target/arm: Use bool consistently for get_phys_addr subroutines
[qemu/ar7.git] / target / arm / ptw.c
blob6c5ed56a10149721a2779a6752f1625319b8fc75
1 /*
2 * ARM page table walking.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "exec/exec-all.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "idau.h"
18 typedef struct S1Translate {
19 ARMMMUIdx in_mmu_idx;
20 bool in_secure;
21 bool in_debug;
22 bool out_secure;
23 bool out_be;
24 hwaddr out_phys;
25 void *out_host;
26 } S1Translate;
28 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
29 uint64_t address,
30 MMUAccessType access_type, bool s1_is_el0,
31 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
32 __attribute__((nonnull));
34 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
35 target_ulong address,
36 MMUAccessType access_type,
37 GetPhysAddrResult *result,
38 ARMMMUFaultInfo *fi)
39 __attribute__((nonnull));
41 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
42 static const uint8_t pamax_map[] = {
43 [0] = 32,
44 [1] = 36,
45 [2] = 40,
46 [3] = 42,
47 [4] = 44,
48 [5] = 48,
49 [6] = 52,
52 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
53 unsigned int arm_pamax(ARMCPU *cpu)
55 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
56 unsigned int parange =
57 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
60 * id_aa64mmfr0 is a read-only register so values outside of the
61 * supported mappings can be considered an implementation error.
63 assert(parange < ARRAY_SIZE(pamax_map));
64 return pamax_map[parange];
68 * In machvirt_init, we call arm_pamax on a cpu that is not fully
69 * initialized, so we can't rely on the propagation done in realize.
71 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
72 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
73 /* v7 with LPAE */
74 return 40;
76 /* Anything else */
77 return 32;
81 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
83 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
85 switch (mmu_idx) {
86 case ARMMMUIdx_E10_0:
87 return ARMMMUIdx_Stage1_E0;
88 case ARMMMUIdx_E10_1:
89 return ARMMMUIdx_Stage1_E1;
90 case ARMMMUIdx_E10_1_PAN:
91 return ARMMMUIdx_Stage1_E1_PAN;
92 default:
93 return mmu_idx;
97 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
99 return stage_1_mmu_idx(arm_mmu_idx(env));
102 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
104 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
107 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
109 switch (mmu_idx) {
110 case ARMMMUIdx_E20_0:
111 case ARMMMUIdx_Stage1_E0:
112 case ARMMMUIdx_MUser:
113 case ARMMMUIdx_MSUser:
114 case ARMMMUIdx_MUserNegPri:
115 case ARMMMUIdx_MSUserNegPri:
116 return true;
117 default:
118 return false;
119 case ARMMMUIdx_E10_0:
120 case ARMMMUIdx_E10_1:
121 case ARMMMUIdx_E10_1_PAN:
122 g_assert_not_reached();
126 /* Return the TTBR associated with this translation regime */
127 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
129 if (mmu_idx == ARMMMUIdx_Stage2) {
130 return env->cp15.vttbr_el2;
132 if (mmu_idx == ARMMMUIdx_Stage2_S) {
133 return env->cp15.vsttbr_el2;
135 if (ttbrn == 0) {
136 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
137 } else {
138 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
142 /* Return true if the specified stage of address translation is disabled */
143 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
144 bool is_secure)
146 uint64_t hcr_el2;
148 if (arm_feature(env, ARM_FEATURE_M)) {
149 switch (env->v7m.mpu_ctrl[is_secure] &
150 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
151 case R_V7M_MPU_CTRL_ENABLE_MASK:
152 /* Enabled, but not for HardFault and NMI */
153 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
154 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
155 /* Enabled for all cases */
156 return false;
157 case 0:
158 default:
160 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
161 * we warned about that in armv7m_nvic.c when the guest set it.
163 return true;
167 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
169 switch (mmu_idx) {
170 case ARMMMUIdx_Stage2:
171 case ARMMMUIdx_Stage2_S:
172 /* HCR.DC means HCR.VM behaves as 1 */
173 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
175 case ARMMMUIdx_E10_0:
176 case ARMMMUIdx_E10_1:
177 case ARMMMUIdx_E10_1_PAN:
178 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
179 if (hcr_el2 & HCR_TGE) {
180 return true;
182 break;
184 case ARMMMUIdx_Stage1_E0:
185 case ARMMMUIdx_Stage1_E1:
186 case ARMMMUIdx_Stage1_E1_PAN:
187 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
188 if (hcr_el2 & HCR_DC) {
189 return true;
191 break;
193 case ARMMMUIdx_E20_0:
194 case ARMMMUIdx_E20_2:
195 case ARMMMUIdx_E20_2_PAN:
196 case ARMMMUIdx_E2:
197 case ARMMMUIdx_E3:
198 break;
200 case ARMMMUIdx_Phys_NS:
201 case ARMMMUIdx_Phys_S:
202 /* No translation for physical address spaces. */
203 return true;
205 default:
206 g_assert_not_reached();
209 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
212 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
215 * For an S1 page table walk, the stage 1 attributes are always
216 * some form of "this is Normal memory". The combined S1+S2
217 * attributes are therefore only Device if stage 2 specifies Device.
218 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
219 * ie when cacheattrs.attrs bits [3:2] are 0b00.
220 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
221 * when cacheattrs.attrs bit [2] is 0.
223 if (hcr & HCR_FWB) {
224 return (attrs & 0x4) == 0;
225 } else {
226 return (attrs & 0xc) == 0;
230 /* Translate a S1 pagetable walk through S2 if needed. */
231 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
232 hwaddr addr, ARMMMUFaultInfo *fi)
234 bool is_secure = ptw->in_secure;
235 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
236 ARMMMUIdx s2_mmu_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
237 bool s2_phys = false;
238 uint8_t pte_attrs;
239 bool pte_secure;
241 if (!arm_mmu_idx_is_stage1_of_2(mmu_idx)
242 || regime_translation_disabled(env, s2_mmu_idx, is_secure)) {
243 s2_mmu_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
244 s2_phys = true;
247 if (unlikely(ptw->in_debug)) {
249 * From gdbstub, do not use softmmu so that we don't modify the
250 * state of the cpu at all, including softmmu tlb contents.
252 if (s2_phys) {
253 ptw->out_phys = addr;
254 pte_attrs = 0;
255 pte_secure = is_secure;
256 } else {
257 S1Translate s2ptw = {
258 .in_mmu_idx = s2_mmu_idx,
259 .in_secure = is_secure,
260 .in_debug = true,
262 GetPhysAddrResult s2 = { };
263 if (!get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
264 false, &s2, fi)) {
265 goto fail;
267 ptw->out_phys = s2.f.phys_addr;
268 pte_attrs = s2.cacheattrs.attrs;
269 pte_secure = s2.f.attrs.secure;
271 ptw->out_host = NULL;
272 } else {
273 CPUTLBEntryFull *full;
274 int flags;
276 env->tlb_fi = fi;
277 flags = probe_access_full(env, addr, MMU_DATA_LOAD,
278 arm_to_core_mmu_idx(s2_mmu_idx),
279 true, &ptw->out_host, &full, 0);
280 env->tlb_fi = NULL;
282 if (unlikely(flags & TLB_INVALID_MASK)) {
283 goto fail;
285 ptw->out_phys = full->phys_addr;
286 pte_attrs = full->pte_attrs;
287 pte_secure = full->attrs.secure;
290 if (!s2_phys) {
291 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
293 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
295 * PTW set and S1 walk touched S2 Device memory:
296 * generate Permission fault.
