4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "sysemu/sev.h"
42 #include "sysemu/balloon.h"
44 #include "hw/boards.h"
46 /* This check must be after config-host.h is included */
48 #include <sys/eventfd.h>
51 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
52 * need to use the real host PAGE_SIZE, as that's what KVM will use.
54 #define PAGE_SIZE getpagesize()
59 #define DPRINTF(fmt, ...) \
60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #define DPRINTF(fmt, ...) \
66 #define KVM_MSI_HASHTAB_SIZE 256
68 struct KVMParkedVcpu
{
69 unsigned long vcpu_id
;
71 QLIST_ENTRY(KVMParkedVcpu
) node
;
76 AccelState parent_obj
;
83 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
84 bool coalesced_flush_in_progress
;
86 int robust_singlestep
;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
94 /* The man page (and posix) say ioctl numbers are signed int, but
95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
96 * unsigned, and treating them as signed here can break things */
97 unsigned irq_set_ioctl
;
98 unsigned int sigmask_len
;
100 #ifdef KVM_CAP_IRQ_ROUTING
101 struct kvm_irq_routing
*irq_routes
;
102 int nr_allocated_irq_routes
;
103 unsigned long *used_gsi_bitmap
;
104 unsigned int gsi_count
;
105 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
107 KVMMemoryListener memory_listener
;
108 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
110 /* memory encryption */
111 void *memcrypt_handle
;
112 int (*memcrypt_encrypt_data
)(void *handle
, uint8_t *ptr
, uint64_t len
);
116 bool kvm_kernel_irqchip
;
117 bool kvm_split_irqchip
;
118 bool kvm_async_interrupts_allowed
;
119 bool kvm_halt_in_kernel_allowed
;
120 bool kvm_eventfds_allowed
;
121 bool kvm_irqfds_allowed
;
122 bool kvm_resamplefds_allowed
;
123 bool kvm_msi_via_irqfd_allowed
;
124 bool kvm_gsi_routing_allowed
;
125 bool kvm_gsi_direct_mapping
;
127 bool kvm_readonly_mem_allowed
;
128 bool kvm_vm_attributes_allowed
;
129 bool kvm_direct_msi_allowed
;
130 bool kvm_ioeventfd_any_length_allowed
;
131 bool kvm_msi_use_devid
;
132 static bool kvm_immediate_exit
;
134 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
135 KVM_CAP_INFO(USER_MEMORY
),
136 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
137 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS
),
141 int kvm_get_max_memslots(void)
143 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
148 bool kvm_memcrypt_enabled(void)
150 if (kvm_state
&& kvm_state
->memcrypt_handle
) {
157 int kvm_memcrypt_encrypt_data(uint8_t *ptr
, uint64_t len
)
159 if (kvm_state
->memcrypt_handle
&&
160 kvm_state
->memcrypt_encrypt_data
) {
161 return kvm_state
->memcrypt_encrypt_data(kvm_state
->memcrypt_handle
,
168 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
170 KVMState
*s
= kvm_state
;
173 for (i
= 0; i
< s
->nr_slots
; i
++) {
174 if (kml
->slots
[i
].memory_size
== 0) {
175 return &kml
->slots
[i
];
182 bool kvm_has_free_slot(MachineState
*ms
)
184 KVMState
*s
= KVM_STATE(ms
->accelerator
);
186 return kvm_get_free_slot(&s
->memory_listener
);
189 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
191 KVMSlot
*slot
= kvm_get_free_slot(kml
);
197 fprintf(stderr
, "%s: no free slot available\n", __func__
);
201 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
205 KVMState
*s
= kvm_state
;
208 for (i
= 0; i
< s
->nr_slots
; i
++) {
209 KVMSlot
*mem
= &kml
->slots
[i
];
211 if (start_addr
== mem
->start_addr
&& size
== mem
->memory_size
) {
220 * Calculate and align the start address and the size of the section.
221 * Return the size. If the size is 0, the aligned section is empty.
