based systems.
7180 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7181 * prot and page_size may not be filled in, and the populated fsr value provides
7182 * information on why the translation aborted, in the format of a
7183 * DFSR/IFSR fault register, with the following caveats:
7184 * * we honour the short vs long DFSR format differences.
7185 * * the WnR bit is never set (the caller must do this).
7186 * * for PSMAv5 based systems we don't bother to return a full FSR format
7187 * value.
7189 * @env: CPUARMState
7190 * @address: virtual address to get physical address for
7191 * @access_type: 0 for read, 1 for write, 2 for execute
7192 * @mmu_idx: MMU index indicating required translation regime
7193 * @phys_ptr: set to the physical address corresponding to the virtual address
7194 * @attrs: set to the memory transaction attributes to use
7195 * @prot: set to the permissions for the page containing phys_ptr
7196 * @page_size: set to the size of the page containing phys_ptr
7197 * @fsr: set to the DFSR/IFSR value on failure
7199 static bool get_phys_addr(CPUARMState *env, target_ulong address,
7200 int access_type, ARMMMUIdx mmu_idx,
7201 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7202 target_ulong *page_size, uint32_t *fsr,
7203 ARMMMUFaultInfo *fi)
7205 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7206 /* Call ourselves recursively to do the stage 1 and then stage 2
7207 * translations.
7209 if (arm_feature(env, ARM_FEATURE_EL2)) {
7210 hwaddr ipa;
7211 int s2_prot;
7212 int ret;
7214 ret = get_phys_addr(env, address, access_type,
7215 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
7216 prot, page_size, fsr, fi);
7218 /* If S1 fails or S2 is disabled, return early. */
7219 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7220 *phys_ptr = ipa;
7221 return ret;
7224 /* S1 is done. Now do S2 translation. */
7225 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
7226 phys_ptr, attrs, &s2_prot,
7227 page_size, fsr, fi);
7228 fi->s2addr = ipa;
7229 /* Combine the S1 and S2 perms. */
7230 *prot &= s2_prot;
7231 return ret;
7232 } else {
7234 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7236 mmu_idx += ARMMMUIdx_S1NSE0;
7240 /* The page table entries may downgrade secure to non-secure, but
7241 * cannot upgrade an non-secure translation regime's attributes
7242 * to secure.
7244 attrs->secure = regime_is_secure(env, mmu_idx);
7245 attrs->user = regime_is_user(env, mmu_idx);
7247 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7248 * In v7 and earlier it affects all stage 1 translations.
7250 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
7251 && !arm_feature(env, ARM_FEATURE_V8)) {
7252 if (regime_el(env, mmu_idx) == 3) {
7253 address += env->cp15.fcseidr_s;
7254 } else {
7255 address += env->cp15.fcseidr_ns;
7259 /* pmsav7 has special handling for when MPU is disabled so call it before
7260 * the common MMU/MPU disabled check below.
7262 if (arm_feature(env, ARM_FEATURE_MPU) &&
7263 arm_feature(env, ARM_FEATURE_V7)) {
7264 *page_size = TARGET_PAGE_SIZE;
7265 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
7266 phys_ptr, prot, fsr);
7269 if (regime_translation_disabled(env, mmu_idx)) {
7270 /* MMU/MPU disabled. */
7271 *phys_ptr = address;
7272 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7273 *page_size = TARGET_PAGE_SIZE;
7274 return 0;
7277 if (arm_feature(env, ARM_FEATURE_MPU)) {
7278 /* Pre-v7 MPU */
7279 *page_size = TARGET_PAGE_SIZE;
7280 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
7281 phys_ptr, prot, fsr);
7284 if (regime_using_lpae_format(env, mmu_idx)) {
7285 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
7286 attrs, prot, page_size, fsr, fi);
7287 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
7288 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
7289 attrs, prot, page_size, fsr, fi);
7290 } else {
7291 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
7292 prot, page_size, fsr, fi);
7296 /* Walk the page table and (if the mapping exists) add the page
7297 * to the TLB. Return false on success, or true on failure. Populate
7298 * fsr with ARM DFSR/IFSR fault register format value on failure.