298 fi->type = ARMFault_Permission;
299 fi->s2addr = addr;
300 fi->stage2 = true;
301 fi->s1ptw = true;
302 fi->s1ns = !is_secure;
303 return false;
307 /* Check if page table walk is to secure or non-secure PA space. */
308 ptw->out_secure = (is_secure
309 && !(pte_secure
310 ? env->cp15.vstcr_el2 & VSTCR_SW
311 : env->cp15.vtcr_el2 & VTCR_NSW));
312 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
313 return true;
315 fail:
316 assert(fi->type != ARMFault_None);
317 fi->s2addr = addr;
318 fi->stage2 = true;
319 fi->s1ptw = true;
320 fi->s1ns = !is_secure;
321 return false;
324 /* All loads done in the course of a page table walk go through here. */
325 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, hwaddr addr,
326 ARMMMUFaultInfo *fi)
328 CPUState *cs = env_cpu(env);
329 uint32_t data;
331 if (!S1_ptw_translate(env, ptw, addr, fi)) {
332 /* Failure. */
333 assert(fi->s1ptw);
334 return 0;
337 if (likely(ptw->out_host)) {
338 /* Page tables are in RAM, and we have the host address. */
339 if (ptw->out_be) {
340 data = ldl_be_p(ptw->out_host);
341 } else {
342 data = ldl_le_p(ptw->out_host);
344 } else {
345 /* Page tables are in MMIO. */
346 MemTxAttrs attrs = { .secure = ptw->out_secure };
347 AddressSpace *as = arm_addressspace(cs, attrs);
348 MemTxResult result = MEMTX_OK;
350 if (ptw->out_be) {
351 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
352 } else {
353 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
355 if (unlikely(result != MEMTX_OK)) {
356 fi->type = ARMFault_SyncExternalOnWalk;
357 fi->ea = arm_extabort_type(result);
358 return 0;
361 return data;
364 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, hwaddr addr,
365 ARMMMUFaultInfo *fi)
367 CPUState *cs = env_cpu(env);
368 uint64_t data;
370 if (!S1_ptw_translate(env, ptw, addr, fi)) {
371 /* Failure. */
372 assert(fi->s1ptw);
373 return 0;
376 if (likely(ptw->out_host)) {
377 /* Page tables are in RAM, and we have the host address. */
378 if (ptw->out_be) {
379 data = ldq_be_p(ptw->out_host);
380 } else {
381 data = ldq_le_p(ptw->out_host);
383 } else {
384 /* Page tables are in MMIO. */
385 MemTxAttrs attrs = { .secure = ptw->out_secure };
386 AddressSpace *as = arm_addressspace(cs, attrs);
387 MemTxResult result = MEMTX_OK;
389 if (ptw->out_be) {
390 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
391 } else {
392 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
394 if (unlikely(result != MEMTX_OK)) {
395 fi->type = ARMFault_SyncExternalOnWalk;
396 fi->ea = arm_extabort_type(result);
397 return 0;
400 return data;
403 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
404 uint32_t *table, uint32_t address)
406 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
407 uint64_t tcr = regime_tcr(env, mmu_idx);
408 int maskshift = extract32(tcr, 0, 3);
409 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
410 uint32_t base_mask;
412 if (address & mask) {
413 if (tcr & TTBCR_PD1) {
414 /* Translation table walk disabled for TTBR1 */
415 return false;
417 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
418 } else {
419 if (tcr & TTBCR_PD0) {
420 /* Translation table walk disabled for TTBR0 */
421 return false;
423 base_mask = ~((uint32_t)0x3fffu >> maskshift);
424 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
426 *table |= (address >> 18) & 0x3ffc;
427 return true;
431 * Translate section/page access permissions to page R/W protection flags
432 * @env: CPUARMState
433 * @mmu_idx: MMU index indicating required translation regime
434 * @ap: The 3-bit access permissions (AP[2:0])
435 * @domain_prot: The 2-bit domain access permissions
437 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
438 int ap, int domain_prot)
440 bool is_user = regime_is_user(env, mmu_idx);
442 if (domain_prot == 3) {
443 return PAGE_READ | PAGE_WRITE;
446 switch (ap) {
447 case 0:
448 if (arm_feature(env, ARM_FEATURE_V7)) {
449 return 0;
451 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
452 case SCTLR_S:
453 return is_user ? 0 : PAGE_READ;
454 case SCTLR_R:
455 return PAGE_READ;
456 default:
457 return 0;
459 case 1:
460 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
461 case 2:
462 if (is_user) {
463 return PAGE_READ;
464 } else {
465 return PAGE_READ | PAGE_WRITE;
467 case 3:
468 return PAGE_READ | PAGE_WRITE;
469 case 4: /* Reserved. */
470 return 0;
471 case 5:
472 return is_user ? 0 : PAGE_READ;
473 case 6:
474 return PAGE_READ;
475 case 7:
476 if (!arm_feature(env, ARM_FEATURE_V6K)) {
477 return 0;
479 return PAGE_READ;
480 default:
481 g_assert_not_reached();
486 * Translate section/page access permissions to page R/W protection flags.
487 * @ap: The 2-bit simple AP (AP[2:1])
488 * @is_user: TRUE if accessing from PL0
490 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
492 switch (ap) {
493 case 0:
494 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
495 case 1:
496 return PAGE_READ | PAGE_WRITE;
497 case 2:
498 return is_user ? 0 : PAGE_READ;
499 case 3:
500 return PAGE_READ;
501 default:
502 g_assert_not_reached();
506 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
508 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
511 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
512 uint32_t address, MMUAccessType access_type,
513 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
515 int level = 1;
516 uint32_t table;
517 uint32_t desc;
518 int type;
519 int ap;
520 int domain = 0;
521 int domain_prot;
522 hwaddr phys_addr;
523 uint32_t dacr;
525 /* Pagetable walk. */
526 /* Lookup l1 descriptor. */
527 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
528 /* Section translation fault if page walk is disabled by PD0 or PD1 */
529 fi->type = ARMFault_Translation;
530 goto do_fault;
532 desc = arm_ldl_ptw(env, ptw, table, fi);
533 if (fi->type != ARMFault_None) {
534 goto do_fault;
536 type = (desc & 3);
537 domain = (desc >> 5) & 0x0f;
538 if (regime_el(env, ptw->in_mmu_idx) == 1) {
539 dacr = env->cp15.dacr_ns;
540 } else {
541 dacr = env->cp15.dacr_s;
543 domain_prot = (dacr >> (domain * 2)) & 3;
544 if (type == 0) {
545 /* Section translation fault. */
546 fi->type = ARMFault_Translation;
547 goto do_fault;
549 if (type != 2) {
550 level = 2;
552 if (domain_prot == 0 || domain_prot == 2) {
553 fi->type = ARMFault_Domain;
554 goto do_fault;
556 if (type == 2) {
557 /* 1Mb section. */
558 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
559 ap = (desc >> 10) & 3;
560 result->f.lg_page_size = 20; /* 1MB */
561 } else {
562 /* Lookup l2 entry. */
563 if (type == 1) {
564 /* Coarse pagetable. */
565 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
566 } else {
567 /* Fine pagetable. */
568 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
570 desc = arm_ldl_ptw(env, ptw, table, fi);
571 if (fi->type != ARMFault_None) {
572 goto do_fault;
574 switch (desc & 3) {
575 case 0: /* Page translation fault. */
576 fi->type = ARMFault_Translation;
577 goto do_fault;
578 case 1: /* 64k page. */
579 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
580 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
581 result->f.lg_page_size = 16;
582 break;
583 case 2: /* 4k page. */
584 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
585 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
586 result->f.lg_page_size = 12;
587 break;
588 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
589 if (type == 1) {
590 /* ARMv6/XScale extended small page format */
591 if (arm_feature(env, ARM_FEATURE_XSCALE)
592 || arm_feature(env, ARM_FEATURE_V6)) {
593 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
594 result->f.lg_page_size = 12;
595 } else {
597 * UNPREDICTABLE in ARMv5; we choose to take a
598 * page translation fault.
600 fi->type = ARMFault_Translation;
601 goto do_fault;
603 } else {
604 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
605 result->f.lg_page_size = 10;
607 ap = (desc >> 4) & 3;
608 break;
609 default:
610 /* Never happens, but compiler isn't smart enough to tell. */
611 g_assert_not_reached();
614 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
615 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
616 if (!(result->f.prot & (1 << access_type))) {
617 /* Access permission fault. */
618 fi->type = ARMFault_Permission;
619 goto do_fault;
621 result->f.phys_addr = phys_addr;
622 return false;
623 do_fault:
624 fi->domain = domain;
625 fi->level = level;
626 return true;
629 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
630 uint32_t address, MMUAccessType access_type,
631 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
633 ARMCPU *cpu = env_archcpu(env);
634 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
635 int level = 1;
636 uint32_t table;
637 uint32_t desc;
638 uint32_t xn;
639 uint32_t pxn = 0;
640 int type;
641 int ap;
642 int domain = 0;
643 int domain_prot;
644 hwaddr phys_addr;
645 uint32_t dacr;
646 bool ns;
648 /* Pagetable walk. */
649 /* Lookup l1 descriptor. */
650 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
651 /* Section translation fault if page walk is disabled by PD0 or PD1 */
652 fi->type = ARMFault_Translation;
653 goto do_fault;
655 desc = arm_ldl_ptw(env, ptw, table, fi);
656 if (fi->type != ARMFault_None) {
657 goto do_fault;
659 type = (desc & 3);
660 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
661 /* Section translation fault, or attempt to use the encoding
662 * which is Reserved on implementations without PXN.
664 fi->type = ARMFault_Translation;
665 goto do_fault;
667 if ((type == 1) || !(desc & (1 << 18))) {
668 /* Page or Section. */
669 domain = (desc >> 5) & 0x0f;
671 if (regime_el(env, mmu_idx) == 1) {
672 dacr = env->cp15.dacr_ns;
673 } else {
674 dacr = env->cp15.dacr_s;
676 if (type == 1) {
677 level = 2;
679 domain_prot = (dacr >> (domain * 2)) & 3;
680 if (domain_prot == 0 || domain_prot == 2) {
681 /* Section or Page domain fault */
682 fi->type = ARMFault_Domain;
683 goto do_fault;
685 if (type != 1) {
686 if (desc & (1 << 18)) {
687 /* Supersection. */
688 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
689 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
690 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
691 result->f.lg_page_size = 24; /* 16MB */
692 } else {
693 /* Section. */
694 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
695 result->f.lg_page_size = 20; /* 1MB */
697 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
698 xn = desc & (1 << 4);
699 pxn = desc & 1;
700 ns = extract32(desc, 19, 1);
701 } else {
702 if (cpu_isar_feature(aa32_pxn, cpu)) {
703 pxn = (desc >> 2) & 1;
705 ns = extract32(desc, 3, 1);
706 /* Lookup l2 entry. */
707 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
708 desc = arm_ldl_ptw(env, ptw, table, fi);
709 if (fi->type != ARMFault_None) {
710 goto do_fault;
712 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
713 switch (desc & 3) {
714 case 0: /* Page translation fault. */
715 fi->type = ARMFault_Translation;
716 goto do_fault;
717 case 1: /* 64k page. */
718 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
719 xn = desc & (1 << 15);
720 result->f.lg_page_size = 16;
721 break;
722 case 2: case 3: /* 4k page. */
723 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
724 xn = desc & 1;
725 result->f.lg_page_size = 12;
726 break;
727 default:
728 /* Never happens, but compiler isn't smart enough to tell. */
729 g_assert_not_reached();
732 if (domain_prot == 3) {
733 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
734 } else {
735 if (pxn && !regime_is_user(env, mmu_idx)) {
736 xn = 1;
738 if (xn && access_type == MMU_INST_FETCH) {
739 fi->type = ARMFault_Permission;
740 goto do_fault;
743 if (arm_feature(env, ARM_FEATURE_V6K) &&
744 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
745 /* The simplified model uses AP[0] as an access control bit. */
746 if ((ap & 1) == 0) {
747 /* Access flag fault. */
748 fi->type = ARMFault_AccessFlag;
749 goto do_fault;
751 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
752 } else {
753 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
755 if (result->f.prot && !xn) {
756 result->f.prot |= PAGE_EXEC;
758 if (!(result->f.prot & (1 << access_type))) {
759 /* Access permission fault. */
760 fi->type = ARMFault_Permission;
761 goto do_fault;
764 if (ns) {
765 /* The NS bit will (as required by the architecture) have no effect if
766 * the CPU doesn't support TZ or this is a non-secure translation
767 * regime, because the attribute will already be non-secure.
