fix bad indentation in pcie_cap_slot_write_config()
[qemu/ar7.git] / hw / arm / boot.c
blobb0879a5e76832db43a42257d1f5ab8e1bc710e0c
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "config.h"
11 #include "hw/hw.h"
12 #include "hw/arm/arm.h"
13 #include "hw/arm/linux-boot-if.h"
14 #include "sysemu/sysemu.h"
15 #include "hw/boards.h"
16 #include "hw/loader.h"
17 #include "elf.h"
18 #include "sysemu/device_tree.h"
19 #include "qemu/config-file.h"
20 #include "exec/address-spaces.h"
22 /* Kernel boot protocol is specified in the kernel docs
23 * Documentation/arm/Booting and Documentation/arm64/booting.txt
24 * They have different preferred image load offsets from system RAM base.
26 #define KERNEL_ARGS_ADDR 0x100
27 #define KERNEL_LOAD_ADDR 0x00010000
28 #define KERNEL64_LOAD_ADDR 0x00080000
30 typedef enum {
31 FIXUP_NONE = 0, /* do nothing */
32 FIXUP_TERMINATOR, /* end of insns */
33 FIXUP_BOARDID, /* overwrite with board ID number */
34 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
35 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
36 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
37 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
38 FIXUP_BOOTREG, /* overwrite with boot register address */
39 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
40 FIXUP_MAX,
41 } FixupType;
43 typedef struct ARMInsnFixup {
44 uint32_t insn;
45 FixupType fixup;
46 } ARMInsnFixup;
48 static const ARMInsnFixup bootloader_aarch64[] = {
49 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
50 { 0xaa1f03e1 }, /* mov x1, xzr */
51 { 0xaa1f03e2 }, /* mov x2, xzr */
52 { 0xaa1f03e3 }, /* mov x3, xzr */
53 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
54 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
55 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
56 { 0 }, /* .word @DTB Higher 32-bits */
57 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
58 { 0 }, /* .word @Kernel Entry Higher 32-bits */
59 { 0, FIXUP_TERMINATOR }
62 /* A very small bootloader: call the board-setup code (if needed),
63 * set r0-r2, then jump to the kernel.
64 * If we're not calling boot setup code then we don't copy across
65 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
68 static const ARMInsnFixup bootloader[] = {
69 { 0xe28fe008 }, /* add lr, pc, #8 */
70 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
71 { 0, FIXUP_BOARD_SETUP },
72 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
73 { 0xe3a00000 }, /* mov r0, #0 */
74 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
75 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
76 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
77 { 0, FIXUP_BOARDID },
78 { 0, FIXUP_ARGPTR },
79 { 0, FIXUP_ENTRYPOINT },
80 { 0, FIXUP_TERMINATOR }
83 /* Handling for secondary CPU boot in a multicore system.
84 * Unlike the uniprocessor/primary CPU boot, this is platform
85 * dependent. The default code here is based on the secondary
86 * CPU boot protocol used on realview/vexpress boards, with
87 * some parameterisation to increase its flexibility.
88 * QEMU platform models for which this code is not appropriate
89 * should override write_secondary_boot and secondary_cpu_reset_hook
90 * instead.
92 * This code enables the interrupt controllers for the secondary
93 * CPUs and then puts all the secondary CPUs into a loop waiting
94 * for an interprocessor interrupt and polling a configurable
95 * location for the kernel secondary CPU entry point.
97 #define DSB_INSN 0xf57ff04f
98 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
100 static const ARMInsnFixup smpboot[] = {
101 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
102 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
103 { 0xe3a01001 }, /* mov r1, #1 */
104 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
105 { 0xe3a010ff }, /* mov r1, #0xff */
106 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
107 { 0, FIXUP_DSB }, /* dsb */
108 { 0xe320f003 }, /* wfi */
109 { 0xe5901000 }, /* ldr r1, [r0] */
110 { 0xe1110001 }, /* tst r1, r1 */
111 { 0x0afffffb }, /* beq <wfi> */
112 { 0xe12fff11 }, /* bx r1 */
113 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
114 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
115 { 0, FIXUP_TERMINATOR }
118 static void write_bootloader(const char *name, hwaddr addr,
119 const ARMInsnFixup *insns, uint32_t *fixupcontext)
121 /* Fix up the specified bootloader fragment and write it into
122 * guest memory using rom_add_blob_fixed(). fixupcontext is
123 * an array giving the values to write in for the fixup types
124 * which write a value into the code array.
