nbd/client: More consistent error messages
[qemu/ar7.git] / accel / kvm / kvm-all.c
blob4880a0539941b846cfd57a31295a7961848f995d
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "sysemu/sev.h"
42 #include "sysemu/balloon.h"
44 #include "hw/boards.h"
46 /* This check must be after config-host.h is included */
47 #ifdef CONFIG_EVENTFD
48 #include <sys/eventfd.h>
49 #endif
51 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
52 * need to use the real host PAGE_SIZE, as that's what KVM will use.
54 #define PAGE_SIZE getpagesize()
56 //#define DEBUG_KVM
58 #ifdef DEBUG_KVM
59 #define DPRINTF(fmt, ...) \
60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...) \
63 do { } while (0)
64 #endif
66 #define KVM_MSI_HASHTAB_SIZE 256
68 struct KVMParkedVcpu {
69 unsigned long vcpu_id;
70 int kvm_fd;
71 QLIST_ENTRY(KVMParkedVcpu) node;
74 struct KVMState
76 AccelState parent_obj;
78 int nr_slots;
79 int fd;
80 int vmfd;
81 int coalesced_mmio;
82 int coalesced_pio;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int vcpu_events;
86 int robust_singlestep;
87 int debugregs;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
90 #endif
91 int many_ioeventfds;
92 int intx_set_mask;
93 bool sync_mmu;
94 /* The man page (and posix) say ioctl numbers are signed int, but
95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
96 * unsigned, and treating them as signed here can break things */
97 unsigned irq_set_ioctl;
98 unsigned int sigmask_len;
99 GHashTable *gsimap;
100 #ifdef KVM_CAP_IRQ_ROUTING
101 struct kvm_irq_routing *irq_routes;
102 int nr_allocated_irq_routes;
103 unsigned long *used_gsi_bitmap;
104 unsigned int gsi_count;
105 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
106 #endif
107 KVMMemoryListener memory_listener;
108 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
110 /* memory encryption */
111 void *memcrypt_handle;
112 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
115 KVMState *kvm_state;
116 bool kvm_kernel_irqchip;
117 bool kvm_split_irqchip;
118 bool kvm_async_interrupts_allowed;
119 bool kvm_halt_in_kernel_allowed;
120 bool kvm_eventfds_allowed;
121 bool kvm_irqfds_allowed;
122 bool kvm_resamplefds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
126 bool kvm_allowed;
127 bool kvm_readonly_mem_allowed;
128 bool kvm_vm_attributes_allowed;
129 bool kvm_direct_msi_allowed;
130 bool kvm_ioeventfd_any_length_allowed;
131 bool kvm_msi_use_devid;
132 static bool kvm_immediate_exit;
134 static const KVMCapabilityInfo kvm_required_capabilites[] = {
135 KVM_CAP_INFO(USER_MEMORY),
136 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
137 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
138 KVM_CAP_LAST_INFO
141 int kvm_get_max_memslots(void)
143 KVMState *s = KVM_STATE(current_machine->accelerator);
145 return s->nr_slots;
148 bool kvm_memcrypt_enabled(void)
150 if (kvm_state && kvm_state->memcrypt_handle) {
151 return true;
154 return false;
157 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
159 if (kvm_state->memcrypt_handle &&
160 kvm_state->memcrypt_encrypt_data) {
161 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
162 ptr, len);
165 return 1;
168 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
170 KVMState *s = kvm_state;
171 int i;
173 for (i = 0; i < s->nr_slots; i++) {
174 if (kml->slots[i].memory_size == 0) {
175 return &kml->slots[i];
179 return NULL;
182 bool kvm_has_free_slot(MachineState *ms)
184 KVMState *s = KVM_STATE(ms->accelerator);
186 return kvm_get_free_slot(&s->memory_listener);
189 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
191 KVMSlot *slot = kvm_get_free_slot(kml);
193 if (slot) {
194 return slot;
197 fprintf(stderr, "%s: no free slot available\n", __func__);
198 abort();
201 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
202 hwaddr start_addr,
203 hwaddr size)
205 KVMState *s = kvm_state;
206 int i;
208 for (i = 0; i < s->nr_slots; i++) {
209 KVMSlot *mem = &kml->slots[i];
211 if (start_addr == mem->start_addr && size == mem->memory_size) {
212 return mem;
216 return NULL;
220 * Calculate and align the start address and the size of the section.
221 * Return the size. If the size is 0, the aligned section is empty.
223 static hwaddr kvm_align_section(MemoryRegionSection *section,
224 hwaddr *start)
226 hwaddr size = int128_get64(section->size);
227 hwaddr delta, aligned;
229 /* kvm works in page size chunks, but the function may be called
230 with sub-page size and unaligned start address. Pad the start
231 address to next and truncate size to previous page boundary. */
232 aligned = ROUND_UP(section->offset_within_address_space,
233 qemu_real_host_page_size);
234 delta = aligned - section->offset_within_address_space;
235 *start = aligned;
236 if (delta > size) {
237 return 0;
240 return (size - delta) & qemu_real_host_page_mask;
243 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
244 hwaddr *phys_addr)
246 KVMMemoryListener *kml = &s->memory_listener;
247 int i;
249 for (i = 0; i < s->nr_slots; i++) {
250 KVMSlot *mem = &kml->slots[i];
252 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
253 *phys_addr = mem->start_addr + (ram - mem->ram);
254 return 1;
258 return 0;
261 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
263 KVMState *s = kvm_state;
264 struct kvm_userspace_memory_region mem;
265 int ret;
267 mem.slot = slot->slot | (kml->as_id << 16);
268 mem.guest_phys_addr = slot->start_addr;
269 mem.userspace_addr = (unsigned long)slot->ram;
270 mem.flags = slot->flags;
272 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
273 /* Set the slot size to 0 before setting the slot to the desired
274 * value. This is needed based on KVM commit 75d61fbc. */
275 mem.memory_size = 0;
276 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
278 mem.memory_size = slot->memory_size;
279 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
280 slot->old_flags = mem.flags;
281 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
282 mem.memory_size, mem.userspace_addr, ret);
283 return ret;
286 int kvm_destroy_vcpu(CPUState *cpu)
288 KVMState *s = kvm_state;
289 long mmap_size;
290 struct KVMParkedVcpu *vcpu = NULL;
291 int ret = 0;
293 DPRINTF("kvm_destroy_vcpu\n");
295 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
296 if (mmap_size < 0) {
297 ret = mmap_size;
298 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
299 goto err;
302 ret = munmap(cpu->kvm_run, mmap_size);
303 if (ret < 0) {
304 goto err;
307 vcpu = g_malloc0(sizeof(*vcpu));
308 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
309 vcpu->kvm_fd = cpu->kvm_fd;
310 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
311 err:
312 return ret;
315 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
317 struct KVMParkedVcpu *cpu;
319 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
320 if (cpu->vcpu_id == vcpu_id) {
321 int kvm_fd;
323 QLIST_REMOVE(cpu, node);
324 kvm_fd = cpu->kvm_fd;
325 g_free(cpu);
326 return kvm_fd;
330 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
333 int kvm_init_vcpu(CPUState *cpu)
335 KVMState *s = kvm_state;
336 long mmap_size;
337 int ret;
339 DPRINTF("kvm_init_vcpu\n");
341 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
342 if (ret < 0) {
343 DPRINTF("kvm_create_vcpu failed\n");
344 goto err;
347 cpu->kvm_fd = ret;
348 cpu->kvm_state = s;
349 cpu->vcpu_dirty = true;
351 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
352 if (mmap_size < 0) {
353 ret = mmap_size;
354 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
355 goto err;
358 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
359 cpu->kvm_fd, 0);
360 if (cpu->kvm_run == MAP_FAILED) {
361 ret = -errno;
362 DPRINTF("mmap'ing vcpu state failed\n");
363 goto err;
366 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
367 s->coalesced_mmio_ring =
368 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