223 static hwaddr
kvm_align_section(MemoryRegionSection
*section
,
226 hwaddr size
= int128_get64(section
->size
);
227 hwaddr delta
, aligned
;
229 /* kvm works in page size chunks, but the function may be called
230 with sub-page size and unaligned start address. Pad the start
231 address to next and truncate size to previous page boundary. */
232 aligned
= ROUND_UP(section
->offset_within_address_space
,
233 qemu_real_host_page_size
);
234 delta
= aligned
- section
->offset_within_address_space
;
240 return (size
- delta
) & qemu_real_host_page_mask
;
243 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
246 KVMMemoryListener
*kml
= &s
->memory_listener
;
249 for (i
= 0; i
< s
->nr_slots
; i
++) {
250 KVMSlot
*mem
= &kml
->slots
[i
];
252 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
253 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
261 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
, bool new)
263 KVMState
*s
= kvm_state
;
264 struct kvm_userspace_memory_region mem
;
267 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
268 mem
.guest_phys_addr
= slot
->start_addr
;
269 mem
.userspace_addr
= (unsigned long)slot
->ram
;
270 mem
.flags
= slot
->flags
;
272 if (slot
->memory_size
&& !new && (mem
.flags
^ slot
->old_flags
) & KVM_MEM_READONLY
) {
273 /* Set the slot size to 0 before setting the slot to the desired
274 * value. This is needed based on KVM commit 75d61fbc. */
276 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
278 mem
.memory_size
= slot
->memory_size
;
279 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
280 slot
->old_flags
= mem
.flags
;
281 trace_kvm_set_user_memory(mem
.slot
, mem
.flags
, mem
.guest_phys_addr
,
282 mem
.memory_size
, mem
.userspace_addr
, ret
);
286 int kvm_destroy_vcpu(CPUState
*cpu
)
288 KVMState
*s
= kvm_state
;
290 struct KVMParkedVcpu
*vcpu
= NULL
;
293 DPRINTF("kvm_destroy_vcpu\n");
295 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
298 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
302 ret
= munmap(cpu
->kvm_run
, mmap_size
);
307 vcpu
= g_malloc0(sizeof(*vcpu
));
308 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
309 vcpu
->kvm_fd
= cpu
->kvm_fd
;
310 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
315 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
317 struct KVMParkedVcpu
*cpu
;
319 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
320 if (cpu
->vcpu_id
== vcpu_id
) {
323 QLIST_REMOVE(cpu
, node
);
324 kvm_fd
= cpu
->kvm_fd
;
330 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
333 int kvm_init_vcpu(CPUState
*cpu
)
335 KVMState
*s
= kvm_state
;
339 DPRINTF("kvm_init_vcpu\n");
341 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
343 DPRINTF("kvm_create_vcpu failed\n");
349 cpu
->vcpu_dirty
= true;
351 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
354 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
358 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
360 if (cpu
->kvm_run
== MAP_FAILED
) {
362 DPRINTF("mmap'ing vcpu state failed\n");
366 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
367 s
->coalesced_mmio_ring
=
368 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
371 ret
= kvm_arch_init_vcpu(cpu
);
377 * dirty pages logging control
380 static int kvm_mem_flags(MemoryRegion
*mr
)
382 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
385 if (memory_region_get_dirty_log_mask(mr
) != 0) {
386 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
388 if (readonly
&& kvm_readonly_mem_allowed
) {
389 flags
|= KVM_MEM_READONLY
;
394 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
397 mem
->flags
= kvm_mem_flags(mr
);
399 /* If nothing changed effectively, no need to issue ioctl */
400 if (mem
->flags
== mem
->old_flags
) {
404 return kvm_set_user_memory_region(kml
, mem
, false);
407 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
408 MemoryRegionSection
*section
)
410 hwaddr start_addr
, size
;
413 size
= kvm_align_section(section
, &start_addr
);
418 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
420 /* We don't have a slot if we want to trap every access. */
424 return kvm_slot_update_flags(kml
, mem
, section
->mr
);
427 static void kvm_log_start(MemoryListener
*listener
,
428 MemoryRegionSection
*section
,
431 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
438 r
= kvm_section_update_flags(kml
, section
);
444 static void kvm_log_stop(MemoryListener
*listener
,
445 MemoryRegionSection
*section
,
448 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
455 r
= kvm_section_update_flags(kml
, section
);
461 /* get kvm's dirty pages bitmap and update qemu's */
462 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
463 unsigned long *bitmap
)
465 ram_addr_t start
= section
->offset_within_region
+
466 memory_region_get_ram_addr(section
->mr
);
467 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
469 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
473 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
476 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
477 * This function updates qemu's dirty bitmap using
478 * memory_region_set_dirty(). This means all bits are set
481 * @start_add: start of logged region.
482 * @end_addr: end of logged region.
484 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
485 MemoryRegionSection
*section
)
487 KVMState
*s
= kvm_state
;
488 struct kvm_dirty_log d
= {};
490 hwaddr start_addr
, size
;
492 size
= kvm_align_section(section
, &start_addr
);
494 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
496 /* We don't have a slot if we want to trap every access. */
500 /* XXX bad kernel interface alert
501 * For dirty bitmap, kernel allocates array of size aligned to
502 * bits-per-long. But for case when the kernel is 64bits and
503 * the userspace is 32bits, userspace can't align to the same
504 * bits-per-long, since sizeof(long) is different between kernel
505 * and user space. This way, userspace will provide buffer which
506 * may be 4 bytes less than the kernel will use, resulting in
507 * userspace memory corruption (which is not detectable by valgrind
508 * too, in most cases).
509 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
510 * a hope that sizeof(long) won't become >8 any time soon.
512 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
513 /*HOST_LONG_BITS*/ 64) / 8;
514 d
.dirty_bitmap
= g_malloc0(size
);
516 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
517 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
518 DPRINTF("ioctl failed %d\n", errno
);
519 g_free(d
.dirty_bitmap
);
523 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
524 g_free(d
.dirty_bitmap
);
530 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
531 MemoryRegionSection
*secion
,
532 hwaddr start
, hwaddr size
)
534 KVMState
*s
= kvm_state
;
536 if (s
->coalesced_mmio
) {
537 struct kvm_coalesced_mmio_zone zone
;
543 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
547 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
548 MemoryRegionSection
*secion
,
549 hwaddr start
, hwaddr size
)
551 KVMState
*s
= kvm_state
;
553 if (s
->coalesced_mmio
) {
554 struct kvm_coalesced_mmio_zone zone
;
560 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
564 static void kvm_coalesce_pio_add(MemoryListener
*listener
,
565 MemoryRegionSection
*section
,
566 hwaddr start
, hwaddr size
)
568 KVMState
*s
= kvm_state
;
570 if (s
->coalesced_pio
) {
571 struct kvm_coalesced_mmio_zone zone
;
577 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
581 static void kvm_coalesce_pio_del(MemoryListener
*listener
,
582 MemoryRegionSection
*section
,
583 hwaddr start
, hwaddr size
)
585 KVMState
*s
= kvm_state
;
587 if (s
->coalesced_pio
) {
588 struct kvm_coalesced_mmio_zone zone
;
594 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
598 static MemoryListener kvm_coalesced_pio_listener
= {
599 .coalesced_io_add
= kvm_coalesce_pio_add
,
600 .coalesced_io_del
= kvm_coalesce_pio_del
,
603 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
607 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
615 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
619 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
621 /* VM wide version not implemented, use global one instead */
622 ret
= kvm_check_extension(s
, extension
);
628 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
630 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
631 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
632 * endianness, but the memory core hands them in target endianness.