126 int i, len;
127 uint32_t *code;
129 len = 0;
130 while (insns[len].fixup != FIXUP_TERMINATOR) {
131 len++;
134 code = g_new0(uint32_t, len);
136 for (i = 0; i < len; i++) {
137 uint32_t insn = insns[i].insn;
138 FixupType fixup = insns[i].fixup;
140 switch (fixup) {
141 case FIXUP_NONE:
142 break;
143 case FIXUP_BOARDID:
144 case FIXUP_BOARD_SETUP:
145 case FIXUP_ARGPTR:
146 case FIXUP_ENTRYPOINT:
147 case FIXUP_GIC_CPU_IF:
148 case FIXUP_BOOTREG:
149 case FIXUP_DSB:
150 insn = fixupcontext[fixup];
151 break;
152 default:
153 abort();
155 code[i] = tswap32(insn);
158 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
160 g_free(code);
163 static void default_write_secondary(ARMCPU *cpu,
164 const struct arm_boot_info *info)
166 uint32_t fixupcontext[FIXUP_MAX];
168 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
169 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
170 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
171 fixupcontext[FIXUP_DSB] = DSB_INSN;
172 } else {
173 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
176 write_bootloader("smpboot", info->smp_loader_start,
177 smpboot, fixupcontext);
180 static void default_reset_secondary(ARMCPU *cpu,
181 const struct arm_boot_info *info)
183 CPUState *cs = CPU(cpu);
185 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
186 0, MEMTXATTRS_UNSPECIFIED, NULL);
187 cpu_set_pc(cs, info->smp_loader_start);
190 static inline bool have_dtb(const struct arm_boot_info *info)
192 return info->dtb_filename || info->get_dtb;
195 #define WRITE_WORD(p, value) do { \
196 address_space_stl_notdirty(&address_space_memory, p, value, \
197 MEMTXATTRS_UNSPECIFIED, NULL); \
198 p += 4; \
199 } while (0)
201 static void set_kernel_args(const struct arm_boot_info *info)
203 int initrd_size = info->initrd_size;
204 hwaddr base = info->loader_start;
205 hwaddr p;
207 p = base + KERNEL_ARGS_ADDR;
208 /* ATAG_CORE */
209 WRITE_WORD(p, 5);
210 WRITE_WORD(p, 0x54410001);
211 WRITE_WORD(p, 1);
212 WRITE_WORD(p, 0x1000);
213 WRITE_WORD(p, 0);
214 /* ATAG_MEM */
215 /* TODO: handle multiple chips on one ATAG list */
216 WRITE_WORD(p, 4);
217 WRITE_WORD(p, 0x54410002);
218 WRITE_WORD(p, info->ram_size);
219 WRITE_WORD(p, info->loader_start);
220 if (initrd_size) {
221 /* ATAG_INITRD2 */
222 WRITE_WORD(p, 4);
223 WRITE_WORD(p, 0x54420005);
224 WRITE_WORD(p, info->initrd_start);
225 WRITE_WORD(p, initrd_size);
227 if (info->kernel_cmdline && *info->kernel_cmdline) {
228 /* ATAG_CMDLINE */
229 int cmdline_size;
231 cmdline_size = strlen(info->kernel_cmdline);
232 cpu_physical_memory_write(p + 8, info->kernel_cmdline,
233 cmdline_size + 1);
234 cmdline_size = (cmdline_size >> 2) + 1;
235 WRITE_WORD(p, cmdline_size + 2);
236 WRITE_WORD(p, 0x54410009);
237 p += cmdline_size * 4;
239 if (info->atag_board) {
240 /* ATAG_BOARD */
241 int atag_board_len;
242 uint8_t atag_board_buf[0x1000];
244 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
245 WRITE_WORD(p, (atag_board_len + 8) >> 2);
246 WRITE_WORD(p, 0x414f4d50);
247 cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
248 p += atag_board_len;
250 /* ATAG_END */
251 WRITE_WORD(p, 0);
252 WRITE_WORD(p, 0);
255 static void set_kernel_args_old(const struct arm_boot_info *info)
257 hwaddr p;
258 const char *s;
259 int initrd_size = info->initrd_size;
260 hwaddr base = info->loader_start;
