semihosting: Move include/hw/semihosting/ -> include/semihosting/
[qemu/ar7.git] / target / arm / translate-a64.c
blob0b42e53500e2a7544d10d72ddef0c828452199c4
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "semihosting/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
73 /* initialize TCG globals. */
74 void a64_translate_init(void)
76 int i;
78 cpu_pc = tcg_global_mem_new_i64(cpu_env,
79 offsetof(CPUARMState, pc),
80 "pc");
81 for (i = 0; i < 32; i++) {
82 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
83 offsetof(CPUARMState, xregs[i]),
84 regnames[i]);
87 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
88 offsetof(CPUARMState, exclusive_high), "exclusive_high");
92 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
94 static int get_a64_user_mem_index(DisasContext *s)
97 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
98 * which is the usual mmu_idx for this cpu state.
100 ARMMMUIdx useridx = s->mmu_idx;
102 if (s->unpriv) {
104 * We have pre-computed the condition for AccType_UNPRIV.
105 * Therefore we should never get here with a mmu_idx for
106 * which we do not know the corresponding user mmu_idx.
108 switch (useridx) {
109 case ARMMMUIdx_E10_1:
110 case ARMMMUIdx_E10_1_PAN:
111 useridx = ARMMMUIdx_E10_0;
112 break;
113 case ARMMMUIdx_E20_2:
114 case ARMMMUIdx_E20_2_PAN:
115 useridx = ARMMMUIdx_E20_0;
116 break;
117 case ARMMMUIdx_SE10_1:
118 case ARMMMUIdx_SE10_1_PAN:
119 useridx = ARMMMUIdx_SE10_0;
120 break;
121 case ARMMMUIdx_SE20_2:
122 case ARMMMUIdx_SE20_2_PAN:
123 useridx = ARMMMUIdx_SE20_0;
124 break;
125 default:
126 g_assert_not_reached();
129 return arm_to_core_mmu_idx(useridx);
132 static void reset_btype(DisasContext *s)
134 if (s->btype != 0) {
135 TCGv_i32 zero = tcg_const_i32(0);
136 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
137 tcg_temp_free_i32(zero);
138 s->btype = 0;
142 static void set_btype(DisasContext *s, int val)
144 TCGv_i32 tcg_val;
146 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
147 tcg_debug_assert(val >= 1 && val <= 3);
149 tcg_val = tcg_const_i32(val);
150 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
151 tcg_temp_free_i32(tcg_val);
152 s->btype = -1;
155 void gen_a64_set_pc_im(uint64_t val)
157 tcg_gen_movi_i64(cpu_pc, val);
161 * Handle Top Byte Ignore (TBI) bits.
163 * If address tagging is enabled via the TCR TBI bits:
164 * + for EL2 and EL3 there is only one TBI bit, and if it is set
165 * then the address is zero-extended, clearing bits [63:56]
166 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
167 * and TBI1 controls addressses with bit 55 == 1.
168 * If the appropriate TBI bit is set for the address then
169 * the address is sign-extended from bit 55 into bits [63:56]
171 * Here We have concatenated TBI{1,0} into tbi.
173 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
174 TCGv_i64 src, int tbi)
176 if (tbi == 0) {
177 /* Load unmodified address */
178 tcg_gen_mov_i64(dst, src);
179 } else if (!regime_has_2_ranges(s->mmu_idx)) {
180 /* Force tag byte to all zero */
181 tcg_gen_extract_i64(dst, src, 0, 56);
182 } else {
183 /* Sign-extend from bit 55. */
184 tcg_gen_sextract_i64(dst, src, 0, 56);
186 switch (tbi) {
187 case 1:
188 /* tbi0 but !tbi1: only use the extension if positive */
189 tcg_gen_and_i64(dst, dst, src);
190 break;
191 case 2:
192 /* !tbi0 but tbi1: only use the extension if negative */
193 tcg_gen_or_i64(dst, dst, src);
194 break;
195 case 3:
196 /* tbi0 and tbi1: always use the extension */
197 break;
198 default:
199 g_assert_not_reached();
204 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
207 * If address tagging is enabled for instructions via the TCR TBI bits,
208 * then loading an address into the PC will clear out any tag.
210 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
214 * Handle MTE and/or TBI.
216 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
217 * for the tag to be present in the FAR_ELx register. But for user-only
218 * mode we do not have a TLB with which to implement this, so we must
219 * remove the top byte now.
221 * Always return a fresh temporary that we can increment independently
222 * of the write-back address.
