blkdebug: Don't confuse image as backing file
[qemu/ar7.git] / target-arm / cpu.h
blob493f9d02a972a04f63d40caccd1523a422f3f73d
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 #define TARGET_IS_BIENDIAN 1
35 #define CPUArchState struct CPUARMState
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
40 #include "fpu/softfloat.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
46 #define EXCP_IRQ 5
47 #define EXCP_FIQ 6
48 #define EXCP_BKPT 7
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_STREX 10
52 #define EXCP_HVC 11 /* HyperVisor Call */
53 #define EXCP_HYP_TRAP 12
54 #define EXCP_SMC 13 /* Secure Monitor Call */
55 #define EXCP_VIRQ 14
56 #define EXCP_VFIQ 15
57 #define EXCP_SEMIHOST 16 /* semihosting call (A64 only) */
59 #define ARMV7M_EXCP_RESET 1
60 #define ARMV7M_EXCP_NMI 2
61 #define ARMV7M_EXCP_HARD 3
62 #define ARMV7M_EXCP_MEM 4
63 #define ARMV7M_EXCP_BUS 5
64 #define ARMV7M_EXCP_USAGE 6
65 #define ARMV7M_EXCP_SVC 11
66 #define ARMV7M_EXCP_DEBUG 12
67 #define ARMV7M_EXCP_PENDSV 14
68 #define ARMV7M_EXCP_SYSTICK 15
70 /* ARM-specific interrupt pending bits. */
71 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
72 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
73 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
75 /* The usual mapping for an AArch64 system register to its AArch32
76 * counterpart is for the 32 bit world to have access to the lower
77 * half only (with writes leaving the upper half untouched). It's
78 * therefore useful to be able to pass TCG the offset of the least
79 * significant half of a uint64_t struct member.
81 #ifdef HOST_WORDS_BIGENDIAN
82 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
83 #define offsetofhigh32(S, M) offsetof(S, M)
84 #else
85 #define offsetoflow32(S, M) offsetof(S, M)
86 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
87 #endif
89 /* Meanings of the ARMCPU object's four inbound GPIO lines */
90 #define ARM_CPU_IRQ 0
91 #define ARM_CPU_FIQ 1
92 #define ARM_CPU_VIRQ 2
93 #define ARM_CPU_VFIQ 3
95 struct arm_boot_info;
97 #define NB_MMU_MODES 7
98 #define TARGET_INSN_START_EXTRA_WORDS 1
100 /* We currently assume float and double are IEEE single and double
101 precision respectively.
102 Doing runtime conversions is tricky because VFP registers may contain
103 integer values (eg. as the result of a FTOSI instruction).
104 s<2n> maps to the least significant half of d<n>
105 s<2n+1> maps to the most significant half of d<n>
108 /* CPU state for each instance of a generic timer (in cp15 c14) */
109 typedef struct ARMGenericTimer {
110 uint64_t cval; /* Timer CompareValue register */
111 uint64_t ctl; /* Timer Control register */
112 } ARMGenericTimer;
114 #define GTIMER_PHYS 0
115 #define GTIMER_VIRT 1
116 #define GTIMER_HYP 2
117 #define GTIMER_SEC 3
118 #define NUM_GTIMERS 4
120 typedef struct {
121 uint64_t raw_tcr;
122 uint32_t mask;
123 uint32_t base_mask;
124 } TCR;
126 typedef struct CPUARMState {
127 /* Regs for current mode. */
128 uint32_t regs[16];
130 /* 32/64 switch only happens when taking and returning from
131 * exceptions so the overlap semantics are taken care of then
132 * instead of having a complicated union.
134 /* Regs for A64 mode. */
135 uint64_t xregs[32];
136 uint64_t pc;
137 /* PSTATE isn't an architectural register for ARMv8. However, it is
138 * convenient for us to assemble the underlying state into a 32 bit format
139 * identical to the architectural format used for the SPSR. (This is also
140 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
141 * 'pstate' register are.) Of the PSTATE bits:
142 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
143 * semantics as for AArch32, as described in the comments on each field)
144 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
145 * DAIF (exception masks) are kept in env->daif
146 * all other bits are stored in their correct places in env->pstate
148 uint32_t pstate;
149 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
151 /* Frequently accessed CPSR bits are stored separately for efficiency.
152 This contains all the other bits. Use cpsr_{read,write} to access
153 the whole CPSR. */
154 uint32_t uncached_cpsr;
155 uint32_t spsr;
157 /* Banked registers. */
158 uint64_t banked_spsr[8];
159 uint32_t banked_r13[8];
160 uint32_t banked_r14[8];
162 /* These hold r8-r12. */
163 uint32_t usr_regs[5];
164 uint32_t fiq_regs[5];
166 /* cpsr flag cache for faster execution */
167 uint32_t CF; /* 0 or 1 */
168 uint32_t VF; /* V is the bit 31. All other bits are undefined */
169 uint32_t NF; /* N is bit 31. All other bits are undefined. */
170 uint32_t ZF; /* Z set if zero. */
171 uint32_t QF; /* 0 or 1 */
172 uint32_t GE; /* cpsr[19:16] */
173 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
174 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
175 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
177 uint64_t elr_el[4]; /* AArch64 exception link regs */
178 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
180 /* System control coprocessor (cp15) */
181 struct {
182 uint32_t c0_cpuid;
183 union { /* Cache size selection */
184 struct {
185 uint64_t _unused_csselr0;
186 uint64_t csselr_ns;
187 uint64_t _unused_csselr1;
188 uint64_t csselr_s;
190 uint64_t csselr_el[4];
192 union { /* System control register. */
193 struct {
194 uint64_t _unused_sctlr;
195 uint64_t sctlr_ns;
196 uint64_t hsctlr;
197 uint64_t sctlr_s;
199 uint64_t sctlr_el[4];
201 uint64_t cpacr_el1; /* Architectural feature access control register */
202 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
203 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
204 uint64_t sder; /* Secure debug enable register. */
205 uint32_t nsacr; /* Non-secure access control register. */
206 union { /* MMU translation table base 0. */
207 struct {
208 uint64_t _unused_ttbr0_0;
209 uint64_t ttbr0_ns;
210 uint64_t _unused_ttbr0_1;
211 uint64_t ttbr0_s;
213 uint64_t ttbr0_el[4];
215 union { /* MMU translation table base 1. */
216 struct {
217 uint64_t _unused_ttbr1_0;
218 uint64_t ttbr1_ns;
219 uint64_t _unused_ttbr1_1;
220 uint64_t ttbr1_s;
222 uint64_t ttbr1_el[4];
224 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
225 /* MMU translation table base control. */
226 TCR tcr_el[4];
227 TCR vtcr_el2; /* Virtualization Translation Control. */
228 uint32_t c2_data; /* MPU data cacheable bits. */
229 uint32_t c2_insn; /* MPU instruction cacheable bits. */
230 union { /* MMU domain access control register
231 * MPU write buffer control.