7300 bool arm_tlb_fill(CPUState *cs, vaddr address,
7301 int access_type, int mmu_idx, uint32_t *fsr,
7302 ARMMMUFaultInfo *fi)
7304 ARMCPU *cpu = ARM_CPU(cs);
7305 CPUARMState *env = &cpu->env;
7306 hwaddr phys_addr;
7307 target_ulong page_size;
7308 int prot;
7309 int ret;
7310 MemTxAttrs attrs = {};
7312 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
7313 &attrs, &prot, &page_size, fsr, fi);
7314 if (!ret) {
7315 /* Map a single [sub]page. */
7316 phys_addr &= TARGET_PAGE_MASK;
7317 address &= TARGET_PAGE_MASK;
7318 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
7319 prot, mmu_idx, page_size);
7320 return 0;
7323 return ret;
7326 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
7328 ARMCPU *cpu = ARM_CPU(cs);
7329 CPUARMState *env = &cpu->env;
7330 hwaddr phys_addr;
7331 target_ulong page_size;
7332 int prot;
7333 bool ret;
7334 uint32_t fsr;
7335 MemTxAttrs attrs = {};
7336 ARMMMUFaultInfo fi = {};
7338 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
7339 &attrs, &prot, &page_size, &fsr, &fi);
7341 if (ret) {
7342 return -1;
7345 return phys_addr;
7348 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
7350 if ((env->uncached_cpsr & CPSR_M) == mode) {
7351 env->regs[13] = val;
7352 } else {
7353 env->banked_r13[bank_number(mode)] = val;
7357 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
7359 if ((env->uncached_cpsr & CPSR_M) == mode) {
7360 return env->regs[13];
7361 } else {
7362 return env->banked_r13[bank_number(mode)];
7366 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7368 ARMCPU *cpu = arm_env_get_cpu(env);
7370 switch (reg) {
7371 case 0: /* APSR */
7372 return xpsr_read(env) & 0xf8000000;
7373 case 1: /* IAPSR */
7374 return xpsr_read(env) & 0xf80001ff;
7375 case 2: /* EAPSR */
7376 return xpsr_read(env) & 0xff00fc00;
7377 case 3: /* xPSR */
7378 return xpsr_read(env) & 0xff00fdff;
7379 case 5: /* IPSR */
7380 return xpsr_read(env) & 0x000001ff;
7381 case 6: /* EPSR */
7382 return xpsr_read(env) & 0x0700fc00;
7383 case 7: /* IEPSR */
7384 return xpsr_read(env) & 0x0700edff;
7385 case 8: /* MSP */
7386 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7387 case 9: /* PSP */
7388 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
7389 case 16: /* PRIMASK */
7390 return (env->daif & PSTATE_I) != 0;
7391 case 17: /* BASEPRI */
7392 case 18: /* BASEPRI_MAX */
7393 return env->v7m.basepri;
7394 case 19: /* FAULTMASK */
7395 return (env->daif & PSTATE_F) != 0;
7396 case 20: /* CONTROL */
7397 return env->v7m.control;
7398 default:
7399 /* ??? For debugging only. */
7400 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
7401 return 0;
7405 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7407 ARMCPU *cpu = arm_env_get_cpu(env);
7409 switch (reg) {
7410 case 0: /* APSR */
7411 xpsr_write(env, val, 0xf8000000);
7412 break;
7413 case 1: /* IAPSR */
7414 xpsr_write(env, val, 0xf8000000);
7415 break;
7416 case 2: /* EAPSR */
7417 xpsr_write(env, val, 0xfe00fc00);
7418 break;
7419 case 3: /* xPSR */
7420 xpsr_write(env, val, 0xfe00fc00);
7421 break;
7422 case 5: /* IPSR */
7423 /* IPSR bits are readonly. */
7424 break;
7425 case 6: /* EPSR */
7426 xpsr_write(env, val, 0x0600fc00);
7427 break;
7428 case 7: /* IEPSR */
7429 xpsr_write(env, val, 0x0600fc00);
7430 break;
7431 case 8: /* MSP */
7432 if (env->v7m.current_sp)
7433 env->v7m.other_sp = val;
7434 else
7435 env->regs[13] = val;
7436 break;
7437 case 9: /* PSP */
7438 if (env->v7m.current_sp)
7439 env->regs[13] = val;
7440 else
7441 env->v7m.other_sp = val;
7442 break;
7443 case 16: /* PRIMASK */
7444 if (val & 1) {
7445 env->daif |= PSTATE_I;
7446 } else {
7447 env->daif &= ~PSTATE_I;
7449 break;
7450 case 17: /* BASEPRI */
7451 env->v7m.basepri = val & 0xff;
7452 break;
7453 case 18: /* BASEPRI_MAX */
7454 val &= 0xff;
7455 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
7456 env->v7m.basepri = val;
7457 break;
7458 case 19: /* FAULTMASK */
7459 if (val & 1) {
7460 env->daif |= PSTATE_F;
7461 } else {
7462 env->daif &= ~PSTATE_F;
7464 break;
7465 case 20: /* CONTROL */
7466 env->v7m.control = val & 3;
7467 switch_v7m_sp(env, (val & 2) != 0);
7468 break;
7469 default:
7470 /* ??? For debugging only. */
7471 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
7472 return;
7476 #endif
7478 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
7480 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7481 * Note that we do not implement the (architecturally mandated)
7482 * alignment fault for attempts to use this on Device memory
7483 * (which matches the usual QEMU behaviour of not implementing either
7484 * alignment faults or any memory attribute handling).
7487 ARMCPU *cpu = arm_env_get_cpu(env);
7488 uint64_t blocklen = 4 << cpu->dcz_blocksize;
7489 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
7491 #ifndef CONFIG_USER_ONLY
7493 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7494 * the block size so we might have to do more than one TLB lookup.
7495 * We know that in fact for any v8 CPU the page size is at least 4K
7496 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7497 * 1K as an artefact of legacy v5 subpage support being present in the
7498 * same QEMU executable.
7500 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
7501 void *hostaddr[maxidx];
7502 int try, i;
7503 unsigned mmu_idx = cpu_mmu_index(env, false);
7504 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
7506 for (try = 0; try < 2; try++) {
7508 for (i = 0; i < maxidx; i++) {
7509 hostaddr[i] = tlb_vaddr_to_host(env,
7510 vaddr + TARGET_PAGE_SIZE * i,
7511 1, mmu_idx);
7512 if (!hostaddr[i]) {
7513 break;
7516 if (i == maxidx) {
7517 /* If it's all in the TLB it's fair game for just writing to;
7518 * we know we don't need to update dirty status, etc.
7520 for (i = 0; i < maxidx - 1; i++) {
7521 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
7523 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
7524 return;
7526 /* OK, try a store and see if we can populate the tlb. This
7527 * might cause an exception if the memory isn't writable,
7528 * in which case we will longjmp out of here. We must for
7529 * this purpose use the actual register value passed to us
7530 * so that we get the fault address right.