371 ret = kvm_arch_init_vcpu(cpu);
372 err:
373 return ret;
377 * dirty pages logging control
380 static int kvm_mem_flags(MemoryRegion *mr)
382 bool readonly = mr->readonly || memory_region_is_romd(mr);
383 int flags = 0;
385 if (memory_region_get_dirty_log_mask(mr) != 0) {
386 flags |= KVM_MEM_LOG_DIRTY_PAGES;
388 if (readonly && kvm_readonly_mem_allowed) {
389 flags |= KVM_MEM_READONLY;
391 return flags;
394 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
395 MemoryRegion *mr)
397 mem->flags = kvm_mem_flags(mr);
399 /* If nothing changed effectively, no need to issue ioctl */
400 if (mem->flags == mem->old_flags) {
401 return 0;
404 return kvm_set_user_memory_region(kml, mem, false);
407 static int kvm_section_update_flags(KVMMemoryListener *kml,
408 MemoryRegionSection *section)
410 hwaddr start_addr, size;
411 KVMSlot *mem;
413 size = kvm_align_section(section, &start_addr);
414 if (!size) {
415 return 0;
418 mem = kvm_lookup_matching_slot(kml, start_addr, size);
419 if (!mem) {
420 /* We don't have a slot if we want to trap every access. */
421 return 0;
424 return kvm_slot_update_flags(kml, mem, section->mr);
427 static void kvm_log_start(MemoryListener *listener,
428 MemoryRegionSection *section,
429 int old, int new)
431 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
432 int r;
434 if (old != 0) {
435 return;
438 r = kvm_section_update_flags(kml, section);
439 if (r < 0) {
440 abort();
444 static void kvm_log_stop(MemoryListener *listener,
445 MemoryRegionSection *section,
446 int old, int new)
448 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
449 int r;
451 if (new != 0) {
452 return;
455 r = kvm_section_update_flags(kml, section);
456 if (r < 0) {
457 abort();
461 /* get kvm's dirty pages bitmap and update qemu's */
462 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
463 unsigned long *bitmap)
465 ram_addr_t start = section->offset_within_region +
466 memory_region_get_ram_addr(section->mr);
467 ram_addr_t pages = int128_get64(section->size) / getpagesize();
469 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
470 return 0;
473 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
476 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
477 * This function updates qemu's dirty bitmap using
478 * memory_region_set_dirty(). This means all bits are set
479 * to dirty.
481 * @start_add: start of logged region.
482 * @end_addr: end of logged region.
484 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
485 MemoryRegionSection *section)
487 KVMState *s = kvm_state;
488 struct kvm_dirty_log d = {};
489 KVMSlot *mem;
490 hwaddr start_addr, size;
492 size = kvm_align_section(section, &start_addr);
493 if (size) {
494 mem = kvm_lookup_matching_slot(kml, start_addr, size);
495 if (!mem) {
496 /* We don't have a slot if we want to trap every access. */
497 return 0;
500 /* XXX bad kernel interface alert
501 * For dirty bitmap, kernel allocates array of size aligned to
502 * bits-per-long. But for case when the kernel is 64bits and
503 * the userspace is 32bits, userspace can't align to the same
504 * bits-per-long, since sizeof(long) is different between kernel
505 * and user space. This way, userspace will provide buffer which
506 * may be 4 bytes less than the kernel will use, resulting in
507 * userspace memory corruption (which is not detectable by valgrind
508 * too, in most cases).
509 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
510 * a hope that sizeof(long) won't become >8 any time soon.
512 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
513 /*HOST_LONG_BITS*/ 64) / 8;
514 d.dirty_bitmap = g_malloc0(size);
516 d.slot = mem->slot | (kml->as_id << 16);
517 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
518 DPRINTF("ioctl failed %d\n", errno);
519 g_free(d.dirty_bitmap);
520 return -1;
523 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
524 g_free(d.dirty_bitmap);
527 return 0;
530 static void kvm_coalesce_mmio_region(MemoryListener *listener,
531 MemoryRegionSection *secion,
532 hwaddr start, hwaddr size)
534 KVMState *s = kvm_state;
536 if (s->coalesced_mmio) {
537 struct kvm_coalesced_mmio_zone zone;
539 zone.addr = start;
540 zone.size = size;
541 zone.pad = 0;
543 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
547 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
548 MemoryRegionSection *secion,
549 hwaddr start, hwaddr size)
551 KVMState *s = kvm_state;
553 if (s->coalesced_mmio) {
554 struct kvm_coalesced_mmio_zone zone;
556 zone.addr = start;
557 zone.size = size;
558 zone.pad = 0;
560 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
564 static void kvm_coalesce_pio_add(MemoryListener *listener,
565 MemoryRegionSection *section,
566 hwaddr start, hwaddr size)
568 KVMState *s = kvm_state;
570 if (s->coalesced_pio) {
571 struct kvm_coalesced_mmio_zone zone;
573 zone.addr = start;
574 zone.size = size;
575 zone.pio = 1;
577 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
581 static void kvm_coalesce_pio_del(MemoryListener *listener,
582 MemoryRegionSection *section,
583 hwaddr start, hwaddr size)
585 KVMState *s = kvm_state;
587 if (s->coalesced_pio) {
588 struct kvm_coalesced_mmio_zone zone;
590 zone.addr = start;
591 zone.size = size;
592 zone.pio = 1;
594 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
598 static MemoryListener kvm_coalesced_pio_listener = {
599 .coalesced_io_add = kvm_coalesce_pio_add,
600 .coalesced_io_del = kvm_coalesce_pio_del,
603 int kvm_check_extension(KVMState *s, unsigned int extension)
605 int ret;
607 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
608 if (ret < 0) {
609 ret = 0;
612 return ret;
615 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
617 int ret;
619 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
620 if (ret < 0) {
621 /* VM wide version not implemented, use global one instead */
622 ret = kvm_check_extension(s, extension);
625 return ret;
628 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
630 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
631 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
632 * endianness, but the memory core hands them in target endianness.
633 * For example, PPC is always treated as big-endian even if running
634 * on KVM and on PPC64LE. Correct here.
636 switch (size) {
637 case 2:
638 val = bswap16(val);
639 break;
640 case 4:
641 val = bswap32(val);
642 break;
644 #endif
645 return val;
648 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
649 bool assign, uint32_t size, bool datamatch)
651 int ret;
652 struct kvm_ioeventfd iofd = {
653 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
654 .addr = addr,
655 .len = size,
656 .flags = 0,
657 .fd = fd,
660 if (!kvm_enabled()) {
661 return -ENOSYS;
664 if (datamatch) {
665 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
667 if (!assign) {
668 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
671 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
673 if (ret < 0) {
674 return -errno;
677 return 0;
680 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
681 bool assign, uint32_t size, bool datamatch)
683 struct kvm_ioeventfd kick = {
684 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
685 .addr = addr,
686 .flags = KVM_IOEVENTFD_FLAG_PIO,
687 .len = size,
688 .fd = fd,
690 int r;
691 if (!kvm_enabled()) {
692 return -ENOSYS;
694 if (datamatch) {
695 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
697 if (!assign) {
698 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
700 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
701 if (r < 0) {
702 return r;
704 return 0;
708 static int kvm_check_many_ioeventfds(void)
710 /* Userspace can use ioeventfd for io notification. This requires a host
711 * that supports eventfd(2) and an I/O thread; since eventfd does not
712 * support SIGIO it cannot interrupt the vcpu.
