ppc/spapr: Improve FWNMI machine check delivery corner case comments
[qemu/ar7.git] / hw / ppc / spapr_events.c
bloba908c5d0e9e23e186e4ea331894fcc27d920bf8f
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * RTAS events handling
6 * Copyright (c) 2012 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "cpu.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/runstate.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_vio.h"
37 #include "hw/pci/pci.h"
38 #include "hw/irq.h"
39 #include "hw/pci-host/spapr.h"
40 #include "hw/ppc/spapr_drc.h"
41 #include "qemu/help_option.h"
42 #include "qemu/bcd.h"
43 #include "qemu/main-loop.h"
44 #include "hw/ppc/spapr_ovec.h"
45 #include <libfdt.h>
46 #include "migration/blocker.h"
48 #define RTAS_LOG_VERSION_MASK 0xff000000
49 #define RTAS_LOG_VERSION_6 0x06000000
50 #define RTAS_LOG_SEVERITY_MASK 0x00e00000
51 #define RTAS_LOG_SEVERITY_ALREADY_REPORTED 0x00c00000
52 #define RTAS_LOG_SEVERITY_FATAL 0x00a00000
53 #define RTAS_LOG_SEVERITY_ERROR 0x00800000
54 #define RTAS_LOG_SEVERITY_ERROR_SYNC 0x00600000
55 #define RTAS_LOG_SEVERITY_WARNING 0x00400000
56 #define RTAS_LOG_SEVERITY_EVENT 0x00200000
57 #define RTAS_LOG_SEVERITY_NO_ERROR 0x00000000
58 #define RTAS_LOG_DISPOSITION_MASK 0x00180000
59 #define RTAS_LOG_DISPOSITION_FULLY_RECOVERED 0x00000000
60 #define RTAS_LOG_DISPOSITION_LIMITED_RECOVERY 0x00080000
61 #define RTAS_LOG_DISPOSITION_NOT_RECOVERED 0x00100000
62 #define RTAS_LOG_OPTIONAL_PART_PRESENT 0x00040000
63 #define RTAS_LOG_INITIATOR_MASK 0x0000f000
64 #define RTAS_LOG_INITIATOR_UNKNOWN 0x00000000
65 #define RTAS_LOG_INITIATOR_CPU 0x00001000
66 #define RTAS_LOG_INITIATOR_PCI 0x00002000
67 #define RTAS_LOG_INITIATOR_MEMORY 0x00004000
68 #define RTAS_LOG_INITIATOR_HOTPLUG 0x00006000
69 #define RTAS_LOG_TARGET_MASK 0x00000f00
70 #define RTAS_LOG_TARGET_UNKNOWN 0x00000000
71 #define RTAS_LOG_TARGET_CPU 0x00000100
72 #define RTAS_LOG_TARGET_PCI 0x00000200
73 #define RTAS_LOG_TARGET_MEMORY 0x00000400
74 #define RTAS_LOG_TARGET_HOTPLUG 0x00000600
75 #define RTAS_LOG_TYPE_MASK 0x000000ff
76 #define RTAS_LOG_TYPE_OTHER 0x00000000
77 #define RTAS_LOG_TYPE_RETRY 0x00000001
78 #define RTAS_LOG_TYPE_TCE_ERR 0x00000002
79 #define RTAS_LOG_TYPE_INTERN_DEV_FAIL 0x00000003
80 #define RTAS_LOG_TYPE_TIMEOUT 0x00000004
81 #define RTAS_LOG_TYPE_DATA_PARITY 0x00000005
82 #define RTAS_LOG_TYPE_ADDR_PARITY 0x00000006
83 #define RTAS_LOG_TYPE_CACHE_PARITY 0x00000007
84 #define RTAS_LOG_TYPE_ADDR_INVALID 0x00000008
85 #define RTAS_LOG_TYPE_ECC_UNCORR 0x00000009
86 #define RTAS_LOG_TYPE_ECC_CORR 0x0000000a
87 #define RTAS_LOG_TYPE_EPOW 0x00000040
88 #define RTAS_LOG_TYPE_HOTPLUG 0x000000e5
90 struct rtas_error_log {
91 uint32_t summary;
92 uint32_t extended_length;
93 } QEMU_PACKED;
95 struct rtas_event_log_v6 {
96 uint8_t b0;
97 #define RTAS_LOG_V6_B0_VALID 0x80
98 #define RTAS_LOG_V6_B0_UNRECOVERABLE_ERROR 0x40
99 #define RTAS_LOG_V6_B0_RECOVERABLE_ERROR 0x20
100 #define RTAS_LOG_V6_B0_DEGRADED_OPERATION 0x10
101 #define RTAS_LOG_V6_B0_PREDICTIVE_ERROR 0x08
102 #define RTAS_LOG_V6_B0_NEW_LOG 0x04
103 #define RTAS_LOG_V6_B0_BIGENDIAN 0x02
104 uint8_t _resv1;
105 uint8_t b2;
106 #define RTAS_LOG_V6_B2_POWERPC_FORMAT 0x80
107 #define RTAS_LOG_V6_B2_LOG_FORMAT_MASK 0x0f
108 #define RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT 0x0e
109 uint8_t _resv2[9];
110 uint32_t company;
111 #define RTAS_LOG_V6_COMPANY_IBM 0x49424d00 /* IBM<null> */
112 } QEMU_PACKED;
114 struct rtas_event_log_v6_section_header {
115 uint16_t section_id;
116 uint16_t section_length;
117 uint8_t section_version;
118 uint8_t section_subtype;
119 uint16_t creator_component_id;
120 } QEMU_PACKED;
122 struct rtas_event_log_v6_maina {
123 #define RTAS_LOG_V6_SECTION_ID_MAINA 0x5048 /* PH */
124 struct rtas_event_log_v6_section_header hdr;
125 uint32_t creation_date; /* BCD: YYYYMMDD */
126 uint32_t creation_time; /* BCD: HHMMSS00 */
127 uint8_t _platform1[8];
128 char creator_id;
129 uint8_t _resv1[2];
130 uint8_t section_count;
131 uint8_t _resv2[4];
132 uint8_t _platform2[8];
133 uint32_t plid;
134 uint8_t _platform3[4];