7532 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
7533 /* Now we can populate the other TLB entries, if any */
7534 for (i = 0; i < maxidx; i++) {
7535 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
7536 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
7537 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
7542 /* Slow path (probably attempt to do this to an I/O device or
7543 * similar, or clearing of a block of code we have translations
7544 * cached for). Just do a series of byte writes as the architecture
7545 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7546 * memset(), unmap() sequence here because:
7547 * + we'd need to account for the blocksize being larger than a page
7548 * + the direct-RAM access case is almost always going to be dealt
7549 * with in the fastpath code above, so there's no speed benefit
7550 * + we would have to deal with the map returning NULL because the
7551 * bounce buffer was in use
7553 for (i = 0; i < blocklen; i++) {
7554 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
7557 #else
7558 memset(g2h(vaddr), 0, blocklen);
7559 #endif
7562 /* Note that signed overflow is undefined in C. The following routines are
7563 careful to use unsigned types where modulo arithmetic is required.
7564 Failure to do so _will_ break on newer gcc. */
7566 /* Signed saturating arithmetic. */
7568 /* Perform 16-bit signed saturating addition. */
7569 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
7571 uint16_t res;
7573 res = a + b;
7574 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
7575 if (a & 0x8000)
7576 res = 0x8000;
7577 else
7578 res = 0x7fff;
7580 return res;
7583 /* Perform 8-bit signed saturating addition. */
7584 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
7586 uint8_t res;
7588 res = a + b;
7589 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
7590 if (a & 0x80)
7591 res = 0x80;
7592 else
7593 res = 0x7f;
7595 return res;
7598 /* Perform 16-bit signed saturating subtraction. */
7599 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
7601 uint16_t res;
7603 res = a - b;
7604 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
7605 if (a & 0x8000)
7606 res = 0x8000;
7607 else
7608 res = 0x7fff;
7610 return res;
7613 /* Perform 8-bit signed saturating subtraction. */
7614 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
7616 uint8_t res;
7618 res = a - b;
7619 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
7620 if (a & 0x80)
7621 res = 0x80;
7622 else
7623 res = 0x7f;
7625 return res;
7628 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7629 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7630 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7631 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7632 #define PFX q
7634 #include "op_addsub.h"
7636 /* Unsigned saturating arithmetic. */
7637 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
7639 uint16_t res;
7640 res = a + b;
7641 if (res < a)
7642 res = 0xffff;
7643 return res;
7646 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
7648 if (a > b)
7649 return a - b;
7650 else
7651 return 0;
7654 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
7656 uint8_t res;
7657 res = a + b;
7658 if (res < a)
7659 res = 0xff;
7660 return res;
7663 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
7665 if (a > b)
7666 return a - b;
7667 else
7668 return 0;
7671 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7672 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7673 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7674 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7675 #define PFX uq
7677 #include "op_addsub.h"
7679 /* Signed modulo arithmetic. */
7680 #define SARITH16(a, b, n, op) do { \
7681 int32_t sum; \
7682 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7683 RESULT(sum, n, 16); \
7684 if (sum >= 0) \
7685 ge |= 3 << (n * 2); \
7686 } while(0)
7688 #define SARITH8(a, b, n, op) do { \
7689 int32_t sum; \
7690 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7691 RESULT(sum, n, 8); \
7692 if (sum >= 0) \
7693 ge |= 1 << n; \
7694 } while(0)
7697 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7698 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7699 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7700 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7701 #define PFX s
7702 #define ARITH_GE
7704 #include "op_addsub.h"
7706 /* Unsigned modulo arithmetic. */
7707 #define ADD16(a, b, n) do { \
7708 uint32_t sum; \
7709 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7710 RESULT(sum, n, 16); \
7711 if ((sum >> 16) == 1) \
7712 ge |= 3 << (n * 2); \
7713 } while(0)
7715 #define ADD8(a, b, n) do { \
7716 uint32_t sum; \
7717 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7718 RESULT(sum, n, 8); \
7719 if ((sum >> 8) == 1) \
7720 ge |= 1 << n; \
7721 } while(0)
7723 #define SUB16(a, b, n) do { \
7724 uint32_t sum; \
7725 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7726 RESULT(sum, n, 16); \
7727 if ((sum >> 16) == 0) \
7728 ge |= 3 << (n * 2); \
7729 } while(0)
7731 #define SUB8(a, b, n) do { \
7732 uint32_t sum; \
7733 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7734 RESULT(sum, n, 8); \
7735 if ((sum >> 8) == 0) \
7736 ge |= 1 << n; \
7737 } while(0)
7739 #define PFX u
7740 #define ARITH_GE
7742 #include "op_addsub.h"
7744 /* Halved signed arithmetic. */
7745 #define ADD16(a, b, n) \
7746 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7747 #define SUB16(a, b, n) \
7748 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7749 #define ADD8(a, b, n) \
7750 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7751 #define SUB8(a, b, n) \
7752 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7753 #define PFX sh
7755 #include "op_addsub.h"
7757 /* Halved unsigned arithmetic. */
7758 #define ADD16(a, b, n) \
7759 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7760 #define SUB16(a, b, n) \
7761 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7762 #define ADD8(a, b, n) \
7763 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7764 #define SUB8(a, b, n) \
7765 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7766 #define PFX uh
7768 #include "op_addsub.h"
7770 static inline uint8_t do_usad(uint8_t a, uint8_t b)
7772 if (a > b)
7773 return a - b;
7774 else
7775 return b - a;
7778 /* Unsigned sum of absolute byte differences. */
7779 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
7781 uint32_t sum;
7782 sum = do_usad(a, b);
7783 sum += do_usad(a >> 8, b >> 8);
7784 sum += do_usad(a >> 16, b >>16);
7785 sum += do_usad(a >> 24, b >> 24);