233 struct {
234 uint64_t dacr_ns;
235 uint64_t dacr_s;
237 struct {
238 uint64_t dacr32_el2;
241 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
242 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
243 uint64_t hcr_el2; /* Hypervisor configuration register */
244 uint64_t scr_el3; /* Secure configuration register. */
245 union { /* Fault status registers. */
246 struct {
247 uint64_t ifsr_ns;
248 uint64_t ifsr_s;
250 struct {
251 uint64_t ifsr32_el2;
254 union {
255 struct {
256 uint64_t _unused_dfsr;
257 uint64_t dfsr_ns;
258 uint64_t hsr;
259 uint64_t dfsr_s;
261 uint64_t esr_el[4];
263 uint32_t c6_region[8]; /* MPU base/size registers. */
264 union { /* Fault address registers. */
265 struct {
266 uint64_t _unused_far0;
267 #ifdef HOST_WORDS_BIGENDIAN
268 uint32_t ifar_ns;
269 uint32_t dfar_ns;
270 uint32_t ifar_s;
271 uint32_t dfar_s;
272 #else
273 uint32_t dfar_ns;
274 uint32_t ifar_ns;
275 uint32_t dfar_s;
276 uint32_t ifar_s;
277 #endif
278 uint64_t _unused_far3;
280 uint64_t far_el[4];
282 union { /* Translation result. */
283 struct {
284 uint64_t _unused_par_0;
285 uint64_t par_ns;
286 uint64_t _unused_par_1;
287 uint64_t par_s;
289 uint64_t par_el[4];
292 uint32_t c6_rgnr;
294 uint32_t c9_insn; /* Cache lockdown registers. */
295 uint32_t c9_data;
296 uint64_t c9_pmcr; /* performance monitor control register */
297 uint64_t c9_pmcnten; /* perf monitor counter enables */
298 uint32_t c9_pmovsr; /* perf monitor overflow status */
299 uint32_t c9_pmxevtyper; /* perf monitor event type */
300 uint32_t c9_pmuserenr; /* perf monitor user enable */
301 uint32_t c9_pminten; /* perf monitor interrupt enables */
302 union { /* Memory attribute redirection */
303 struct {
304 #ifdef HOST_WORDS_BIGENDIAN
305 uint64_t _unused_mair_0;
306 uint32_t mair1_ns;
307 uint32_t mair0_ns;
308 uint64_t _unused_mair_1;
309 uint32_t mair1_s;
310 uint32_t mair0_s;
311 #else
312 uint64_t _unused_mair_0;
313 uint32_t mair0_ns;
314 uint32_t mair1_ns;
315 uint64_t _unused_mair_1;
316 uint32_t mair0_s;
317 uint32_t mair1_s;
318 #endif
320 uint64_t mair_el[4];
322 union { /* vector base address register */
323 struct {
324 uint64_t _unused_vbar;
325 uint64_t vbar_ns;
326 uint64_t hvbar;
327 uint64_t vbar_s;
329 uint64_t vbar_el[4];
331 uint32_t mvbar; /* (monitor) vector base address register */
332 struct { /* FCSE PID. */
333 uint32_t fcseidr_ns;
334 uint32_t fcseidr_s;
336 union { /* Context ID. */
337 struct {
338 uint64_t _unused_contextidr_0;
339 uint64_t contextidr_ns;
340 uint64_t _unused_contextidr_1;
341 uint64_t contextidr_s;
343 uint64_t contextidr_el[4];
345 union { /* User RW Thread register. */
346 struct {
347 uint64_t tpidrurw_ns;
348 uint64_t tpidrprw_ns;
349 uint64_t htpidr;
350 uint64_t _tpidr_el3;
352 uint64_t tpidr_el[4];
354 /* The secure banks of these registers don't map anywhere */
355 uint64_t tpidrurw_s;
356 uint64_t tpidrprw_s;
357 uint64_t tpidruro_s;
359 union { /* User RO Thread register. */
360 uint64_t tpidruro_ns;
361 uint64_t tpidrro_el[1];
363 uint64_t c14_cntfrq; /* Counter Frequency register */
364 uint64_t c14_cntkctl; /* Timer Control register */
365 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
366 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
367 ARMGenericTimer c14_timer[NUM_GTIMERS];
368 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
369 uint32_t c15_ticonfig; /* TI925T configuration byte. */
370 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
371 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
372 uint32_t c15_threadid; /* TI debugger thread-ID. */
373 uint32_t c15_config_base_address; /* SCU base address. */
374 uint32_t c15_diagnostic; /* diagnostic register */
375 uint32_t c15_power_diagnostic;
376 uint32_t c15_power_control; /* power control */
377 uint64_t dbgbvr[16]; /* breakpoint value registers */
378 uint64_t dbgbcr[16]; /* breakpoint control registers */
379 uint64_t dbgwvr[16]; /* watchpoint value registers */
380 uint64_t dbgwcr[16]; /* watchpoint control registers */
381 uint64_t mdscr_el1;
382 /* If the counter is enabled, this stores the last time the counter
383 * was reset. Otherwise it stores the counter value
385 uint64_t c15_ccnt;
386 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
387 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
388 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
389 } cp15;
391 struct {
392 uint32_t other_sp;
393 uint32_t vecbase;
394 uint32_t basepri;
395 uint32_t control;
396 int current_sp;
397 int exception;
398 } v7m;
400 /* Information associated with an exception about to be taken:
401 * code which raises an exception must set cs->exception_index and
402 * the relevant parts of this structure; the cpu_do_interrupt function
403 * will then set the guest-visible registers as part of the exception
404 * entry process.
406 struct {
407 uint32_t syndrome; /* AArch64 format syndrome register */
408 uint32_t fsr; /* AArch32 format fault status register info */
409 uint64_t vaddress; /* virtual addr associated with exception, if any */
410 uint32_t target_el; /* EL the exception should be targeted for */
411 /* If we implement EL2 we will also need to store information
412 * about the intermediate physical address for stage 2 faults.
414 } exception;
416 /* Thumb-2 EE state. */
417 uint32_t teecr;
418 uint32_t teehbr;
420 /* VFP coprocessor state. */
421 struct {
422 /* VFP/Neon register state. Note that the mapping between S, D and Q
423 * views of the register bank differs between AArch64 and AArch32:
424 * In AArch32:
425 * Qn = regs[2n+1]:regs[2n]
426 * Dn = regs[n]
427 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
428 * (and regs[32] to regs[63] are inaccessible)
429 * In AArch64:
430 * Qn = regs[2n+1]:regs[2n]
431 * Dn = regs[2n]
432 * Sn = regs[2n] bits 31..0
433 * This corresponds to the architecturally defined mapping between
434 * the two execution states, and means we do not need to explicitly
435 * map these registers when changing states.
437 float64 regs[64];
439 uint32_t xregs[16];
440 /* We store these fpcsr fields separately for convenience. */
441 int vec_len;
442 int vec_stride;
444 /* scratch space when Tn are not sufficient. */
445 uint32_t scratch[8];
447 /* fp_status is the "normal" fp status. standard_fp_status retains
448 * values corresponding to the ARM "Standard FPSCR Value", ie
449 * default-NaN, flush-to-zero, round-to-nearest and is used by
450 * any operations (generally Neon) which the architecture defines
451 * as controlled by the standard FPSCR value rather than the FPSCR.
453 * To avoid having to transfer exception bits around, we simply
454 * say that the FPSCR cumulative exception flags are the logical
455 * OR of the flags in the two fp statuses. This relies on the
456 * only thing which needs to read the exception flags being
457 * an explicit FPSCR read.