135 } QEMU_PACKED;
137 struct rtas_event_log_v6_mainb {
138 #define RTAS_LOG_V6_SECTION_ID_MAINB 0x5548 /* UH */
139 struct rtas_event_log_v6_section_header hdr;
140 uint8_t subsystem_id;
141 uint8_t _platform1;
142 uint8_t event_severity;
143 uint8_t event_subtype;
144 uint8_t _platform2[4];
145 uint8_t _resv1[2];
146 uint16_t action_flags;
147 uint8_t _resv2[4];
148 } QEMU_PACKED;
150 struct rtas_event_log_v6_epow {
151 #define RTAS_LOG_V6_SECTION_ID_EPOW 0x4550 /* EP */
152 struct rtas_event_log_v6_section_header hdr;
153 uint8_t sensor_value;
154 #define RTAS_LOG_V6_EPOW_ACTION_RESET 0
155 #define RTAS_LOG_V6_EPOW_ACTION_WARN_COOLING 1
156 #define RTAS_LOG_V6_EPOW_ACTION_WARN_POWER 2
157 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN 3
158 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_HALT 4
159 #define RTAS_LOG_V6_EPOW_ACTION_MAIN_ENCLOSURE 5
160 #define RTAS_LOG_V6_EPOW_ACTION_POWER_OFF 7
161 uint8_t event_modifier;
162 #define RTAS_LOG_V6_EPOW_MODIFIER_NORMAL 1
163 #define RTAS_LOG_V6_EPOW_MODIFIER_ON_UPS 2
164 #define RTAS_LOG_V6_EPOW_MODIFIER_CRITICAL 3
165 #define RTAS_LOG_V6_EPOW_MODIFIER_TEMPERATURE 4
166 uint8_t extended_modifier;
167 #define RTAS_LOG_V6_EPOW_XMODIFIER_SYSTEM_WIDE 0
168 #define RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC 1
169 uint8_t _resv;
170 uint64_t reason_code;
171 } QEMU_PACKED;
173 struct epow_extended_log {
174 struct rtas_event_log_v6 v6hdr;
175 struct rtas_event_log_v6_maina maina;
176 struct rtas_event_log_v6_mainb mainb;
177 struct rtas_event_log_v6_epow epow;
178 } QEMU_PACKED;
180 union drc_identifier {
181 uint32_t index;
182 uint32_t count;
183 struct {
184 uint32_t count;
185 uint32_t index;
186 } count_indexed;
187 char name[1];
188 } QEMU_PACKED;
190 struct rtas_event_log_v6_hp {
191 #define RTAS_LOG_V6_SECTION_ID_HOTPLUG 0x4850 /* HP */
192 struct rtas_event_log_v6_section_header hdr;
193 uint8_t hotplug_type;
194 #define RTAS_LOG_V6_HP_TYPE_CPU 1
195 #define RTAS_LOG_V6_HP_TYPE_MEMORY 2
196 #define RTAS_LOG_V6_HP_TYPE_SLOT 3
197 #define RTAS_LOG_V6_HP_TYPE_PHB 4
198 #define RTAS_LOG_V6_HP_TYPE_PCI 5
199 #define RTAS_LOG_V6_HP_TYPE_PMEM 6
200 uint8_t hotplug_action;
201 #define RTAS_LOG_V6_HP_ACTION_ADD 1
202 #define RTAS_LOG_V6_HP_ACTION_REMOVE 2
203 uint8_t hotplug_identifier;
204 #define RTAS_LOG_V6_HP_ID_DRC_NAME 1
205 #define RTAS_LOG_V6_HP_ID_DRC_INDEX 2
206 #define RTAS_LOG_V6_HP_ID_DRC_COUNT 3
207 #define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED 4
208 uint8_t reserved;
209 union drc_identifier drc_id;
210 } QEMU_PACKED;
212 struct hp_extended_log {
213 struct rtas_event_log_v6 v6hdr;
214 struct rtas_event_log_v6_maina maina;
215 struct rtas_event_log_v6_mainb mainb;
216 struct rtas_event_log_v6_hp hp;
217 } QEMU_PACKED;
219 struct rtas_event_log_v6_mc {
220 #define RTAS_LOG_V6_SECTION_ID_MC 0x4D43 /* MC */
221 struct rtas_event_log_v6_section_header hdr;
222 uint32_t fru_id;
223 uint32_t proc_id;
224 uint8_t error_type;
225 #define RTAS_LOG_V6_MC_TYPE_UE 0
226 #define RTAS_LOG_V6_MC_TYPE_SLB 1
227 #define RTAS_LOG_V6_MC_TYPE_ERAT 2
228 #define RTAS_LOG_V6_MC_TYPE_TLB 4
229 #define RTAS_LOG_V6_MC_TYPE_D_CACHE 5
230 #define RTAS_LOG_V6_MC_TYPE_I_CACHE 7
231 uint8_t sub_err_type;
232 #define RTAS_LOG_V6_MC_UE_INDETERMINATE 0
233 #define RTAS_LOG_V6_MC_UE_IFETCH 1
234 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH 2
235 #define RTAS_LOG_V6_MC_UE_LOAD_STORE 3
236 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE 4
237 #define RTAS_LOG_V6_MC_SLB_PARITY 0
238 #define RTAS_LOG_V6_MC_SLB_MULTIHIT 1
239 #define RTAS_LOG_V6_MC_SLB_INDETERMINATE 2
240 #define RTAS_LOG_V6_MC_ERAT_PARITY 1
241 #define RTAS_LOG_V6_MC_ERAT_MULTIHIT 2
242 #define RTAS_LOG_V6_MC_ERAT_INDETERMINATE 3
243 #define RTAS_LOG_V6_MC_TLB_PARITY 1
244 #define RTAS_LOG_V6_MC_TLB_MULTIHIT 2
245 #define RTAS_LOG_V6_MC_TLB_INDETERMINATE 3
247 * Per PAPR,
248 * For UE error type, set bit 1 of sub_err_type to indicate effective addr is
249 * provided. For other error types (SLB/ERAT/TLB), set bit 0 to indicate
250 * same.