262 /* see linux/include/asm-arm/setup.h */
263 p = base + KERNEL_ARGS_ADDR;
264 /* page_size */
265 WRITE_WORD(p, 4096);
266 /* nr_pages */
267 WRITE_WORD(p, info->ram_size / 4096);
268 /* ramdisk_size */
269 WRITE_WORD(p, 0);
270 #define FLAG_READONLY 1
271 #define FLAG_RDLOAD 4
272 #define FLAG_RDPROMPT 8
273 /* flags */
274 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
275 /* rootdev */
276 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
277 /* video_num_cols */
278 WRITE_WORD(p, 0);
279 /* video_num_rows */
280 WRITE_WORD(p, 0);
281 /* video_x */
282 WRITE_WORD(p, 0);
283 /* video_y */
284 WRITE_WORD(p, 0);
285 /* memc_control_reg */
286 WRITE_WORD(p, 0);
287 /* unsigned char sounddefault */
288 /* unsigned char adfsdrives */
289 /* unsigned char bytes_per_char_h */
290 /* unsigned char bytes_per_char_v */
291 WRITE_WORD(p, 0);
292 /* pages_in_bank[4] */
293 WRITE_WORD(p, 0);
294 WRITE_WORD(p, 0);
295 WRITE_WORD(p, 0);
296 WRITE_WORD(p, 0);
297 /* pages_in_vram */
298 WRITE_WORD(p, 0);
299 /* initrd_start */
300 if (initrd_size) {
301 WRITE_WORD(p, info->initrd_start);
302 } else {
303 WRITE_WORD(p, 0);
305 /* initrd_size */
306 WRITE_WORD(p, initrd_size);
307 /* rd_start */
308 WRITE_WORD(p, 0);
309 /* system_rev */
310 WRITE_WORD(p, 0);
311 /* system_serial_low */
312 WRITE_WORD(p, 0);
313 /* system_serial_high */
314 WRITE_WORD(p, 0);
315 /* mem_fclk_21285 */
316 WRITE_WORD(p, 0);
317 /* zero unused fields */
318 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
319 WRITE_WORD(p, 0);
321 s = info->kernel_cmdline;
322 if (s) {
323 cpu_physical_memory_write(p, s, strlen(s) + 1);
324 } else {
325 WRITE_WORD(p, 0);
330 * load_dtb() - load a device tree binary image into memory
331 * @addr: the address to load the image at
332 * @binfo: struct describing the boot environment
333 * @addr_limit: upper limit of the available memory area at @addr
335 * Load a device tree supplied by the machine or by the user with the
336 * '-dtb' command line option, and put it at offset @addr in target
337 * memory.
339 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
340 * than @addr), the device tree is only loaded if its size does not exceed
341 * the limit.
343 * Returns: the size of the device tree image on success,
344 * 0 if the image size exceeds the limit,
345 * -1 on errors.
347 * Note: Must not be called unless have_dtb(binfo) is true.
349 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
350 hwaddr addr_limit)
352 void *fdt = NULL;
353 int size, rc;
354 uint32_t acells, scells;
356 if (binfo->dtb_filename) {
357 char *filename;
358 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
359 if (!filename) {
360 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
361 goto fail;
364 fdt = load_device_tree(filename, &size);
365 if (!fdt) {
366 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
367 g_free(filename);
368 goto fail;
370 g_free(filename);
371 } else {
372 fdt = binfo->get_dtb(binfo, &size);
373 if (!fdt) {
374 fprintf(stderr, "Board was unable to create a dtb blob\n");
375 goto fail;
379 if (addr_limit > addr && size > (addr_limit - addr)) {
380 /* Installing the device tree blob at addr would exceed addr_limit.
381 * Whether this constitutes failure is up to the caller to decide,
382 * so just return 0 as size, i.e., no error.