633 * For example, PPC is always treated as big-endian even if running
634 * on KVM and on PPC64LE. Correct here.
648 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
649 bool assign
, uint32_t size
, bool datamatch
)
652 struct kvm_ioeventfd iofd
= {
653 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
660 if (!kvm_enabled()) {
665 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
668 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
671 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
680 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
681 bool assign
, uint32_t size
, bool datamatch
)
683 struct kvm_ioeventfd kick
= {
684 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
686 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
691 if (!kvm_enabled()) {
695 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
698 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
700 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
708 static int kvm_check_many_ioeventfds(void)
710 /* Userspace can use ioeventfd for io notification. This requires a host
711 * that supports eventfd(2) and an I/O thread; since eventfd does not
712 * support SIGIO it cannot interrupt the vcpu.
714 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
715 * can avoid creating too many ioeventfds.
717 #if defined(CONFIG_EVENTFD)
720 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
721 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
722 if (ioeventfds
[i
] < 0) {
725 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
727 close(ioeventfds
[i
]);
732 /* Decide whether many devices are supported or not */
733 ret
= i
== ARRAY_SIZE(ioeventfds
);
736 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
737 close(ioeventfds
[i
]);
745 static const KVMCapabilityInfo
*
746 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
749 if (!kvm_check_extension(s
, list
->value
)) {
757 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
758 MemoryRegionSection
*section
, bool add
)
762 MemoryRegion
*mr
= section
->mr
;
763 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
764 hwaddr start_addr
, size
;
767 if (!memory_region_is_ram(mr
)) {
768 if (writeable
|| !kvm_readonly_mem_allowed
) {
770 } else if (!mr
->romd_mode
) {
771 /* If the memory device is not in romd_mode, then we actually want
772 * to remove the kvm memory slot so all accesses will trap. */
777 size
= kvm_align_section(section
, &start_addr
);
782 /* use aligned delta to align the ram address */
783 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+
784 (start_addr
- section
->offset_within_address_space
);
787 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
791 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
792 kvm_physical_sync_dirty_bitmap(kml
, section
);
795 /* unregister the slot */
796 mem
->memory_size
= 0;
798 err
= kvm_set_user_memory_region(kml
, mem
, false);
800 fprintf(stderr
, "%s: error unregistering slot: %s\n",
801 __func__
, strerror(-err
));
807 /* register the new slot */
808 mem
= kvm_alloc_slot(kml
);
809 mem
->memory_size
= size
;
810 mem
->start_addr
= start_addr
;
812 mem
->flags
= kvm_mem_flags(mr
);
814 err
= kvm_set_user_memory_region(kml
, mem
, true);
816 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
822 static void kvm_region_add(MemoryListener
*listener
,
823 MemoryRegionSection
*section
)
825 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
827 memory_region_ref(section
->mr
);
828 kvm_set_phys_mem(kml
, section
, true);
831 static void kvm_region_del(MemoryListener
*listener
,
832 MemoryRegionSection
*section
)
834 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
836 kvm_set_phys_mem(kml
, section
, false);
837 memory_region_unref(section
->mr
);
840 static void kvm_log_sync(MemoryListener
*listener
,
841 MemoryRegionSection
*section
)
843 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
846 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
852 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
853 MemoryRegionSection
*section
,
854 bool match_data
, uint64_t data
,
857 int fd
= event_notifier_get_fd(e
);
860 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
861 data
, true, int128_get64(section
->size
),
864 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
865 __func__
, strerror(-r
));
870 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
871 MemoryRegionSection
*section
,
872 bool match_data
, uint64_t data
,
875 int fd
= event_notifier_get_fd(e
);
878 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
879 data
, false, int128_get64(section
->size
),
886 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
887 MemoryRegionSection
*section
,
888 bool match_data
, uint64_t data
,
891 int fd
= event_notifier_get_fd(e
);
894 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
895 data
, true, int128_get64(section
->size
),
898 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
899 __func__
, strerror(-r
));
904 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
905 MemoryRegionSection
*section
,
906 bool match_data
, uint64_t data
,
910 int fd
= event_notifier_get_fd(e
);
913 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
914 data
, false, int128_get64(section
->size
),
921 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
922 AddressSpace
*as
, int as_id
)
926 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
929 for (i
= 0; i
< s
->nr_slots
; i
++) {
930 kml
->slots
[i
].slot
= i
;
933 kml
->listener
.region_add
= kvm_region_add
;
934 kml
->listener
.region_del
= kvm_region_del
;
935 kml
->listener
.log_start
= kvm_log_start
;
936 kml
->listener
.log_stop
= kvm_log_stop
;
937 kml
->listener
.log_sync
= kvm_log_sync
;
938 kml
->listener
.priority
= 10;
940 memory_listener_register(&kml
->listener
, as
);
943 static MemoryListener kvm_io_listener
= {
944 .eventfd_add
= kvm_io_ioeventfd_add
,
945 .eventfd_del
= kvm_io_ioeventfd_del
,
949 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
951 struct kvm_irq_level event
;
954 assert(kvm_async_interrupts_enabled());
958 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
960 perror("kvm_set_irq");
964 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
967 #ifdef KVM_CAP_IRQ_ROUTING
968 typedef struct KVMMSIRoute
{
969 struct kvm_irq_routing_entry kroute
;
970 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
973 static void set_gsi(KVMState
*s
, unsigned int gsi
)
975 set_bit(gsi
, s
->used_gsi_bitmap
);
978 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
980 clear_bit(gsi
, s
->used_gsi_bitmap
);
983 void kvm_init_irq_routing(KVMState
*s
)
987 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
989 /* Round up so we can search ints using ffs */
990 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
991 s
->gsi_count
= gsi_count
;
994 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
995 s
->nr_allocated_irq_routes
= 0;
997 if (!kvm_direct_msi_allowed
) {
998 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
999 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1003 kvm_arch_init_irq_routing(s
);
1006 void kvm_irqchip_commit_routes(KVMState
*s
)
1010 if (kvm_gsi_direct_mapping()) {
1014 if (!kvm_gsi_routing_enabled()) {
1018 s
->irq_routes
->flags
= 0;
1019 trace_kvm_irqchip_commit_routes();