7786 return sum;
7789 /* For ARMv6 SEL instruction. */
7790 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
7792 uint32_t mask;
7794 mask = 0;
7795 if (flags & 1)
7796 mask |= 0xff;
7797 if (flags & 2)
7798 mask |= 0xff00;
7799 if (flags & 4)
7800 mask |= 0xff0000;
7801 if (flags & 8)
7802 mask |= 0xff000000;
7803 return (a & mask) | (b & ~mask);
7806 /* VFP support. We follow the convention used for VFP instructions:
7807 Single precision routines have a "s" suffix, double precision a
7808 "d" suffix. */
7810 /* Convert host exception flags to vfp form. */
7811 static inline int vfp_exceptbits_from_host(int host_bits)
7813 int target_bits = 0;
7815 if (host_bits & float_flag_invalid)
7816 target_bits |= 1;
7817 if (host_bits & float_flag_divbyzero)
7818 target_bits |= 2;
7819 if (host_bits & float_flag_overflow)
7820 target_bits |= 4;
7821 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
7822 target_bits |= 8;
7823 if (host_bits & float_flag_inexact)
7824 target_bits |= 0x10;
7825 if (host_bits & float_flag_input_denormal)
7826 target_bits |= 0x80;
7827 return target_bits;
7830 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
7832 int i;
7833 uint32_t fpscr;
7835 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
7836 | (env->vfp.vec_len << 16)
7837 | (env->vfp.vec_stride << 20);
7838 i = get_float_exception_flags(&env->vfp.fp_status);
7839 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
7840 fpscr |= vfp_exceptbits_from_host(i);
7841 return fpscr;
7844 uint32_t vfp_get_fpscr(CPUARMState *env)
7846 return HELPER(vfp_get_fpscr)(env);
7849 /* Convert vfp exception flags to target form. */
7850 static inline int vfp_exceptbits_to_host(int target_bits)
7852 int host_bits = 0;
7854 if (target_bits & 1)
7855 host_bits |= float_flag_invalid;
7856 if (target_bits & 2)
7857 host_bits |= float_flag_divbyzero;
7858 if (target_bits & 4)
7859 host_bits |= float_flag_overflow;
7860 if (target_bits & 8)
7861 host_bits |= float_flag_underflow;
7862 if (target_bits & 0x10)
7863 host_bits |= float_flag_inexact;
7864 if (target_bits & 0x80)
7865 host_bits |= float_flag_input_denormal;
7866 return host_bits;
7869 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
7871 int i;
7872 uint32_t changed;
7874 changed = env->vfp.xregs[ARM_VFP_FPSCR];
7875 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
7876 env->vfp.vec_len = (val >> 16) & 7;
7877 env->vfp.vec_stride = (val >> 20) & 3;
7879 changed ^= val;
7880 if (changed & (3 << 22)) {
7881 i = (val >> 22) & 3;
7882 switch (i) {
7883 case FPROUNDING_TIEEVEN:
7884 i = float_round_nearest_even;
7885 break;
7886 case FPROUNDING_POSINF:
7887 i = float_round_up;
7888 break;
7889 case FPROUNDING_NEGINF:
7890 i = float_round_down;
7891 break;
7892 case FPROUNDING_ZERO:
7893 i = float_round_to_zero;
7894 break;
7896 set_float_rounding_mode(i, &env->vfp.fp_status);
7898 if (changed & (1 << 24)) {
7899 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7900 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7902 if (changed & (1 << 25))
7903 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
7905 i = vfp_exceptbits_to_host(val);
7906 set_float_exception_flags(i, &env->vfp.fp_status);
7907 set_float_exception_flags(0, &env->vfp.standard_fp_status);
7910 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
7912 HELPER(vfp_set_fpscr)(env, val);
7915 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7917 #define VFP_BINOP(name) \
7918 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7920 float_status *fpst = fpstp; \
7921 return float32_ ## name(a, b, fpst); \
7923 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7925 float_status *fpst = fpstp; \
7926 return float64_ ## name(a, b, fpst); \
7928 VFP_BINOP(add)
7929 VFP_BINOP(sub)
7930 VFP_BINOP(mul)
7931 VFP_BINOP(div)
7932 VFP_BINOP(min)
7933 VFP_BINOP(max)
7934 VFP_BINOP(minnum)
7935 VFP_BINOP(maxnum)
7936 #undef VFP_BINOP
7938 float32 VFP_HELPER(neg, s)(float32 a)
7940 return float32_chs(a);
7943 float64 VFP_HELPER(neg, d)(float64 a)
7945 return float64_chs(a);
7948 float32 VFP_HELPER(abs, s)(float32 a)
7950 return float32_abs(a);
7953 float64 VFP_HELPER(abs, d)(float64 a)
7955 return float64_abs(a);
7958 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
7960 return float32_sqrt(a, &env->vfp.fp_status);
7963 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
7965 return float64_sqrt(a, &env->vfp.fp_status);
7968 /* XXX: check quiet/signaling case */
7969 #define DO_VFP_cmp(p, type) \
7970 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7972 uint32_t flags; \
7973 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7974 case 0: flags = 0x6; break; \
7975 case -1: flags = 0x8; break; \
7976 case 1: flags = 0x2; break; \
7977 default: case 2: flags = 0x3; break; \
7979 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7980 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7982 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7984 uint32_t flags; \
7985 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7986 case 0: flags = 0x6; break; \
7987 case -1: flags = 0x8; break; \
7988 case 1: flags = 0x2; break; \
7989 default: case 2: flags = 0x3; break; \
7991 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7992 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7994 DO_VFP_cmp(s, float32)
7995 DO_VFP_cmp(d, float64)
7996 #undef DO_VFP_cmp
7998 /* Integer to float and float to integer conversions */
8000 #define CONV_ITOF(name, fsz, sign) \
8001 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8003 float_status *fpst = fpstp; \
8004 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8007 #define CONV_FTOI(name, fsz, sign, round) \
8008 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8010 float_status *fpst = fpstp; \
8011 if (float##fsz##_is_any_nan(x)) { \
8012 float_raise(float_flag_invalid, fpst); \
8013 return 0; \
8015 return float##fsz##_to_##sign##int32##round(x, fpst); \
8018 #define FLOAT_CONVS(name, p, fsz, sign) \
8019 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8020 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8021 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8023 FLOAT_CONVS(si, s, 32, )
8024 FLOAT_CONVS(si, d, 64, )
8025 FLOAT_CONVS(ui, s, 32, u)
8026 FLOAT_CONVS(ui, d, 64, u)
8028 #undef CONV_ITOF
8029 #undef CONV_FTOI
8030 #undef FLOAT_CONVS
8032 /* floating point conversion */
8033 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8035 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8036 /* ARM requires that S<->D conversion of any kind of NaN generates
8037 * a quiet NaN by forcing the most significant frac bit to 1.