252 #define RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED 0x40
253 #define RTAS_LOG_V6_MC_EA_ADDR_PROVIDED 0x80
254 uint8_t reserved_1[6];
255 uint64_t effective_address;
256 uint64_t logical_address;
257 } QEMU_PACKED;
259 struct mc_extended_log {
260 struct rtas_event_log_v6 v6hdr;
261 struct rtas_event_log_v6_mc mc;
262 } QEMU_PACKED;
264 struct MC_ierror_table {
265 unsigned long srr1_mask;
266 unsigned long srr1_value;
267 bool nip_valid; /* nip is a valid indicator of faulting address */
268 uint8_t error_type;
269 uint8_t error_subtype;
270 unsigned int initiator;
271 unsigned int severity;
274 static const struct MC_ierror_table mc_ierror_table[] = {
275 { 0x00000000081c0000, 0x0000000000040000, true,
276 RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_IFETCH,
277 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
278 { 0x00000000081c0000, 0x0000000000080000, true,
279 RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
280 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
281 { 0x00000000081c0000, 0x00000000000c0000, true,
282 RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,
283 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
284 { 0x00000000081c0000, 0x0000000000100000, true,
285 RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
286 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
287 { 0x00000000081c0000, 0x0000000000140000, true,
288 RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
289 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
290 { 0x00000000081c0000, 0x0000000000180000, true,
291 RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH,
292 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
294 struct MC_derror_table {
295 unsigned long dsisr_value;
296 bool dar_valid; /* dar is a valid indicator of faulting address */
297 uint8_t error_type;
298 uint8_t error_subtype;
299 unsigned int initiator;
300 unsigned int severity;
303 static const struct MC_derror_table mc_derror_table[] = {
304 { 0x00008000, false,
305 RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_LOAD_STORE,
306 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
307 { 0x00004000, true,
308 RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE,
309 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
310 { 0x00000800, true,
311 RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
312 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
313 { 0x00000400, true,
314 RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
315 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
316 { 0x00000080, true,
317 RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT, /* Before PARITY */
318 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
319 { 0x00000100, true,
320 RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
321 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
323 #define SRR1_MC_LOADSTORE(srr1) ((srr1) & PPC_BIT(42))
325 typedef enum EventClass {
326 EVENT_CLASS_INTERNAL_ERRORS = 0,
327 EVENT_CLASS_EPOW = 1,
328 EVENT_CLASS_RESERVED = 2,
329 EVENT_CLASS_HOT_PLUG = 3,
330 EVENT_CLASS_IO = 4,
331 EVENT_CLASS_MAX
332 } EventClassIndex;
333 #define EVENT_CLASS_MASK(index) (1 << (31 - index))
335 static const char * const event_names[EVENT_CLASS_MAX] = {
336 [EVENT_CLASS_INTERNAL_ERRORS] = "internal-errors",
337 [EVENT_CLASS_EPOW] = "epow-events",
338 [EVENT_CLASS_HOT_PLUG] = "hot-plug-events",
339 [EVENT_CLASS_IO] = "ibm,io-events",
342 struct SpaprEventSource {
343 int irq;
344 uint32_t mask;
345 bool enabled;
348 static SpaprEventSource *spapr_event_sources_new(void)
350 return g_new0(SpaprEventSource, EVENT_CLASS_MAX);
353 static void spapr_event_sources_register(SpaprEventSource *event_sources,
354 EventClassIndex index, int irq)
356 /* we only support 1 irq per event class at the moment */
357 g_assert(event_sources);
358 g_assert(!event_sources[index].enabled);
359 event_sources[index].irq = irq;
360 event_sources[index].mask = EVENT_CLASS_MASK(index);
361 event_sources[index].enabled = true;
364 static const SpaprEventSource *
365 spapr_event_sources_get_source(SpaprEventSource *event_sources,