714 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
715 * can avoid creating too many ioeventfds.
717 #if defined(CONFIG_EVENTFD)
718 int ioeventfds[7];
719 int i, ret = 0;
720 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
721 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
722 if (ioeventfds[i] < 0) {
723 break;
725 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
726 if (ret < 0) {
727 close(ioeventfds[i]);
728 break;
732 /* Decide whether many devices are supported or not */
733 ret = i == ARRAY_SIZE(ioeventfds);
735 while (i-- > 0) {
736 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
737 close(ioeventfds[i]);
739 return ret;
740 #else
741 return 0;
742 #endif
745 static const KVMCapabilityInfo *
746 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
748 while (list->name) {
749 if (!kvm_check_extension(s, list->value)) {
750 return list;
752 list++;
754 return NULL;
757 static void kvm_set_phys_mem(KVMMemoryListener *kml,
758 MemoryRegionSection *section, bool add)
760 KVMSlot *mem;
761 int err;
762 MemoryRegion *mr = section->mr;
763 bool writeable = !mr->readonly && !mr->rom_device;
764 hwaddr start_addr, size;
765 void *ram;
767 if (!memory_region_is_ram(mr)) {
768 if (writeable || !kvm_readonly_mem_allowed) {
769 return;
770 } else if (!mr->romd_mode) {
771 /* If the memory device is not in romd_mode, then we actually want
772 * to remove the kvm memory slot so all accesses will trap. */
773 add = false;
777 size = kvm_align_section(section, &start_addr);
778 if (!size) {
779 return;
782 /* use aligned delta to align the ram address */
783 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
784 (start_addr - section->offset_within_address_space);
786 if (!add) {
787 mem = kvm_lookup_matching_slot(kml, start_addr, size);
788 if (!mem) {
789 return;
791 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
792 kvm_physical_sync_dirty_bitmap(kml, section);
795 /* unregister the slot */
796 mem->memory_size = 0;
797 mem->flags = 0;
798 err = kvm_set_user_memory_region(kml, mem, false);
799 if (err) {
800 fprintf(stderr, "%s: error unregistering slot: %s\n",
801 __func__, strerror(-err));
802 abort();
804 return;
807 /* register the new slot */
808 mem = kvm_alloc_slot(kml);
809 mem->memory_size = size;
810 mem->start_addr = start_addr;
811 mem->ram = ram;
812 mem->flags = kvm_mem_flags(mr);
814 err = kvm_set_user_memory_region(kml, mem, true);
815 if (err) {
816 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
817 strerror(-err));
818 abort();
822 static void kvm_region_add(MemoryListener *listener,
823 MemoryRegionSection *section)
825 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
827 memory_region_ref(section->mr);
828 kvm_set_phys_mem(kml, section, true);
831 static void kvm_region_del(MemoryListener *listener,
832 MemoryRegionSection *section)
834 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
836 kvm_set_phys_mem(kml, section, false);
837 memory_region_unref(section->mr);
840 static void kvm_log_sync(MemoryListener *listener,
841 MemoryRegionSection *section)
843 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
844 int r;
846 r = kvm_physical_sync_dirty_bitmap(kml, section);
847 if (r < 0) {
848 abort();
852 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
853 MemoryRegionSection *section,
854 bool match_data, uint64_t data,
855 EventNotifier *e)
857 int fd = event_notifier_get_fd(e);
858 int r;
860 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
861 data, true, int128_get64(section->size),
862 match_data);
863 if (r < 0) {
864 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
865 __func__, strerror(-r));
866 abort();
870 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
871 MemoryRegionSection *section,
872 bool match_data, uint64_t data,
873 EventNotifier *e)
875 int fd = event_notifier_get_fd(e);
876 int r;
878 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
879 data, false, int128_get64(section->size),
880 match_data);
881 if (r < 0) {
882 abort();
886 static void kvm_io_ioeventfd_add(MemoryListener *listener,
887 MemoryRegionSection *section,
888 bool match_data, uint64_t data,
889 EventNotifier *e)
891 int fd = event_notifier_get_fd(e);
892 int r;
894 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
895 data, true, int128_get64(section->size),
896 match_data);
897 if (r < 0) {
898 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
899 __func__, strerror(-r));
900 abort();
904 static void kvm_io_ioeventfd_del(MemoryListener *listener,
905 MemoryRegionSection *section,
906 bool match_data, uint64_t data,
907 EventNotifier *e)
910 int fd = event_notifier_get_fd(e);
911 int r;
913 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
914 data, false, int128_get64(section->size),
915 match_data);
916 if (r < 0) {
917 abort();
921 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
922 AddressSpace *as, int as_id)
924 int i;
926 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
927 kml->as_id = as_id;
929 for (i = 0; i < s->nr_slots; i++) {
930 kml->slots[i].slot = i;
933 kml->listener.region_add = kvm_region_add;
934 kml->listener.region_del = kvm_region_del;
935 kml->listener.log_start = kvm_log_start;
936 kml->listener.log_stop = kvm_log_stop;
937 kml->listener.log_sync = kvm_log_sync;
938 kml->listener.priority = 10;
940 memory_listener_register(&kml->listener, as);
943 static MemoryListener kvm_io_listener = {
944 .eventfd_add = kvm_io_ioeventfd_add,
945 .eventfd_del = kvm_io_ioeventfd_del,
946 .priority = 10,
949 int kvm_set_irq(KVMState *s, int irq, int level)
951 struct kvm_irq_level event;
952 int ret;
954 assert(kvm_async_interrupts_enabled());
956 event.level = level;
957 event.irq = irq;
958 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
959 if (ret < 0) {
960 perror("kvm_set_irq");
961 abort();
964 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
967 #ifdef KVM_CAP_IRQ_ROUTING
968 typedef struct KVMMSIRoute {
969 struct kvm_irq_routing_entry kroute;
970 QTAILQ_ENTRY(KVMMSIRoute) entry;
971 } KVMMSIRoute;
973 static void set_gsi(KVMState *s, unsigned int gsi)
975 set_bit(gsi, s->used_gsi_bitmap);
978 static void clear_gsi(KVMState *s, unsigned int gsi)
980 clear_bit(gsi, s->used_gsi_bitmap);
983 void kvm_init_irq_routing(KVMState *s)
985 int gsi_count, i;
987 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
988 if (gsi_count > 0) {
989 /* Round up so we can search ints using ffs */
990 s->used_gsi_bitmap = bitmap_new(gsi_count);
991 s->gsi_count = gsi_count;
994 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
995 s->nr_allocated_irq_routes = 0;
997 if (!kvm_direct_msi_allowed) {
998 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
999 QTAILQ_INIT(&s->msi_hashtab[i]);
1003 kvm_arch_init_irq_routing(s);
1006 void kvm_irqchip_commit_routes(KVMState *s)
1008 int ret;
1010 if (kvm_gsi_direct_mapping()) {
1011 return;
1014 if (!kvm_gsi_routing_enabled()) {
1015 return;
1018 s->irq_routes->flags = 0;
1019 trace_kvm_irqchip_commit_routes();
1020 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1021 assert(ret == 0);
1024 static void kvm_add_routing_entry(KVMState *s,
1025 struct kvm_irq_routing_entry *entry)
1027 struct kvm_irq_routing_entry *new;
1028 int n, size;
1030 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1031 n = s->nr_allocated_irq_routes * 2;
1032 if (n < 64) {
1033 n = 64;
1035 size = sizeof(struct kvm_irq_routing);
1036 size += n * sizeof(*new);
1037 s->irq_routes = g_realloc(s->irq_routes, size);
1038 s->nr_allocated_irq_routes = n;
1040 n = s->irq_routes->nr++;
1041 new = &s->irq_routes->entries[n];
1043 *new = *entry;
1045 set_gsi(s, entry->gsi);
1048 static int kvm_update_routing_entry(KVMState *s,
1049 struct kvm_irq_routing_entry *new_entry)
1051 struct kvm_irq_routing_entry *entry;
1052 int n;
1054 for (n = 0; n < s->irq_routes->nr; n++) {
1055 entry = &s->irq_routes->entries[n];
1056 if (entry->gsi != new_entry->gsi) {
1057 continue;