459 float_status fp_status;
460 float_status standard_fp_status;
461 } vfp;
462 uint64_t exclusive_addr;
463 uint64_t exclusive_val;
464 uint64_t exclusive_high;
465 #if defined(CONFIG_USER_ONLY)
466 uint64_t exclusive_test;
467 uint32_t exclusive_info;
468 #endif
470 /* iwMMXt coprocessor state. */
471 struct {
472 uint64_t regs[16];
473 uint64_t val;
475 uint32_t cregs[16];
476 } iwmmxt;
478 /* For mixed endian mode. */
479 bool bswap_code;
481 #if defined(CONFIG_USER_ONLY)
482 /* For usermode syscall translation. */
483 int eabi;
484 #endif
486 struct CPUBreakpoint *cpu_breakpoint[16];
487 struct CPUWatchpoint *cpu_watchpoint[16];
489 CPU_COMMON
491 /* These fields after the common ones so they are preserved on reset. */
493 /* Internal CPU feature flags. */
494 uint64_t features;
496 /* PMSAv7 MPU */
497 struct {
498 uint32_t *drbar;
499 uint32_t *drsr;
500 uint32_t *dracr;
501 } pmsav7;
503 void *nvic;
504 const struct arm_boot_info *boot_info;
505 } CPUARMState;
507 #include "cpu-qom.h"
509 ARMCPU *cpu_arm_init(const char *cpu_model);
510 int cpu_arm_exec(CPUState *cpu);
511 target_ulong do_arm_semihosting(CPUARMState *env);
512 void aarch64_sync_32_to_64(CPUARMState *env);
513 void aarch64_sync_64_to_32(CPUARMState *env);
515 static inline bool is_a64(CPUARMState *env)
517 return env->aarch64;
520 /* you can call this signal handler from your SIGBUS and SIGSEGV
521 signal handlers to inform the virtual CPU of exceptions. non zero
522 is returned if the signal was handled by the virtual CPU. */
523 int cpu_arm_signal_handler(int host_signum, void *pinfo,
524 void *puc);
527 * pmccntr_sync
528 * @env: CPUARMState
530 * Synchronises the counter in the PMCCNTR. This must always be called twice,
531 * once before any action that might affect the timer and again afterwards.
532 * The function is used to swap the state of the register if required.
533 * This only happens when not in user mode (!CONFIG_USER_ONLY)
535 void pmccntr_sync(CPUARMState *env);
537 /* SCTLR bit meanings. Several bits have been reused in newer
538 * versions of the architecture; in that case we define constants
539 * for both old and new bit meanings. Code which tests against those
540 * bits should probably check or otherwise arrange that the CPU
541 * is the architectural version it expects.
543 #define SCTLR_M (1U << 0)
544 #define SCTLR_A (1U << 1)
545 #define SCTLR_C (1U << 2)
546 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
547 #define SCTLR_SA (1U << 3)
548 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
549 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
550 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
551 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
552 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
553 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
554 #define SCTLR_ITD (1U << 7) /* v8 onward */
555 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
556 #define SCTLR_SED (1U << 8) /* v8 onward */
557 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
558 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
559 #define SCTLR_F (1U << 10) /* up to v6 */
560 #define SCTLR_SW (1U << 10) /* v7 onward */
561 #define SCTLR_Z (1U << 11)
562 #define SCTLR_I (1U << 12)
563 #define SCTLR_V (1U << 13)
564 #define SCTLR_RR (1U << 14) /* up to v7 */
565 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
566 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
567 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
568 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
569 #define SCTLR_nTWI (1U << 16) /* v8 onward */
570 #define SCTLR_HA (1U << 17)
571 #define SCTLR_BR (1U << 17) /* PMSA only */
572 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
573 #define SCTLR_nTWE (1U << 18) /* v8 onward */
574 #define SCTLR_WXN (1U << 19)
575 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
576 #define SCTLR_UWXN (1U << 20) /* v7 onward */
577 #define SCTLR_FI (1U << 21)
578 #define SCTLR_U (1U << 22)
579 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
580 #define SCTLR_VE (1U << 24) /* up to v7 */
581 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
582 #define SCTLR_EE (1U << 25)
583 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
584 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
585 #define SCTLR_NMFI (1U << 27)
586 #define SCTLR_TRE (1U << 28)
587 #define SCTLR_AFE (1U << 29)
588 #define SCTLR_TE (1U << 30)
590 #define CPTR_TCPAC (1U << 31)
591 #define CPTR_TTA (1U << 20)
592 #define CPTR_TFP (1U << 10)
594 #define CPSR_M (0x1fU)
595 #define CPSR_T (1U << 5)
596 #define CPSR_F (1U << 6)
597 #define CPSR_I (1U << 7)
598 #define CPSR_A (1U << 8)
599 #define CPSR_E (1U << 9)
600 #define CPSR_IT_2_7 (0xfc00U)
601 #define CPSR_GE (0xfU << 16)
602 #define CPSR_IL (1U << 20)
603 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
604 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
605 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
606 * where it is live state but not accessible to the AArch32 code.
608 #define CPSR_RESERVED (0x7U << 21)
609 #define CPSR_J (1U << 24)
610 #define CPSR_IT_0_1 (3U << 25)
611 #define CPSR_Q (1U << 27)
612 #define CPSR_V (1U << 28)
613 #define CPSR_C (1U << 29)
614 #define CPSR_Z (1U << 30)
615 #define CPSR_N (1U << 31)
616 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
617 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
619 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
620 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
621 | CPSR_NZCV)
622 /* Bits writable in user mode. */
623 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
624 /* Execution state bits. MRS read as zero, MSR writes ignored. */
625 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
626 /* Mask of bits which may be set by exception return copying them from SPSR */
627 #define CPSR_ERET_MASK (~CPSR_RESERVED)
629 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
630 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
631 #define TTBCR_PD0 (1U << 4)
632 #define TTBCR_PD1 (1U << 5)
633 #define TTBCR_EPD0 (1U << 7)
634 #define TTBCR_IRGN0 (3U << 8)
635 #define TTBCR_ORGN0 (3U << 10)
636 #define TTBCR_SH0 (3U << 12)
637 #define TTBCR_T1SZ (3U << 16)
638 #define TTBCR_A1 (1U << 22)
639 #define TTBCR_EPD1 (1U << 23)
640 #define TTBCR_IRGN1 (3U << 24)
641 #define TTBCR_ORGN1 (3U << 26)
642 #define TTBCR_SH1 (1U << 28)
643 #define TTBCR_EAE (1U << 31)
645 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
646 * Only these are valid when in AArch64 mode; in
647 * AArch32 mode SPSRs are basically CPSR-format.
649 #define PSTATE_SP (1U)
650 #define PSTATE_M (0xFU)
651 #define PSTATE_nRW (1U << 4)
652 #define PSTATE_F (1U << 6)
653 #define PSTATE_I (1U << 7)
654 #define PSTATE_A (1U << 8)
655 #define PSTATE_D (1U << 9)
656 #define PSTATE_IL (1U << 20)
657 #define PSTATE_SS (1U << 21)
658 #define PSTATE_V (1U << 28)
659 #define PSTATE_C (1U << 29)
660 #define PSTATE_Z (1U << 30)
661 #define PSTATE_N (1U << 31)
662 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
663 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
664 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
665 /* Mode values for AArch64 */
666 #define PSTATE_MODE_EL3h 13
667 #define PSTATE_MODE_EL3t 12
668 #define PSTATE_MODE_EL2h 9
669 #define PSTATE_MODE_EL2t 8
670 #define PSTATE_MODE_EL1h 5
671 #define PSTATE_MODE_EL1t 4
672 #define PSTATE_MODE_EL0t 0
674 /* Map EL and handler into a PSTATE_MODE. */
675 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
677 return (el << 2) | handler;
680 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
681 * interprocessing, so we don't attempt to sync with the cpsr state used by
682 * the 32 bit decoder.