769 result->f.attrs.secure = false;
771 result->f.phys_addr = phys_addr;
772 return false;
773 do_fault:
774 fi->domain = domain;
775 fi->level = level;
776 return true;
780 * Translate S2 section/page access permissions to protection flags
781 * @env: CPUARMState
782 * @s2ap: The 2-bit stage2 access permissions (S2AP)
783 * @xn: XN (execute-never) bits
784 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
786 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
788 int prot = 0;
790 if (s2ap & 1) {
791 prot |= PAGE_READ;
793 if (s2ap & 2) {
794 prot |= PAGE_WRITE;
797 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
798 switch (xn) {
799 case 0:
800 prot |= PAGE_EXEC;
801 break;
802 case 1:
803 if (s1_is_el0) {
804 prot |= PAGE_EXEC;
806 break;
807 case 2:
808 break;
809 case 3:
810 if (!s1_is_el0) {
811 prot |= PAGE_EXEC;
813 break;
814 default:
815 g_assert_not_reached();
817 } else {
818 if (!extract32(xn, 1, 1)) {
819 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
820 prot |= PAGE_EXEC;
824 return prot;
828 * Translate section/page access permissions to protection flags
829 * @env: CPUARMState
830 * @mmu_idx: MMU index indicating required translation regime
831 * @is_aa64: TRUE if AArch64
832 * @ap: The 2-bit simple AP (AP[2:1])
833 * @ns: NS (non-secure) bit
834 * @xn: XN (execute-never) bit
835 * @pxn: PXN (privileged execute-never) bit
837 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
838 int ap, int ns, int xn, int pxn)
840 bool is_user = regime_is_user(env, mmu_idx);
841 int prot_rw, user_rw;
842 bool have_wxn;
843 int wxn = 0;
845 assert(mmu_idx != ARMMMUIdx_Stage2);
846 assert(mmu_idx != ARMMMUIdx_Stage2_S);
848 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
849 if (is_user) {
850 prot_rw = user_rw;
851 } else {
852 if (user_rw && regime_is_pan(env, mmu_idx)) {
853 /* PAN forbids data accesses but doesn't affect insn fetch */
854 prot_rw = 0;
855 } else {
856 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
860 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
861 return prot_rw;
864 /* TODO have_wxn should be replaced with
865 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
866 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
867 * compatible processors have EL2, which is required for [U]WXN.
869 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
871 if (have_wxn) {
872 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
875 if (is_aa64) {
876 if (regime_has_2_ranges(mmu_idx) && !is_user) {
877 xn = pxn || (user_rw & PAGE_WRITE);
879 } else if (arm_feature(env, ARM_FEATURE_V7)) {
880 switch (regime_el(env, mmu_idx)) {
881 case 1:
882 case 3:
883 if (is_user) {
884 xn = xn || !(user_rw & PAGE_READ);
885 } else {
886 int uwxn = 0;
887 if (have_wxn) {
888 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
890 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
891 (uwxn && (user_rw & PAGE_WRITE));
893 break;
894 case 2:
895 break;
897 } else {
898 xn = wxn = 0;
901 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
902 return prot_rw;
904 return prot_rw | PAGE_EXEC;
907 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
908 ARMMMUIdx mmu_idx)
910 uint64_t tcr = regime_tcr(env, mmu_idx);
911 uint32_t el = regime_el(env, mmu_idx);
912 int select, tsz;
913 bool epd, hpd;
915 assert(mmu_idx != ARMMMUIdx_Stage2_S);
917 if (mmu_idx == ARMMMUIdx_Stage2) {
918 /* VTCR */
919 bool sext = extract32(tcr, 4, 1);
920 bool sign = extract32(tcr, 3, 1);
923 * If the sign-extend bit is not the same as t0sz[3], the result
924 * is unpredictable. Flag this as a guest error.
926 if (sign != sext) {
927 qemu_log_mask(LOG_GUEST_ERROR,
928 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
930 tsz = sextract32(tcr, 0, 4) + 8;
931 select = 0;
932 hpd = false;
933 epd = false;
934 } else if (el == 2) {
935 /* HTCR */
936 tsz = extract32(tcr, 0, 3);
937 select = 0;
938 hpd = extract64(tcr, 24, 1);
939 epd = false;
940 } else {
941 int t0sz = extract32(tcr, 0, 3);
942 int t1sz = extract32(tcr, 16, 3);
944 if (t1sz == 0) {
945 select = va > (0xffffffffu >> t0sz);
946 } else {
947 /* Note that we will detect errors later. */
948 select = va >= ~(0xffffffffu >> t1sz);
950 if (!select) {
951 tsz = t0sz;
952 epd = extract32(tcr, 7, 1);
953 hpd = extract64(tcr, 41, 1);
954 } else {
955 tsz = t1sz;
956 epd = extract32(tcr, 23, 1);
957 hpd = extract64(tcr, 42, 1);
959 /* For aarch32, hpd0 is not enabled without t2e as well. */
960 hpd &= extract32(tcr, 6, 1);
963 return (ARMVAParameters) {
964 .tsz = tsz,
965 .select = select,
966 .epd = epd,
967 .hpd = hpd,
972 * check_s2_mmu_setup
973 * @cpu: ARMCPU
974 * @is_aa64: True if the translation regime is in AArch64 state
975 * @startlevel: Suggested starting level
976 * @inputsize: Bitsize of IPAs
977 * @stride: Page-table stride (See the ARM ARM)
979 * Returns true if the suggested S2 translation parameters are OK and
980 * false otherwise.
982 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
983 int inputsize, int stride, int outputsize)
985 const int grainsize = stride + 3;
986 int startsizecheck;
989 * Negative levels are usually not allowed...
990 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
991 * begins with level -1. Note that previous feature tests will have
992 * eliminated this combination if it is not enabled.
994 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
995 return false;
998 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
999 if (startsizecheck < 1 || startsizecheck > stride + 4) {
1000 return false;
1003 if (is_aa64) {
1004 switch (stride) {
1005 case 13: /* 64KB Pages. */
1006 if (level == 0 || (level == 1 && outputsize <= 42)) {
1007 return false;
1009 break;
1010 case 11: /* 16KB Pages. */
1011 if (level == 0 || (level == 1 && outputsize <= 40)) {
1012 return false;
1014 break;
1015 case 9: /* 4KB Pages. */
1016 if (level == 0 && outputsize <= 42) {
1017 return false;
1019 break;
1020 default:
1021 g_assert_not_reached();
1024 /* Inputsize checks. */
1025 if (inputsize > outputsize &&
1026 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
1027 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
1028 return false;
1030 } else {
1031 /* AArch32 only supports 4KB pages. Assert on that. */
1032 assert(stride == 9);
1034 if (level == 0) {
1035 return false;
1038 return true;
1042 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1044 * Returns false if the translation was successful. Otherwise, phys_ptr,
1045 * attrs, prot and page_size may not be filled in, and the populated fsr
1046 * value provides information on why the translation aborted, in the format
1047 * of a long-format DFSR/IFSR fault register, with the following caveat:
1048 * the WnR bit is never set (the caller must do this).
1050 * @env: CPUARMState
1051 * @ptw: Current and next stage parameters for the walk.
1052 * @address: virtual address to get physical address for
1053 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1054 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1055 * (so this is a stage 2 page table walk),
1056 * must be true if this is stage 2 of a stage 1+2
1057 * walk for an EL0 access. If @mmu_idx is anything else,
1058 * @s1_is_el0 is ignored.