366 EventClassIndex index)
368 g_assert(index < EVENT_CLASS_MAX);
369 g_assert(event_sources);
371 return &event_sources[index];
374 void spapr_dt_events(SpaprMachineState *spapr, void *fdt)
376 uint32_t irq_ranges[EVENT_CLASS_MAX * 2];
377 int i, count = 0, event_sources;
378 SpaprEventSource *events = spapr->event_sources;
380 g_assert(events);
382 _FDT(event_sources = fdt_add_subnode(fdt, 0, "event-sources"));
384 for (i = 0, count = 0; i < EVENT_CLASS_MAX; i++) {
385 int node_offset;
386 uint32_t interrupts[2];
387 const SpaprEventSource *source =
388 spapr_event_sources_get_source(events, i);
389 const char *source_name = event_names[i];
391 if (!source->enabled) {
392 continue;
395 spapr_dt_irq(interrupts, source->irq, false);
397 _FDT(node_offset = fdt_add_subnode(fdt, event_sources, source_name));
398 _FDT(fdt_setprop(fdt, node_offset, "interrupts", interrupts,
399 sizeof(interrupts)));
401 irq_ranges[count++] = interrupts[0];
402 irq_ranges[count++] = cpu_to_be32(1);
405 _FDT((fdt_setprop(fdt, event_sources, "interrupt-controller", NULL, 0)));
406 _FDT((fdt_setprop_cell(fdt, event_sources, "#interrupt-cells", 2)));
407 _FDT((fdt_setprop(fdt, event_sources, "interrupt-ranges",
408 irq_ranges, count * sizeof(uint32_t))));
411 static const SpaprEventSource *
412 rtas_event_log_to_source(SpaprMachineState *spapr, int log_type)
414 const SpaprEventSource *source;
416 g_assert(spapr->event_sources);
418 switch (log_type) {
419 case RTAS_LOG_TYPE_HOTPLUG:
420 source = spapr_event_sources_get_source(spapr->event_sources,
421 EVENT_CLASS_HOT_PLUG);
422 if (spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT)) {
423 g_assert(source->enabled);
424 break;
426 /* fall through back to epow for legacy hotplug interrupt source */
427 case RTAS_LOG_TYPE_EPOW:
428 source = spapr_event_sources_get_source(spapr->event_sources,
429 EVENT_CLASS_EPOW);
430 break;
431 default:
432 source = NULL;
435 return source;
438 static int rtas_event_log_to_irq(SpaprMachineState *spapr, int log_type)
440 const SpaprEventSource *source;
442 source = rtas_event_log_to_source(spapr, log_type);
443 g_assert(source);
444 g_assert(source->enabled);
446 return source->irq;
449 static uint32_t spapr_event_log_entry_type(SpaprEventLogEntry *entry)
451 return entry->summary & RTAS_LOG_TYPE_MASK;
454 static void rtas_event_log_queue(SpaprMachineState *spapr,
455 SpaprEventLogEntry *entry)
457 QTAILQ_INSERT_TAIL(&spapr->pending_events, entry, next);
460 static SpaprEventLogEntry *rtas_event_log_dequeue(SpaprMachineState *spapr,
461 uint32_t event_mask)
463 SpaprEventLogEntry *entry = NULL;
465 QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
466 const SpaprEventSource *source =
467 rtas_event_log_to_source(spapr,
468 spapr_event_log_entry_type(entry));
470 g_assert(source);
471 if (source->mask & event_mask) {
472 break;
476 if (entry) {
477 QTAILQ_REMOVE(&spapr->pending_events, entry, next);
480 return entry;
483 static bool rtas_event_log_contains(uint32_t event_mask)
485 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
486 SpaprEventLogEntry *entry = NULL;
488 QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
489 const SpaprEventSource *source =
490 rtas_event_log_to_source(spapr,
491 spapr_event_log_entry_type(entry));
493 if (source->mask & event_mask) {
494 return true;
498 return false;
501 static uint32_t next_plid;
503 static void spapr_init_v6hdr(struct rtas_event_log_v6 *v6hdr)
505 v6hdr->b0 = RTAS_LOG_V6_B0_VALID | RTAS_LOG_V6_B0_NEW_LOG
506 | RTAS_LOG_V6_B0_BIGENDIAN;
507 v6hdr->b2 = RTAS_LOG_V6_B2_POWERPC_FORMAT
508 | RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT;
509 v6hdr->company = cpu_to_be32(RTAS_LOG_V6_COMPANY_IBM);
512 static void spapr_init_maina(struct rtas_event_log_v6_maina *maina,
513 int section_count)
515 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
516 struct tm tm;
517 int year;
519 maina->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINA);
520 maina->hdr.section_length = cpu_to_be16(sizeof(*maina));
521 /* FIXME: section version, subtype and creator id? */