225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
227 TCGv_i64 clean = new_tmp_a64(s);
228 #ifdef CONFIG_USER_ONLY
229 gen_top_byte_ignore(s, clean, addr, s->tbid);
230 #else
231 tcg_gen_mov_i64(clean, addr);
232 #endif
233 return clean;
236 /* Insert a zero tag into src, with the result at dst. */
237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
239 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
243 MMUAccessType acc, int log2_size)
245 TCGv_i32 t_acc = tcg_const_i32(acc);
246 TCGv_i32 t_idx = tcg_const_i32(get_mem_index(s));
247 TCGv_i32 t_size = tcg_const_i32(1 << log2_size);
249 gen_helper_probe_access(cpu_env, ptr, t_acc, t_idx, t_size);
250 tcg_temp_free_i32(t_acc);
251 tcg_temp_free_i32(t_idx);
252 tcg_temp_free_i32(t_size);
256 * For MTE, check a single logical or atomic access. This probes a single
257 * address, the exact one specified. The size and alignment of the access
258 * is not relevant to MTE, per se, but watchpoints do require the size,
259 * and we want to recognize those before making any other changes to state.
261 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
262 bool is_write, bool tag_checked,
263 int log2_size, bool is_unpriv,
264 int core_idx)
266 if (tag_checked && s->mte_active[is_unpriv]) {
267 TCGv_i32 tcg_desc;
268 TCGv_i64 ret;
269 int desc = 0;
271 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
272 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
273 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
274 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
275 desc = FIELD_DP32(desc, MTEDESC, ESIZE, 1 << log2_size);
276 tcg_desc = tcg_const_i32(desc);
278 ret = new_tmp_a64(s);
279 gen_helper_mte_check1(ret, cpu_env, tcg_desc, addr);
280 tcg_temp_free_i32(tcg_desc);
282 return ret;
284 return clean_data_tbi(s, addr);
287 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
288 bool tag_checked, int log2_size)
290 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
291 false, get_mem_index(s));
295 * For MTE, check multiple logical sequential accesses.
297 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
298 bool tag_checked, int log2_esize, int total_size)
300 if (tag_checked && s->mte_active[0] && total_size != (1 << log2_esize)) {
301 TCGv_i32 tcg_desc;
302 TCGv_i64 ret;
303 int desc = 0;
305 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
306 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
307 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
308 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
309 desc = FIELD_DP32(desc, MTEDESC, ESIZE, 1 << log2_esize);
310 desc = FIELD_DP32(desc, MTEDESC, TSIZE, total_size);
311 tcg_desc = tcg_const_i32(desc);
313 ret = new_tmp_a64(s);
314 gen_helper_mte_checkN(ret, cpu_env, tcg_desc, addr);
315 tcg_temp_free_i32(tcg_desc);
317 return ret;
319 return gen_mte_check1(s, addr, is_write, tag_checked, log2_esize);
322 typedef struct DisasCompare64 {
323 TCGCond cond;
324 TCGv_i64 value;
325 } DisasCompare64;
327 static void a64_test_cc(DisasCompare64 *c64, int cc)
329 DisasCompare c32;
331 arm_test_cc(&c32, cc);
333 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
334 * properly. The NE/EQ comparisons are also fine with this choice. */
335 c64->cond = c32.cond;
336 c64->value = tcg_temp_new_i64();
337 tcg_gen_ext_i32_i64(c64->value, c32.value);
339 arm_free_cc(&c32);
342 static void a64_free_cc(DisasCompare64 *c64)
344 tcg_temp_free_i64(c64->value);
347 static void gen_exception_internal(int excp)
349 TCGv_i32 tcg_excp = tcg_const_i32(excp);
351 assert(excp_is_internal(excp));
352 gen_helper_exception_internal(cpu_env, tcg_excp);
353 tcg_temp_free_i32(tcg_excp);
356 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
358 gen_a64_set_pc_im(pc);
359 gen_exception_internal(excp);
360 s->base.is_jmp = DISAS_NORETURN;
363 static void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
364 uint32_t syndrome, uint32_t target_el)
366 gen_a64_set_pc_im(pc);
367 gen_exception(excp, syndrome, target_el);
368 s->base.is_jmp = DISAS_NORETURN;
371 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
373 TCGv_i32 tcg_syn;
375 gen_a64_set_pc_im(s->pc_curr);
376 tcg_syn = tcg_const_i32(syndrome);
377 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
378 tcg_temp_free_i32(tcg_syn);
379 s->base.is_jmp = DISAS_NORETURN;
382 static void gen_step_complete_exception(DisasContext *s)
384 /* We just completed step of an insn. Move from Active-not-pending
385 * to Active-pending, and then also take the swstep exception.
386 * This corresponds to making the (IMPDEF) choice to prioritize
387 * swstep exceptions over asynchronous exceptions taken to an exception
388 * level where debug is disabled. This choice has the advantage that
389 * we do not need to maintain internal state corresponding to the
390 * ISV/EX syndrome bits between completion of the step and generation
391 * of the exception, and our syndrome information is always correct.