1060 if(!memcmp(entry, new_entry, sizeof *entry)) {
1061 return 0;
1064 *entry = *new_entry;
1066 return 0;
1069 return -ESRCH;
1072 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1074 struct kvm_irq_routing_entry e = {};
1076 assert(pin < s->gsi_count);
1078 e.gsi = irq;
1079 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1080 e.flags = 0;
1081 e.u.irqchip.irqchip = irqchip;
1082 e.u.irqchip.pin = pin;
1083 kvm_add_routing_entry(s, &e);
1086 void kvm_irqchip_release_virq(KVMState *s, int virq)
1088 struct kvm_irq_routing_entry *e;
1089 int i;
1091 if (kvm_gsi_direct_mapping()) {
1092 return;
1095 for (i = 0; i < s->irq_routes->nr; i++) {
1096 e = &s->irq_routes->entries[i];
1097 if (e->gsi == virq) {
1098 s->irq_routes->nr--;
1099 *e = s->irq_routes->entries[s->irq_routes->nr];
1102 clear_gsi(s, virq);
1103 kvm_arch_release_virq_post(virq);
1104 trace_kvm_irqchip_release_virq(virq);
1107 static unsigned int kvm_hash_msi(uint32_t data)
1109 /* This is optimized for IA32 MSI layout. However, no other arch shall
1110 * repeat the mistake of not providing a direct MSI injection API. */
1111 return data & 0xff;
1114 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1116 KVMMSIRoute *route, *next;
1117 unsigned int hash;
1119 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1120 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1121 kvm_irqchip_release_virq(s, route->kroute.gsi);
1122 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1123 g_free(route);
1128 static int kvm_irqchip_get_virq(KVMState *s)
1130 int next_virq;
1133 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1134 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1135 * number can succeed even though a new route entry cannot be added.
1136 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1138 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1139 kvm_flush_dynamic_msi_routes(s);
1142 /* Return the lowest unused GSI in the bitmap */
1143 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1144 if (next_virq >= s->gsi_count) {
1145 return -ENOSPC;
1146 } else {
1147 return next_virq;
1151 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1153 unsigned int hash = kvm_hash_msi(msg.data);
1154 KVMMSIRoute *route;
1156 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1157 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1158 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1159 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1160 return route;
1163 return NULL;
1166 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1168 struct kvm_msi msi;
1169 KVMMSIRoute *route;
1171 if (kvm_direct_msi_allowed) {
1172 msi.address_lo = (uint32_t)msg.address;
1173 msi.address_hi = msg.address >> 32;
1174 msi.data = le32_to_cpu(msg.data);
1175 msi.flags = 0;
1176 memset(msi.pad, 0, sizeof(msi.pad));
1178 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1181 route = kvm_lookup_msi_route(s, msg);
1182 if (!route) {
1183 int virq;
1185 virq = kvm_irqchip_get_virq(s);
1186 if (virq < 0) {
1187 return virq;
1190 route = g_malloc0(sizeof(KVMMSIRoute));
1191 route->kroute.gsi = virq;
1192 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1193 route->kroute.flags = 0;
1194 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1195 route->kroute.u.msi.address_hi = msg.address >> 32;
1196 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1198 kvm_add_routing_entry(s, &route->kroute);
1199 kvm_irqchip_commit_routes(s);
1201 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1202 entry);
1205 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1207 return kvm_set_irq(s, route->kroute.gsi, 1);
1210 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1212 struct kvm_irq_routing_entry kroute = {};
1213 int virq;
1214 MSIMessage msg = {0, 0};
1216 if (pci_available && dev) {
1217 msg = pci_get_msi_message(dev, vector);
1220 if (kvm_gsi_direct_mapping()) {
1221 return kvm_arch_msi_data_to_gsi(msg.data);
1224 if (!kvm_gsi_routing_enabled()) {
1225 return -ENOSYS;
1228 virq = kvm_irqchip_get_virq(s);
1229 if (virq < 0) {
1230 return virq;
1233 kroute.gsi = virq;
1234 kroute.type = KVM_IRQ_ROUTING_MSI;
1235 kroute.flags = 0;
1236 kroute.u.msi.address_lo = (uint32_t)msg.address;
1237 kroute.u.msi.address_hi = msg.address >> 32;
1238 kroute.u.msi.data = le32_to_cpu(msg.data);
1239 if (pci_available && kvm_msi_devid_required()) {
1240 kroute.flags = KVM_MSI_VALID_DEVID;
1241 kroute.u.msi.devid = pci_requester_id(dev);
1243 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1244 kvm_irqchip_release_virq(s, virq);
1245 return -EINVAL;
1248 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1249 vector, virq);
1251 kvm_add_routing_entry(s, &kroute);
1252 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1253 kvm_irqchip_commit_routes(s);
1255 return virq;
1258 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1259 PCIDevice *dev)
1261 struct kvm_irq_routing_entry kroute = {};
1263 if (kvm_gsi_direct_mapping()) {
1264 return 0;
1267 if (!kvm_irqchip_in_kernel()) {
1268 return -ENOSYS;
1271 kroute.gsi = virq;
1272 kroute.type = KVM_IRQ_ROUTING_MSI;
1273 kroute.flags = 0;
1274 kroute.u.msi.address_lo = (uint32_t)msg.address;
1275 kroute.u.msi.address_hi = msg.address >> 32;
1276 kroute.u.msi.data = le32_to_cpu(msg.data);
1277 if (pci_available && kvm_msi_devid_required()) {
1278 kroute.flags = KVM_MSI_VALID_DEVID;
1279 kroute.u.msi.devid = pci_requester_id(dev);
1281 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1282 return -EINVAL;
1285 trace_kvm_irqchip_update_msi_route(virq);
1287 return kvm_update_routing_entry(s, &kroute);
1290 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1291 bool assign)
1293 struct kvm_irqfd irqfd = {
1294 .fd = fd,
1295 .gsi = virq,
1296 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1299 if (rfd != -1) {
1300 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1301 irqfd.resamplefd = rfd;
1304 if (!kvm_irqfds_enabled()) {
1305 return -ENOSYS;
1308 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1311 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1313 struct kvm_irq_routing_entry kroute = {};
1314 int virq;
1316 if (!kvm_gsi_routing_enabled()) {
1317 return -ENOSYS;
1320 virq = kvm_irqchip_get_virq(s);
1321 if (virq < 0) {
1322 return virq;
1325 kroute.gsi = virq;
1326 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1327 kroute.flags = 0;
1328 kroute.u.adapter.summary_addr = adapter->summary_addr;
1329 kroute.u.adapter.ind_addr = adapter->ind_addr;
1330 kroute.u.adapter.summary_offset = adapter->summary_offset;
1331 kroute.u.adapter.ind_offset = adapter->ind_offset;
1332 kroute.u.adapter.adapter_id = adapter->adapter_id;
1334 kvm_add_routing_entry(s, &kroute);
1336 return virq;
1339 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1341 struct kvm_irq_routing_entry kroute = {};
1342 int virq;
1344 if (!kvm_gsi_routing_enabled()) {
1345 return -ENOSYS;
1347 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1348 return -ENOSYS;
1350 virq = kvm_irqchip_get_virq(s);
1351 if (virq < 0) {
1352 return virq;
1355 kroute.gsi = virq;
1356 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1357 kroute.flags = 0;
1358 kroute.u.hv_sint.vcpu = vcpu;
1359 kroute.u.hv_sint.sint = sint;
1361 kvm_add_routing_entry(s, &kroute);
1362 kvm_irqchip_commit_routes(s);
1364 return virq;
1367 #else /* !KVM_CAP_IRQ_ROUTING */
1369 void kvm_init_irq_routing(KVMState *s)
1373 void kvm_irqchip_release_virq(KVMState *s, int virq)
1377 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1379 abort();
1382 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1384 return -ENOSYS;
1387 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1389 return -ENOSYS;
1392 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1394 return -ENOSYS;
1397 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1399 abort();
1402 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1404 return -ENOSYS;