8039 return float64_maybe_silence_nan(r);
8042 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8044 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8045 /* ARM requires that S<->D conversion of any kind of NaN generates
8046 * a quiet NaN by forcing the most significant frac bit to 1.
8048 return float32_maybe_silence_nan(r);
8051 /* VFP3 fixed point conversion. */
8052 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8053 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8054 void *fpstp) \
8056 float_status *fpst = fpstp; \
8057 float##fsz tmp; \
8058 tmp = itype##_to_##float##fsz(x, fpst); \
8059 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8062 /* Notice that we want only input-denormal exception flags from the
8063 * scalbn operation: the other possible flags (overflow+inexact if
8064 * we overflow to infinity, output-denormal) aren't correct for the
8065 * complete scale-and-convert operation.
8067 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8068 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8069 uint32_t shift, \
8070 void *fpstp) \
8072 float_status *fpst = fpstp; \
8073 int old_exc_flags = get_float_exception_flags(fpst); \
8074 float##fsz tmp; \
8075 if (float##fsz##_is_any_nan(x)) { \
8076 float_raise(float_flag_invalid, fpst); \
8077 return 0; \
8079 tmp = float##fsz##_scalbn(x, shift, fpst); \
8080 old_exc_flags |= get_float_exception_flags(fpst) \
8081 & float_flag_input_denormal; \
8082 set_float_exception_flags(old_exc_flags, fpst); \
8083 return float##fsz##_to_##itype##round(tmp, fpst); \
8086 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8087 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8088 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8089 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8091 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8092 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8093 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8095 VFP_CONV_FIX(sh, d, 64, 64, int16)
8096 VFP_CONV_FIX(sl, d, 64, 64, int32)
8097 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8098 VFP_CONV_FIX(uh, d, 64, 64, uint16)
8099 VFP_CONV_FIX(ul, d, 64, 64, uint32)
8100 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8101 VFP_CONV_FIX(sh, s, 32, 32, int16)
8102 VFP_CONV_FIX(sl, s, 32, 32, int32)
8103 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8104 VFP_CONV_FIX(uh, s, 32, 32, uint16)
8105 VFP_CONV_FIX(ul, s, 32, 32, uint32)
8106 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
8107 #undef VFP_CONV_FIX
8108 #undef VFP_CONV_FIX_FLOAT
8109 #undef VFP_CONV_FLOAT_FIX_ROUND
8111 /* Set the current fp rounding mode and return the old one.
8112 * The argument is a softfloat float_round_ value.
8114 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8116 float_status *fp_status = &env->vfp.fp_status;
8118 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8119 set_float_rounding_mode(rmode, fp_status);
8121 return prev_rmode;
8124 /* Set the current fp rounding mode in the standard fp status and return
8125 * the old one. This is for NEON instructions that need to change the
8126 * rounding mode but wish to use the standard FPSCR values for everything
8127 * else. Always set the rounding mode back to the correct value after
8128 * modifying it.
8129 * The argument is a softfloat float_round_ value.
8131 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8133 float_status *fp_status = &env->vfp.standard_fp_status;
8135 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8136 set_float_rounding_mode(rmode, fp_status);
8138 return prev_rmode;
8141 /* Half precision conversions. */
8142 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
8144 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8145 float32 r = float16_to_float32(make_float16(a), ieee, s);
8146 if (ieee) {
8147 return float32_maybe_silence_nan(r);
8149 return r;
8152 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
8154 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8155 float16 r = float32_to_float16(a, ieee, s);
8156 if (ieee) {
8157 r = float16_maybe_silence_nan(r);
8159 return float16_val(r);
8162 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8164 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8167 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8169 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8172 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8174 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8177 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8179 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8182 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8184 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8185 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8186 if (ieee) {
8187 return float64_maybe_silence_nan(r);
8189 return r;
8192 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8194 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8195 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8196 if (ieee) {
8197 r = float16_maybe_silence_nan(r);
8199 return float16_val(r);
8202 #define float32_two make_float32(0x40000000)
8203 #define float32_three make_float32(0x40400000)
8204 #define float32_one_point_five make_float32(0x3fc00000)
8206 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
8208 float_status *s = &env->vfp.standard_fp_status;
8209 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8210 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8211 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8212 float_raise(float_flag_input_denormal, s);
8214 return float32_two;
8216 return float32_sub(float32_two, float32_mul(a, b, s), s);
8219 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
8221 float_status *s = &env->vfp.standard_fp_status;
8222 float32 product;
8223 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8224 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8225 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8226 float_raise(float_flag_input_denormal, s);
8228 return float32_one_point_five;
8230 product = float32_mul(a, b, s);
8231 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
8234 /* NEON helpers. */
8236 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8237 * int->float conversions at run-time. */
8238 #define float64_256 make_float64(0x4070000000000000LL)
8239 #define float64_512 make_float64(0x4080000000000000LL)
8240 #define float32_maxnorm make_float32(0x7f7fffff)
8241 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8243 /* Reciprocal functions
8245 * The algorithm that must be used to calculate the estimate
8246 * is specified by the ARM ARM, see FPRecipEstimate()
8249 static float64 recip_estimate(float64 a, float_status *real_fp_status)
8251 /* These calculations mustn't set any fp exception flags,
8252 * so we use a local copy of the fp_status.