522 spapr_rtc_read(&spapr->rtc, &tm, NULL);
523 year = tm.tm_year + 1900;
524 maina->creation_date = cpu_to_be32((to_bcd(year / 100) << 24)
525 | (to_bcd(year % 100) << 16)
526 | (to_bcd(tm.tm_mon + 1) << 8)
527 | to_bcd(tm.tm_mday));
528 maina->creation_time = cpu_to_be32((to_bcd(tm.tm_hour) << 24)
529 | (to_bcd(tm.tm_min) << 16)
530 | (to_bcd(tm.tm_sec) << 8));
531 maina->creator_id = 'H'; /* Hypervisor */
532 maina->section_count = section_count;
533 maina->plid = next_plid++;
536 static void spapr_powerdown_req(Notifier *n, void *opaque)
538 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
539 SpaprEventLogEntry *entry;
540 struct rtas_event_log_v6 *v6hdr;
541 struct rtas_event_log_v6_maina *maina;
542 struct rtas_event_log_v6_mainb *mainb;
543 struct rtas_event_log_v6_epow *epow;
544 struct epow_extended_log *new_epow;
546 entry = g_new(SpaprEventLogEntry, 1);
547 new_epow = g_malloc0(sizeof(*new_epow));
548 entry->extended_log = new_epow;
550 v6hdr = &new_epow->v6hdr;
551 maina = &new_epow->maina;
552 mainb = &new_epow->mainb;
553 epow = &new_epow->epow;
555 entry->summary = RTAS_LOG_VERSION_6
556 | RTAS_LOG_SEVERITY_EVENT
557 | RTAS_LOG_DISPOSITION_NOT_RECOVERED
558 | RTAS_LOG_OPTIONAL_PART_PRESENT
559 | RTAS_LOG_TYPE_EPOW;
560 entry->extended_length = sizeof(*new_epow);
562 spapr_init_v6hdr(v6hdr);
563 spapr_init_maina(maina, 3 /* Main-A, Main-B and EPOW */);
565 mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
566 mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
567 /* FIXME: section version, subtype and creator id? */
568 mainb->subsystem_id = 0xa0; /* External environment */
569 mainb->event_severity = 0x00; /* Informational / non-error */
570 mainb->event_subtype = 0xd0; /* Normal shutdown */
572 epow->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_EPOW);
573 epow->hdr.section_length = cpu_to_be16(sizeof(*epow));
574 epow->hdr.section_version = 2; /* includes extended modifier */
575 /* FIXME: section subtype and creator id? */
576 epow->sensor_value = RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN;
577 epow->event_modifier = RTAS_LOG_V6_EPOW_MODIFIER_NORMAL;
578 epow->extended_modifier = RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC;
580 rtas_event_log_queue(spapr, entry);
582 qemu_irq_pulse(spapr_qirq(spapr,
583 rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_EPOW)));
586 static void spapr_hotplug_req_event(uint8_t hp_id, uint8_t hp_action,
587 SpaprDrcType drc_type,
588 union drc_identifier *drc_id)
590 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
591 SpaprEventLogEntry *entry;
592 struct hp_extended_log *new_hp;
593 struct rtas_event_log_v6 *v6hdr;
594 struct rtas_event_log_v6_maina *maina;
595 struct rtas_event_log_v6_mainb *mainb;
596 struct rtas_event_log_v6_hp *hp;
598 entry = g_new(SpaprEventLogEntry, 1);
599 new_hp = g_malloc0(sizeof(struct hp_extended_log));
600 entry->extended_log = new_hp;
602 v6hdr = &new_hp->v6hdr;
603 maina = &new_hp->maina;
604 mainb = &new_hp->mainb;
605 hp = &new_hp->hp;
607 entry->summary = RTAS_LOG_VERSION_6
608 | RTAS_LOG_SEVERITY_EVENT
609 | RTAS_LOG_DISPOSITION_NOT_RECOVERED
610 | RTAS_LOG_OPTIONAL_PART_PRESENT
611 | RTAS_LOG_INITIATOR_HOTPLUG
612 | RTAS_LOG_TYPE_HOTPLUG;
613 entry->extended_length = sizeof(*new_hp);
615 spapr_init_v6hdr(v6hdr);
616 spapr_init_maina(maina, 3 /* Main-A, Main-B, HP */);
618 mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
619 mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
620 mainb->subsystem_id = 0x80; /* External environment */
621 mainb->event_severity = 0x00; /* Informational / non-error */
622 mainb->event_subtype = 0x00; /* Normal shutdown */
624 hp->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_HOTPLUG);
625 hp->hdr.section_length = cpu_to_be16(sizeof(*hp));
626 hp->hdr.section_version = 1; /* includes extended modifier */
627 hp->hotplug_action = hp_action;
628 hp->hotplug_identifier = hp_id;
630 switch (drc_type) {
631 case SPAPR_DR_CONNECTOR_TYPE_PCI:
632 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PCI;
633 break;
634 case SPAPR_DR_CONNECTOR_TYPE_LMB:
635 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_MEMORY;
636 break;
637 case SPAPR_DR_CONNECTOR_TYPE_CPU:
638 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_CPU;
639 break;
640 case SPAPR_DR_CONNECTOR_TYPE_PHB:
641 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PHB;
642 break;
643 case SPAPR_DR_CONNECTOR_TYPE_PMEM:
644 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PMEM;
645 break;
646 default:
647 /* we shouldn't be signaling hotplug events for resources
648 * that don't support them
650 g_assert(false);
651 return;
654 if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT) {
655 hp->drc_id.count = cpu_to_be32(drc_id->count);
656 } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_INDEX) {
657 hp->drc_id.index = cpu_to_be32(drc_id->index);
658 } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED) {
659 /* we should not be using count_indexed value unless the guest
660 * supports dedicated hotplug event source
662 g_assert(spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT));
663 hp->drc_id.count_indexed.count =
664 cpu_to_be32(drc_id->count_indexed.count);
665 hp->drc_id.count_indexed.index =
666 cpu_to_be32(drc_id->count_indexed.index);
669 rtas_event_log_queue(spapr, entry);
671 qemu_irq_pulse(spapr_qirq(spapr,
672 rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_HOTPLUG)));
675 void spapr_hotplug_req_add_by_index(SpaprDrc *drc)
677 SpaprDrcType drc_type = spapr_drc_type(drc);
678 union drc_identifier drc_id;
680 drc_id.index = spapr_drc_index(drc);
681 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
682 RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
685 void spapr_hotplug_req_remove_by_index(SpaprDrc *drc)
687 SpaprDrcType drc_type = spapr_drc_type(drc);
688 union drc_identifier drc_id;
690 drc_id.index = spapr_drc_index(drc);
691 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
692 RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
695 void spapr_hotplug_req_add_by_count(SpaprDrcType drc_type,
696 uint32_t count)
698 union drc_identifier drc_id;
700 drc_id.count = count;
701 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
702 RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
705 void spapr_hotplug_req_remove_by_count(SpaprDrcType drc_type,
706 uint32_t count)
708 union drc_identifier drc_id;
710 drc_id.count = count;
711 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
712 RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
715 void spapr_hotplug_req_add_by_count_indexed(SpaprDrcType drc_type,
716 uint32_t count, uint32_t index)
718 union drc_identifier drc_id;
720 drc_id.count_indexed.count = count;
721 drc_id.count_indexed.index = index;
722 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
723 RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
726 void spapr_hotplug_req_remove_by_count_indexed(SpaprDrcType drc_type,
727 uint32_t count, uint32_t index)
729 union drc_identifier drc_id;
731 drc_id.count_indexed.count = count;
732 drc_id.count_indexed.index = index;
733 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
734 RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
737 static void spapr_mc_set_ea_provided_flag(struct mc_extended_log *ext_elog)
739 switch (ext_elog->mc.error_type) {
740 case RTAS_LOG_V6_MC_TYPE_UE:
741 ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED;
742 break;
743 case RTAS_LOG_V6_MC_TYPE_SLB:
744 case RTAS_LOG_V6_MC_TYPE_ERAT:
745 case RTAS_LOG_V6_MC_TYPE_TLB:
746 ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_EA_ADDR_PROVIDED;
747 break;
748 default:
749 break;
753 static uint32_t spapr_mce_get_elog_type(PowerPCCPU *cpu, bool recovered,
754 struct mc_extended_log *ext_elog)
756 int i;
757 CPUPPCState *env = &cpu->env;
758 uint32_t summary;
759 uint64_t dsisr = env->spr[SPR_DSISR];
761 summary = RTAS_LOG_VERSION_6 | RTAS_LOG_OPTIONAL_PART_PRESENT;
762 if (recovered) {
763 summary |= RTAS_LOG_DISPOSITION_FULLY_RECOVERED;
764 } else {
765 summary |= RTAS_LOG_DISPOSITION_NOT_RECOVERED;
768 if (SRR1_MC_LOADSTORE(env->spr[SPR_SRR1])) {
769 for (i = 0; i < ARRAY_SIZE(mc_derror_table); i++) {