1059 * @result: set on translation success,
1060 * @fi: set to fault info if the translation fails
1062 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1063 uint64_t address,
1064 MMUAccessType access_type, bool s1_is_el0,
1065 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1067 ARMCPU *cpu = env_archcpu(env);
1068 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1069 bool is_secure = ptw->in_secure;
1070 /* Read an LPAE long-descriptor translation table. */
1071 ARMFaultType fault_type = ARMFault_Translation;
1072 uint32_t level;
1073 ARMVAParameters param;
1074 uint64_t ttbr;
1075 hwaddr descaddr, indexmask, indexmask_grainsize;
1076 uint32_t tableattrs;
1077 target_ulong page_size;
1078 uint32_t attrs;
1079 int32_t stride;
1080 int addrsize, inputsize, outputsize;
1081 uint64_t tcr = regime_tcr(env, mmu_idx);
1082 int ap, ns, xn, pxn;
1083 uint32_t el = regime_el(env, mmu_idx);
1084 uint64_t descaddrmask;
1085 bool aarch64 = arm_el_is_aa64(env, el);
1086 bool guarded = false;
1088 /* TODO: This code does not support shareability levels. */
1089 if (aarch64) {
1090 int ps;
1092 param = aa64_va_parameters(env, address, mmu_idx,
1093 access_type != MMU_INST_FETCH);
1094 level = 0;
1097 * If TxSZ is programmed to a value larger than the maximum,
1098 * or smaller than the effective minimum, it is IMPLEMENTATION
1099 * DEFINED whether we behave as if the field were programmed
1100 * within bounds, or if a level 0 Translation fault is generated.
1102 * With FEAT_LVA, fault on less than minimum becomes required,
1103 * so our choice is to always raise the fault.
1105 if (param.tsz_oob) {
1106 fault_type = ARMFault_Translation;
1107 goto do_fault;
1110 addrsize = 64 - 8 * param.tbi;
1111 inputsize = 64 - param.tsz;
1114 * Bound PS by PARANGE to find the effective output address size.
1115 * ID_AA64MMFR0 is a read-only register so values outside of the
1116 * supported mappings can be considered an implementation error.
1118 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1119 ps = MIN(ps, param.ps);
1120 assert(ps < ARRAY_SIZE(pamax_map));
1121 outputsize = pamax_map[ps];
1122 } else {
1123 param = aa32_va_parameters(env, address, mmu_idx);
1124 level = 1;
1125 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1126 inputsize = addrsize - param.tsz;
1127 outputsize = 40;
1131 * We determined the region when collecting the parameters, but we
1132 * have not yet validated that the address is valid for the region.
1133 * Extract the top bits and verify that they all match select.
1135 * For aa32, if inputsize == addrsize, then we have selected the
1136 * region by exclusion in aa32_va_parameters and there is no more
1137 * validation to do here.
1139 if (inputsize < addrsize) {
1140 target_ulong top_bits = sextract64(address, inputsize,
1141 addrsize - inputsize);
1142 if (-top_bits != param.select) {
1143 /* The gap between the two regions is a Translation fault */
1144 fault_type = ARMFault_Translation;
1145 goto do_fault;
1149 stride = arm_granule_bits(param.gran) - 3;
1152 * Note that QEMU ignores shareability and cacheability attributes,
1153 * so we don't need to do anything with the SH, ORGN, IRGN fields
1154 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1155 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1156 * implement any ASID-like capability so we can ignore it (instead
1157 * we will always flush the TLB any time the ASID is changed).
1159 ttbr = regime_ttbr(env, mmu_idx, param.select);
1162 * Here we should have set up all the parameters for the translation:
1163 * inputsize, ttbr, epd, stride, tbi
1166 if (param.epd) {
1168 * Translation table walk disabled => Translation fault on TLB miss
1169 * Note: This is always 0 on 64-bit EL2 and EL3.
1171 goto do_fault;
1174 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
1176 * The starting level depends on the virtual address size (which can
1177 * be up to 48 bits) and the translation granule size. It indicates
1178 * the number of strides (stride bits at a time) needed to
1179 * consume the bits of the input address. In the pseudocode this is:
1180 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1181 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1182 * our 'stride + 3' and 'stride' is our 'stride'.
1183 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1184 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1185 * = 4 - (inputsize - 4) / stride;
1187 level = 4 - (inputsize - 4) / stride;
1188 } else {
1190 * For stage 2 translations the starting level is specified by the
1191 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1193 uint32_t sl0 = extract32(tcr, 6, 2);
1194 uint32_t sl2 = extract64(tcr, 33, 1);
1195 uint32_t startlevel;
1196 bool ok;
1198 /* SL2 is RES0 unless DS=1 & 4kb granule. */
1199 if (param.ds && stride == 9 && sl2) {
1200 if (sl0 != 0) {
1201 level = 0;
1202 fault_type = ARMFault_Translation;
1203 goto do_fault;
1205 startlevel = -1;
1206 } else if (!aarch64 || stride == 9) {
1207 /* AArch32 or 4KB pages */
1208 startlevel = 2 - sl0;
1210 if (cpu_isar_feature(aa64_st, cpu)) {
1211 startlevel &= 3;
1213 } else {
1214 /* 16KB or 64KB pages */
1215 startlevel = 3 - sl0;
1218 /* Check that the starting level is valid. */
1219 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1220 inputsize, stride, outputsize);
1221 if (!ok) {
1222 fault_type = ARMFault_Translation;
1223 goto do_fault;
1225 level = startlevel;
1228 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1229 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1231 /* Now we can extract the actual base address from the TTBR */
1232 descaddr = extract64(ttbr, 0, 48);
1235 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1237 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1238 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1239 * but we've just cleared the bits above 47, so simplify the test.
1241 if (outputsize > 48) {
1242 descaddr |= extract64(ttbr, 2, 4) << 48;
1243 } else if (descaddr >> outputsize) {
1244 level = 0;
1245 fault_type = ARMFault_AddressSize;
1246 goto do_fault;
1250 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1251 * and also to mask out CnP (bit 0) which could validly be non-zero.
1253 descaddr &= ~indexmask;
1256 * For AArch32, the address field in the descriptor goes up to bit 39
1257 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1258 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1259 * bits as part of the address, which will be checked via outputsize.
1260 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1261 * the highest bits of a 52-bit output are placed elsewhere.
1263 if (param.ds) {
1264 descaddrmask = MAKE_64BIT_MASK(0, 50);
1265 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1266 descaddrmask = MAKE_64BIT_MASK(0, 48);
1267 } else {
1268 descaddrmask = MAKE_64BIT_MASK(0, 40);
1270 descaddrmask &= ~indexmask_grainsize;
1273 * Secure accesses start with the page table in secure memory and
1274 * can be downgraded to non-secure at any step. Non-secure accesses
1275 * remain non-secure. We implement this by just ORing in the NSTable/NS
1276 * bits at each step.
1278 tableattrs = is_secure ? 0 : (1 << 4);
1279 for (;;) {
1280 uint64_t descriptor;
1281 bool nstable;
1283 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1284 descaddr &= ~7ULL;
1285 nstable = extract32(tableattrs, 4, 1);
1286 ptw->in_secure = !nstable;
1287 descriptor = arm_ldq_ptw(env, ptw, descaddr, fi);
1288 if (fi->type != ARMFault_None) {
1289 goto do_fault;
1292 if (!(descriptor & 1) ||
1293 (!(descriptor & 2) && (level == 3))) {
1294 /* Invalid, or the Reserved level 3 encoding */
1295 goto do_fault;
1298 descaddr = descriptor & descaddrmask;
1301 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1302 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1303 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1304 * raise AddressSizeFault.
1306 if (outputsize > 48) {
1307 if (param.ds) {
1308 descaddr |= extract64(descriptor, 8, 2) << 50;
1309 } else {
1310 descaddr |= extract64(descriptor, 12, 4) << 48;
1312 } else if (descaddr >> outputsize) {
1313 fault_type = ARMFault_AddressSize;
1314 goto do_fault;
1317 if ((descriptor & 2) && (level < 3)) {
1319 * Table entry. The top five bits are attributes which may
1320 * propagate down through lower levels of the table (and
1321 * which are all arranged so that 0 means "no effect", so
1322 * we can gather them up by ORing in the bits at each level).
1324 tableattrs |= extract64(descriptor, 59, 5);
1325 level++;
1326 indexmask = indexmask_grainsize;
1327 continue;
1330 * Block entry at level 1 or 2, or page entry at level 3.
1331 * These are basically the same thing, although the number
1332 * of bits we pull in from the vaddr varies. Note that although
1333 * descaddrmask masks enough of the low bits of the descriptor
1334 * to give a correct page or table address, the address field
1335 * in a block descriptor is smaller; so we need to explicitly
1336 * clear the lower bits here before ORing in the low vaddr bits.
1338 page_size = (1ULL << ((stride * (4 - level)) + 3));
1339 descaddr &= ~(hwaddr)(page_size - 1);
1340 descaddr |= (address & (page_size - 1));
1341 /* Extract attributes from the descriptor */
1342 attrs = extract64(descriptor, 2, 10)
1343 | (extract64(descriptor, 52, 12) << 10);
1345 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1346 /* Stage 2 table descriptors do not include any attribute fields */
1347 break;
1349 /* Merge in attributes from table descriptors */
1350 attrs |= nstable << 3; /* NS */
1351 guarded = extract64(descriptor, 50, 1); /* GP */
1352 if (param.hpd) {
1353 /* HPD disables all the table attributes except NSTable. */
1354 break;
1356 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
1358 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1359 * means "force PL1 access only", which means forcing AP[1] to 0.
1361 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
1362 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
1363 break;
1366 * Here descaddr is the final physical address, and attributes
1367 * are all in attrs.