8254 float_status dummy_status = *real_fp_status;
8255 float_status *s = &dummy_status;
8256 /* q = (int)(a * 512.0) */
8257 float64 q = float64_mul(float64_512, a, s);
8258 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8260 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8261 q = int64_to_float64(q_int, s);
8262 q = float64_add(q, float64_half, s);
8263 q = float64_div(q, float64_512, s);
8264 q = float64_div(float64_one, q, s);
8266 /* s = (int)(256.0 * r + 0.5) */
8267 q = float64_mul(q, float64_256, s);
8268 q = float64_add(q, float64_half, s);
8269 q_int = float64_to_int64_round_to_zero(q, s);
8271 /* return (double)s / 256.0 */
8272 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8275 /* Common wrapper to call recip_estimate */
8276 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
8278 uint64_t val64 = float64_val(num);
8279 uint64_t frac = extract64(val64, 0, 52);
8280 int64_t exp = extract64(val64, 52, 11);
8281 uint64_t sbit;
8282 float64 scaled, estimate;
8284 /* Generate the scaled number for the estimate function */
8285 if (exp == 0) {
8286 if (extract64(frac, 51, 1) == 0) {
8287 exp = -1;
8288 frac = extract64(frac, 0, 50) << 2;
8289 } else {
8290 frac = extract64(frac, 0, 51) << 1;
8294 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8295 scaled = make_float64((0x3feULL << 52)
8296 | extract64(frac, 44, 8) << 44);
8298 estimate = recip_estimate(scaled, fpst);
8300 /* Build new result */
8301 val64 = float64_val(estimate);
8302 sbit = 0x8000000000000000ULL & val64;
8303 exp = off - exp;
8304 frac = extract64(val64, 0, 52);
8306 if (exp == 0) {
8307 frac = 1ULL << 51 | extract64(frac, 1, 51);
8308 } else if (exp == -1) {
8309 frac = 1ULL << 50 | extract64(frac, 2, 50);
8310 exp = 0;
8313 return make_float64(sbit | (exp << 52) | frac);
8316 static bool round_to_inf(float_status *fpst, bool sign_bit)
8318 switch (fpst->float_rounding_mode) {
8319 case float_round_nearest_even: /* Round to Nearest */
8320 return true;
8321 case float_round_up: /* Round to +Inf */
8322 return !sign_bit;
8323 case float_round_down: /* Round to -Inf */
8324 return sign_bit;
8325 case float_round_to_zero: /* Round to Zero */
8326 return false;
8329 g_assert_not_reached();
8332 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8334 float_status *fpst = fpstp;
8335 float32 f32 = float32_squash_input_denormal(input, fpst);
8336 uint32_t f32_val = float32_val(f32);
8337 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8338 int32_t f32_exp = extract32(f32_val, 23, 8);
8339 uint32_t f32_frac = extract32(f32_val, 0, 23);
8340 float64 f64, r64;
8341 uint64_t r64_val;
8342 int64_t r64_exp;
8343 uint64_t r64_frac;
8345 if (float32_is_any_nan(f32)) {
8346 float32 nan = f32;
8347 if (float32_is_signaling_nan(f32)) {
8348 float_raise(float_flag_invalid, fpst);
8349 nan = float32_maybe_silence_nan(f32);
8351 if (fpst->default_nan_mode) {
8352 nan = float32_default_nan;
8354 return nan;
8355 } else if (float32_is_infinity(f32)) {
8356 return float32_set_sign(float32_zero, float32_is_neg(f32));
8357 } else if (float32_is_zero(f32)) {
8358 float_raise(float_flag_divbyzero, fpst);
8359 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8360 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
8361 /* Abs(value) < 2.0^-128 */
8362 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8363 if (round_to_inf(fpst, f32_sbit)) {
8364 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8365 } else {
8366 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
8368 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
8369 float_raise(float_flag_underflow, fpst);
8370 return float32_set_sign(float32_zero, float32_is_neg(f32));
8374 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8375 r64 = call_recip_estimate(f64, 253, fpst);
8376 r64_val = float64_val(r64);
8377 r64_exp = extract64(r64_val, 52, 11);
8378 r64_frac = extract64(r64_val, 0, 52);
8380 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8381 return make_float32(f32_sbit |
8382 (r64_exp & 0xff) << 23 |
8383 extract64(r64_frac, 29, 24));
8386 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8388 float_status *fpst = fpstp;
8389 float64 f64 = float64_squash_input_denormal(input, fpst);
8390 uint64_t f64_val = float64_val(f64);
8391 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
8392 int64_t f64_exp = extract64(f64_val, 52, 11);
8393 float64 r64;
8394 uint64_t r64_val;
8395 int64_t r64_exp;
8396 uint64_t r64_frac;
8398 /* Deal with any special cases */
8399 if (float64_is_any_nan(f64)) {
8400 float64 nan = f64;
8401 if (float64_is_signaling_nan(f64)) {
8402 float_raise(float_flag_invalid, fpst);
8403 nan = float64_maybe_silence_nan(f64);
8405 if (fpst->default_nan_mode) {
8406 nan = float64_default_nan;
8408 return nan;
8409 } else if (float64_is_infinity(f64)) {
8410 return float64_set_sign(float64_zero, float64_is_neg(f64));
8411 } else if (float64_is_zero(f64)) {
8412 float_raise(float_flag_divbyzero, fpst);
8413 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8414 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
8415 /* Abs(value) < 2.0^-1024 */
8416 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8417 if (round_to_inf(fpst, f64_sbit)) {
8418 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8419 } else {
8420 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
8422 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
8423 float_raise(float_flag_underflow, fpst);
8424 return float64_set_sign(float64_zero, float64_is_neg(f64));
8427 r64 = call_recip_estimate(f64, 2045, fpst);
8428 r64_val = float64_val(r64);
8429 r64_exp = extract64(r64_val, 52, 11);
8430 r64_frac = extract64(r64_val, 0, 52);
8432 /* result = sign : result_exp<10:0> : fraction<51:0> */
8433 return make_float64(f64_sbit |
8434 ((r64_exp & 0x7ff) << 52) |
8435 r64_frac);
8438 /* The algorithm that must be used to calculate the estimate
8439 * is specified by the ARM ARM.