393 gen_ss_advance(s);
394 gen_swstep_exception(s, 1, s->is_ldex);
395 s->base.is_jmp = DISAS_NORETURN;
398 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
400 /* No direct tb linking with singlestep (either QEMU's or the ARM
401 * debug architecture kind) or deterministic io
403 if (s->base.singlestep_enabled || s->ss_active ||
404 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
405 return false;
408 #ifndef CONFIG_USER_ONLY
409 /* Only link tbs from inside the same guest page */
410 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
411 return false;
413 #endif
415 return true;
418 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
420 const TranslationBlock *tb;
422 tb = s->base.tb;
423 if (use_goto_tb(s, n, dest)) {
424 tcg_gen_goto_tb(n);
425 gen_a64_set_pc_im(dest);
426 tcg_gen_exit_tb(tb, n);
427 s->base.is_jmp = DISAS_NORETURN;
428 } else {
429 gen_a64_set_pc_im(dest);
430 if (s->ss_active) {
431 gen_step_complete_exception(s);
432 } else if (s->base.singlestep_enabled) {
433 gen_exception_internal(EXCP_DEBUG);
434 } else {
435 tcg_gen_lookup_and_goto_ptr();
436 s->base.is_jmp = DISAS_NORETURN;
441 void unallocated_encoding(DisasContext *s)
443 /* Unallocated and reserved encodings are uncategorized */
444 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(),
445 default_exception_el(s));
448 static void init_tmp_a64_array(DisasContext *s)
450 #ifdef CONFIG_DEBUG_TCG
451 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
452 #endif
453 s->tmp_a64_count = 0;
456 static void free_tmp_a64(DisasContext *s)
458 int i;
459 for (i = 0; i < s->tmp_a64_count; i++) {
460 tcg_temp_free_i64(s->tmp_a64[i]);
462 init_tmp_a64_array(s);
465 TCGv_i64 new_tmp_a64(DisasContext *s)
467 assert(s->tmp_a64_count < TMP_A64_MAX);
468 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
471 TCGv_i64 new_tmp_a64_local(DisasContext *s)
473 assert(s->tmp_a64_count < TMP_A64_MAX);
474 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_local_new_i64();
477 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
479 TCGv_i64 t = new_tmp_a64(s);
480 tcg_gen_movi_i64(t, 0);
481 return t;
485 * Register access functions
487 * These functions are used for directly accessing a register in where
488 * changes to the final register value are likely to be made. If you
489 * need to use a register for temporary calculation (e.g. index type
490 * operations) use the read_* form.
492 * B1.2.1 Register mappings
494 * In instruction register encoding 31 can refer to ZR (zero register) or
495 * the SP (stack pointer) depending on context. In QEMU's case we map SP
496 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
497 * This is the point of the _sp forms.
499 TCGv_i64 cpu_reg(DisasContext *s, int reg)
501 if (reg == 31) {
502 return new_tmp_a64_zero(s);
503 } else {
504 return cpu_X[reg];
508 /* register access for when 31 == SP */
509 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
511 return cpu_X[reg];
514 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
515 * representing the register contents. This TCGv is an auto-freed
516 * temporary so it need not be explicitly freed, and may be modified.
518 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
520 TCGv_i64 v = new_tmp_a64(s);
521 if (reg != 31) {
522 if (sf) {
523 tcg_gen_mov_i64(v, cpu_X[reg]);
524 } else {
525 tcg_gen_ext32u_i64(v, cpu_X[reg]);
527 } else {
528 tcg_gen_movi_i64(v, 0);
530 return v;
533 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
535 TCGv_i64 v = new_tmp_a64(s);
536 if (sf) {
537 tcg_gen_mov_i64(v, cpu_X[reg]);
538 } else {
539 tcg_gen_ext32u_i64(v, cpu_X[reg]);
541 return v;
544 /* Return the offset into CPUARMState of a slice (from
545 * the least significant end) of FP register Qn (ie
546 * Dn, Sn, Hn or Bn).
547 * (Note that this is not the same mapping as for A32; see cpu.h)
549 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
551 return vec_reg_offset(s, regno, 0, size);
554 /* Offset of the high half of the 128 bit vector Qn */
555 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
557 return vec_reg_offset(s, regno, 1, MO_64);
560 /* Convenience accessors for reading and writing single and double
561 * FP registers. Writing clears the upper parts of the associated
562 * 128 bit vector register, as required by the architecture.
563 * Note that unlike the GP register accessors, the values returned
564 * by the read functions must be manually freed.