1406 #endif /* !KVM_CAP_IRQ_ROUTING */
1408 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1409 EventNotifier *rn, int virq)
1411 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1412 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1415 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1416 int virq)
1418 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1419 false);
1422 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1423 EventNotifier *rn, qemu_irq irq)
1425 gpointer key, gsi;
1426 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1428 if (!found) {
1429 return -ENXIO;
1431 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1434 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1435 qemu_irq irq)
1437 gpointer key, gsi;
1438 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1440 if (!found) {
1441 return -ENXIO;
1443 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1446 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1448 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1451 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1453 int ret;
1455 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1457 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1458 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1459 if (ret < 0) {
1460 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1461 exit(1);
1463 } else {
1464 return;
1467 /* First probe and see if there's a arch-specific hook to create the
1468 * in-kernel irqchip for us */
1469 ret = kvm_arch_irqchip_create(machine, s);
1470 if (ret == 0) {
1471 if (machine_kernel_irqchip_split(machine)) {
1472 perror("Split IRQ chip mode not supported.");
1473 exit(1);
1474 } else {
1475 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1478 if (ret < 0) {
1479 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1480 exit(1);
1483 kvm_kernel_irqchip = true;
1484 /* If we have an in-kernel IRQ chip then we must have asynchronous
1485 * interrupt delivery (though the reverse is not necessarily true)
1487 kvm_async_interrupts_allowed = true;
1488 kvm_halt_in_kernel_allowed = true;
1490 kvm_init_irq_routing(s);
1492 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1495 /* Find number of supported CPUs using the recommended
1496 * procedure from the kernel API documentation to cope with
1497 * older kernels that may be missing capabilities.
1499 static int kvm_recommended_vcpus(KVMState *s)
1501 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1502 return (ret) ? ret : 4;
1505 static int kvm_max_vcpus(KVMState *s)
1507 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1508 return (ret) ? ret : kvm_recommended_vcpus(s);
1511 static int kvm_max_vcpu_id(KVMState *s)
1513 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1514 return (ret) ? ret : kvm_max_vcpus(s);
1517 bool kvm_vcpu_id_is_valid(int vcpu_id)
1519 KVMState *s = KVM_STATE(current_machine->accelerator);
1520 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1523 static int kvm_init(MachineState *ms)
1525 MachineClass *mc = MACHINE_GET_CLASS(ms);
1526 static const char upgrade_note[] =
1527 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1528 "(see http://sourceforge.net/projects/kvm).\n";
1529 struct {
1530 const char *name;
1531 int num;
1532 } num_cpus[] = {
1533 { "SMP", smp_cpus },
1534 { "hotpluggable", max_cpus },
1535 { NULL, }
1536 }, *nc = num_cpus;
1537 int soft_vcpus_limit, hard_vcpus_limit;
1538 KVMState *s;
1539 const KVMCapabilityInfo *missing_cap;
1540 int ret;
1541 int type = 0;
1542 const char *kvm_type;
1544 s = KVM_STATE(ms->accelerator);
1547 * On systems where the kernel can support different base page
1548 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1549 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1550 * page size for the system though.
1552 assert(TARGET_PAGE_SIZE <= getpagesize());
1554 s->sigmask_len = 8;
1556 #ifdef KVM_CAP_SET_GUEST_DEBUG
1557 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1558 #endif
1559 QLIST_INIT(&s->kvm_parked_vcpus);
1560 s->vmfd = -1;
1561 s->fd = qemu_open("/dev/kvm", O_RDWR);
1562 if (s->fd == -1) {
1563 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1564 ret = -errno;
1565 goto err;
1568 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1569 if (ret < KVM_API_VERSION) {
1570 if (ret >= 0) {
1571 ret = -EINVAL;
1573 fprintf(stderr, "kvm version too old\n");
1574 goto err;
1577 if (ret > KVM_API_VERSION) {
1578 ret = -EINVAL;
1579 fprintf(stderr, "kvm version not supported\n");
1580 goto err;
1583 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1584 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1586 /* If unspecified, use the default value */
1587 if (!s->nr_slots) {
1588 s->nr_slots = 32;
1591 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1592 if (mc->kvm_type) {
1593 type = mc->kvm_type(kvm_type);
1594 } else if (kvm_type) {
1595 ret = -EINVAL;
1596 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1597 goto err;
1600 do {
1601 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1602 } while (ret == -EINTR);
1604 if (ret < 0) {
1605 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1606 strerror(-ret));
1608 #ifdef TARGET_S390X
1609 if (ret == -EINVAL) {
1610 fprintf(stderr,
1611 "Host kernel setup problem detected. Please verify:\n");
1612 fprintf(stderr, "- for kernels supporting the switch_amode or"
1613 " user_mode parameters, whether\n");
1614 fprintf(stderr,
1615 " user space is running in primary address space\n");
1616 fprintf(stderr,
1617 "- for kernels supporting the vm.allocate_pgste sysctl, "
1618 "whether it is enabled\n");
1620 #endif
1621 goto err;
1624 s->vmfd = ret;
1626 /* check the vcpu limits */
1627 soft_vcpus_limit = kvm_recommended_vcpus(s);
1628 hard_vcpus_limit = kvm_max_vcpus(s);
1630 while (nc->name) {
1631 if (nc->num > soft_vcpus_limit) {
1632 warn_report("Number of %s cpus requested (%d) exceeds "
1633 "the recommended cpus supported by KVM (%d)",
1634 nc->name, nc->num, soft_vcpus_limit);
1636 if (nc->num > hard_vcpus_limit) {
1637 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1638 "the maximum cpus supported by KVM (%d)\n",
1639 nc->name, nc->num, hard_vcpus_limit);
1640 exit(1);
1643 nc++;
1646 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1647 if (!missing_cap) {
1648 missing_cap =
1649 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1651 if (missing_cap) {
1652 ret = -EINVAL;
1653 fprintf(stderr, "kvm does not support %s\n%s",
1654 missing_cap->name, upgrade_note);
1655 goto err;
1658 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1659 s->coalesced_pio = s->coalesced_mmio &&
1660 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1662 #ifdef KVM_CAP_VCPU_EVENTS
1663 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1664 #endif
1666 s->robust_singlestep =
1667 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1669 #ifdef KVM_CAP_DEBUGREGS
1670 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1671 #endif
1673 #ifdef KVM_CAP_IRQ_ROUTING
1674 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1675 #endif
1677 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1679 s->irq_set_ioctl = KVM_IRQ_LINE;
1680 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1681 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1684 kvm_readonly_mem_allowed =
1685 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1687 kvm_eventfds_allowed =
1688 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1690 kvm_irqfds_allowed =
1691 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1693 kvm_resamplefds_allowed =
1694 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1696 kvm_vm_attributes_allowed =
1697 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1699 kvm_ioeventfd_any_length_allowed =
1700 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1702 kvm_state = s;
1705 * if memory encryption object is specified then initialize the memory
1706 * encryption context.