684 static inline uint32_t pstate_read(CPUARMState *env)
686 int ZF;
688 ZF = (env->ZF == 0);
689 return (env->NF & 0x80000000) | (ZF << 30)
690 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
691 | env->pstate | env->daif;
694 static inline void pstate_write(CPUARMState *env, uint32_t val)
696 env->ZF = (~val) & PSTATE_Z;
697 env->NF = val;
698 env->CF = (val >> 29) & 1;
699 env->VF = (val << 3) & 0x80000000;
700 env->daif = val & PSTATE_DAIF;
701 env->pstate = val & ~CACHED_PSTATE_BITS;
704 /* Return the current CPSR value. */
705 uint32_t cpsr_read(CPUARMState *env);
706 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
707 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
709 /* Return the current xPSR value. */
710 static inline uint32_t xpsr_read(CPUARMState *env)
712 int ZF;
713 ZF = (env->ZF == 0);
714 return (env->NF & 0x80000000) | (ZF << 30)
715 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
716 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
717 | ((env->condexec_bits & 0xfc) << 8)
718 | env->v7m.exception;
721 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
722 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
724 if (mask & CPSR_NZCV) {
725 env->ZF = (~val) & CPSR_Z;
726 env->NF = val;
727 env->CF = (val >> 29) & 1;
728 env->VF = (val << 3) & 0x80000000;
730 if (mask & CPSR_Q)
731 env->QF = ((val & CPSR_Q) != 0);
732 if (mask & (1 << 24))
733 env->thumb = ((val & (1 << 24)) != 0);
734 if (mask & CPSR_IT_0_1) {
735 env->condexec_bits &= ~3;
736 env->condexec_bits |= (val >> 25) & 3;
738 if (mask & CPSR_IT_2_7) {
739 env->condexec_bits &= 3;
740 env->condexec_bits |= (val >> 8) & 0xfc;
742 if (mask & 0x1ff) {
743 env->v7m.exception = val & 0x1ff;
747 #define HCR_VM (1ULL << 0)
748 #define HCR_SWIO (1ULL << 1)
749 #define HCR_PTW (1ULL << 2)
750 #define HCR_FMO (1ULL << 3)
751 #define HCR_IMO (1ULL << 4)
752 #define HCR_AMO (1ULL << 5)
753 #define HCR_VF (1ULL << 6)
754 #define HCR_VI (1ULL << 7)
755 #define HCR_VSE (1ULL << 8)
756 #define HCR_FB (1ULL << 9)
757 #define HCR_BSU_MASK (3ULL << 10)
758 #define HCR_DC (1ULL << 12)
759 #define HCR_TWI (1ULL << 13)
760 #define HCR_TWE (1ULL << 14)
761 #define HCR_TID0 (1ULL << 15)
762 #define HCR_TID1 (1ULL << 16)
763 #define HCR_TID2 (1ULL << 17)
764 #define HCR_TID3 (1ULL << 18)
765 #define HCR_TSC (1ULL << 19)
766 #define HCR_TIDCP (1ULL << 20)
767 #define HCR_TACR (1ULL << 21)
768 #define HCR_TSW (1ULL << 22)
769 #define HCR_TPC (1ULL << 23)
770 #define HCR_TPU (1ULL << 24)
771 #define HCR_TTLB (1ULL << 25)
772 #define HCR_TVM (1ULL << 26)
773 #define HCR_TGE (1ULL << 27)
774 #define HCR_TDZ (1ULL << 28)
775 #define HCR_HCD (1ULL << 29)
776 #define HCR_TRVM (1ULL << 30)
777 #define HCR_RW (1ULL << 31)
778 #define HCR_CD (1ULL << 32)
779 #define HCR_ID (1ULL << 33)
780 #define HCR_MASK ((1ULL << 34) - 1)
782 #define SCR_NS (1U << 0)
783 #define SCR_IRQ (1U << 1)
784 #define SCR_FIQ (1U << 2)
785 #define SCR_EA (1U << 3)
786 #define SCR_FW (1U << 4)
787 #define SCR_AW (1U << 5)
788 #define SCR_NET (1U << 6)
789 #define SCR_SMD (1U << 7)
790 #define SCR_HCE (1U << 8)
791 #define SCR_SIF (1U << 9)
792 #define SCR_RW (1U << 10)
793 #define SCR_ST (1U << 11)
794 #define SCR_TWI (1U << 12)
795 #define SCR_TWE (1U << 13)
796 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
797 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
799 /* Return the current FPSCR value. */
800 uint32_t vfp_get_fpscr(CPUARMState *env);
801 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
803 /* For A64 the FPSCR is split into two logically distinct registers,
804 * FPCR and FPSR. However since they still use non-overlapping bits
805 * we store the underlying state in fpscr and just mask on read/write.
807 #define FPSR_MASK 0xf800009f
808 #define FPCR_MASK 0x07f79f00
809 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
811 return vfp_get_fpscr(env) & FPSR_MASK;
814 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
816 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
817 vfp_set_fpscr(env, new_fpscr);
820 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
822 return vfp_get_fpscr(env) & FPCR_MASK;
825 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
827 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
828 vfp_set_fpscr(env, new_fpscr);
831 enum arm_cpu_mode {
832 ARM_CPU_MODE_USR = 0x10,
833 ARM_CPU_MODE_FIQ = 0x11,
834 ARM_CPU_MODE_IRQ = 0x12,
835 ARM_CPU_MODE_SVC = 0x13,
836 ARM_CPU_MODE_MON = 0x16,
837 ARM_CPU_MODE_ABT = 0x17,
838 ARM_CPU_MODE_HYP = 0x1a,
839 ARM_CPU_MODE_UND = 0x1b,
840 ARM_CPU_MODE_SYS = 0x1f
843 /* VFP system registers. */
844 #define ARM_VFP_FPSID 0
845 #define ARM_VFP_FPSCR 1
846 #define ARM_VFP_MVFR2 5
847 #define ARM_VFP_MVFR1 6
848 #define ARM_VFP_MVFR0 7
849 #define ARM_VFP_FPEXC 8
850 #define ARM_VFP_FPINST 9
851 #define ARM_VFP_FPINST2 10
853 /* iwMMXt coprocessor control registers. */
854 #define ARM_IWMMXT_wCID 0
855 #define ARM_IWMMXT_wCon 1
856 #define ARM_IWMMXT_wCSSF 2
857 #define ARM_IWMMXT_wCASF 3
858 #define ARM_IWMMXT_wCGR0 8
859 #define ARM_IWMMXT_wCGR1 9
860 #define ARM_IWMMXT_wCGR2 10
861 #define ARM_IWMMXT_wCGR3 11
863 /* If adding a feature bit which corresponds to a Linux ELF
864 * HWCAP bit, remember to update the feature-bit-to-hwcap
865 * mapping in linux-user/elfload.c:get_elf_hwcap().
867 enum arm_features {
868 ARM_FEATURE_VFP,
869 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
870 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
871 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
872 ARM_FEATURE_V6,
873 ARM_FEATURE_V6K,
874 ARM_FEATURE_V7,
875 ARM_FEATURE_THUMB2,
876 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
877 ARM_FEATURE_VFP3,
878 ARM_FEATURE_VFP_FP16,
879 ARM_FEATURE_NEON,
880 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
881 ARM_FEATURE_M, /* Microcontroller profile. */
882 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
883 ARM_FEATURE_THUMB2EE,
884 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
885 ARM_FEATURE_V4T,
886 ARM_FEATURE_V5,
887 ARM_FEATURE_STRONGARM,
888 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
889 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
890 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
891 ARM_FEATURE_GENERIC_TIMER,
892 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
893 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
894 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
895 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
896 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
897 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
898 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
899 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
900 ARM_FEATURE_V8,
901 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
902 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
903 ARM_FEATURE_CBAR, /* has cp15 CBAR */
904 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
905 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
906 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
907 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
908 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
909 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
910 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
911 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
914 static inline int arm_feature(CPUARMState *env, int feature)
916 return (env->features & (1ULL << feature)) != 0;
919 #if !defined(CONFIG_USER_ONLY)
920 /* Return true if exception levels below EL3 are in secure state,
921 * or would be following an exception return to that level.