8441 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
8443 /* These calculations mustn't set any fp exception flags,
8444 * so we use a local copy of the fp_status.
8446 float_status dummy_status = *real_fp_status;
8447 float_status *s = &dummy_status;
8448 float64 q;
8449 int64_t q_int;
8451 if (float64_lt(a, float64_half, s)) {
8452 /* range 0.25 <= a < 0.5 */
8454 /* a in units of 1/512 rounded down */
8455 /* q0 = (int)(a * 512.0); */
8456 q = float64_mul(float64_512, a, s);
8457 q_int = float64_to_int64_round_to_zero(q, s);
8459 /* reciprocal root r */
8460 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8461 q = int64_to_float64(q_int, s);
8462 q = float64_add(q, float64_half, s);
8463 q = float64_div(q, float64_512, s);
8464 q = float64_sqrt(q, s);
8465 q = float64_div(float64_one, q, s);
8466 } else {
8467 /* range 0.5 <= a < 1.0 */
8469 /* a in units of 1/256 rounded down */
8470 /* q1 = (int)(a * 256.0); */
8471 q = float64_mul(float64_256, a, s);
8472 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8474 /* reciprocal root r */
8475 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8476 q = int64_to_float64(q_int, s);
8477 q = float64_add(q, float64_half, s);
8478 q = float64_div(q, float64_256, s);
8479 q = float64_sqrt(q, s);
8480 q = float64_div(float64_one, q, s);
8482 /* r in units of 1/256 rounded to nearest */
8483 /* s = (int)(256.0 * r + 0.5); */
8485 q = float64_mul(q, float64_256,s );
8486 q = float64_add(q, float64_half, s);
8487 q_int = float64_to_int64_round_to_zero(q, s);
8489 /* return (double)s / 256.0;*/
8490 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8493 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
8495 float_status *s = fpstp;
8496 float32 f32 = float32_squash_input_denormal(input, s);
8497 uint32_t val = float32_val(f32);
8498 uint32_t f32_sbit = 0x80000000 & val;
8499 int32_t f32_exp = extract32(val, 23, 8);
8500 uint32_t f32_frac = extract32(val, 0, 23);
8501 uint64_t f64_frac;
8502 uint64_t val64;
8503 int result_exp;
8504 float64 f64;
8506 if (float32_is_any_nan(f32)) {
8507 float32 nan = f32;
8508 if (float32_is_signaling_nan(f32)) {
8509 float_raise(float_flag_invalid, s);
8510 nan = float32_maybe_silence_nan(f32);
8512 if (s->default_nan_mode) {
8513 nan = float32_default_nan;
8515 return nan;
8516 } else if (float32_is_zero(f32)) {
8517 float_raise(float_flag_divbyzero, s);
8518 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8519 } else if (float32_is_neg(f32)) {
8520 float_raise(float_flag_invalid, s);
8521 return float32_default_nan;
8522 } else if (float32_is_infinity(f32)) {
8523 return float32_zero;
8526 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8527 * preserving the parity of the exponent. */
8529 f64_frac = ((uint64_t) f32_frac) << 29;
8530 if (f32_exp == 0) {
8531 while (extract64(f64_frac, 51, 1) == 0) {
8532 f64_frac = f64_frac << 1;
8533 f32_exp = f32_exp-1;
8535 f64_frac = extract64(f64_frac, 0, 51) << 1;
8538 if (extract64(f32_exp, 0, 1) == 0) {
8539 f64 = make_float64(((uint64_t) f32_sbit) << 32
8540 | (0x3feULL << 52)
8541 | f64_frac);
8542 } else {
8543 f64 = make_float64(((uint64_t) f32_sbit) << 32
8544 | (0x3fdULL << 52)
8545 | f64_frac);
8548 result_exp = (380 - f32_exp) / 2;
8550 f64 = recip_sqrt_estimate(f64, s);
8552 val64 = float64_val(f64);
8554 val = ((result_exp & 0xff) << 23)
8555 | ((val64 >> 29) & 0x7fffff);
8556 return make_float32(val);
8559 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
8561 float_status *s = fpstp;
8562 float64 f64 = float64_squash_input_denormal(input, s);
8563 uint64_t val = float64_val(f64);
8564 uint64_t f64_sbit = 0x8000000000000000ULL & val;
8565 int64_t f64_exp = extract64(val, 52, 11);
8566 uint64_t f64_frac = extract64(val, 0, 52);
8567 int64_t result_exp;
8568 uint64_t result_frac;
8570 if (float64_is_any_nan(f64)) {
8571 float64 nan = f64;
8572 if (float64_is_signaling_nan(f64)) {
8573 float_raise(float_flag_invalid, s);
8574 nan = float64_maybe_silence_nan(f64);
8576 if (s->default_nan_mode) {
8577 nan = float64_default_nan;
8579 return nan;
8580 } else if (float64_is_zero(f64)) {
8581 float_raise(float_flag_divbyzero, s);
8582 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8583 } else if (float64_is_neg(f64)) {
8584 float_raise(float_flag_invalid, s);
8585 return float64_default_nan;
8586 } else if (float64_is_infinity(f64)) {