566 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
568 TCGv_i64 v = tcg_temp_new_i64();
570 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
571 return v;
574 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
576 TCGv_i32 v = tcg_temp_new_i32();
578 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
579 return v;
582 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
584 TCGv_i32 v = tcg_temp_new_i32();
586 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
587 return v;
590 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
591 * If SVE is not enabled, then there are only 128 bits in the vector.
593 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
595 unsigned ofs = fp_reg_offset(s, rd, MO_64);
596 unsigned vsz = vec_full_reg_size(s);
598 /* Nop move, with side effect of clearing the tail. */
599 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
602 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
604 unsigned ofs = fp_reg_offset(s, reg, MO_64);
606 tcg_gen_st_i64(v, cpu_env, ofs);
607 clear_vec_high(s, false, reg);
610 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
612 TCGv_i64 tmp = tcg_temp_new_i64();
614 tcg_gen_extu_i32_i64(tmp, v);
615 write_fp_dreg(s, reg, tmp);
616 tcg_temp_free_i64(tmp);
619 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
620 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
621 GVecGen2Fn *gvec_fn, int vece)
623 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
624 is_q ? 16 : 8, vec_full_reg_size(s));
627 /* Expand a 2-operand + immediate AdvSIMD vector operation using
628 * an expander function.
630 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
631 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
634 imm, is_q ? 16 : 8, vec_full_reg_size(s));
637 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
638 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
639 GVecGen3Fn *gvec_fn, int vece)
641 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
642 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
645 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
646 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
647 int rx, GVecGen4Fn *gvec_fn, int vece)
649 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
650 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
651 is_q ? 16 : 8, vec_full_reg_size(s));
654 /* Expand a 2-operand operation using an out-of-line helper. */
655 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
656 int rn, int data, gen_helper_gvec_2 *fn)
658 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
659 vec_full_reg_offset(s, rn),
660 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
663 /* Expand a 3-operand operation using an out-of-line helper. */
664 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
665 int rn, int rm, int data, gen_helper_gvec_3 *fn)
667 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
668 vec_full_reg_offset(s, rn),
669 vec_full_reg_offset(s, rm),
670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
673 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
674 * an out-of-line helper.
676 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
677 int rm, bool is_fp16, int data,
678 gen_helper_gvec_3_ptr *fn)
680 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
681 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
682 vec_full_reg_offset(s, rn),
683 vec_full_reg_offset(s, rm), fpst,
684 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
685 tcg_temp_free_ptr(fpst);
688 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
689 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
690 int rm, gen_helper_gvec_3_ptr *fn)
692 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
694 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
695 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
696 vec_full_reg_offset(s, rn),
697 vec_full_reg_offset(s, rm), qc_ptr,
698 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
699 tcg_temp_free_ptr(qc_ptr);
702 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
703 * than the 32 bit equivalent.
705 static inline void gen_set_NZ64(TCGv_i64 result)
707 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
708 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
711 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
712 static inline void gen_logic_CC(int sf, TCGv_i64 result)
714 if (sf) {
715 gen_set_NZ64(result);
716 } else {
717 tcg_gen_extrl_i64_i32(cpu_ZF, result);
718 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
720 tcg_gen_movi_i32(cpu_CF, 0);
721 tcg_gen_movi_i32(cpu_VF, 0);
724 /* dest = T0 + T1; compute C, N, V and Z flags */