922 * Unlike arm_is_secure() (which is always a question about the
923 * _current_ state of the CPU) this doesn't care about the current
924 * EL or mode.
926 static inline bool arm_is_secure_below_el3(CPUARMState *env)
928 if (arm_feature(env, ARM_FEATURE_EL3)) {
929 return !(env->cp15.scr_el3 & SCR_NS);
930 } else {
931 /* If EL2 is not supported then the secure state is implementation
932 * defined, in which case QEMU defaults to non-secure.
934 return false;
938 /* Return true if the processor is in secure state */
939 static inline bool arm_is_secure(CPUARMState *env)
941 if (arm_feature(env, ARM_FEATURE_EL3)) {
942 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
943 /* CPU currently in AArch64 state and EL3 */
944 return true;
945 } else if (!is_a64(env) &&
946 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
947 /* CPU currently in AArch32 state and monitor mode */
948 return true;
951 return arm_is_secure_below_el3(env);
954 #else
955 static inline bool arm_is_secure_below_el3(CPUARMState *env)
957 return false;
960 static inline bool arm_is_secure(CPUARMState *env)
962 return false;
964 #endif
966 /* Return true if the specified exception level is running in AArch64 state. */
967 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
969 /* We don't currently support EL2, and this isn't valid for EL0
970 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
971 * then the state of EL0 isn't well defined.)
973 assert(el == 1 || el == 3);
975 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
976 * is a QEMU-imposed simplification which we may wish to change later.
977 * If we in future support EL2 and/or EL3, then the state of lower
978 * exception levels is controlled by the HCR.RW and SCR.RW bits.
980 return arm_feature(env, ARM_FEATURE_AARCH64);
983 /* Function for determing whether guest cp register reads and writes should
984 * access the secure or non-secure bank of a cp register. When EL3 is
985 * operating in AArch32 state, the NS-bit determines whether the secure
986 * instance of a cp register should be used. When EL3 is AArch64 (or if
987 * it doesn't exist at all) then there is no register banking, and all
988 * accesses are to the non-secure version.
990 static inline bool access_secure_reg(CPUARMState *env)
992 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
993 !arm_el_is_aa64(env, 3) &&
994 !(env->cp15.scr_el3 & SCR_NS));
996 return ret;
999 /* Macros for accessing a specified CP register bank */
1000 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1001 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1003 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1004 do { \
1005 if (_secure) { \
1006 (_env)->cp15._regname##_s = (_val); \
1007 } else { \
1008 (_env)->cp15._regname##_ns = (_val); \
1010 } while (0)
1012 /* Macros for automatically accessing a specific CP register bank depending on
1013 * the current secure state of the system. These macros are not intended for
1014 * supporting instruction translation reads/writes as these are dependent
1015 * solely on the SCR.NS bit and not the mode.
1017 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1018 A32_BANKED_REG_GET((_env), _regname, \
1019 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
1021 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1022 A32_BANKED_REG_SET((_env), _regname, \
1023 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
1024 (_val))
1026 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1027 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1028 uint32_t cur_el, bool secure);
1030 /* Interface between CPU and Interrupt controller. */
1031 void armv7m_nvic_set_pending(void *opaque, int irq);
1032 int armv7m_nvic_acknowledge_irq(void *opaque);
1033 void armv7m_nvic_complete_irq(void *opaque, int irq);
1035 /* Interface for defining coprocessor registers.
1036 * Registers are defined in tables of arm_cp_reginfo structs
1037 * which are passed to define_arm_cp_regs().
1040 /* When looking up a coprocessor register we look for it
1041 * via an integer which encodes all of:
1042 * coprocessor number
1043 * Crn, Crm, opc1, opc2 fields
1044 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1045 * or via MRRC/MCRR?)
1046 * non-secure/secure bank (AArch32 only)
1047 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1048 * (In this case crn and opc2 should be zero.)
1049 * For AArch64, there is no 32/64 bit size distinction;
1050 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1051 * and 4 bit CRn and CRm. The encoding patterns are chosen
1052 * to be easy to convert to and from the KVM encodings, and also
1053 * so that the hashtable can contain both AArch32 and AArch64
1054 * registers (to allow for interprocessing where we might run
1055 * 32 bit code on a 64 bit core).
1057 /* This bit is private to our hashtable cpreg; in KVM register
1058 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1059 * in the upper bits of the 64 bit ID.
1061 #define CP_REG_AA64_SHIFT 28
1062 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1064 /* To enable banking of coprocessor registers depending on ns-bit we
1065 * add a bit to distinguish between secure and non-secure cpregs in the
1066 * hashtable.
1068 #define CP_REG_NS_SHIFT 29
1069 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1071 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1072 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1073 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1075 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1076 (CP_REG_AA64_MASK | \
1077 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1078 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1079 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1080 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1081 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1082 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1084 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1085 * version used as a key for the coprocessor register hashtable
1087 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1089 uint32_t cpregid = kvmid;
1090 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1091 cpregid |= CP_REG_AA64_MASK;
1092 } else {
1093 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1094 cpregid |= (1 << 15);
1097 /* KVM is always non-secure so add the NS flag on AArch32 register
1098 * entries.
1100 cpregid |= 1 << CP_REG_NS_SHIFT;
1102 return cpregid;
1105 /* Convert a truncated 32 bit hashtable key into the full
1106 * 64 bit KVM register ID.
1108 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1110 uint64_t kvmid;
1112 if (cpregid & CP_REG_AA64_MASK) {
1113 kvmid = cpregid & ~CP_REG_AA64_MASK;
1114 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1115 } else {
1116 kvmid = cpregid & ~(1 << 15);
1117 if (cpregid & (1 << 15)) {
1118 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1119 } else {
1120 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1123 return kvmid;
1126 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1127 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1128 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1129 * TCG can assume the value to be constant (ie load at translate time)
1130 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1131 * indicates that the TB should not be ended after a write to this register
1132 * (the default is that the TB ends after cp writes). OVERRIDE permits
1133 * a register definition to override a previous definition for the
1134 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1135 * old must have the OVERRIDE bit set.
1136 * ALIAS indicates that this register is an alias view of some underlying
1137 * state which is also visible via another register, and that the other
1138 * register is handling migration and reset; registers marked ALIAS will not be
1139 * migrated but may have their state set by syncing of register state from KVM.
1140 * NO_RAW indicates that this register has no underlying state and does not
1141 * support raw access for state saving/loading; it will not be used for either
1142 * migration or KVM state synchronization. (Typically this is for "registers"
1143 * which are actually used as instructions for cache maintenance and so on.)
1144 * IO indicates that this register does I/O and therefore its accesses
1145 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1146 * registers which implement clocks or timers require this.
1148 #define ARM_CP_SPECIAL 1
1149 #define ARM_CP_CONST 2
1150 #define ARM_CP_64BIT 4
1151 #define ARM_CP_SUPPRESS_TB_END 8
1152 #define ARM_CP_OVERRIDE 16
1153 #define ARM_CP_ALIAS 32
1154 #define ARM_CP_IO 64
1155 #define ARM_CP_NO_RAW 128
1156 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1157 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1158 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1159 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1160 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1161 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1162 /* Used only as a terminator for ARMCPRegInfo lists */
1163 #define ARM_CP_SENTINEL 0xffff
1164 /* Mask of only the flag bits in a type field */
1165 #define ARM_CP_FLAG_MASK 0xff
1167 /* Valid values for ARMCPRegInfo state field, indicating which of
1168 * the AArch32 and AArch64 execution states this register is visible in.
1169 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1170 * If the reginfo is declared to be visible in both states then a second
1171 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1172 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1173 * Note that we rely on the values of these enums as we iterate through
1174 * the various states in some places.