1369 fault_type = ARMFault_AccessFlag;
1370 if ((attrs & (1 << 8)) == 0) {
1371 /* Access flag */
1372 goto do_fault;
1375 ap = extract32(attrs, 4, 2);
1377 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1378 ns = mmu_idx == ARMMMUIdx_Stage2;
1379 xn = extract32(attrs, 11, 2);
1380 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1381 } else {
1382 ns = extract32(attrs, 3, 1);
1383 xn = extract32(attrs, 12, 1);
1384 pxn = extract32(attrs, 11, 1);
1385 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1388 fault_type = ARMFault_Permission;
1389 if (!(result->f.prot & (1 << access_type))) {
1390 goto do_fault;
1393 if (ns) {
1395 * The NS bit will (as required by the architecture) have no effect if
1396 * the CPU doesn't support TZ or this is a non-secure translation
1397 * regime, because the attribute will already be non-secure.
1399 result->f.attrs.secure = false;
1402 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1403 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1404 result->f.guarded = guarded;
1407 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1408 result->cacheattrs.is_s2_format = true;
1409 result->cacheattrs.attrs = extract32(attrs, 0, 4);
1410 } else {
1411 /* Index into MAIR registers for cache attributes */
1412 uint8_t attrindx = extract32(attrs, 0, 3);
1413 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1414 assert(attrindx <= 7);
1415 result->cacheattrs.is_s2_format = false;
1416 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1420 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1421 * was re-purposed for output address bits. The SH attribute in
1422 * that case comes from TCR_ELx, which we extracted earlier.
1424 if (param.ds) {
1425 result->cacheattrs.shareability = param.sh;
1426 } else {
1427 result->cacheattrs.shareability = extract32(attrs, 6, 2);
1430 result->f.phys_addr = descaddr;
1431 result->f.lg_page_size = ctz64(page_size);
1432 return false;
1434 do_fault:
1435 fi->type = fault_type;
1436 fi->level = level;
1437 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1438 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
1439 mmu_idx == ARMMMUIdx_Stage2_S);
1440 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1441 return true;
1444 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1445 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1446 bool is_secure, GetPhysAddrResult *result,
1447 ARMMMUFaultInfo *fi)
1449 int n;
1450 uint32_t mask;
1451 uint32_t base;
1452 bool is_user = regime_is_user(env, mmu_idx);
1454 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1455 /* MPU disabled. */
1456 result->f.phys_addr = address;
1457 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1458 return false;
1461 result->f.phys_addr = address;
1462 for (n = 7; n >= 0; n--) {
1463 base = env->cp15.c6_region[n];
1464 if ((base & 1) == 0) {
1465 continue;
1467 mask = 1 << ((base >> 1) & 0x1f);
1468 /* Keep this shift separate from the above to avoid an
1469 (undefined) << 32. */
1470 mask = (mask << 1) - 1;
1471 if (((base ^ address) & ~mask) == 0) {
1472 break;
1475 if (n < 0) {
1476 fi->type = ARMFault_Background;
1477 return true;
1480 if (access_type == MMU_INST_FETCH) {
1481 mask = env->cp15.pmsav5_insn_ap;
1482 } else {
1483 mask = env->cp15.pmsav5_data_ap;
1485 mask = (mask >> (n * 4)) & 0xf;
1486 switch (mask) {
1487 case 0:
1488 fi->type = ARMFault_Permission;
1489 fi->level = 1;
1490 return true;
1491 case 1:
1492 if (is_user) {
1493 fi->type = ARMFault_Permission;
1494 fi->level = 1;
1495 return true;
1497 result->f.prot = PAGE_READ | PAGE_WRITE;
1498 break;
1499 case 2:
1500 result->f.prot = PAGE_READ;
1501 if (!is_user) {
1502 result->f.prot |= PAGE_WRITE;
1504 break;
1505 case 3:
1506 result->f.prot = PAGE_READ | PAGE_WRITE;
1507 break;
1508 case 5:
1509 if (is_user) {
1510 fi->type = ARMFault_Permission;
1511 fi->level = 1;
1512 return true;
1514 result->f.prot = PAGE_READ;
1515 break;
1516 case 6:
1517 result->f.prot = PAGE_READ;
1518 break;
1519 default:
1520 /* Bad permission. */
1521 fi->type = ARMFault_Permission;
1522 fi->level = 1;
1523 return true;
1525 result->f.prot |= PAGE_EXEC;
1526 return false;
1529 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1530 int32_t address, uint8_t *prot)
1532 if (!arm_feature(env, ARM_FEATURE_M)) {
1533 *prot = PAGE_READ | PAGE_WRITE;
1534 switch (address) {
1535 case 0xF0000000 ... 0xFFFFFFFF:
1536 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1537 /* hivecs execing is ok */
1538 *prot |= PAGE_EXEC;
1540 break;
1541 case 0x00000000 ... 0x7FFFFFFF:
1542 *prot |= PAGE_EXEC;
1543 break;
1545 } else {
1546 /* Default system address map for M profile cores.
1547 * The architecture specifies which regions are execute-never;
1548 * at the MPU level no other checks are defined.
1550 switch (address) {
1551 case 0x00000000 ... 0x1fffffff: /* ROM */
1552 case 0x20000000 ... 0x3fffffff: /* SRAM */
1553 case 0x60000000 ... 0x7fffffff: /* RAM */
1554 case 0x80000000 ... 0x9fffffff: /* RAM */
1555 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1556 break;
1557 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1558 case 0xa0000000 ... 0xbfffffff: /* Device */
1559 case 0xc0000000 ... 0xdfffffff: /* Device */
1560 case 0xe0000000 ... 0xffffffff: /* System */
1561 *prot = PAGE_READ | PAGE_WRITE;
1562 break;
1563 default:
1564 g_assert_not_reached();
1569 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1571 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1572 return arm_feature(env, ARM_FEATURE_M) &&
1573 extract32(address, 20, 12) == 0xe00;
1576 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1579 * True if address is in the M profile system region
1580 * 0xe0000000 - 0xffffffff
1582 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1585 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1586 bool is_secure, bool is_user)
1589 * Return true if we should use the default memory map as a
1590 * "background" region if there are no hits against any MPU regions.
1592 CPUARMState *env = &cpu->env;
1594 if (is_user) {
1595 return false;
1598 if (arm_feature(env, ARM_FEATURE_M)) {
1599 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1600 } else {
1601 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1605 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1606 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1607 bool secure, GetPhysAddrResult *result,
1608 ARMMMUFaultInfo *fi)
1610 ARMCPU *cpu = env_archcpu(env);
1611 int n;
1612 bool is_user = regime_is_user(env, mmu_idx);
1614 result->f.phys_addr = address;
1615 result->f.lg_page_size = TARGET_PAGE_BITS;
1616 result->f.prot = 0;
1618 if (regime_translation_disabled(env, mmu_idx, secure) ||
1619 m_is_ppb_region(env, address)) {
1621 * MPU disabled or M profile PPB access: use default memory map.
1622 * The other case which uses the default memory map in the
1623 * v7M ARM ARM pseudocode is exception vector reads from the vector
1624 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1625 * which always does a direct read using address_space_ldl(), rather
1626 * than going via this function, so we don't need to check that here.
1628 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1629 } else { /* MPU enabled */
1630 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1631 /* region search */
1632 uint32_t base = env->pmsav7.drbar[n];
1633 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1634 uint32_t rmask;
1635 bool srdis = false;
1637 if (!(env->pmsav7.drsr[n] & 0x1)) {
1638 continue;
1641 if (!rsize) {
1642 qemu_log_mask(LOG_GUEST_ERROR,
1643 "DRSR[%d]: Rsize field cannot be 0\n", n);
1644 continue;
1646 rsize++;
1647 rmask = (1ull << rsize) - 1;
1649 if (base & rmask) {
1650 qemu_log_mask(LOG_GUEST_ERROR,
1651 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1652 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1653 n, base, rmask);
1654 continue;
1657 if (address < base || address > base + rmask) {
1659 * Address not in this region. We must check whether the
1660 * region covers addresses in the same page as our address.
1661 * In that case we must not report a size that covers the
1662 * whole page for a subsequent hit against a different MPU
1663 * region or the background region, because it would result in
1664 * incorrect TLB hits for subsequent accesses to addresses that
1665 * are in this MPU region.
1667 if (ranges_overlap(base, rmask,
1668 address & TARGET_PAGE_MASK,
1669 TARGET_PAGE_SIZE)) {
1670 result->f.lg_page_size = 0;
1672 continue;
1675 /* Region matched */
1677 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1678 int i, snd;
1679 uint32_t srdis_mask;
1681 rsize -= 3; /* sub region size (power of 2) */
1682 snd = ((address - base) >> rsize) & 0x7;
1683 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1685 srdis_mask = srdis ? 0x3 : 0x0;
1686 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1688 * This will check in groups of 2, 4 and then 8, whether
1689 * the subregion bits are consistent. rsize is incremented
1690 * back up to give the region size, considering consistent
1691 * adjacent subregions as one region. Stop testing if rsize
1692 * is already big enough for an entire QEMU page.