770 if (!(dsisr & mc_derror_table[i].dsisr_value)) {
771 continue;
774 ext_elog->mc.error_type = mc_derror_table[i].error_type;
775 ext_elog->mc.sub_err_type = mc_derror_table[i].error_subtype;
776 if (mc_derror_table[i].dar_valid) {
777 ext_elog->mc.effective_address = cpu_to_be64(env->spr[SPR_DAR]);
778 spapr_mc_set_ea_provided_flag(ext_elog);
781 summary |= mc_derror_table[i].initiator
782 | mc_derror_table[i].severity;
784 return summary;
786 } else {
787 for (i = 0; i < ARRAY_SIZE(mc_ierror_table); i++) {
788 if ((env->spr[SPR_SRR1] & mc_ierror_table[i].srr1_mask) !=
789 mc_ierror_table[i].srr1_value) {
790 continue;
793 ext_elog->mc.error_type = mc_ierror_table[i].error_type;
794 ext_elog->mc.sub_err_type = mc_ierror_table[i].error_subtype;
795 if (mc_ierror_table[i].nip_valid) {
796 ext_elog->mc.effective_address = cpu_to_be64(env->nip);
797 spapr_mc_set_ea_provided_flag(ext_elog);
800 summary |= mc_ierror_table[i].initiator
801 | mc_ierror_table[i].severity;
803 return summary;
807 summary |= RTAS_LOG_INITIATOR_CPU;
808 return summary;
811 static void spapr_mce_dispatch_elog(PowerPCCPU *cpu, bool recovered)
813 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
814 CPUState *cs = CPU(cpu);
815 CPUPPCState *env = &cpu->env;
816 uint64_t rtas_addr;
817 struct rtas_error_log log;
818 struct mc_extended_log *ext_elog;
819 uint32_t summary;
821 ext_elog = g_malloc0(sizeof(*ext_elog));
822 summary = spapr_mce_get_elog_type(cpu, recovered, ext_elog);
824 log.summary = cpu_to_be32(summary);
825 log.extended_length = cpu_to_be32(sizeof(*ext_elog));
827 spapr_init_v6hdr(&ext_elog->v6hdr);
828 ext_elog->mc.hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MC);
829 ext_elog->mc.hdr.section_length =
830 cpu_to_be16(sizeof(struct rtas_event_log_v6_mc));
831 ext_elog->mc.hdr.section_version = 1;
833 /* get rtas addr from fdt */
834 rtas_addr = spapr_get_rtas_addr();
835 if (!rtas_addr) {
836 qemu_system_guest_panicked(NULL);
837 g_free(ext_elog);
838 return;
841 stq_be_phys(&address_space_memory, rtas_addr + RTAS_ERROR_LOG_OFFSET,
842 env->gpr[3]);
843 cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
844 sizeof(env->gpr[3]), &log, sizeof(log));
845 cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
846 sizeof(env->gpr[3]) + sizeof(log), ext_elog,
847 sizeof(*ext_elog));
848 g_free(ext_elog);
850 env->gpr[3] = rtas_addr + RTAS_ERROR_LOG_OFFSET;
852 ppc_cpu_do_fwnmi_machine_check(cs, spapr->fwnmi_machine_check_addr);
855 void spapr_mce_req_event(PowerPCCPU *cpu, bool recovered)
857 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
858 CPUState *cs = CPU(cpu);
859 int ret;
860 Error *local_err = NULL;
862 if (spapr->fwnmi_machine_check_addr == -1) {
863 /* Non-FWNMI case, deliver it like an architected CPU interrupt. */
864 cs->exception_index = POWERPC_EXCP_MCHECK;
865 ppc_cpu_do_interrupt(cs);
866 return;
869 /* Wait for FWNMI interlock. */
870 while (spapr->fwnmi_machine_check_interlock != -1) {
872 * Check whether the same CPU got machine check error
873 * while still handling the mc error (i.e., before
874 * that CPU called "ibm,nmi-interlock")
876 if (spapr->fwnmi_machine_check_interlock == cpu->vcpu_id) {
877 qemu_system_guest_panicked(NULL);
878 return;
880 qemu_cond_wait_iothread(&spapr->fwnmi_machine_check_interlock_cond);
881 if (spapr->fwnmi_machine_check_addr == -1) {
883 * If the machine was reset while waiting for the interlock,
884 * abort the delivery. The machine check applies to a context
885 * that no longer exists, so it wouldn't make sense to deliver
886 * it now.
888 return;
892 ret = migrate_add_blocker(spapr->fwnmi_migration_blocker, &local_err);
893 if (ret == -EBUSY) {
895 * We don't want to abort so we let the migration to continue.
896 * In a rare case, the machine check handler will run on the target.
897 * Though this is not preferable, it is better than aborting
898 * the migration or killing the VM. It is okay to call
899 * migrate_del_blocker on a blocker that was not added (which the
900 * nmi-interlock handler would do when it's called after this).