1176 enum {
1177 ARM_CP_STATE_AA32 = 0,
1178 ARM_CP_STATE_AA64 = 1,
1179 ARM_CP_STATE_BOTH = 2,
1182 /* ARM CP register secure state flags. These flags identify security state
1183 * attributes for a given CP register entry.
1184 * The existence of both or neither secure and non-secure flags indicates that
1185 * the register has both a secure and non-secure hash entry. A single one of
1186 * these flags causes the register to only be hashed for the specified
1187 * security state.
1188 * Although definitions may have any combination of the S/NS bits, each
1189 * registered entry will only have one to identify whether the entry is secure
1190 * or non-secure.
1192 enum {
1193 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1194 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1197 /* Return true if cptype is a valid type field. This is used to try to
1198 * catch errors where the sentinel has been accidentally left off the end
1199 * of a list of registers.
1201 static inline bool cptype_valid(int cptype)
1203 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1204 || ((cptype & ARM_CP_SPECIAL) &&
1205 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1208 /* Access rights:
1209 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1210 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1211 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1212 * (ie any of the privileged modes in Secure state, or Monitor mode).
1213 * If a register is accessible in one privilege level it's always accessible
1214 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1215 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1216 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1217 * terminology a little and call this PL3.
1218 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1219 * with the ELx exception levels.
1221 * If access permissions for a register are more complex than can be
1222 * described with these bits, then use a laxer set of restrictions, and
1223 * do the more restrictive/complex check inside a helper function.
1225 #define PL3_R 0x80
1226 #define PL3_W 0x40
1227 #define PL2_R (0x20 | PL3_R)
1228 #define PL2_W (0x10 | PL3_W)
1229 #define PL1_R (0x08 | PL2_R)
1230 #define PL1_W (0x04 | PL2_W)
1231 #define PL0_R (0x02 | PL1_R)
1232 #define PL0_W (0x01 | PL1_W)
1234 #define PL3_RW (PL3_R | PL3_W)
1235 #define PL2_RW (PL2_R | PL2_W)
1236 #define PL1_RW (PL1_R | PL1_W)
1237 #define PL0_RW (PL0_R | PL0_W)
1239 /* Return the current Exception Level (as per ARMv8; note that this differs
1240 * from the ARMv7 Privilege Level).
1242 static inline int arm_current_el(CPUARMState *env)
1244 if (arm_feature(env, ARM_FEATURE_M)) {
1245 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1248 if (is_a64(env)) {
1249 return extract32(env->pstate, 2, 2);
1252 switch (env->uncached_cpsr & 0x1f) {
1253 case ARM_CPU_MODE_USR:
1254 return 0;
1255 case ARM_CPU_MODE_HYP:
1256 return 2;
1257 case ARM_CPU_MODE_MON:
1258 return 3;
1259 default:
1260 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1261 /* If EL3 is 32-bit then all secure privileged modes run in
1262 * EL3
1264 return 3;
1267 return 1;
1271 typedef struct ARMCPRegInfo ARMCPRegInfo;
1273 typedef enum CPAccessResult {
1274 /* Access is permitted */
1275 CP_ACCESS_OK = 0,
1276 /* Access fails due to a configurable trap or enable which would
1277 * result in a categorized exception syndrome giving information about
1278 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1279 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1280 * PL1 if in EL0, otherwise to the current EL).
1282 CP_ACCESS_TRAP = 1,
1283 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1284 * Note that this is not a catch-all case -- the set of cases which may
1285 * result in this failure is specifically defined by the architecture.
1287 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1288 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1289 CP_ACCESS_TRAP_EL2 = 3,
1290 CP_ACCESS_TRAP_EL3 = 4,
1291 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1292 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1293 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1294 } CPAccessResult;
1296 /* Access functions for coprocessor registers. These cannot fail and
1297 * may not raise exceptions.
1299 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1300 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1301 uint64_t value);
1302 /* Access permission check functions for coprocessor registers. */
1303 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1304 /* Hook function for register reset */
1305 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1307 #define CP_ANY 0xff
1309 /* Definition of an ARM coprocessor register */
1310 struct ARMCPRegInfo {
1311 /* Name of register (useful mainly for debugging, need not be unique) */
1312 const char *name;
1313 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1314 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1315 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1316 * will be decoded to this register. The register read and write
1317 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1318 * used by the program, so it is possible to register a wildcard and
1319 * then behave differently on read/write if necessary.
1320 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1321 * must both be zero.
1322 * For AArch64-visible registers, opc0 is also used.
1323 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1324 * way to distinguish (for KVM's benefit) guest-visible system registers
1325 * from demuxed ones provided to preserve the "no side effects on
1326 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1327 * visible (to match KVM's encoding); cp==0 will be converted to
1328 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1330 uint8_t cp;
1331 uint8_t crn;
1332 uint8_t crm;
1333 uint8_t opc0;
1334 uint8_t opc1;
1335 uint8_t opc2;
1336 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1337 int state;
1338 /* Register type: ARM_CP_* bits/values */
1339 int type;
1340 /* Access rights: PL*_[RW] */
1341 int access;
1342 /* Security state: ARM_CP_SECSTATE_* bits/values */
1343 int secure;
1344 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1345 * this register was defined: can be used to hand data through to the
1346 * register read/write functions, since they are passed the ARMCPRegInfo*.
1348 void *opaque;
1349 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1350 * fieldoffset is non-zero, the reset value of the register.
1352 uint64_t resetvalue;
1353 /* Offset of the field in CPUARMState for this register.
1355 * This is not needed if either:
1356 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1357 * 2. both readfn and writefn are specified
1359 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1361 /* Offsets of the secure and non-secure fields in CPUARMState for the
1362 * register if it is banked. These fields are only used during the static
1363 * registration of a register. During hashing the bank associated
1364 * with a given security state is copied to fieldoffset which is used from
1365 * there on out.
1367 * It is expected that register definitions use either fieldoffset or
1368 * bank_fieldoffsets in the definition but not both. It is also expected
1369 * that both bank offsets are set when defining a banked register. This
1370 * use indicates that a register is banked.
1372 ptrdiff_t bank_fieldoffsets[2];
1374 /* Function for making any access checks for this register in addition to
1375 * those specified by the 'access' permissions bits. If NULL, no extra
1376 * checks required. The access check is performed at runtime, not at
1377 * translate time.
1379 CPAccessFn *accessfn;
1380 /* Function for handling reads of this register. If NULL, then reads
1381 * will be done by loading from the offset into CPUARMState specified
1382 * by fieldoffset.
1384 CPReadFn *readfn;
1385 /* Function for handling writes of this register. If NULL, then writes
1386 * will be done by writing to the offset into CPUARMState specified
1387 * by fieldoffset.
1389 CPWriteFn *writefn;
1390 /* Function for doing a "raw" read; used when we need to copy
1391 * coprocessor state to the kernel for KVM or out for
1392 * migration. This only needs to be provided if there is also a
1393 * readfn and it has side effects (for instance clear-on-read bits).
1395 CPReadFn *raw_readfn;
1396 /* Function for doing a "raw" write; used when we need to copy KVM
1397 * kernel coprocessor state into userspace, or for inbound
1398 * migration. This only needs to be provided if there is also a
1399 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1400 * or similar behaviour.
1402 CPWriteFn *raw_writefn;
1403 /* Function for resetting the register. If NULL, then reset will be done
1404 * by writing resetvalue to the field specified in fieldoffset. If
1405 * fieldoffset is 0 then no reset will be done.
1407 CPResetFn *resetfn;
1410 /* Macros which are lvalues for the field in CPUARMState for the
1411 * ARMCPRegInfo *ri.