1694 int snd_rounded = snd & ~(i - 1);
1695 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1696 snd_rounded + 8, i);
1697 if (srdis_mask ^ srdis_multi) {
1698 break;
1700 srdis_mask = (srdis_mask << i) | srdis_mask;
1701 rsize++;
1704 if (srdis) {
1705 continue;
1707 if (rsize < TARGET_PAGE_BITS) {
1708 result->f.lg_page_size = rsize;
1710 break;
1713 if (n == -1) { /* no hits */
1714 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1715 /* background fault */
1716 fi->type = ARMFault_Background;
1717 return true;
1719 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1720 &result->f.prot);
1721 } else { /* a MPU hit! */
1722 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1723 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1725 if (m_is_system_region(env, address)) {
1726 /* System space is always execute never */
1727 xn = 1;
1730 if (is_user) { /* User mode AP bit decoding */
1731 switch (ap) {
1732 case 0:
1733 case 1:
1734 case 5:
1735 break; /* no access */
1736 case 3:
1737 result->f.prot |= PAGE_WRITE;
1738 /* fall through */
1739 case 2:
1740 case 6:
1741 result->f.prot |= PAGE_READ | PAGE_EXEC;
1742 break;
1743 case 7:
1744 /* for v7M, same as 6; for R profile a reserved value */
1745 if (arm_feature(env, ARM_FEATURE_M)) {
1746 result->f.prot |= PAGE_READ | PAGE_EXEC;
1747 break;
1749 /* fall through */
1750 default:
1751 qemu_log_mask(LOG_GUEST_ERROR,
1752 "DRACR[%d]: Bad value for AP bits: 0x%"
1753 PRIx32 "\n", n, ap);
1755 } else { /* Priv. mode AP bits decoding */
1756 switch (ap) {
1757 case 0:
1758 break; /* no access */
1759 case 1:
1760 case 2:
1761 case 3:
1762 result->f.prot |= PAGE_WRITE;
1763 /* fall through */
1764 case 5:
1765 case 6:
1766 result->f.prot |= PAGE_READ | PAGE_EXEC;
1767 break;
1768 case 7:
1769 /* for v7M, same as 6; for R profile a reserved value */
1770 if (arm_feature(env, ARM_FEATURE_M)) {
1771 result->f.prot |= PAGE_READ | PAGE_EXEC;
1772 break;
1774 /* fall through */
1775 default:
1776 qemu_log_mask(LOG_GUEST_ERROR,
1777 "DRACR[%d]: Bad value for AP bits: 0x%"
1778 PRIx32 "\n", n, ap);
1782 /* execute never */
1783 if (xn) {
1784 result->f.prot &= ~PAGE_EXEC;
1789 fi->type = ARMFault_Permission;
1790 fi->level = 1;
1791 return !(result->f.prot & (1 << access_type));
1794 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1795 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1796 bool secure, GetPhysAddrResult *result,
1797 ARMMMUFaultInfo *fi, uint32_t *mregion)
1800 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1801 * that a full phys-to-virt translation does).
1802 * mregion is (if not NULL) set to the region number which matched,
1803 * or -1 if no region number is returned (MPU off, address did not
1804 * hit a region, address hit in multiple regions).
1805 * If the region hit doesn't cover the entire TARGET_PAGE the address
1806 * is within, then we set the result page_size to 1 to force the
1807 * memory system to use a subpage.
1809 ARMCPU *cpu = env_archcpu(env);
1810 bool is_user = regime_is_user(env, mmu_idx);
1811 int n;
1812 int matchregion = -1;
1813 bool hit = false;
1814 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1815 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1817 result->f.lg_page_size = TARGET_PAGE_BITS;
1818 result->f.phys_addr = address;
1819 result->f.prot = 0;
1820 if (mregion) {
1821 *mregion = -1;
1825 * Unlike the ARM ARM pseudocode, we don't need to check whether this
1826 * was an exception vector read from the vector table (which is always
1827 * done using the default system address map), because those accesses
1828 * are done in arm_v7m_load_vector(), which always does a direct
1829 * read using address_space_ldl(), rather than going via this function.
1831 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
1832 hit = true;
1833 } else if (m_is_ppb_region(env, address)) {
1834 hit = true;
1835 } else {
1836 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1837 hit = true;
1840 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1841 /* region search */
1843 * Note that the base address is bits [31:5] from the register
1844 * with bits [4:0] all zeroes, but the limit address is bits
1845 * [31:5] from the register with bits [4:0] all ones.
1847 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
1848 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
1850 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
1851 /* Region disabled */
1852 continue;
1855 if (address < base || address > limit) {
1857 * Address not in this region. We must check whether the
1858 * region covers addresses in the same page as our address.
1859 * In that case we must not report a size that covers the
1860 * whole page for a subsequent hit against a different MPU
1861 * region or the background region, because it would result in
1862 * incorrect TLB hits for subsequent accesses to addresses that
1863 * are in this MPU region.
1865 if (limit >= base &&
1866 ranges_overlap(base, limit - base + 1,
1867 addr_page_base,
1868 TARGET_PAGE_SIZE)) {
1869 result->f.lg_page_size = 0;
1871 continue;
1874 if (base > addr_page_base || limit < addr_page_limit) {
1875 result->f.lg_page_size = 0;
1878 if (matchregion != -1) {
1880 * Multiple regions match -- always a failure (unlike
1881 * PMSAv7 where highest-numbered-region wins)
1883 fi->type = ARMFault_Permission;
1884 fi->level = 1;
1885 return true;
1888 matchregion = n;
1889 hit = true;
1893 if (!hit) {
1894 /* background fault */
1895 fi->type = ARMFault_Background;
1896 return true;
1899 if (matchregion == -1) {
1900 /* hit using the background region */
1901 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1902 } else {
1903 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
1904 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
1905 bool pxn = false;
1907 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1908 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
1911 if (m_is_system_region(env, address)) {
1912 /* System space is always execute never */
1913 xn = 1;
1916 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
1917 if (result->f.prot && !xn && !(pxn && !is_user)) {
1918 result->f.prot |= PAGE_EXEC;
1921 * We don't need to look the attribute up in the MAIR0/MAIR1
1922 * registers because that only tells us about cacheability.
1924 if (mregion) {
1925 *mregion = matchregion;
1929 fi->type = ARMFault_Permission;
1930 fi->level = 1;
1931 return !(result->f.prot & (1 << access_type));
1934 static bool v8m_is_sau_exempt(CPUARMState *env,
1935 uint32_t address, MMUAccessType access_type)
1938 * The architecture specifies that certain address ranges are
1939 * exempt from v8M SAU/IDAU checks.
1941 return
1942 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
1943 (address >= 0xe0000000 && address <= 0xe0002fff) ||
1944 (address >= 0xe000e000 && address <= 0xe000efff) ||
1945 (address >= 0xe002e000 && address <= 0xe002efff) ||
1946 (address >= 0xe0040000 && address <= 0xe0041fff) ||
1947 (address >= 0xe00ff000 && address <= 0xe00fffff);
1950 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1951 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1952 bool is_secure, V8M_SAttributes *sattrs)
1955 * Look up the security attributes for this address. Compare the
1956 * pseudocode SecurityCheck() function.
1957 * We assume the caller has zero-initialized *sattrs.
1959 ARMCPU *cpu = env_archcpu(env);
1960 int r;
1961 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
1962 int idau_region = IREGION_NOTVALID;
1963 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1964 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1966 if (cpu->idau) {
1967 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
1968 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
1970 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
1971 &idau_nsc);
1974 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
1975 /* 0xf0000000..0xffffffff is always S for insn fetches */
1976 return;
1979 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
1980 sattrs->ns = !is_secure;
1981 return;
1984 if (idau_region != IREGION_NOTVALID) {
1985 sattrs->irvalid = true;
1986 sattrs->iregion = idau_region;
1989 switch (env->sau.ctrl & 3) {
1990 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
1991 break;
1992 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
1993 sattrs->ns = true;
1994 break;
1995 default: /* SAU.ENABLE == 1 */
1996 for (r = 0; r < cpu->sau_sregion; r++) {
1997 if (env->sau.rlar[r] & 1) {
1998 uint32_t base = env->sau.rbar[r] & ~0x1f;
1999 uint32_t limit = env->sau.rlar[r] | 0x1f;
2001 if (base <= address && limit >= address) {
2002 if (base > addr_page_base || limit < addr_page_limit) {
2003 sattrs->subpage = true;
2005 if (sattrs->srvalid) {
2007 * If we hit in more than one region then we must report
2008 * as Secure, not NS-Callable, with no valid region
2009 * number info.
2011 sattrs->ns = false;
2012 sattrs->nsc = false;
2013 sattrs->sregion = 0;
2014 sattrs->srvalid = false;
2015 break;
2016 } else {
2017 if (env->sau.rlar[r] & 2) {
2018 sattrs->nsc = true;
2019 } else {
2020 sattrs->ns = true;
2022 sattrs->srvalid = true;
2023 sattrs->sregion = r;
2025 } else {
2027 * Address not in this region. We must check whether the
2028 * region covers addresses in the same page as our address.
2029 * In that case we must not report a size that covers the
2030 * whole page for a subsequent hit against a different MPU
2031 * region or the background region, because it would result
2032 * in incorrect TLB hits for subsequent accesses to
2033 * addresses that are in this MPU region.
2035 if (limit >= base &&
2036 ranges_overlap(base, limit - base + 1,
2037 addr_page_base,
2038 TARGET_PAGE_SIZE)) {
2039 sattrs->subpage = true;
2044 break;
2048 * The IDAU will override the SAU lookup results if it specifies
2049 * higher security than the SAU does.