902 warn_report("Received a fwnmi while migration was in progress");
905 spapr->fwnmi_machine_check_interlock = cpu->vcpu_id;
906 spapr_mce_dispatch_elog(cpu, recovered);
909 static void check_exception(PowerPCCPU *cpu, SpaprMachineState *spapr,
910 uint32_t token, uint32_t nargs,
911 target_ulong args,
912 uint32_t nret, target_ulong rets)
914 uint32_t mask, buf, len, event_len;
915 uint64_t xinfo;
916 SpaprEventLogEntry *event;
917 struct rtas_error_log header;
918 int i;
920 if ((nargs < 6) || (nargs > 7) || nret != 1) {
921 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
922 return;
925 xinfo = rtas_ld(args, 1);
926 mask = rtas_ld(args, 2);
927 buf = rtas_ld(args, 4);
928 len = rtas_ld(args, 5);
929 if (nargs == 7) {
930 xinfo |= (uint64_t)rtas_ld(args, 6) << 32;
933 event = rtas_event_log_dequeue(spapr, mask);
934 if (!event) {
935 goto out_no_events;
938 event_len = event->extended_length + sizeof(header);
940 if (event_len < len) {
941 len = event_len;
944 header.summary = cpu_to_be32(event->summary);
945 header.extended_length = cpu_to_be32(event->extended_length);
946 cpu_physical_memory_write(buf, &header, sizeof(header));
947 cpu_physical_memory_write(buf + sizeof(header), event->extended_log,
948 event->extended_length);
949 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
950 g_free(event->extended_log);
951 g_free(event);
953 /* according to PAPR+, the IRQ must be left asserted, or re-asserted, if
954 * there are still pending events to be fetched via check-exception. We
955 * do the latter here, since our code relies on edge-triggered
956 * interrupts.
958 for (i = 0; i < EVENT_CLASS_MAX; i++) {
959 if (rtas_event_log_contains(EVENT_CLASS_MASK(i))) {
960 const SpaprEventSource *source =
961 spapr_event_sources_get_source(spapr->event_sources, i);
963 g_assert(source->enabled);
964 qemu_irq_pulse(spapr_qirq(spapr, source->irq));
968 return;
970 out_no_events:
971 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
974 static void event_scan(PowerPCCPU *cpu, SpaprMachineState *spapr,
975 uint32_t token, uint32_t nargs,
976 target_ulong args,
977 uint32_t nret, target_ulong rets)
979 if (nargs != 4 || nret != 1) {
980 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
981 return;
983 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
986 void spapr_clear_pending_events(SpaprMachineState *spapr)
988 SpaprEventLogEntry *entry = NULL, *next_entry;
990 QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
991 QTAILQ_REMOVE(&spapr->pending_events, entry, next);
992 g_free(entry->extended_log);
993 g_free(entry);
997 void spapr_clear_pending_hotplug_events(SpaprMachineState *spapr)
999 SpaprEventLogEntry *entry = NULL, *next_entry;
1001 QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
1002 if (spapr_event_log_entry_type(entry) == RTAS_LOG_TYPE_HOTPLUG) {
1003 QTAILQ_REMOVE(&spapr->pending_events, entry, next);
1004 g_free(entry->extended_log);
1005 g_free(entry);
1010 void spapr_events_init(SpaprMachineState *spapr)
1012 int epow_irq = SPAPR_IRQ_EPOW;
1014 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1015 epow_irq = spapr_irq_findone(spapr, &error_fatal);
1018 spapr_irq_claim(spapr, epow_irq, false, &error_fatal);
1020 QTAILQ_INIT(&spapr->pending_events);
1022 spapr->event_sources = spapr_event_sources_new();
1024 spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_EPOW,
1025 epow_irq);
1027 /* NOTE: if machine supports modern/dedicated hotplug event source,
1028 * we add it to the device-tree unconditionally. This means we may
1029 * have cases where the source is enabled in QEMU, but unused by the
1030 * guest because it does not support modern hotplug events, so we
1031 * take care to rely on checking for negotiation of OV5_HP_EVT option
1032 * before attempting to use it to signal events, rather than simply
1033 * checking that it's enabled.
1035 if (spapr->use_hotplug_event_source) {
1036 int hp_irq = SPAPR_IRQ_HOTPLUG;
1038 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1039 hp_irq = spapr_irq_findone(spapr, &error_fatal);
1042 spapr_irq_claim(spapr, hp_irq, false, &error_fatal);
1044 spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_HOT_PLUG,
1045 hp_irq);
1048 spapr->epow_notifier.notify = spapr_powerdown_req;
1049 qemu_register_powerdown_notifier(&spapr->epow_notifier);
1050 spapr_rtas_register(RTAS_CHECK_EXCEPTION, "check-exception",
1051 check_exception);
1052 spapr_rtas_register(RTAS_EVENT_SCAN, "event-scan", event_scan);