1020 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1024 static void kvm_add_routing_entry(KVMState
*s
,
1025 struct kvm_irq_routing_entry
*entry
)
1027 struct kvm_irq_routing_entry
*new;
1030 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1031 n
= s
->nr_allocated_irq_routes
* 2;
1035 size
= sizeof(struct kvm_irq_routing
);
1036 size
+= n
* sizeof(*new);
1037 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1038 s
->nr_allocated_irq_routes
= n
;
1040 n
= s
->irq_routes
->nr
++;
1041 new = &s
->irq_routes
->entries
[n
];
1045 set_gsi(s
, entry
->gsi
);
1048 static int kvm_update_routing_entry(KVMState
*s
,
1049 struct kvm_irq_routing_entry
*new_entry
)
1051 struct kvm_irq_routing_entry
*entry
;
1054 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1055 entry
= &s
->irq_routes
->entries
[n
];
1056 if (entry
->gsi
!= new_entry
->gsi
) {
1060 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1064 *entry
= *new_entry
;
1072 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1074 struct kvm_irq_routing_entry e
= {};
1076 assert(pin
< s
->gsi_count
);
1079 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1081 e
.u
.irqchip
.irqchip
= irqchip
;
1082 e
.u
.irqchip
.pin
= pin
;
1083 kvm_add_routing_entry(s
, &e
);
1086 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1088 struct kvm_irq_routing_entry
*e
;
1091 if (kvm_gsi_direct_mapping()) {
1095 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1096 e
= &s
->irq_routes
->entries
[i
];
1097 if (e
->gsi
== virq
) {
1098 s
->irq_routes
->nr
--;
1099 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1103 kvm_arch_release_virq_post(virq
);
1104 trace_kvm_irqchip_release_virq(virq
);
1107 static unsigned int kvm_hash_msi(uint32_t data
)
1109 /* This is optimized for IA32 MSI layout. However, no other arch shall
1110 * repeat the mistake of not providing a direct MSI injection API. */
1114 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1116 KVMMSIRoute
*route
, *next
;
1119 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1120 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1121 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1122 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1128 static int kvm_irqchip_get_virq(KVMState
*s
)
1133 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1134 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1135 * number can succeed even though a new route entry cannot be added.
1136 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1138 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1139 kvm_flush_dynamic_msi_routes(s
);
1142 /* Return the lowest unused GSI in the bitmap */
1143 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1144 if (next_virq
>= s
->gsi_count
) {
1151 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1153 unsigned int hash
= kvm_hash_msi(msg
.data
);
1156 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1157 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1158 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1159 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1166 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1171 if (kvm_direct_msi_allowed
) {
1172 msi
.address_lo
= (uint32_t)msg
.address
;
1173 msi
.address_hi
= msg
.address
>> 32;
1174 msi
.data
= le32_to_cpu(msg
.data
);
1176 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1178 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1181 route
= kvm_lookup_msi_route(s
, msg
);
1185 virq
= kvm_irqchip_get_virq(s
);
1190 route
= g_malloc0(sizeof(KVMMSIRoute
));
1191 route
->kroute
.gsi
= virq
;
1192 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1193 route
->kroute
.flags
= 0;
1194 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1195 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1196 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1198 kvm_add_routing_entry(s
, &route
->kroute
);
1199 kvm_irqchip_commit_routes(s
);
1201 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1205 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1207 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1210 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1212 struct kvm_irq_routing_entry kroute
= {};
1214 MSIMessage msg
= {0, 0};
1216 if (pci_available
&& dev
) {
1217 msg
= pci_get_msi_message(dev
, vector
);
1220 if (kvm_gsi_direct_mapping()) {
1221 return kvm_arch_msi_data_to_gsi(msg
.data
);
1224 if (!kvm_gsi_routing_enabled()) {
1228 virq
= kvm_irqchip_get_virq(s
);
1234 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1236 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1237 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1238 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1239 if (pci_available
&& kvm_msi_devid_required()) {
1240 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1241 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1243 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1244 kvm_irqchip_release_virq(s
, virq
);
1248 trace_kvm_irqchip_add_msi_route(dev
? dev
->name
: (char *)"N/A",
1251 kvm_add_routing_entry(s
, &kroute
);
1252 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1253 kvm_irqchip_commit_routes(s
);
1258 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1261 struct kvm_irq_routing_entry kroute
= {};
1263 if (kvm_gsi_direct_mapping()) {
1267 if (!kvm_irqchip_in_kernel()) {
1272 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1274 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1275 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1276 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1277 if (pci_available
&& kvm_msi_devid_required()) {
1278 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1279 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1281 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1285 trace_kvm_irqchip_update_msi_route(virq
);
1287 return kvm_update_routing_entry(s
, &kroute
);
1290 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1293 struct kvm_irqfd irqfd
= {
1296 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1300 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1301 irqfd
.resamplefd
= rfd
;
1304 if (!kvm_irqfds_enabled()) {
1308 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1311 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1313 struct kvm_irq_routing_entry kroute
= {};
1316 if (!kvm_gsi_routing_enabled()) {
1320 virq
= kvm_irqchip_get_virq(s
);
1326 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1328 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1329 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1330 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1331 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1332 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1334 kvm_add_routing_entry(s
, &kroute
);
1339 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1341 struct kvm_irq_routing_entry kroute
= {};
1344 if (!kvm_gsi_routing_enabled()) {
1347 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1350 virq
= kvm_irqchip_get_virq(s
);
1356 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1358 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1359 kroute
.u
.hv_sint
.sint
= sint
;
1361 kvm_add_routing_entry(s
, &kroute
);
1362 kvm_irqchip_commit_routes(s
);
1367 #else /* !KVM_CAP_IRQ_ROUTING */