725 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
727 if (sf) {
728 TCGv_i64 result, flag, tmp;
729 result = tcg_temp_new_i64();
730 flag = tcg_temp_new_i64();
731 tmp = tcg_temp_new_i64();
733 tcg_gen_movi_i64(tmp, 0);
734 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
736 tcg_gen_extrl_i64_i32(cpu_CF, flag);
738 gen_set_NZ64(result);
740 tcg_gen_xor_i64(flag, result, t0);
741 tcg_gen_xor_i64(tmp, t0, t1);
742 tcg_gen_andc_i64(flag, flag, tmp);
743 tcg_temp_free_i64(tmp);
744 tcg_gen_extrh_i64_i32(cpu_VF, flag);
746 tcg_gen_mov_i64(dest, result);
747 tcg_temp_free_i64(result);
748 tcg_temp_free_i64(flag);
749 } else {
750 /* 32 bit arithmetic */
751 TCGv_i32 t0_32 = tcg_temp_new_i32();
752 TCGv_i32 t1_32 = tcg_temp_new_i32();
753 TCGv_i32 tmp = tcg_temp_new_i32();
755 tcg_gen_movi_i32(tmp, 0);
756 tcg_gen_extrl_i64_i32(t0_32, t0);
757 tcg_gen_extrl_i64_i32(t1_32, t1);
758 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
759 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
760 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
761 tcg_gen_xor_i32(tmp, t0_32, t1_32);
762 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
763 tcg_gen_extu_i32_i64(dest, cpu_NF);
765 tcg_temp_free_i32(tmp);
766 tcg_temp_free_i32(t0_32);
767 tcg_temp_free_i32(t1_32);
771 /* dest = T0 - T1; compute C, N, V and Z flags */
772 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
774 if (sf) {
775 /* 64 bit arithmetic */
776 TCGv_i64 result, flag, tmp;
778 result = tcg_temp_new_i64();
779 flag = tcg_temp_new_i64();
780 tcg_gen_sub_i64(result, t0, t1);
782 gen_set_NZ64(result);
784 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
785 tcg_gen_extrl_i64_i32(cpu_CF, flag);
787 tcg_gen_xor_i64(flag, result, t0);
788 tmp = tcg_temp_new_i64();
789 tcg_gen_xor_i64(tmp, t0, t1);
790 tcg_gen_and_i64(flag, flag, tmp);
791 tcg_temp_free_i64(tmp);
792 tcg_gen_extrh_i64_i32(cpu_VF, flag);
793 tcg_gen_mov_i64(dest, result);
794 tcg_temp_free_i64(flag);
795 tcg_temp_free_i64(result);
796 } else {
797 /* 32 bit arithmetic */
798 TCGv_i32 t0_32 = tcg_temp_new_i32();
799 TCGv_i32 t1_32 = tcg_temp_new_i32();
800 TCGv_i32 tmp;
802 tcg_gen_extrl_i64_i32(t0_32, t0);
803 tcg_gen_extrl_i64_i32(t1_32, t1);
804 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
805 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
806 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
807 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
808 tmp = tcg_temp_new_i32();
809 tcg_gen_xor_i32(tmp, t0_32, t1_32);
810 tcg_temp_free_i32(t0_32);
811 tcg_temp_free_i32(t1_32);
812 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
813 tcg_temp_free_i32(tmp);
814 tcg_gen_extu_i32_i64(dest, cpu_NF);
818 /* dest = T0 + T1 + CF; do not compute flags. */
819 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
821 TCGv_i64 flag = tcg_temp_new_i64();
822 tcg_gen_extu_i32_i64(flag, cpu_CF);
823 tcg_gen_add_i64(dest, t0, t1);
824 tcg_gen_add_i64(dest, dest, flag);
825 tcg_temp_free_i64(flag);
827 if (!sf) {
828 tcg_gen_ext32u_i64(dest, dest);
832 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
833 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
835 if (sf) {
836 TCGv_i64 result, cf_64, vf_64, tmp;
837 result = tcg_temp_new_i64();
838 cf_64 = tcg_temp_new_i64();
839 vf_64 = tcg_temp_new_i64();
840 tmp = tcg_const_i64(0);
842 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
843 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
844 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
845 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
846 gen_set_NZ64(result);
848 tcg_gen_xor_i64(vf_64, result, t0);
849 tcg_gen_xor_i64(tmp, t0, t1);
850 tcg_gen_andc_i64(vf_64, vf_64, tmp);
851 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
853 tcg_gen_mov_i64(dest, result);
855 tcg_temp_free_i64(tmp);
856 tcg_temp_free_i64(vf_64);
857 tcg_temp_free_i64(cf_64);
858 tcg_temp_free_i64(result);
859 } else {
860 TCGv_i32 t0_32, t1_32, tmp;
861 t0_32 = tcg_temp_new_i32();
862 t1_32 = tcg_temp_new_i32();
863 tmp = tcg_const_i32(0);
865 tcg_gen_extrl_i64_i32(t0_32, t0);
866 tcg_gen_extrl_i64_i32(t1_32, t1);
867 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
868 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
870 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
871 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
872 tcg_gen_xor_i32(tmp, t0_32, t1_32);
873 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
874 tcg_gen_extu_i32_i64(dest, cpu_NF);
876 tcg_temp_free_i32(tmp);
877 tcg_temp_free_i32(t1_32);
878 tcg_temp_free_i32(t0_32);
883 * Load/Store generators
887 * Store from GPR register to memory.