1708 if (ms->memory_encryption) {
1709 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
1710 if (!kvm_state->memcrypt_handle) {
1711 ret = -1;
1712 goto err;
1715 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
1718 ret = kvm_arch_init(ms, s);
1719 if (ret < 0) {
1720 goto err;
1723 if (machine_kernel_irqchip_allowed(ms)) {
1724 kvm_irqchip_create(ms, s);
1727 if (kvm_eventfds_allowed) {
1728 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1729 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1731 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
1732 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
1734 kvm_memory_listener_register(s, &s->memory_listener,
1735 &address_space_memory, 0);
1736 memory_listener_register(&kvm_io_listener,
1737 &address_space_io);
1738 memory_listener_register(&kvm_coalesced_pio_listener,
1739 &address_space_io);
1741 s->many_ioeventfds = kvm_check_many_ioeventfds();
1743 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1744 if (!s->sync_mmu) {
1745 qemu_balloon_inhibit(true);
1748 return 0;
1750 err:
1751 assert(ret < 0);
1752 if (s->vmfd >= 0) {
1753 close(s->vmfd);
1755 if (s->fd != -1) {
1756 close(s->fd);
1758 g_free(s->memory_listener.slots);
1760 return ret;
1763 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1765 s->sigmask_len = sigmask_len;
1768 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1769 int size, uint32_t count)
1771 int i;
1772 uint8_t *ptr = data;
1774 for (i = 0; i < count; i++) {
1775 address_space_rw(&address_space_io, port, attrs,
1776 ptr, size,
1777 direction == KVM_EXIT_IO_OUT);
1778 ptr += size;
1782 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1784 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1785 run->internal.suberror);
1787 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1788 int i;
1790 for (i = 0; i < run->internal.ndata; ++i) {
1791 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1792 i, (uint64_t)run->internal.data[i]);
1795 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1796 fprintf(stderr, "emulation failure\n");
1797 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1798 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1799 return EXCP_INTERRUPT;
1802 /* FIXME: Should trigger a qmp message to let management know
1803 * something went wrong.
1805 return -1;
1808 void kvm_flush_coalesced_mmio_buffer(void)
1810 KVMState *s = kvm_state;
1812 if (s->coalesced_flush_in_progress) {
1813 return;
1816 s->coalesced_flush_in_progress = true;
1818 if (s->coalesced_mmio_ring) {
1819 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1820 while (ring->first != ring->last) {
1821 struct kvm_coalesced_mmio *ent;
1823 ent = &ring->coalesced_mmio[ring->first];
1825 if (ent->pio == 1) {
1826 address_space_rw(&address_space_io, ent->phys_addr,
1827 MEMTXATTRS_UNSPECIFIED, ent->data,
1828 ent->len, true);
1829 } else {
1830 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1832 smp_wmb();
1833 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1837 s->coalesced_flush_in_progress = false;
1840 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1842 if (!cpu->vcpu_dirty) {
1843 kvm_arch_get_registers(cpu);
1844 cpu->vcpu_dirty = true;
1848 void kvm_cpu_synchronize_state(CPUState *cpu)
1850 if (!cpu->vcpu_dirty) {
1851 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1855 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1857 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1858 cpu->vcpu_dirty = false;
1861 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1863 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1866 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1868 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1869 cpu->vcpu_dirty = false;
1872 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1874 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1877 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1879 cpu->vcpu_dirty = true;
1882 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1884 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1887 #ifdef KVM_HAVE_MCE_INJECTION
1888 static __thread void *pending_sigbus_addr;
1889 static __thread int pending_sigbus_code;
1890 static __thread bool have_sigbus_pending;
1891 #endif
1893 static void kvm_cpu_kick(CPUState *cpu)
1895 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1898 static void kvm_cpu_kick_self(void)
1900 if (kvm_immediate_exit) {
1901 kvm_cpu_kick(current_cpu);
1902 } else {
1903 qemu_cpu_kick_self();
1907 static void kvm_eat_signals(CPUState *cpu)
1909 struct timespec ts = { 0, 0 };
1910 siginfo_t siginfo;
1911 sigset_t waitset;
1912 sigset_t chkset;
1913 int r;
1915 if (kvm_immediate_exit) {
1916 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1917 /* Write kvm_run->immediate_exit before the cpu->exit_request
1918 * write in kvm_cpu_exec.
1920 smp_wmb();
1921 return;
1924 sigemptyset(&waitset);
1925 sigaddset(&waitset, SIG_IPI);
1927 do {
1928 r = sigtimedwait(&waitset, &siginfo, &ts);
1929 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1930 perror("sigtimedwait");
1931 exit(1);
1934 r = sigpending(&chkset);
1935 if (r == -1) {
1936 perror("sigpending");
1937 exit(1);
1939 } while (sigismember(&chkset, SIG_IPI));
1942 int kvm_cpu_exec(CPUState *cpu)
1944 struct kvm_run *run = cpu->kvm_run;
1945 int ret, run_ret;
1947 DPRINTF("kvm_cpu_exec()\n");
1949 if (kvm_arch_process_async_events(cpu)) {
1950 atomic_set(&cpu->exit_request, 0);
1951 return EXCP_HLT;
1954 qemu_mutex_unlock_iothread();
1955 cpu_exec_start(cpu);
1957 do {
1958 MemTxAttrs attrs;
1960 if (cpu->vcpu_dirty) {
1961 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1962 cpu->vcpu_dirty = false;
1965 kvm_arch_pre_run(cpu, run);
1966 if (atomic_read(&cpu->exit_request)) {
1967 DPRINTF("interrupt exit requested\n");
1969 * KVM requires us to reenter the kernel after IO exits to complete
1970 * instruction emulation. This self-signal will ensure that we
1971 * leave ASAP again.