1369 void kvm_init_irq_routing(KVMState
*s
)
1373 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1377 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1382 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1387 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1392 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1397 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1402 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1406 #endif /* !KVM_CAP_IRQ_ROUTING */
1408 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1409 EventNotifier
*rn
, int virq
)
1411 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1412 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1415 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1418 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1422 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1423 EventNotifier
*rn
, qemu_irq irq
)
1426 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1431 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1434 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1438 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1443 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1446 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1448 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1451 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1455 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1457 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1458 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1460 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1467 /* First probe and see if there's a arch-specific hook to create the
1468 * in-kernel irqchip for us */
1469 ret
= kvm_arch_irqchip_create(machine
, s
);
1471 if (machine_kernel_irqchip_split(machine
)) {
1472 perror("Split IRQ chip mode not supported.");
1475 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1479 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1483 kvm_kernel_irqchip
= true;
1484 /* If we have an in-kernel IRQ chip then we must have asynchronous
1485 * interrupt delivery (though the reverse is not necessarily true)
1487 kvm_async_interrupts_allowed
= true;
1488 kvm_halt_in_kernel_allowed
= true;
1490 kvm_init_irq_routing(s
);
1492 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1495 /* Find number of supported CPUs using the recommended
1496 * procedure from the kernel API documentation to cope with
1497 * older kernels that may be missing capabilities.
1499 static int kvm_recommended_vcpus(KVMState
*s
)
1501 int ret
= kvm_vm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1502 return (ret
) ? ret
: 4;
1505 static int kvm_max_vcpus(KVMState
*s
)
1507 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1508 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1511 static int kvm_max_vcpu_id(KVMState
*s
)
1513 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
1514 return (ret
) ? ret
: kvm_max_vcpus(s
);
1517 bool kvm_vcpu_id_is_valid(int vcpu_id
)
1519 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
1520 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
1523 static int kvm_init(MachineState
*ms
)
1525 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1526 static const char upgrade_note
[] =
1527 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1528 "(see http://sourceforge.net/projects/kvm).\n";
1533 { "SMP", smp_cpus
},
1534 { "hotpluggable", max_cpus
},
1537 int soft_vcpus_limit
, hard_vcpus_limit
;
1539 const KVMCapabilityInfo
*missing_cap
;
1542 const char *kvm_type
;
1544 s
= KVM_STATE(ms
->accelerator
);
1547 * On systems where the kernel can support different base page
1548 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1549 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1550 * page size for the system though.
1552 assert(TARGET_PAGE_SIZE
<= getpagesize());
1556 #ifdef KVM_CAP_SET_GUEST_DEBUG
1557 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1559 QLIST_INIT(&s
->kvm_parked_vcpus
);
1561 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1563 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1568 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1569 if (ret
< KVM_API_VERSION
) {
1573 fprintf(stderr
, "kvm version too old\n");
1577 if (ret
> KVM_API_VERSION
) {
1579 fprintf(stderr
, "kvm version not supported\n");
1583 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
1584 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1586 /* If unspecified, use the default value */
1591 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1593 type
= mc
->kvm_type(kvm_type
);
1594 } else if (kvm_type
) {
1596 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1601 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1602 } while (ret
== -EINTR
);
1605 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1609 if (ret
== -EINVAL
) {
1611 "Host kernel setup problem detected. Please verify:\n");
1612 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1613 " user_mode parameters, whether\n");
1615 " user space is running in primary address space\n");
1617 "- for kernels supporting the vm.allocate_pgste sysctl, "
1618 "whether it is enabled\n");
1626 /* check the vcpu limits */
1627 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1628 hard_vcpus_limit
= kvm_max_vcpus(s
);
1631 if (nc
->num
> soft_vcpus_limit
) {
1632 warn_report("Number of %s cpus requested (%d) exceeds "
1633 "the recommended cpus supported by KVM (%d)",
1634 nc
->name
, nc
->num
, soft_vcpus_limit
);
1636 if (nc
->num
> hard_vcpus_limit
) {
1637 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1638 "the maximum cpus supported by KVM (%d)\n",
1639 nc
->name
, nc
->num
, hard_vcpus_limit
);
1646 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1649 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1653 fprintf(stderr
, "kvm does not support %s\n%s",
1654 missing_cap
->name
, upgrade_note
);
1658 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1659 s
->coalesced_pio
= s
->coalesced_mmio
&&
1660 kvm_check_extension(s
, KVM_CAP_COALESCED_PIO
);
1662 #ifdef KVM_CAP_VCPU_EVENTS
1663 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1666 s
->robust_singlestep
=
1667 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1669 #ifdef KVM_CAP_DEBUGREGS
1670 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1673 #ifdef KVM_CAP_IRQ_ROUTING
1674 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1677 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1679 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1680 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1681 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1684 kvm_readonly_mem_allowed
=
1685 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1687 kvm_eventfds_allowed
=
1688 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1690 kvm_irqfds_allowed
=
1691 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1693 kvm_resamplefds_allowed
=
1694 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1696 kvm_vm_attributes_allowed
=
1697 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1699 kvm_ioeventfd_any_length_allowed
=
1700 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
1705 * if memory encryption object is specified then initialize the memory
1706 * encryption context.