889 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
890 TCGv_i64 tcg_addr, int size, int memidx,
891 bool iss_valid,
892 unsigned int iss_srt,
893 bool iss_sf, bool iss_ar)
895 g_assert(size <= 3);
896 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
898 if (iss_valid) {
899 uint32_t syn;
901 syn = syn_data_abort_with_iss(0,
902 size,
903 false,
904 iss_srt,
905 iss_sf,
906 iss_ar,
907 0, 0, 0, 0, 0, false);
908 disas_set_insn_syndrome(s, syn);
912 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
913 TCGv_i64 tcg_addr, int size,
914 bool iss_valid,
915 unsigned int iss_srt,
916 bool iss_sf, bool iss_ar)
918 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
919 iss_valid, iss_srt, iss_sf, iss_ar);
923 * Load from memory to GPR register
925 static void do_gpr_ld_memidx(DisasContext *s,
926 TCGv_i64 dest, TCGv_i64 tcg_addr,
927 int size, bool is_signed,
928 bool extend, int memidx,
929 bool iss_valid, unsigned int iss_srt,
930 bool iss_sf, bool iss_ar)
932 MemOp memop = s->be_data + size;
934 g_assert(size <= 3);
936 if (is_signed) {
937 memop += MO_SIGN;
940 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
942 if (extend && is_signed) {
943 g_assert(size < 3);
944 tcg_gen_ext32u_i64(dest, dest);
947 if (iss_valid) {
948 uint32_t syn;
950 syn = syn_data_abort_with_iss(0,
951 size,
952 is_signed,
953 iss_srt,
954 iss_sf,
955 iss_ar,
956 0, 0, 0, 0, 0, false);
957 disas_set_insn_syndrome(s, syn);
961 static void do_gpr_ld(DisasContext *s,
962 TCGv_i64 dest, TCGv_i64 tcg_addr,
963 int size, bool is_signed, bool extend,
964 bool iss_valid, unsigned int iss_srt,
965 bool iss_sf, bool iss_ar)
967 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
968 get_mem_index(s),
969 iss_valid, iss_srt, iss_sf, iss_ar);
973 * Store from FP register to memory
975 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
977 /* This writes the bottom N bits of a 128 bit wide vector to memory */
978 TCGv_i64 tmp = tcg_temp_new_i64();
979 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
980 if (size < 4) {
981 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
982 s->be_data + size);
983 } else {
984 bool be = s->be_data == MO_BE;
985 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
987 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
988 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
989 s->be_data | MO_Q);
990 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
991 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
992 s->be_data | MO_Q);
993 tcg_temp_free_i64(tcg_hiaddr);
996 tcg_temp_free_i64(tmp);
1000 * Load from memory to FP register
1002 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1004 /* This always zero-extends and writes to a full 128 bit wide vector */
1005 TCGv_i64 tmplo = tcg_temp_new_i64();
1006 TCGv_i64 tmphi = NULL;
1008 if (size < 4) {
1009 MemOp memop = s->be_data + size;
1010 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1011 } else {
1012 bool be = s->be_data == MO_BE;
1013 TCGv_i64 tcg_hiaddr;
1015 tmphi = tcg_temp_new_i64();
1016 tcg_hiaddr = tcg_temp_new_i64();
1018 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1019 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1020 s->be_data | MO_Q);
1021 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1022 s->be_data | MO_Q);
1023 tcg_temp_free_i64(tcg_hiaddr);
1026 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1027 tcg_temp_free_i64(tmplo);
1029 if (tmphi) {
1030 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1031 tcg_temp_free_i64(tmphi);
1033 clear_vec_high(s, tmphi != NULL, destidx);
1037 * Vector load/store helpers.
1039 * The principal difference between this and a FP load is that we don't
1040 * zero extend as we are filling a partial chunk of the vector register.
1041 * These functions don't support 128 bit loads/stores, which would be
1042 * normal load/store operations.
1044 * The _i32 versions are useful when operating on 32 bit quantities
1045 * (eg for floating point single or using Neon helper functions).
1048 /* Get value of an element within a vector register */
1049 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1050 int element, MemOp memop)
1052 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1053 switch (memop) {
1054 case MO_8:
1055 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1056 break;
1057 case MO_16:
1058 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1059 break;
1060 case MO_32:
1061 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1062 break;
1063 case MO_8|MO_SIGN:
1064 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1065 break;
1066 case MO_16|MO_SIGN:
1067 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1068 break;
1069 case MO_32|MO_SIGN:
1070 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1071 break;
1072 case MO_64:
1073 case MO_64|MO_SIGN:
1074 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1075 break;
1076 default:
1077 g_assert_not_reached();
1081 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1082 int element, MemOp memop)
1084 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1085 switch (memop) {
1086 case MO_8:
1087 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1088 break;
1089 case MO_16:
1090 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1091 break;
1092 case MO_8|MO_SIGN:
1093 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1094 break;
1095 case MO_16|MO_SIGN:
1096 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1097 break;
1098 case MO_32:
1099 case MO_32|MO_SIGN:
1100 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1101 break;
1102 default:
1103 g_assert_not_reached();
1107 /* Set value of an element within a vector register */
1108 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1109 int element, MemOp memop)
1111 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1112 switch (memop) {
1113 case MO_8:
1114 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1115 break;
1116 case MO_16:
1117 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1118 break;
1119 case MO_32:
1120 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1121 break;
1122 case MO_64:
1123 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1124 break;
1125 default:
1126 g_assert_not_reached();
1130 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1131 int destidx, int element, MemOp memop)
1133 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134 switch (memop) {
1135 case MO_8:
1136 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1137 break;
1138 case MO_16:
1139 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1140 break;
1141 case MO_32:
1142 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1143 break;
1144 default:
1145 g_assert_not_reached();
1149 /* Store from vector register to memory */
1150 static void do_vec_st(DisasContext *s, int srcidx, int element,
1151 TCGv_i64 tcg_addr, int size, MemOp endian)
1153 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1155 read_vec_element(s, tcg_tmp, srcidx, element, size);
1156 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1158 tcg_temp_free_i64(tcg_tmp);
1161 /* Load from memory to vector register */
1162 static void do_vec_ld(DisasContext *s, int destidx, int element,
1163 TCGv_i64 tcg_addr, int size, MemOp endian)
1165 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1167 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1168 write_vec_element(s, tcg_tmp, destidx, element, size);
1170 tcg_temp_free_i64(tcg_tmp);
1173 /* Check that FP/Neon access is enabled. If it is, return
1174 * true. If not, emit code to generate an appropriate exception,
1175 * and return false; the caller should not emit any code for
1176 * the instruction. Note that this check must happen after all
1177 * unallocated-encoding checks (otherwise the syndrome information
1178 * for the resulting exception will be incorrect).