384 g_free(fdt);
385 return 0;
388 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
389 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
390 if (acells == 0 || scells == 0) {
391 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
392 goto fail;
395 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
396 /* This is user error so deserves a friendlier error message
397 * than the failure of setprop_sized_cells would provide
399 fprintf(stderr, "qemu: dtb file not compatible with "
400 "RAM size > 4GB\n");
401 goto fail;
404 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
405 acells, binfo->loader_start,
406 scells, binfo->ram_size);
407 if (rc < 0) {
408 fprintf(stderr, "couldn't set /memory/reg\n");
409 goto fail;
412 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
413 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
414 binfo->kernel_cmdline);
415 if (rc < 0) {
416 fprintf(stderr, "couldn't set /chosen/bootargs\n");
417 goto fail;
421 if (binfo->initrd_size) {
422 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
423 binfo->initrd_start);
424 if (rc < 0) {
425 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
426 goto fail;
429 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
430 binfo->initrd_start + binfo->initrd_size);
431 if (rc < 0) {
432 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
433 goto fail;
437 if (binfo->modify_dtb) {
438 binfo->modify_dtb(binfo, fdt);
441 qemu_fdt_dumpdtb(fdt, size);
443 /* Put the DTB into the memory map as a ROM image: this will ensure
444 * the DTB is copied again upon reset, even if addr points into RAM.
446 rom_add_blob_fixed("dtb", fdt, size, addr);
448 g_free(fdt);
450 return size;
452 fail:
453 g_free(fdt);
454 return -1;
457 static void do_cpu_reset(void *opaque)
459 ARMCPU *cpu = opaque;
460 CPUState *cs = CPU(cpu);
461 CPUARMState *env = &cpu->env;
462 const struct arm_boot_info *info = env->boot_info;
464 cpu_reset(cs);
465 if (info) {
466 if (!info->is_linux) {
467 /* Jump to the entry point. */
468 uint64_t entry = info->entry;
470 if (!env->aarch64) {
471 env->thumb = info->entry & 1;
472 entry &= 0xfffffffe;
474 cpu_set_pc(cs, entry);
475 } else {
476 /* If we are booting Linux then we need to check whether we are
477 * booting into secure or non-secure state and adjust the state
478 * accordingly. Out of reset, ARM is defined to be in secure state
479 * (SCR.NS = 0), we change that here if non-secure boot has been
480 * requested.
482 if (arm_feature(env, ARM_FEATURE_EL3)) {
483 /* AArch64 is defined to come out of reset into EL3 if enabled.
484 * If we are booting Linux then we need to adjust our EL as
485 * Linux expects us to be in EL2 or EL1. AArch32 resets into
486 * SVC, which Linux expects, so no privilege/exception level to
487 * adjust.
489 if (env->aarch64) {
490 if (arm_feature(env, ARM_FEATURE_EL2)) {
491 env->pstate = PSTATE_MODE_EL2h;
492 } else {
493 env->pstate = PSTATE_MODE_EL1h;
497 /* Set to non-secure if not a secure boot */
498 if (!info->secure_boot) {
499 /* Linux expects non-secure state */
500 env->cp15.scr_el3 |= SCR_NS;
504 if (cs == first_cpu) {
505 cpu_set_pc(cs, info->loader_start);
507 if (!have_dtb(info)) {
508 if (old_param) {
509 set_kernel_args_old(info);
510 } else {
511 set_kernel_args(info);
514 } else {
515 info->secondary_cpu_reset_hook(cpu, info);
522 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
523 * by key.
524 * @fw_cfg: The firmware config instance to store the data in.
525 * @size_key: The firmware config key to store the size of the loaded
526 * data under, with fw_cfg_add_i32().
527 * @data_key: The firmware config key to store the loaded data under,
528 * with fw_cfg_add_bytes().
529 * @image_name: The name of the image file to load. If it is NULL, the
530 * function returns without doing anything.
531 * @try_decompress: Whether the image should be decompressed (gunzipped) before
532 * adding it to fw_cfg. If decompression fails, the image is
533 * loaded as-is.
535 * In case of failure, the function prints an error message to stderr and the
536 * process exits with status 1.