1973 kvm_cpu_kick_self();
1976 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1977 * Matching barrier in kvm_eat_signals.
1979 smp_rmb();
1981 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1983 attrs = kvm_arch_post_run(cpu, run);
1985 #ifdef KVM_HAVE_MCE_INJECTION
1986 if (unlikely(have_sigbus_pending)) {
1987 qemu_mutex_lock_iothread();
1988 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1989 pending_sigbus_addr);
1990 have_sigbus_pending = false;
1991 qemu_mutex_unlock_iothread();
1993 #endif
1995 if (run_ret < 0) {
1996 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1997 DPRINTF("io window exit\n");
1998 kvm_eat_signals(cpu);
1999 ret = EXCP_INTERRUPT;
2000 break;
2002 fprintf(stderr, "error: kvm run failed %s\n",
2003 strerror(-run_ret));
2004 #ifdef TARGET_PPC
2005 if (run_ret == -EBUSY) {
2006 fprintf(stderr,
2007 "This is probably because your SMT is enabled.\n"
2008 "VCPU can only run on primary threads with all "
2009 "secondary threads offline.\n");
2011 #endif
2012 ret = -1;
2013 break;
2016 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2017 switch (run->exit_reason) {
2018 case KVM_EXIT_IO:
2019 DPRINTF("handle_io\n");
2020 /* Called outside BQL */
2021 kvm_handle_io(run->io.port, attrs,
2022 (uint8_t *)run + run->io.data_offset,
2023 run->io.direction,
2024 run->io.size,
2025 run->io.count);
2026 ret = 0;
2027 break;
2028 case KVM_EXIT_MMIO:
2029 DPRINTF("handle_mmio\n");
2030 /* Called outside BQL */
2031 address_space_rw(&address_space_memory,
2032 run->mmio.phys_addr, attrs,
2033 run->mmio.data,
2034 run->mmio.len,
2035 run->mmio.is_write);
2036 ret = 0;
2037 break;
2038 case KVM_EXIT_IRQ_WINDOW_OPEN:
2039 DPRINTF("irq_window_open\n");
2040 ret = EXCP_INTERRUPT;
2041 break;
2042 case KVM_EXIT_SHUTDOWN:
2043 DPRINTF("shutdown\n");
2044 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2045 ret = EXCP_INTERRUPT;
2046 break;
2047 case KVM_EXIT_UNKNOWN:
2048 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2049 (uint64_t)run->hw.hardware_exit_reason);
2050 ret = -1;
2051 break;
2052 case KVM_EXIT_INTERNAL_ERROR:
2053 ret = kvm_handle_internal_error(cpu, run);
2054 break;
2055 case KVM_EXIT_SYSTEM_EVENT:
2056 switch (run->system_event.type) {
2057 case KVM_SYSTEM_EVENT_SHUTDOWN:
2058 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2059 ret = EXCP_INTERRUPT;
2060 break;
2061 case KVM_SYSTEM_EVENT_RESET:
2062 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2063 ret = EXCP_INTERRUPT;
2064 break;
2065 case KVM_SYSTEM_EVENT_CRASH:
2066 kvm_cpu_synchronize_state(cpu);
2067 qemu_mutex_lock_iothread();
2068 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2069 qemu_mutex_unlock_iothread();
2070 ret = 0;
2071 break;
2072 default:
2073 DPRINTF("kvm_arch_handle_exit\n");
2074 ret = kvm_arch_handle_exit(cpu, run);
2075 break;
2077 break;
2078 default:
2079 DPRINTF("kvm_arch_handle_exit\n");
2080 ret = kvm_arch_handle_exit(cpu, run);
2081 break;
2083 } while (ret == 0);
2085 cpu_exec_end(cpu);
2086 qemu_mutex_lock_iothread();
2088 if (ret < 0) {
2089 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2090 vm_stop(RUN_STATE_INTERNAL_ERROR);
2093 atomic_set(&cpu->exit_request, 0);
2094 return ret;
2097 int kvm_ioctl(KVMState *s, int type, ...)
2099 int ret;
2100 void *arg;
2101 va_list ap;
2103 va_start(ap, type);
2104 arg = va_arg(ap, void *);
2105 va_end(ap);
2107 trace_kvm_ioctl(type, arg);
2108 ret = ioctl(s->fd, type, arg);
2109 if (ret == -1) {
2110 ret = -errno;
2112 return ret;
2115 int kvm_vm_ioctl(KVMState *s, int type, ...)
2117 int ret;
2118 void *arg;
2119 va_list ap;
2121 va_start(ap, type);
2122 arg = va_arg(ap, void *);
2123 va_end(ap);
2125 trace_kvm_vm_ioctl(type, arg);
2126 ret = ioctl(s->vmfd, type, arg);
2127 if (ret == -1) {
2128 ret = -errno;
2130 return ret;
2133 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2135 int ret;
2136 void *arg;
2137 va_list ap;
2139 va_start(ap, type);
2140 arg = va_arg(ap, void *);
2141 va_end(ap);
2143 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2144 ret = ioctl(cpu->kvm_fd, type, arg);
2145 if (ret == -1) {
2146 ret = -errno;
2148 return ret;
2151 int kvm_device_ioctl(int fd, int type, ...)