1180 static bool fp_access_check(DisasContext *s)
1182 if (s->fp_excp_el) {
1183 assert(!s->fp_access_checked);
1184 s->fp_access_checked = true;
1186 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1187 syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
1188 return false;
1190 s->fp_access_checked = true;
1191 return true;
1194 /* Check that SVE access is enabled. If it is, return true.
1195 * If not, emit code to generate an appropriate exception and return false.
1197 bool sve_access_check(DisasContext *s)
1199 if (s->sve_excp_el) {
1200 assert(!s->sve_access_checked);
1201 s->sve_access_checked = true;
1203 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1204 syn_sve_access_trap(), s->sve_excp_el);
1205 return false;
1207 s->sve_access_checked = true;
1208 return fp_access_check(s);
1212 * This utility function is for doing register extension with an
1213 * optional shift. You will likely want to pass a temporary for the
1214 * destination register. See DecodeRegExtend() in the ARM ARM.
1216 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1217 int option, unsigned int shift)
1219 int extsize = extract32(option, 0, 2);
1220 bool is_signed = extract32(option, 2, 1);
1222 if (is_signed) {
1223 switch (extsize) {
1224 case 0:
1225 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1226 break;
1227 case 1:
1228 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1229 break;
1230 case 2:
1231 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1232 break;
1233 case 3:
1234 tcg_gen_mov_i64(tcg_out, tcg_in);
1235 break;
1237 } else {
1238 switch (extsize) {
1239 case 0:
1240 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1241 break;
1242 case 1:
1243 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1244 break;
1245 case 2:
1246 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1247 break;
1248 case 3:
1249 tcg_gen_mov_i64(tcg_out, tcg_in);
1250 break;
1254 if (shift) {
1255 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1259 static inline void gen_check_sp_alignment(DisasContext *s)
1261 /* The AArch64 architecture mandates that (if enabled via PSTATE
1262 * or SCTLR bits) there is a check that SP is 16-aligned on every
1263 * SP-relative load or store (with an exception generated if it is not).
1264 * In line with general QEMU practice regarding misaligned accesses,
1265 * we omit these checks for the sake of guest program performance.
1266 * This function is provided as a hook so we can more easily add these
1267 * checks in future (possibly as a "favour catching guest program bugs
1268 * over speed" user selectable option).
1273 * This provides a simple table based table lookup decoder. It is
1274 * intended to be used when the relevant bits for decode are too
1275 * awkwardly placed and switch/if based logic would be confusing and
1276 * deeply nested. Since it's a linear search through the table, tables
1277 * should be kept small.
1279 * It returns the first handler where insn & mask == pattern, or
1280 * NULL if there is no match.
1281 * The table is terminated by an empty mask (i.e. 0)
1283 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1284 uint32_t insn)
1286 const AArch64DecodeTable *tptr = table;
1288 while (tptr->mask) {
1289 if ((insn & tptr->mask) == tptr->pattern) {
1290 return tptr->disas_fn;
1292 tptr++;
1294 return NULL;
1298 * The instruction disassembly implemented here matches
1299 * the instruction encoding classifications in chapter C4
1300 * of the ARM Architecture Reference Manual (DDI0487B_a);
1301 * classification names and decode diagrams here should generally
1302 * match up with those in the manual.