2051 if (!idau_ns) {
2052 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2053 sattrs->ns = false;
2054 sattrs->nsc = idau_nsc;
2059 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2060 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2061 bool secure, GetPhysAddrResult *result,
2062 ARMMMUFaultInfo *fi)
2064 V8M_SAttributes sattrs = {};
2065 bool ret;
2067 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2068 v8m_security_lookup(env, address, access_type, mmu_idx,
2069 secure, &sattrs);
2070 if (access_type == MMU_INST_FETCH) {
2072 * Instruction fetches always use the MMU bank and the
2073 * transaction attribute determined by the fetch address,
2074 * regardless of CPU state. This is painful for QEMU
2075 * to handle, because it would mean we need to encode
2076 * into the mmu_idx not just the (user, negpri) information
2077 * for the current security state but also that for the
2078 * other security state, which would balloon the number
2079 * of mmu_idx values needed alarmingly.
2080 * Fortunately we can avoid this because it's not actually
2081 * possible to arbitrarily execute code from memory with
2082 * the wrong security attribute: it will always generate
2083 * an exception of some kind or another, apart from the
2084 * special case of an NS CPU executing an SG instruction
2085 * in S&NSC memory. So we always just fail the translation
2086 * here and sort things out in the exception handler
2087 * (including possibly emulating an SG instruction).
2089 if (sattrs.ns != !secure) {
2090 if (sattrs.nsc) {
2091 fi->type = ARMFault_QEMU_NSCExec;
2092 } else {
2093 fi->type = ARMFault_QEMU_SFault;
2095 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2096 result->f.phys_addr = address;
2097 result->f.prot = 0;
2098 return true;
2100 } else {
2102 * For data accesses we always use the MMU bank indicated
2103 * by the current CPU state, but the security attributes
2104 * might downgrade a secure access to nonsecure.
2106 if (sattrs.ns) {
2107 result->f.attrs.secure = false;
2108 } else if (!secure) {
2110 * NS access to S memory must fault.
2111 * Architecturally we should first check whether the
2112 * MPU information for this address indicates that we
2113 * are doing an unaligned access to Device memory, which
2114 * should generate a UsageFault instead. QEMU does not
2115 * currently check for that kind of unaligned access though.
2116 * If we added it we would need to do so as a special case
2117 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2119 fi->type = ARMFault_QEMU_SFault;
2120 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2121 result->f.phys_addr = address;
2122 result->f.prot = 0;
2123 return true;
2128 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2129 result, fi, NULL);
2130 if (sattrs.subpage) {
2131 result->f.lg_page_size = 0;
2133 return ret;
2137 * Translate from the 4-bit stage 2 representation of
2138 * memory attributes (without cache-allocation hints) to
2139 * the 8-bit representation of the stage 1 MAIR registers
2140 * (which includes allocation hints).
2142 * ref: shared/translation/attrs/S2AttrDecode()
2143 * .../S2ConvertAttrsHints()
2145 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2147 uint8_t hiattr = extract32(s2attrs, 2, 2);
2148 uint8_t loattr = extract32(s2attrs, 0, 2);
2149 uint8_t hihint = 0, lohint = 0;
2151 if (hiattr != 0) { /* normal memory */
2152 if (hcr & HCR_CD) { /* cache disabled */
2153 hiattr = loattr = 1; /* non-cacheable */
2154 } else {
2155 if (hiattr != 1) { /* Write-through or write-back */
2156 hihint = 3; /* RW allocate */
2158 if (loattr != 1) { /* Write-through or write-back */
2159 lohint = 3; /* RW allocate */
2164 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2168 * Combine either inner or outer cacheability attributes for normal
2169 * memory, according to table D4-42 and pseudocode procedure
2170 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2172 * NB: only stage 1 includes allocation hints (RW bits), leading to
2173 * some asymmetry.
2175 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2177 if (s1 == 4 || s2 == 4) {
2178 /* non-cacheable has precedence */
2179 return 4;
2180 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2181 /* stage 1 write-through takes precedence */
2182 return s1;
2183 } else if (extract32(s2, 2, 2) == 2) {
2184 /* stage 2 write-through takes precedence, but the allocation hint
2185 * is still taken from stage 1
2187 return (2 << 2) | extract32(s1, 0, 2);
2188 } else { /* write-back */
2189 return s1;
2194 * Combine the memory type and cacheability attributes of
2195 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2196 * combined attributes in MAIR_EL1 format.
2198 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2199 ARMCacheAttrs s1, ARMCacheAttrs s2)
2201 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2203 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2205 s1lo = extract32(s1.attrs, 0, 4);
2206 s2lo = extract32(s2_mair_attrs, 0, 4);
2207 s1hi = extract32(s1.attrs, 4, 4);
2208 s2hi = extract32(s2_mair_attrs, 4, 4);
2210 /* Combine memory type and cacheability attributes */
2211 if (s1hi == 0 || s2hi == 0) {
2212 /* Device has precedence over normal */
2213 if (s1lo == 0 || s2lo == 0) {
2214 /* nGnRnE has precedence over anything */
2215 ret_attrs = 0;
2216 } else if (s1lo == 4 || s2lo == 4) {
2217 /* non-Reordering has precedence over Reordering */
2218 ret_attrs = 4; /* nGnRE */
2219 } else if (s1lo == 8 || s2lo == 8) {
2220 /* non-Gathering has precedence over Gathering */
2221 ret_attrs = 8; /* nGRE */
2222 } else {
2223 ret_attrs = 0xc; /* GRE */
2225 } else { /* Normal memory */
2226 /* Outer/inner cacheability combine independently */
2227 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2228 | combine_cacheattr_nibble(s1lo, s2lo);
2230 return ret_attrs;
2233 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2236 * Given the 4 bits specifying the outer or inner cacheability
2237 * in MAIR format, return a value specifying Normal Write-Back,
2238 * with the allocation and transient hints taken from the input
2239 * if the input specified some kind of cacheable attribute.
2241 if (attr == 0 || attr == 4) {
2243 * 0 == an UNPREDICTABLE encoding
2244 * 4 == Non-cacheable
2245 * Either way, force Write-Back RW allocate non-transient
2247 return 0xf;
2249 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2250 return attr | 4;
2254 * Combine the memory type and cacheability attributes of
2255 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2256 * combined attributes in MAIR_EL1 format.
2258 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2260 switch (s2.attrs) {
2261 case 7:
2262 /* Use stage 1 attributes */
2263 return s1.attrs;
2264 case 6:
2266 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2267 * then we take the allocation hints from it; otherwise it is
2268 * RW allocate, non-transient.
2270 if ((s1.attrs & 0xf0) == 0) {
2271 /* S1 is Device */
2272 return 0xff;
2274 /* Need to check the Inner and Outer nibbles separately */
2275 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2276 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2277 case 5:
2278 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2279 if ((s1.attrs & 0xf0) == 0) {
2280 return s1.attrs;
2282 return 0x44;
2283 case 0 ... 3:
2284 /* Force Device, of subtype specified by S2 */
2285 return s2.attrs << 2;
2286 default:
2288 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2289 * arbitrarily force Device.
2291 return 0;
2296 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2297 * and CombineS1S2Desc()
2299 * @env: CPUARMState
2300 * @s1: Attributes from stage 1 walk
2301 * @s2: Attributes from stage 2 walk
2303 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2304 ARMCacheAttrs s1, ARMCacheAttrs s2)
2306 ARMCacheAttrs ret;
2307 bool tagged = false;
2309 assert(s2.is_s2_format && !s1.is_s2_format);
2310 ret.is_s2_format = false;
2312 if (s1.attrs == 0xf0) {
2313 tagged = true;
2314 s1.attrs = 0xff;
2317 /* Combine shareability attributes (table D4-43) */
2318 if (s1.shareability == 2 || s2.shareability == 2) {
2319 /* if either are outer-shareable, the result is outer-shareable */
2320 ret.shareability = 2;
2321 } else if (s1.shareability == 3 || s2.shareability == 3) {
2322 /* if either are inner-shareable, the result is inner-shareable */
2323 ret.shareability = 3;
2324 } else {
2325 /* both non-shareable */
2326 ret.shareability = 0;
2329 /* Combine memory type and cacheability attributes */
2330 if (hcr & HCR_FWB) {
2331 ret.attrs = combined_attrs_fwb(s1, s2);
2332 } else {
2333 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2337 * Any location for which the resultant memory type is any
2338 * type of Device memory is always treated as Outer Shareable.
2339 * Any location for which the resultant memory type is Normal
2340 * Inner Non-cacheable, Outer Non-cacheable is always treated
2341 * as Outer Shareable.
2342 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2344 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2345 ret.shareability = 2;
2348 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2349 if (tagged && ret.attrs == 0xff) {
2350 ret.attrs = 0xf0;
2353 return ret;
2357 * MMU disabled. S1 addresses within aa64 translation regimes are
2358 * still checked for bounds -- see AArch64.S1DisabledOutput().