538 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
539 uint16_t data_key, const char *image_name,
540 bool try_decompress)
542 size_t size = -1;
543 uint8_t *data;
545 if (image_name == NULL) {
546 return;
549 if (try_decompress) {
550 size = load_image_gzipped_buffer(image_name,
551 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
554 if (size == (size_t)-1) {
555 gchar *contents;
556 gsize length;
558 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
559 fprintf(stderr, "failed to load \"%s\"\n", image_name);
560 exit(1);
562 size = length;
563 data = (uint8_t *)contents;
566 fw_cfg_add_i32(fw_cfg, size_key, size);
567 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
570 static int do_arm_linux_init(Object *obj, void *opaque)
572 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
573 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
574 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
575 struct arm_boot_info *info = opaque;
577 if (albifc->arm_linux_init) {
578 albifc->arm_linux_init(albif, info->secure_boot);
581 return 0;
584 static void arm_load_kernel_notify(Notifier *notifier, void *data)
586 CPUState *cs;
587 int kernel_size;
588 int initrd_size;
589 int is_linux = 0;
590 uint64_t elf_entry, elf_low_addr, elf_high_addr;
591 int elf_machine;
592 hwaddr entry, kernel_load_offset;
593 int big_endian;
594 static const ARMInsnFixup *primary_loader;
595 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
596 notifier, notifier);
597 ARMCPU *cpu = n->cpu;
598 struct arm_boot_info *info =
599 container_of(n, struct arm_boot_info, load_kernel_notifier);
601 /* Load the kernel. */
602 if (!info->kernel_filename || info->firmware_loaded) {
604 if (have_dtb(info)) {
605 /* If we have a device tree blob, but no kernel to supply it to (or
606 * the kernel is supposed to be loaded by the bootloader), copy the
607 * DTB to the base of RAM for the bootloader to pick up.
609 if (load_dtb(info->loader_start, info, 0) < 0) {
610 exit(1);
614 if (info->kernel_filename) {
615 FWCfgState *fw_cfg;
616 bool try_decompressing_kernel;
618 fw_cfg = fw_cfg_find();
619 try_decompressing_kernel = arm_feature(&cpu->env,
620 ARM_FEATURE_AARCH64);
622 /* Expose the kernel, the command line, and the initrd in fw_cfg.
623 * We don't process them here at all, it's all left to the
624 * firmware.
626 load_image_to_fw_cfg(fw_cfg,
627 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
628 info->kernel_filename,
629 try_decompressing_kernel);
630 load_image_to_fw_cfg(fw_cfg,
631 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
632 info->initrd_filename, false);
634 if (info->kernel_cmdline) {
635 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
636 strlen(info->kernel_cmdline) + 1);
637 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
638 info->kernel_cmdline);
642 /* We will start from address 0 (typically a boot ROM image) in the
643 * same way as hardware.
645 return;
648 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
649 primary_loader = bootloader_aarch64;
650 kernel_load_offset = KERNEL64_LOAD_ADDR;
651 elf_machine = EM_AARCH64;
652 } else {
653 primary_loader = bootloader;
654 if (!info->write_board_setup) {
655 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
657 kernel_load_offset = KERNEL_LOAD_ADDR;
658 elf_machine = EM_ARM;
661 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
663 if (!info->secondary_cpu_reset_hook) {
664 info->secondary_cpu_reset_hook = default_reset_secondary;
666 if (!info->write_secondary_boot) {
667 info->write_secondary_boot = default_write_secondary;
670 if (info->nb_cpus == 0)
671 info->nb_cpus = 1;
673 #ifdef TARGET_WORDS_BIGENDIAN
674 big_endian = 1;
675 #else
676 big_endian = 0;
677 #endif
679 /* We want to put the initrd far enough into RAM that when the
680 * kernel is uncompressed it will not clobber the initrd. However
681 * on boards without much RAM we must ensure that we still leave
682 * enough room for a decent sized initrd, and on boards with large
683 * amounts of RAM we must avoid the initrd being so far up in RAM
684 * that it is outside lowmem and inaccessible to the kernel.
685 * So for boards with less than 256MB of RAM we put the initrd
686 * halfway into RAM, and for boards with 256MB of RAM or more we put
687 * the initrd at 128MB.
689 info->initrd_start = info->loader_start +
690 MIN(info->ram_size / 2, 128 * 1024 * 1024);
692 /* Assume that raw images are linux kernels, and ELF images are not. */
693 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
694 &elf_low_addr, &elf_high_addr, big_endian,
695 elf_machine, 1);
696 if (kernel_size > 0 && have_dtb(info)) {
697 /* If there is still some room left at the base of RAM, try and put
698 * the DTB there like we do for images loaded with -bios or -pflash.