1413 #define CPREG_FIELD32(env, ri) \
1414 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1415 #define CPREG_FIELD64(env, ri) \
1416 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1418 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1420 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1421 const ARMCPRegInfo *regs, void *opaque);
1422 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1423 const ARMCPRegInfo *regs, void *opaque);
1424 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1426 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1428 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1430 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1432 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1434 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1435 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1436 uint64_t value);
1437 /* CPReadFn that can be used for read-as-zero behaviour */
1438 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1440 /* CPResetFn that does nothing, for use if no reset is required even
1441 * if fieldoffset is non zero.
1443 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1445 /* Return true if this reginfo struct's field in the cpu state struct
1446 * is 64 bits wide.
1448 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1450 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1453 static inline bool cp_access_ok(int current_el,
1454 const ARMCPRegInfo *ri, int isread)
1456 return (ri->access >> ((current_el * 2) + isread)) & 1;
1459 /* Raw read of a coprocessor register (as needed for migration, etc) */
1460 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1463 * write_list_to_cpustate
1464 * @cpu: ARMCPU
1466 * For each register listed in the ARMCPU cpreg_indexes list, write
1467 * its value from the cpreg_values list into the ARMCPUState structure.
1468 * This updates TCG's working data structures from KVM data or
1469 * from incoming migration state.
1471 * Returns: true if all register values were updated correctly,
1472 * false if some register was unknown or could not be written.
1473 * Note that we do not stop early on failure -- we will attempt
1474 * writing all registers in the list.
1476 bool write_list_to_cpustate(ARMCPU *cpu);
1479 * write_cpustate_to_list:
1480 * @cpu: ARMCPU
1482 * For each register listed in the ARMCPU cpreg_indexes list, write
1483 * its value from the ARMCPUState structure into the cpreg_values list.
1484 * This is used to copy info from TCG's working data structures into
1485 * KVM or for outbound migration.
1487 * Returns: true if all register values were read correctly,
1488 * false if some register was unknown or could not be read.
1489 * Note that we do not stop early on failure -- we will attempt
1490 * reading all registers in the list.
1492 bool write_cpustate_to_list(ARMCPU *cpu);
1494 /* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
1495 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1496 conventional cores (ie. Application or Realtime profile). */
1498 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1500 #define ARM_CPUID_TI915T 0x54029152
1501 #define ARM_CPUID_TI925T 0x54029252
1503 #if defined(CONFIG_USER_ONLY)
1504 #define TARGET_PAGE_BITS 12
1505 #else
1506 /* The ARM MMU allows 1k pages. */
1507 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1508 architecture revisions. Maybe a configure option to disable them. */
1509 #define TARGET_PAGE_BITS 10
1510 #endif
1512 #if defined(TARGET_AARCH64)
1513 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1514 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1515 #else
1516 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1517 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1518 #endif
1520 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1521 unsigned int target_el)
1523 CPUARMState *env = cs->env_ptr;
1524 unsigned int cur_el = arm_current_el(env);
1525 bool secure = arm_is_secure(env);
1526 bool scr;
1527 bool hcr;
1528 bool pstate_unmasked;
1529 int8_t unmasked = 0;
1531 /* Don't take exceptions if they target a lower EL.
1532 * This check should catch any exceptions that would not be taken but left
1533 * pending.
1535 if (cur_el > target_el) {
1536 return false;
1539 switch (excp_idx) {
1540 case EXCP_FIQ:
1541 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1542 * override the CPSR.F in determining if the exception is masked or
1543 * not. If neither of these are set then we fall back to the CPSR.F
1544 * setting otherwise we further assess the state below.
1546 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1547 scr = (env->cp15.scr_el3 & SCR_FIQ);
1549 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1550 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1551 * set then FIQs can be masked by CPSR.F when non-secure but only
1552 * when FIQs are only routed to EL3.
1554 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1555 pstate_unmasked = !(env->daif & PSTATE_F);
1556 break;
1558 case EXCP_IRQ:
1559 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1560 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1561 * setting has already been taken into consideration when setting the
1562 * target EL, so it does not have a further affect here.
1564 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1565 scr = false;
1566 pstate_unmasked = !(env->daif & PSTATE_I);
1567 break;
1569 case EXCP_VFIQ:
1570 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1571 /* VFIQs are only taken when hypervized and non-secure. */
1572 return false;
1574 return !(env->daif & PSTATE_F);
1575 case EXCP_VIRQ:
1576 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1577 /* VIRQs are only taken when hypervized and non-secure. */
1578 return false;
1580 return !(env->daif & PSTATE_I);
1581 default:
1582 g_assert_not_reached();
1585 /* Use the target EL, current execution state and SCR/HCR settings to
1586 * determine whether the corresponding CPSR bit is used to mask the
1587 * interrupt.
1589 if ((target_el > cur_el) && (target_el != 1)) {
1590 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1591 unmasked = 1;
1595 /* The PSTATE bits only mask the interrupt if we have not overriden the
1596 * ability above.
1598 return unmasked || pstate_unmasked;
1601 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1603 #define cpu_exec cpu_arm_exec
1604 #define cpu_signal_handler cpu_arm_signal_handler
1605 #define cpu_list arm_cpu_list
1607 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1609 * If EL3 is 64-bit:
1610 * + NonSecure EL1 & 0 stage 1
1611 * + NonSecure EL1 & 0 stage 2
1612 * + NonSecure EL2
1613 * + Secure EL1 & EL0
1614 * + Secure EL3
1615 * If EL3 is 32-bit:
1616 * + NonSecure PL1 & 0 stage 1
1617 * + NonSecure PL1 & 0 stage 2
1618 * + NonSecure PL2
1619 * + Secure PL0 & PL1
1620 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1622 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1623 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1624 * may differ in access permissions even if the VA->PA map is the same
1625 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1626 * translation, which means that we have one mmu_idx that deals with two
1627 * concatenated translation regimes [this sort of combined s1+2 TLB is
1628 * architecturally permitted]
1629 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1630 * handling via the TLB. The only way to do a stage 1 translation without
1631 * the immediate stage 2 translation is via the ATS or AT system insns,
1632 * which can be slow-pathed and always do a page table walk.
1633 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1634 * translation regimes, because they map reasonably well to each other
1635 * and they can't both be active at the same time.
1636 * This gives us the following list of mmu_idx values:
1638 * NS EL0 (aka NS PL0) stage 1+2
1639 * NS EL1 (aka NS PL1) stage 1+2
1640 * NS EL2 (aka NS PL2)
1641 * S EL3 (aka S PL1)
1642 * S EL0 (aka S PL0)
1643 * S EL1 (not used if EL3 is 32 bit)
1644 * NS EL0+1 stage 2
1646 * (The last of these is an mmu_idx because we want to be able to use the TLB
1647 * for the accesses done as part of a stage 1 page table walk, rather than
1648 * having to walk the stage 2 page table over and over.)
1650 * Our enumeration includes at the end some entries which are not "true"
1651 * mmu_idx values in that they don't have corresponding TLBs and are only
1652 * valid for doing slow path page table walks.
1654 * The constant names here are patterned after the general style of the names
1655 * of the AT/ATS operations.
1656 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1658 typedef enum ARMMMUIdx {
1659 ARMMMUIdx_S12NSE0 = 0,
1660 ARMMMUIdx_S12NSE1 = 1,
1661 ARMMMUIdx_S1E2 = 2,
1662 ARMMMUIdx_S1E3 = 3,
1663 ARMMMUIdx_S1SE0 = 4,
1664 ARMMMUIdx_S1SE1 = 5,
1665 ARMMMUIdx_S2NS = 6,
1666 /* Indexes below here don't have TLBs and are used only for AT system
1667 * instructions or for the first stage of an S12 page table walk.