2360 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2361 MMUAccessType access_type,
2362 ARMMMUIdx mmu_idx, bool is_secure,
2363 GetPhysAddrResult *result,
2364 ARMMMUFaultInfo *fi)
2366 uint8_t memattr = 0x00; /* Device nGnRnE */
2367 uint8_t shareability = 0; /* non-sharable */
2368 int r_el;
2370 switch (mmu_idx) {
2371 case ARMMMUIdx_Stage2:
2372 case ARMMMUIdx_Stage2_S:
2373 case ARMMMUIdx_Phys_NS:
2374 case ARMMMUIdx_Phys_S:
2375 break;
2377 default:
2378 r_el = regime_el(env, mmu_idx);
2379 if (arm_el_is_aa64(env, r_el)) {
2380 int pamax = arm_pamax(env_archcpu(env));
2381 uint64_t tcr = env->cp15.tcr_el[r_el];
2382 int addrtop, tbi;
2384 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2385 if (access_type == MMU_INST_FETCH) {
2386 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2388 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2389 addrtop = (tbi ? 55 : 63);
2391 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2392 fi->type = ARMFault_AddressSize;
2393 fi->level = 0;
2394 fi->stage2 = false;
2395 return 1;
2399 * When TBI is disabled, we've just validated that all of the
2400 * bits above PAMax are zero, so logically we only need to
2401 * clear the top byte for TBI. But it's clearer to follow
2402 * the pseudocode set of addrdesc.paddress.
2404 address = extract64(address, 0, 52);
2407 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2408 if (r_el == 1) {
2409 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2410 if (hcr & HCR_DC) {
2411 if (hcr & HCR_DCT) {
2412 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2413 } else {
2414 memattr = 0xff; /* Normal, WB, RWA */
2418 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2419 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2420 memattr = 0xee; /* Normal, WT, RA, NT */
2421 } else {
2422 memattr = 0x44; /* Normal, NC, No */
2424 shareability = 2; /* outer sharable */
2426 result->cacheattrs.is_s2_format = false;
2427 break;
2430 result->f.phys_addr = address;
2431 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2432 result->f.lg_page_size = TARGET_PAGE_BITS;
2433 result->cacheattrs.shareability = shareability;
2434 result->cacheattrs.attrs = memattr;
2435 return false;
2438 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2439 target_ulong address,
2440 MMUAccessType access_type,
2441 GetPhysAddrResult *result,
2442 ARMMMUFaultInfo *fi)
2444 hwaddr ipa;
2445 int s1_prot;
2446 bool is_secure = ptw->in_secure;
2447 bool ret, ipa_secure, s2walk_secure;
2448 ARMCacheAttrs cacheattrs1;
2449 bool is_el0;
2450 uint64_t hcr;
2452 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2454 /* If S1 fails or S2 is disabled, return early. */
2455 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2456 return ret;
2459 ipa = result->f.phys_addr;
2460 ipa_secure = result->f.attrs.secure;
2461 if (is_secure) {
2462 /* Select TCR based on the NS bit from the S1 walk. */
2463 s2walk_secure = !(ipa_secure
2464 ? env->cp15.vstcr_el2 & VSTCR_SW
2465 : env->cp15.vtcr_el2 & VTCR_NSW);
2466 } else {
2467 assert(!ipa_secure);
2468 s2walk_secure = false;
2471 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2472 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2473 ptw->in_secure = s2walk_secure;
2476 * S1 is done, now do S2 translation.
2477 * Save the stage1 results so that we may merge prot and cacheattrs later.
2479 s1_prot = result->f.prot;
2480 cacheattrs1 = result->cacheattrs;
2481 memset(result, 0, sizeof(*result));
2483 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, is_el0, result, fi);
2484 fi->s2addr = ipa;
2486 /* Combine the S1 and S2 perms. */
2487 result->f.prot &= s1_prot;
2489 /* If S2 fails, return early. */
2490 if (ret) {
2491 return ret;
2494 /* Combine the S1 and S2 cache attributes. */
2495 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2496 if (hcr & HCR_DC) {
2498 * HCR.DC forces the first stage attributes to
2499 * Normal Non-Shareable,
2500 * Inner Write-Back Read-Allocate Write-Allocate,
2501 * Outer Write-Back Read-Allocate Write-Allocate.
2502 * Do not overwrite Tagged within attrs.
2504 if (cacheattrs1.attrs != 0xf0) {
2505 cacheattrs1.attrs = 0xff;
2507 cacheattrs1.shareability = 0;
2509 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2510 result->cacheattrs);
2513 * Check if IPA translates to secure or non-secure PA space.
2514 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2516 result->f.attrs.secure =
2517 (is_secure
2518 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2519 && (ipa_secure
2520 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2522 return false;
2525 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2526 target_ulong address,
2527 MMUAccessType access_type,
2528 GetPhysAddrResult *result,
2529 ARMMMUFaultInfo *fi)
2531 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2532 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
2533 bool is_secure = ptw->in_secure;
2535 if (mmu_idx != s1_mmu_idx) {
2537 * Call ourselves recursively to do the stage 1 and then stage 2
2538 * translations if mmu_idx is a two-stage regime, and EL2 present.
2539 * Otherwise, a stage1+stage2 translation is just stage 1.
2541 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2542 if (arm_feature(env, ARM_FEATURE_EL2)) {
2543 return get_phys_addr_twostage(env, ptw, address, access_type,
2544 result, fi);
2549 * The page table entries may downgrade secure to non-secure, but
2550 * cannot upgrade an non-secure translation regime's attributes
2551 * to secure.
2553 result->f.attrs.secure = is_secure;
2554 result->f.attrs.user = regime_is_user(env, mmu_idx);
2557 * Fast Context Switch Extension. This doesn't exist at all in v8.
2558 * In v7 and earlier it affects all stage 1 translations.
2560 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2561 && !arm_feature(env, ARM_FEATURE_V8)) {
2562 if (regime_el(env, mmu_idx) == 3) {
2563 address += env->cp15.fcseidr_s;
2564 } else {
2565 address += env->cp15.fcseidr_ns;
2569 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2570 bool ret;
2571 result->f.lg_page_size = TARGET_PAGE_BITS;
2573 if (arm_feature(env, ARM_FEATURE_V8)) {
2574 /* PMSAv8 */
2575 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2576 is_secure, result, fi);
2577 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2578 /* PMSAv7 */
2579 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2580 is_secure, result, fi);
2581 } else {
2582 /* Pre-v7 MPU */
2583 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2584 is_secure, result, fi);
2586 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2587 " mmu_idx %u -> %s (prot %c%c%c)\n",
2588 access_type == MMU_DATA_LOAD ? "reading" :
2589 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2590 (uint32_t)address, mmu_idx,
2591 ret ? "Miss" : "Hit",
2592 result->f.prot & PAGE_READ ? 'r' : '-',
2593 result->f.prot & PAGE_WRITE ? 'w' : '-',
2594 result->f.prot & PAGE_EXEC ? 'x' : '-');
2596 return ret;
2599 /* Definitely a real MMU, not an MPU */
2601 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2602 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2603 is_secure, result, fi);
2606 if (regime_using_lpae_format(env, mmu_idx)) {
2607 return get_phys_addr_lpae(env, ptw, address, access_type, false,
2608 result, fi);
2609 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2610 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2611 } else {
2612 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2616 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2617 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2618 bool is_secure, GetPhysAddrResult *result,
2619 ARMMMUFaultInfo *fi)
2621 S1Translate ptw = {
2622 .in_mmu_idx = mmu_idx,
2623 .in_secure = is_secure,
2625 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2626 result, fi);
2629 bool get_phys_addr(CPUARMState *env, target_ulong address,
2630 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2631 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2633 bool is_secure;
2635 switch (mmu_idx) {
2636 case ARMMMUIdx_E10_0:
2637 case ARMMMUIdx_E10_1:
2638 case ARMMMUIdx_E10_1_PAN:
2639 case ARMMMUIdx_E20_0:
2640 case ARMMMUIdx_E20_2:
2641 case ARMMMUIdx_E20_2_PAN:
2642 case ARMMMUIdx_Stage1_E0:
2643 case ARMMMUIdx_Stage1_E1:
2644 case ARMMMUIdx_Stage1_E1_PAN:
2645 case ARMMMUIdx_E2:
2646 is_secure = arm_is_secure_below_el3(env);
2647 break;
2648 case ARMMMUIdx_Stage2:
2649 case ARMMMUIdx_Phys_NS:
2650 case ARMMMUIdx_MPrivNegPri:
2651 case ARMMMUIdx_MUserNegPri:
2652 case ARMMMUIdx_MPriv:
2653 case ARMMMUIdx_MUser:
2654 is_secure = false;
2655 break;
2656 case ARMMMUIdx_E3:
2657 case ARMMMUIdx_Stage2_S:
2658 case ARMMMUIdx_Phys_S:
2659 case ARMMMUIdx_MSPrivNegPri:
2660 case ARMMMUIdx_MSUserNegPri:
2661 case ARMMMUIdx_MSPriv:
2662 case ARMMMUIdx_MSUser:
2663 is_secure = true;
2664 break;
2665 default:
2666 g_assert_not_reached();
2668 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
2669 is_secure, result, fi);
2672 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2673 MemTxAttrs *attrs)
2675 ARMCPU *cpu = ARM_CPU(cs);
2676 CPUARMState *env = &cpu->env;
2677 S1Translate ptw = {
2678 .in_mmu_idx = arm_mmu_idx(env),
2679 .in_secure = arm_is_secure(env),
2680 .in_debug = true,
2682 GetPhysAddrResult res = {};
2683 ARMMMUFaultInfo fi = {};
2684 bool ret;
2686 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
2687 *attrs = res.f.attrs;
2689 if (ret) {
2690 return -1;
2692 return res.f.phys_addr;