1708 if (ms
->memory_encryption
) {
1709 kvm_state
->memcrypt_handle
= sev_guest_init(ms
->memory_encryption
);
1710 if (!kvm_state
->memcrypt_handle
) {
1715 kvm_state
->memcrypt_encrypt_data
= sev_encrypt_data
;
1718 ret
= kvm_arch_init(ms
, s
);
1723 if (machine_kernel_irqchip_allowed(ms
)) {
1724 kvm_irqchip_create(ms
, s
);
1727 if (kvm_eventfds_allowed
) {
1728 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1729 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1731 s
->memory_listener
.listener
.coalesced_io_add
= kvm_coalesce_mmio_region
;
1732 s
->memory_listener
.listener
.coalesced_io_del
= kvm_uncoalesce_mmio_region
;
1734 kvm_memory_listener_register(s
, &s
->memory_listener
,
1735 &address_space_memory
, 0);
1736 memory_listener_register(&kvm_io_listener
,
1738 memory_listener_register(&kvm_coalesced_pio_listener
,
1741 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1743 s
->sync_mmu
= !!kvm_vm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1745 qemu_balloon_inhibit(true);
1758 g_free(s
->memory_listener
.slots
);
1763 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1765 s
->sigmask_len
= sigmask_len
;
1768 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1769 int size
, uint32_t count
)
1772 uint8_t *ptr
= data
;
1774 for (i
= 0; i
< count
; i
++) {
1775 address_space_rw(&address_space_io
, port
, attrs
,
1777 direction
== KVM_EXIT_IO_OUT
);
1782 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1784 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1785 run
->internal
.suberror
);
1787 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1790 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1791 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1792 i
, (uint64_t)run
->internal
.data
[i
]);
1795 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1796 fprintf(stderr
, "emulation failure\n");
1797 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1798 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1799 return EXCP_INTERRUPT
;
1802 /* FIXME: Should trigger a qmp message to let management know
1803 * something went wrong.
1808 void kvm_flush_coalesced_mmio_buffer(void)
1810 KVMState
*s
= kvm_state
;
1812 if (s
->coalesced_flush_in_progress
) {
1816 s
->coalesced_flush_in_progress
= true;
1818 if (s
->coalesced_mmio_ring
) {
1819 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1820 while (ring
->first
!= ring
->last
) {
1821 struct kvm_coalesced_mmio
*ent
;
1823 ent
= &ring
->coalesced_mmio
[ring
->first
];
1825 if (ent
->pio
== 1) {
1826 address_space_rw(&address_space_io
, ent
->phys_addr
,
1827 MEMTXATTRS_UNSPECIFIED
, ent
->data
,
1830 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1833 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1837 s
->coalesced_flush_in_progress
= false;
1840 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
1842 if (!cpu
->vcpu_dirty
) {
1843 kvm_arch_get_registers(cpu
);
1844 cpu
->vcpu_dirty
= true;
1848 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1850 if (!cpu
->vcpu_dirty
) {
1851 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
1855 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
1857 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1858 cpu
->vcpu_dirty
= false;
1861 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1863 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
1866 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
1868 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1869 cpu
->vcpu_dirty
= false;
1872 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1874 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
1877 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
, run_on_cpu_data arg
)
1879 cpu
->vcpu_dirty
= true;
1882 void kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
)
1884 run_on_cpu(cpu
, do_kvm_cpu_synchronize_pre_loadvm
, RUN_ON_CPU_NULL
);
1887 #ifdef KVM_HAVE_MCE_INJECTION
1888 static __thread
void *pending_sigbus_addr
;
1889 static __thread
int pending_sigbus_code
;
1890 static __thread
bool have_sigbus_pending
;
1893 static void kvm_cpu_kick(CPUState
*cpu
)
1895 atomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
1898 static void kvm_cpu_kick_self(void)
1900 if (kvm_immediate_exit
) {
1901 kvm_cpu_kick(current_cpu
);
1903 qemu_cpu_kick_self();
1907 static void kvm_eat_signals(CPUState
*cpu
)
1909 struct timespec ts
= { 0, 0 };
1915 if (kvm_immediate_exit
) {
1916 atomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
1917 /* Write kvm_run->immediate_exit before the cpu->exit_request
1918 * write in kvm_cpu_exec.
1924 sigemptyset(&waitset
);
1925 sigaddset(&waitset
, SIG_IPI
);
1928 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
1929 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
1930 perror("sigtimedwait");
1934 r
= sigpending(&chkset
);
1936 perror("sigpending");
1939 } while (sigismember(&chkset
, SIG_IPI
));
1942 int kvm_cpu_exec(CPUState
*cpu
)
1944 struct kvm_run
*run
= cpu
->kvm_run
;
1947 DPRINTF("kvm_cpu_exec()\n");
1949 if (kvm_arch_process_async_events(cpu
)) {
1950 atomic_set(&cpu
->exit_request
, 0);
1954 qemu_mutex_unlock_iothread();
1955 cpu_exec_start(cpu
);
1960 if (cpu
->vcpu_dirty
) {
1961 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1962 cpu
->vcpu_dirty
= false;
1965 kvm_arch_pre_run(cpu
, run
);
1966 if (atomic_read(&cpu
->exit_request
)) {
1967 DPRINTF("interrupt exit requested\n");
1969 * KVM requires us to reenter the kernel after IO exits to complete
1970 * instruction emulation. This self-signal will ensure that we
1973 kvm_cpu_kick_self();
1976 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1977 * Matching barrier in kvm_eat_signals.