8587 return float64_zero;
8590 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8591 * preserving the parity of the exponent. */
8593 if (f64_exp == 0) {
8594 while (extract64(f64_frac, 51, 1) == 0) {
8595 f64_frac = f64_frac << 1;
8596 f64_exp = f64_exp - 1;
8598 f64_frac = extract64(f64_frac, 0, 51) << 1;
8601 if (extract64(f64_exp, 0, 1) == 0) {
8602 f64 = make_float64(f64_sbit
8603 | (0x3feULL << 52)
8604 | f64_frac);
8605 } else {
8606 f64 = make_float64(f64_sbit
8607 | (0x3fdULL << 52)
8608 | f64_frac);
8611 result_exp = (3068 - f64_exp) / 2;
8613 f64 = recip_sqrt_estimate(f64, s);
8615 result_frac = extract64(float64_val(f64), 0, 52);
8617 return make_float64(f64_sbit |
8618 ((result_exp & 0x7ff) << 52) |
8619 result_frac);
8622 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
8624 float_status *s = fpstp;
8625 float64 f64;
8627 if ((a & 0x80000000) == 0) {
8628 return 0xffffffff;
8631 f64 = make_float64((0x3feULL << 52)
8632 | ((int64_t)(a & 0x7fffffff) << 21));
8634 f64 = recip_estimate(f64, s);
8636 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8639 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
8641 float_status *fpst = fpstp;
8642 float64 f64;
8644 if ((a & 0xc0000000) == 0) {
8645 return 0xffffffff;
8648 if (a & 0x80000000) {
8649 f64 = make_float64((0x3feULL << 52)
8650 | ((uint64_t)(a & 0x7fffffff) << 21));
8651 } else { /* bits 31-30 == '01' */
8652 f64 = make_float64((0x3fdULL << 52)
8653 | ((uint64_t)(a & 0x3fffffff) << 22));
8656 f64 = recip_sqrt_estimate(f64, fpst);
8658 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8661 /* VFPv4 fused multiply-accumulate */
8662 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
8664 float_status *fpst = fpstp;
8665 return float32_muladd(a, b, c, 0, fpst);
8668 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
8670 float_status *fpst = fpstp;
8671 return float64_muladd(a, b, c, 0, fpst);
8674 /* ARMv8 round to integral */
8675 float32 HELPER(rints_exact)(float32 x, void *fp_status)
8677 return float32_round_to_int(x, fp_status);
8680 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
8682 return float64_round_to_int(x, fp_status);
8685 float32 HELPER(rints)(float32 x, void *fp_status)
8687 int old_flags = get_float_exception_flags(fp_status), new_flags;
8688 float32 ret;
8690 ret = float32_round_to_int(x, fp_status);
8692 /* Suppress any inexact exceptions the conversion produced */
8693 if (!(old_flags & float_flag_inexact)) {
8694 new_flags = get_float_exception_flags(fp_status);
8695 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8698 return ret;
8701 float64 HELPER(rintd)(float64 x, void *fp_status)
8703 int old_flags = get_float_exception_flags(fp_status), new_flags;
8704 float64 ret;
8706 ret = float64_round_to_int(x, fp_status);
8708 new_flags = get_float_exception_flags(fp_status);
8710 /* Suppress any inexact exceptions the conversion produced */
8711 if (!(old_flags & float_flag_inexact)) {
8712 new_flags = get_float_exception_flags(fp_status);
8713 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8716 return ret;
8719 /* Convert ARM rounding mode to softfloat */
8720 int arm_rmode_to_sf(int rmode)
8722 switch (rmode) {
8723 case FPROUNDING_TIEAWAY:
8724 rmode = float_round_ties_away;
8725 break;
8726 case FPROUNDING_ODD:
8727 /* FIXME: add support for TIEAWAY and ODD */
8728 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
8729 rmode);
8730 case FPROUNDING_TIEEVEN:
8731 default:
8732 rmode = float_round_nearest_even;
8733 break;
8734 case FPROUNDING_POSINF:
8735 rmode = float_round_up;
8736 break;
8737 case FPROUNDING_NEGINF:
8738 rmode = float_round_down;
8739 break;
8740 case FPROUNDING_ZERO:
8741 rmode = float_round_to_zero;
8742 break;
8744 return rmode;
8747 /* CRC helpers.
8748 * The upper bytes of val (above the number specified by 'bytes') must have
8749 * been zeroed out by the caller.
8751 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
8753 uint8_t buf[4];
8755 stl_le_p(buf, val);
8757 /* zlib crc32 converts the accumulator and output to one's complement. */
8758 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
8761 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
8763 uint8_t buf[4];
8765 stl_le_p(buf, val);
8767 /* Linux crc32c converts the output to one's complement. */
8768 return crc32c(acc, buf, bytes) ^ 0xffffffff;