700 if (elf_low_addr > info->loader_start
701 || elf_high_addr < info->loader_start) {
702 /* Pass elf_low_addr as address limit to load_dtb if it may be
703 * pointing into RAM, otherwise pass '0' (no limit)
705 if (elf_low_addr < info->loader_start) {
706 elf_low_addr = 0;
708 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
709 exit(1);
713 entry = elf_entry;
714 if (kernel_size < 0) {
715 kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
716 &is_linux, NULL, NULL);
718 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
719 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
720 entry = info->loader_start + kernel_load_offset;
721 kernel_size = load_image_gzipped(info->kernel_filename, entry,
722 info->ram_size - kernel_load_offset);
723 is_linux = 1;
725 if (kernel_size < 0) {
726 entry = info->loader_start + kernel_load_offset;
727 kernel_size = load_image_targphys(info->kernel_filename, entry,
728 info->ram_size - kernel_load_offset);
729 is_linux = 1;
731 if (kernel_size < 0) {
732 fprintf(stderr, "qemu: could not load kernel '%s'\n",
733 info->kernel_filename);
734 exit(1);
736 info->entry = entry;
737 if (is_linux) {
738 uint32_t fixupcontext[FIXUP_MAX];
740 if (info->initrd_filename) {
741 initrd_size = load_ramdisk(info->initrd_filename,
742 info->initrd_start,
743 info->ram_size -
744 info->initrd_start);
745 if (initrd_size < 0) {
746 initrd_size = load_image_targphys(info->initrd_filename,
747 info->initrd_start,
748 info->ram_size -
749 info->initrd_start);
751 if (initrd_size < 0) {
752 fprintf(stderr, "qemu: could not load initrd '%s'\n",
753 info->initrd_filename);
754 exit(1);
756 } else {
757 initrd_size = 0;
759 info->initrd_size = initrd_size;
761 fixupcontext[FIXUP_BOARDID] = info->board_id;
762 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
764 /* for device tree boot, we pass the DTB directly in r2. Otherwise
765 * we point to the kernel args.
767 if (have_dtb(info)) {
768 hwaddr align;
769 hwaddr dtb_start;
771 if (elf_machine == EM_AARCH64) {
773 * Some AArch64 kernels on early bootup map the fdt region as
775 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
777 * Let's play safe and prealign it to 2MB to give us some space.
779 align = 2 * 1024 * 1024;
780 } else {
782 * Some 32bit kernels will trash anything in the 4K page the
783 * initrd ends in, so make sure the DTB isn't caught up in that.
785 align = 4096;
788 /* Place the DTB after the initrd in memory with alignment. */
789 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
790 if (load_dtb(dtb_start, info, 0) < 0) {
791 exit(1);
793 fixupcontext[FIXUP_ARGPTR] = dtb_start;
794 } else {
795 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
796 if (info->ram_size >= (1ULL << 32)) {
797 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
798 " Linux kernel using ATAGS (try passing a device tree"
799 " using -dtb)\n");
800 exit(1);
803 fixupcontext[FIXUP_ENTRYPOINT] = entry;
805 write_bootloader("bootloader", info->loader_start,
806 primary_loader, fixupcontext);
808 if (info->nb_cpus > 1) {
809 info->write_secondary_boot(cpu, info);
811 if (info->write_board_setup) {
812 info->write_board_setup(cpu, info);
815 /* Notify devices which need to fake up firmware initialization
816 * that we're doing a direct kernel boot.
818 object_child_foreach_recursive(object_get_root(),
819 do_arm_linux_init, info);
821 info->is_linux = is_linux;
823 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
824 ARM_CPU(cs)->env.boot_info = info;
828 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
830 CPUState *cs;
832 info->load_kernel_notifier.cpu = cpu;
833 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
834 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
836 /* CPU objects (unlike devices) are not automatically reset on system
837 * reset, so we must always register a handler to do so. If we're
838 * actually loading a kernel, the handler is also responsible for
839 * arranging that we start it correctly.
841 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
842 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
846 static const TypeInfo arm_linux_boot_if_info = {
847 .name = TYPE_ARM_LINUX_BOOT_IF,
848 .parent = TYPE_INTERFACE,
849 .class_size = sizeof(ARMLinuxBootIfClass),
852 static void arm_linux_boot_register_types(void)
854 type_register_static(&arm_linux_boot_if_info);
857 type_init(arm_linux_boot_register_types)