1981 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1983 attrs
= kvm_arch_post_run(cpu
, run
);
1985 #ifdef KVM_HAVE_MCE_INJECTION
1986 if (unlikely(have_sigbus_pending
)) {
1987 qemu_mutex_lock_iothread();
1988 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
1989 pending_sigbus_addr
);
1990 have_sigbus_pending
= false;
1991 qemu_mutex_unlock_iothread();
1996 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1997 DPRINTF("io window exit\n");
1998 kvm_eat_signals(cpu
);
1999 ret
= EXCP_INTERRUPT
;
2002 fprintf(stderr
, "error: kvm run failed %s\n",
2003 strerror(-run_ret
));
2005 if (run_ret
== -EBUSY
) {
2007 "This is probably because your SMT is enabled.\n"
2008 "VCPU can only run on primary threads with all "
2009 "secondary threads offline.\n");
2016 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
2017 switch (run
->exit_reason
) {
2019 DPRINTF("handle_io\n");
2020 /* Called outside BQL */
2021 kvm_handle_io(run
->io
.port
, attrs
,
2022 (uint8_t *)run
+ run
->io
.data_offset
,
2029 DPRINTF("handle_mmio\n");
2030 /* Called outside BQL */
2031 address_space_rw(&address_space_memory
,
2032 run
->mmio
.phys_addr
, attrs
,
2035 run
->mmio
.is_write
);
2038 case KVM_EXIT_IRQ_WINDOW_OPEN
:
2039 DPRINTF("irq_window_open\n");
2040 ret
= EXCP_INTERRUPT
;
2042 case KVM_EXIT_SHUTDOWN
:
2043 DPRINTF("shutdown\n");
2044 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2045 ret
= EXCP_INTERRUPT
;
2047 case KVM_EXIT_UNKNOWN
:
2048 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
2049 (uint64_t)run
->hw
.hardware_exit_reason
);
2052 case KVM_EXIT_INTERNAL_ERROR
:
2053 ret
= kvm_handle_internal_error(cpu
, run
);
2055 case KVM_EXIT_SYSTEM_EVENT
:
2056 switch (run
->system_event
.type
) {
2057 case KVM_SYSTEM_EVENT_SHUTDOWN
:
2058 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
2059 ret
= EXCP_INTERRUPT
;
2061 case KVM_SYSTEM_EVENT_RESET
:
2062 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2063 ret
= EXCP_INTERRUPT
;
2065 case KVM_SYSTEM_EVENT_CRASH
:
2066 kvm_cpu_synchronize_state(cpu
);
2067 qemu_mutex_lock_iothread();
2068 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
2069 qemu_mutex_unlock_iothread();
2073 DPRINTF("kvm_arch_handle_exit\n");
2074 ret
= kvm_arch_handle_exit(cpu
, run
);
2079 DPRINTF("kvm_arch_handle_exit\n");
2080 ret
= kvm_arch_handle_exit(cpu
, run
);
2086 qemu_mutex_lock_iothread();
2089 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
2090 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2093 atomic_set(&cpu
->exit_request
, 0);
2097 int kvm_ioctl(KVMState
*s
, int type
, ...)
2104 arg
= va_arg(ap
, void *);
2107 trace_kvm_ioctl(type
, arg
);
2108 ret
= ioctl(s
->fd
, type
, arg
);
2115 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2122 arg
= va_arg(ap
, void *);
2125 trace_kvm_vm_ioctl(type
, arg
);
2126 ret
= ioctl(s
->vmfd
, type
, arg
);
2133 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
2140 arg
= va_arg(ap
, void *);
2143 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
2144 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
2151 int kvm_device_ioctl(int fd
, int type
, ...)