1669 ARMMMUIdx_S1NSE0 = 7,
1670 ARMMMUIdx_S1NSE1 = 8,
1671 } ARMMMUIdx;
1673 #define MMU_USER_IDX 0
1675 /* Return the exception level we're running at if this is our mmu_idx */
1676 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1678 assert(mmu_idx < ARMMMUIdx_S2NS);
1679 return mmu_idx & 3;
1682 /* Determine the current mmu_idx to use for normal loads/stores */
1683 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
1685 int el = arm_current_el(env);
1687 if (el < 2 && arm_is_secure_below_el3(env)) {
1688 return ARMMMUIdx_S1SE0 + el;
1690 return el;
1693 /* Return the Exception Level targeted by debug exceptions;
1694 * currently always EL1 since we don't implement EL2 or EL3.
1696 static inline int arm_debug_target_el(CPUARMState *env)
1698 return 1;
1701 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1703 if (arm_current_el(env) == arm_debug_target_el(env)) {
1704 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1705 || (env->daif & PSTATE_D)) {
1706 return false;
1709 return true;
1712 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1714 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1715 return aa64_generate_debug_exceptions(env);
1717 return arm_current_el(env) != 2;
1720 /* Return true if debugging exceptions are currently enabled.
1721 * This corresponds to what in ARM ARM pseudocode would be
1722 * if UsingAArch32() then
1723 * return AArch32.GenerateDebugExceptions()
1724 * else
1725 * return AArch64.GenerateDebugExceptions()
1726 * We choose to push the if() down into this function for clarity,
1727 * since the pseudocode has it at all callsites except for the one in
1728 * CheckSoftwareStep(), where it is elided because both branches would
1729 * always return the same value.
1731 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1732 * don't yet implement those exception levels or their associated trap bits.
1734 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1736 if (env->aarch64) {
1737 return aa64_generate_debug_exceptions(env);
1738 } else {
1739 return aa32_generate_debug_exceptions(env);
1743 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1744 * implicitly means this always returns false in pre-v8 CPUs.)
1746 static inline bool arm_singlestep_active(CPUARMState *env)
1748 return extract32(env->cp15.mdscr_el1, 0, 1)
1749 && arm_el_is_aa64(env, arm_debug_target_el(env))
1750 && arm_generate_debug_exceptions(env);
1753 #include "exec/cpu-all.h"
1755 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1756 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1757 * We put flags which are shared between 32 and 64 bit mode at the top
1758 * of the word, and flags which apply to only one mode at the bottom.
1760 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1761 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1762 #define ARM_TBFLAG_MMUIDX_SHIFT 28
1763 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
1764 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
1765 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1766 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
1767 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1768 /* Target EL if we take a floating-point-disabled exception */
1769 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
1770 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
1772 /* Bit usage when in AArch32 state: */
1773 #define ARM_TBFLAG_THUMB_SHIFT 0
1774 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1775 #define ARM_TBFLAG_VECLEN_SHIFT 1
1776 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1777 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1778 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1779 #define ARM_TBFLAG_VFPEN_SHIFT 7
1780 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1781 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1782 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1783 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1784 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1785 /* We store the bottom two bits of the CPAR as TB flags and handle
1786 * checks on the other bits at runtime
1788 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
1789 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1790 /* Indicates whether cp register reads and writes by guest code should access
1791 * the secure or nonsecure bank of banked registers; note that this is not
1792 * the same thing as the current security state of the processor!
1794 #define ARM_TBFLAG_NS_SHIFT 19
1795 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
1797 /* Bit usage when in AArch64 state: currently we have no A64 specific bits */
1799 /* some convenience accessor macros */
1800 #define ARM_TBFLAG_AARCH64_STATE(F) \
1801 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1802 #define ARM_TBFLAG_MMUIDX(F) \
1803 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
1804 #define ARM_TBFLAG_SS_ACTIVE(F) \
1805 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1806 #define ARM_TBFLAG_PSTATE_SS(F) \
1807 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1808 #define ARM_TBFLAG_FPEXC_EL(F) \
1809 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
1810 #define ARM_TBFLAG_THUMB(F) \
1811 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1812 #define ARM_TBFLAG_VECLEN(F) \
1813 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1814 #define ARM_TBFLAG_VECSTRIDE(F) \
1815 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1816 #define ARM_TBFLAG_VFPEN(F) \
1817 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1818 #define ARM_TBFLAG_CONDEXEC(F) \
1819 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1820 #define ARM_TBFLAG_BSWAP_CODE(F) \
1821 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1822 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1823 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1824 #define ARM_TBFLAG_NS(F) \
1825 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1827 /* Return the exception level to which FP-disabled exceptions should
1828 * be taken, or 0 if FP is enabled.
1830 static inline int fp_exception_el(CPUARMState *env)
1832 int fpen;
1833 int cur_el = arm_current_el(env);
1835 /* CPACR and the CPTR registers don't exist before v6, so FP is
1836 * always accessible
1838 if (!arm_feature(env, ARM_FEATURE_V6)) {
1839 return 0;
1842 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
1843 * 0, 2 : trap EL0 and EL1/PL1 accesses
1844 * 1 : trap only EL0 accesses
1845 * 3 : trap no accesses
1847 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1848 switch (fpen) {
1849 case 0:
1850 case 2:
1851 if (cur_el == 0 || cur_el == 1) {
1852 /* Trap to PL1, which might be EL1 or EL3 */
1853 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1854 return 3;
1856 return 1;
1858 if (cur_el == 3 && !is_a64(env)) {
1859 /* Secure PL1 running at EL3 */
1860 return 3;
1862 break;
1863 case 1:
1864 if (cur_el == 0) {
1865 return 1;
1867 break;
1868 case 3:
1869 break;
1872 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
1873 * check because zero bits in the registers mean "don't trap".
1876 /* CPTR_EL2 : present in v7VE or v8 */
1877 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
1878 && !arm_is_secure_below_el3(env)) {
1879 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
1880 return 2;
1883 /* CPTR_EL3 : present in v8 */
1884 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
1885 /* Trap all FP ops to EL3 */
1886 return 3;
1889 return 0;
1892 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1893 target_ulong *cs_base, int *flags)
1895 if (is_a64(env)) {
1896 *pc = env->pc;
1897 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1898 } else {
1899 *pc = env->regs[15];
1900 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1901 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1902 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1903 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1904 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1905 if (!(access_secure_reg(env))) {
1906 *flags |= ARM_TBFLAG_NS_MASK;
1908 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1909 || arm_el_is_aa64(env, 1)) {
1910 *flags |= ARM_TBFLAG_VFPEN_MASK;
1912 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1913 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1916 *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT);
1917 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1918 * states defined in the ARM ARM for software singlestep:
1919 * SS_ACTIVE PSTATE.SS State
1920 * 0 x Inactive (the TB flag for SS is always 0)
1921 * 1 0 Active-pending
1922 * 1 1 Active-not-pending
1924 if (arm_singlestep_active(env)) {
1925 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1926 if (is_a64(env)) {
1927 if (env->pstate & PSTATE_SS) {
1928 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1930 } else {
1931 if (env->uncached_cpsr & PSTATE_SS) {
1932 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1936 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
1938 *cs_base = 0;
1941 #include "exec/exec-all.h"
1943 enum {
1944 QEMU_PSCI_CONDUIT_DISABLED = 0,
1945 QEMU_PSCI_CONDUIT_SMC = 1,
1946 QEMU_PSCI_CONDUIT_HVC = 2,
1949 #endif