2153 int ret;
2154 void *arg;
2155 va_list ap;
2157 va_start(ap, type);
2158 arg = va_arg(ap, void *);
2159 va_end(ap);
2161 trace_kvm_device_ioctl(fd, type, arg);
2162 ret = ioctl(fd, type, arg);
2163 if (ret == -1) {
2164 ret = -errno;
2166 return ret;
2169 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2171 int ret;
2172 struct kvm_device_attr attribute = {
2173 .group = group,
2174 .attr = attr,
2177 if (!kvm_vm_attributes_allowed) {
2178 return 0;
2181 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2182 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2183 return ret ? 0 : 1;
2186 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2188 struct kvm_device_attr attribute = {
2189 .group = group,
2190 .attr = attr,
2191 .flags = 0,
2194 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2197 int kvm_device_access(int fd, int group, uint64_t attr,
2198 void *val, bool write, Error **errp)
2200 struct kvm_device_attr kvmattr;
2201 int err;
2203 kvmattr.flags = 0;
2204 kvmattr.group = group;
2205 kvmattr.attr = attr;
2206 kvmattr.addr = (uintptr_t)val;
2208 err = kvm_device_ioctl(fd,
2209 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2210 &kvmattr);
2211 if (err < 0) {
2212 error_setg_errno(errp, -err,
2213 "KVM_%s_DEVICE_ATTR failed: Group %d "
2214 "attr 0x%016" PRIx64,
2215 write ? "SET" : "GET", group, attr);
2217 return err;
2220 bool kvm_has_sync_mmu(void)
2222 return kvm_state->sync_mmu;
2225 int kvm_has_vcpu_events(void)
2227 return kvm_state->vcpu_events;
2230 int kvm_has_robust_singlestep(void)
2232 return kvm_state->robust_singlestep;
2235 int kvm_has_debugregs(void)
2237 return kvm_state->debugregs;
2240 int kvm_has_many_ioeventfds(void)
2242 if (!kvm_enabled()) {
2243 return 0;
2245 return kvm_state->many_ioeventfds;
2248 int kvm_has_gsi_routing(void)
2250 #ifdef KVM_CAP_IRQ_ROUTING
2251 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2252 #else
2253 return false;
2254 #endif
2257 int kvm_has_intx_set_mask(void)
2259 return kvm_state->intx_set_mask;
2262 bool kvm_arm_supports_user_irq(void)
2264 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2267 #ifdef KVM_CAP_SET_GUEST_DEBUG
2268 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2269 target_ulong pc)
2271 struct kvm_sw_breakpoint *bp;
2273 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2274 if (bp->pc == pc) {
2275 return bp;
2278 return NULL;
2281 int kvm_sw_breakpoints_active(CPUState *cpu)
2283 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2286 struct kvm_set_guest_debug_data {
2287 struct kvm_guest_debug dbg;
2288 int err;
2291 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2293 struct kvm_set_guest_debug_data *dbg_data =
2294 (struct kvm_set_guest_debug_data *) data.host_ptr;
2296 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2297 &dbg_data->dbg);
2300 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2302 struct kvm_set_guest_debug_data data;
2304 data.dbg.control = reinject_trap;
2306 if (cpu->singlestep_enabled) {
2307 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2309 kvm_arch_update_guest_debug(cpu, &data.dbg);
2311 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2312 RUN_ON_CPU_HOST_PTR(&data));
2313 return data.err;
2316 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2317 target_ulong len, int type)
2319 struct kvm_sw_breakpoint *bp;
2320 int err;
2322 if (type == GDB_BREAKPOINT_SW) {
2323 bp = kvm_find_sw_breakpoint(cpu, addr);
2324 if (bp) {
2325 bp->use_count++;
2326 return 0;
2329 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2330 bp->pc = addr;
2331 bp->use_count = 1;
2332 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2333 if (err) {
2334 g_free(bp);
2335 return err;
2338 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2339 } else {
2340 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2341 if (err) {
2342 return err;
2346 CPU_FOREACH(cpu) {
2347 err = kvm_update_guest_debug(cpu, 0);
2348 if (err) {
2349 return err;
2352 return 0;
2355 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2356 target_ulong len, int type)
2358 struct kvm_sw_breakpoint *bp;
2359 int err;
2361 if (type == GDB_BREAKPOINT_SW) {
2362 bp = kvm_find_sw_breakpoint(cpu, addr);
2363 if (!bp) {
2364 return -ENOENT;
2367 if (bp->use_count > 1) {
2368 bp->use_count--;
2369 return 0;
2372 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2373 if (err) {
2374 return err;
2377 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2378 g_free(bp);
2379 } else {
2380 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2381 if (err) {
2382 return err;
2386 CPU_FOREACH(cpu) {
2387 err = kvm_update_guest_debug(cpu, 0);
2388 if (err) {
2389 return err;
2392 return 0;
2395 void kvm_remove_all_breakpoints(CPUState *cpu)
2397 struct kvm_sw_breakpoint *bp, *next;
2398 KVMState *s = cpu->kvm_state;
2399 CPUState *tmpcpu;
2401 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2402 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2403 /* Try harder to find a CPU that currently sees the breakpoint. */
2404 CPU_FOREACH(tmpcpu) {
2405 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2406 break;
2410 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2411 g_free(bp);
2413 kvm_arch_remove_all_hw_breakpoints();
2415 CPU_FOREACH(cpu) {
2416 kvm_update_guest_debug(cpu, 0);
2420 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2422 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2424 return -EINVAL;
2427 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2428 target_ulong len, int type)
2430 return -EINVAL;
2433 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2434 target_ulong len, int type)
2436 return -EINVAL;
2439 void kvm_remove_all_breakpoints(CPUState *cpu)
2442 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2444 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2446 KVMState *s = kvm_state;
2447 struct kvm_signal_mask *sigmask;
2448 int r;
2450 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2452 sigmask->len = s->sigmask_len;
2453 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2454 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2455 g_free(sigmask);
2457 return r;
2460 static void kvm_ipi_signal(int sig)
2462 if (current_cpu) {
2463 assert(kvm_immediate_exit);
2464 kvm_cpu_kick(current_cpu);
2468 void kvm_init_cpu_signals(CPUState *cpu)
2470 int r;
2471 sigset_t set;
2472 struct sigaction sigact;
2474 memset(&sigact, 0, sizeof(sigact));
2475 sigact.sa_handler = kvm_ipi_signal;
2476 sigaction(SIG_IPI, &sigact, NULL);
2478 pthread_sigmask(SIG_BLOCK, NULL, &set);
2479 #if defined KVM_HAVE_MCE_INJECTION
2480 sigdelset(&set, SIGBUS);
2481 pthread_sigmask(SIG_SETMASK, &set, NULL);
2482 #endif
2483 sigdelset(&set, SIG_IPI);
2484 if (kvm_immediate_exit) {
2485 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2486 } else {
2487 r = kvm_set_signal_mask(cpu, &set);
2489 if (r) {
2490 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2491 exit(1);
2495 /* Called asynchronously in VCPU thread. */
2496 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2498 #ifdef KVM_HAVE_MCE_INJECTION
2499 if (have_sigbus_pending) {
2500 return 1;
2502 have_sigbus_pending = true;
2503 pending_sigbus_addr = addr;
2504 pending_sigbus_code = code;
2505 atomic_set(&cpu->exit_request, 1);
2506 return 0;
2507 #else
2508 return 1;
2509 #endif
2512 /* Called synchronously (via signalfd) in main thread. */
2513 int kvm_on_sigbus(int code, void *addr)
2515 #ifdef KVM_HAVE_MCE_INJECTION
2516 /* Action required MCE kills the process if SIGBUS is blocked. Because
2517 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2518 * we can only get action optional here.
2520 assert(code != BUS_MCEERR_AR);
2521 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2522 return 0;
2523 #else
2524 return 1;
2525 #endif
2528 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2530 int ret;
2531 struct kvm_create_device create_dev;
2533 create_dev.type = type;
2534 create_dev.fd = -1;
2535 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2537 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2538 return -ENOTSUP;
2541 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2542 if (ret) {
2543 return ret;
2546 return test ? 0 : create_dev.fd;
2549 bool kvm_device_supported(int vmfd, uint64_t type)
2551 struct kvm_create_device create_dev = {
2552 .type = type,
2553 .fd = -1,
2554 .flags = KVM_CREATE_DEVICE_TEST,
2557 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2558 return false;
2561 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2564 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2566 struct kvm_one_reg reg;
2567 int r;
2569 reg.id = id;
2570 reg.addr = (uintptr_t) source;
2571 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2572 if (r) {
2573 trace_kvm_failed_reg_set(id, strerror(-r));
2575 return r;
2578 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2580 struct kvm_one_reg reg;
2581 int r;
2583 reg.id = id;
2584 reg.addr = (uintptr_t) target;
2585 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2586 if (r) {
2587 trace_kvm_failed_reg_get(id, strerror(-r));
2589 return r;
2592 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2594 AccelClass *ac = ACCEL_CLASS(oc);
2595 ac->name = "KVM";
2596 ac->init_machine = kvm_init;
2597 ac->allowed = &kvm_allowed;
2600 static const TypeInfo kvm_accel_type = {
2601 .name = TYPE_KVM_ACCEL,
2602 .parent = TYPE_ACCEL,
2603 .class_init = kvm_accel_class_init,
2604 .instance_size = sizeof(KVMState),
2607 static void kvm_type_init(void)
2609 type_register_static(&kvm_accel_type);
2612 type_init(kvm_type_init);