2158 arg
= va_arg(ap
, void *);
2161 trace_kvm_device_ioctl(fd
, type
, arg
);
2162 ret
= ioctl(fd
, type
, arg
);
2169 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2172 struct kvm_device_attr attribute
= {
2177 if (!kvm_vm_attributes_allowed
) {
2181 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2182 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2186 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2188 struct kvm_device_attr attribute
= {
2194 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2197 int kvm_device_access(int fd
, int group
, uint64_t attr
,
2198 void *val
, bool write
, Error
**errp
)
2200 struct kvm_device_attr kvmattr
;
2204 kvmattr
.group
= group
;
2205 kvmattr
.attr
= attr
;
2206 kvmattr
.addr
= (uintptr_t)val
;
2208 err
= kvm_device_ioctl(fd
,
2209 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2212 error_setg_errno(errp
, -err
,
2213 "KVM_%s_DEVICE_ATTR failed: Group %d "
2214 "attr 0x%016" PRIx64
,
2215 write
? "SET" : "GET", group
, attr
);
2220 bool kvm_has_sync_mmu(void)
2222 return kvm_state
->sync_mmu
;
2225 int kvm_has_vcpu_events(void)
2227 return kvm_state
->vcpu_events
;
2230 int kvm_has_robust_singlestep(void)
2232 return kvm_state
->robust_singlestep
;
2235 int kvm_has_debugregs(void)
2237 return kvm_state
->debugregs
;
2240 int kvm_has_many_ioeventfds(void)
2242 if (!kvm_enabled()) {
2245 return kvm_state
->many_ioeventfds
;
2248 int kvm_has_gsi_routing(void)
2250 #ifdef KVM_CAP_IRQ_ROUTING
2251 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2257 int kvm_has_intx_set_mask(void)
2259 return kvm_state
->intx_set_mask
;
2262 bool kvm_arm_supports_user_irq(void)
2264 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_USER_IRQ
);
2267 #ifdef KVM_CAP_SET_GUEST_DEBUG
2268 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2271 struct kvm_sw_breakpoint
*bp
;
2273 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2281 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2283 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2286 struct kvm_set_guest_debug_data
{
2287 struct kvm_guest_debug dbg
;
2291 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
2293 struct kvm_set_guest_debug_data
*dbg_data
=
2294 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
2296 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
2300 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2302 struct kvm_set_guest_debug_data data
;
2304 data
.dbg
.control
= reinject_trap
;
2306 if (cpu
->singlestep_enabled
) {
2307 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2309 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2311 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
2312 RUN_ON_CPU_HOST_PTR(&data
));
2316 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2317 target_ulong len
, int type
)
2319 struct kvm_sw_breakpoint
*bp
;
2322 if (type
== GDB_BREAKPOINT_SW
) {
2323 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2329 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2332 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2338 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2340 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2347 err
= kvm_update_guest_debug(cpu
, 0);
2355 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2356 target_ulong len
, int type
)
2358 struct kvm_sw_breakpoint
*bp
;
2361 if (type
== GDB_BREAKPOINT_SW
) {
2362 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2367 if (bp
->use_count
> 1) {
2372 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2377 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2380 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2387 err
= kvm_update_guest_debug(cpu
, 0);
2395 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2397 struct kvm_sw_breakpoint
*bp
, *next
;
2398 KVMState
*s
= cpu
->kvm_state
;
2401 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2402 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2403 /* Try harder to find a CPU that currently sees the breakpoint. */
2404 CPU_FOREACH(tmpcpu
) {
2405 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2410 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2413 kvm_arch_remove_all_hw_breakpoints();
2416 kvm_update_guest_debug(cpu
, 0);
2420 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2422 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2427 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2428 target_ulong len
, int type
)
2433 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2434 target_ulong len
, int type
)
2439 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2442 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2444 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2446 KVMState
*s
= kvm_state
;
2447 struct kvm_signal_mask
*sigmask
;
2450 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2452 sigmask
->len
= s
->sigmask_len
;
2453 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2454 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2460 static void kvm_ipi_signal(int sig
)
2463 assert(kvm_immediate_exit
);
2464 kvm_cpu_kick(current_cpu
);
2468 void kvm_init_cpu_signals(CPUState
*cpu
)
2472 struct sigaction sigact
;
2474 memset(&sigact
, 0, sizeof(sigact
));
2475 sigact
.sa_handler
= kvm_ipi_signal
;
2476 sigaction(SIG_IPI
, &sigact
, NULL
);
2478 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
2479 #if defined KVM_HAVE_MCE_INJECTION
2480 sigdelset(&set
, SIGBUS
);
2481 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2483 sigdelset(&set
, SIG_IPI
);
2484 if (kvm_immediate_exit
) {
2485 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2487 r
= kvm_set_signal_mask(cpu
, &set
);
2490 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
2495 /* Called asynchronously in VCPU thread. */
2496 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2498 #ifdef KVM_HAVE_MCE_INJECTION
2499 if (have_sigbus_pending
) {
2502 have_sigbus_pending
= true;
2503 pending_sigbus_addr
= addr
;
2504 pending_sigbus_code
= code
;
2505 atomic_set(&cpu
->exit_request
, 1);
2512 /* Called synchronously (via signalfd) in main thread. */
2513 int kvm_on_sigbus(int code
, void *addr
)
2515 #ifdef KVM_HAVE_MCE_INJECTION
2516 /* Action required MCE kills the process if SIGBUS is blocked. Because
2517 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2518 * we can only get action optional here.
2520 assert(code
!= BUS_MCEERR_AR
);
2521 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
2528 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2531 struct kvm_create_device create_dev
;
2533 create_dev
.type
= type
;
2535 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2537 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2541 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2546 return test
? 0 : create_dev
.fd
;
2549 bool kvm_device_supported(int vmfd
, uint64_t type
)
2551 struct kvm_create_device create_dev
= {
2554 .flags
= KVM_CREATE_DEVICE_TEST
,
2557 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
2561 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
2564 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2566 struct kvm_one_reg reg
;
2570 reg
.addr
= (uintptr_t) source
;
2571 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2573 trace_kvm_failed_reg_set(id
, strerror(-r
));
2578 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2580 struct kvm_one_reg reg
;
2584 reg
.addr
= (uintptr_t) target
;
2585 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2587 trace_kvm_failed_reg_get(id
, strerror(-r
));
2592 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2594 AccelClass
*ac
= ACCEL_CLASS(oc
);
2596 ac
->init_machine
= kvm_init
;
2597 ac
->allowed
= &kvm_allowed
;
2600 static const TypeInfo kvm_accel_type
= {
2601 .name
= TYPE_KVM_ACCEL
,
2602 .parent
= TYPE_ACCEL
,
2603 .class_init
= kvm_accel_class_init
,
2604 .instance_size
= sizeof(KVMState
),
2607 static void kvm_type_init(void)
2609 type_register_static(&kvm_accel_type
);
2612 type_init(kvm_type_init
);