1305 /* Unconditional branch (immediate)
1306 * 31 30 26 25 0
1307 * +----+-----------+-------------------------------------+
1308 * | op | 0 0 1 0 1 | imm26 |
1309 * +----+-----------+-------------------------------------+
1311 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1313 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1315 if (insn & (1U << 31)) {
1316 /* BL Branch with link */
1317 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1320 /* B Branch / BL Branch with link */
1321 reset_btype(s);
1322 gen_goto_tb(s, 0, addr);
1325 /* Compare and branch (immediate)
1326 * 31 30 25 24 23 5 4 0
1327 * +----+-------------+----+---------------------+--------+
1328 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1329 * +----+-------------+----+---------------------+--------+
1331 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1333 unsigned int sf, op, rt;
1334 uint64_t addr;
1335 TCGLabel *label_match;
1336 TCGv_i64 tcg_cmp;
1338 sf = extract32(insn, 31, 1);
1339 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1340 rt = extract32(insn, 0, 5);
1341 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1343 tcg_cmp = read_cpu_reg(s, rt, sf);
1344 label_match = gen_new_label();
1346 reset_btype(s);
1347 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1348 tcg_cmp, 0, label_match);
1350 gen_goto_tb(s, 0, s->base.pc_next);
1351 gen_set_label(label_match);
1352 gen_goto_tb(s, 1, addr);
1355 /* Test and branch (immediate)
1356 * 31 30 25 24 23 19 18 5 4 0
1357 * +----+-------------+----+-------+-------------+------+
1358 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1359 * +----+-------------+----+-------+-------------+------+
1361 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1363 unsigned int bit_pos, op, rt;
1364 uint64_t addr;
1365 TCGLabel *label_match;
1366 TCGv_i64 tcg_cmp;
1368 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1369 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1370 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1371 rt = extract32(insn, 0, 5);
1373 tcg_cmp = tcg_temp_new_i64();
1374 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1375 label_match = gen_new_label();
1377 reset_btype(s);
1378 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1379 tcg_cmp, 0, label_match);
1380 tcg_temp_free_i64(tcg_cmp);
1381 gen_goto_tb(s, 0, s->base.pc_next);
1382 gen_set_label(label_match);
1383 gen_goto_tb(s, 1, addr);
1386 /* Conditional branch (immediate)
1387 * 31 25 24 23 5 4 3 0
1388 * +---------------+----+---------------------+----+------+
1389 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1390 * +---------------+----+---------------------+----+------+
1392 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1394 unsigned int cond;
1395 uint64_t addr;
1397 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1398 unallocated_encoding(s);
1399 return;
1401 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1402 cond = extract32(insn, 0, 4);
1404 reset_btype(s);
1405 if (cond < 0x0e) {
1406 /* genuinely conditional branches */
1407 TCGLabel *label_match = gen_new_label();
1408 arm_gen_test_cc(cond, label_match);
1409 gen_goto_tb(s, 0, s->base.pc_next);
1410 gen_set_label(label_match);
1411 gen_goto_tb(s, 1, addr);
1412 } else {
1413 /* 0xe and 0xf are both "always" conditions */
1414 gen_goto_tb(s, 0, addr);
1418 /* HINT instruction group, including various allocated HINTs */
1419 static void handle_hint(DisasContext *s, uint32_t insn,
1420 unsigned int op1, unsigned int op2, unsigned int crm)
1422 unsigned int selector = crm << 3 | op2;
1424 if (op1 != 3) {
1425 unallocated_encoding(s);
1426 return;
1429 switch (selector) {
1430 case 0b00000: /* NOP */
1431 break;
1432 case 0b00011: /* WFI */
1433 s->base.is_jmp = DISAS_WFI;
1434 break;
1435 case 0b00001: /* YIELD */
1436 /* When running in MTTCG we don't generate jumps to the yield and
1437 * WFE helpers as it won't affect the scheduling of other vCPUs.
1438 * If we wanted to more completely model WFE/SEV so we don't busy
1439 * spin unnecessarily we would need to do something more involved.
1441 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1442 s->base.is_jmp = DISAS_YIELD;
1444 break;
1445 case 0b00010: /* WFE */
1446 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1447 s->base.is_jmp = DISAS_WFE;
1449 break;
1450 case 0b00100: /* SEV */
1451 case 0b00101: /* SEVL */
1452 /* we treat all as NOP at least for now */
1453 break;
1454 case 0b00111: /* XPACLRI */
1455 if (s->pauth_active) {
1456 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1458 break;
1459 case 0b01000: /* PACIA1716 */
1460 if (s->pauth_active) {
1461 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1463 break;
1464 case 0b01010: /* PACIB1716 */
1465 if (s->pauth_active) {
1466 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1468 break;
1469 case 0b01100: /* AUTIA1716 */
1470 if (s->pauth_active) {
1471 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1473 break;
1474 case 0b01110: /* AUTIB1716 */
1475 if (s->pauth_active) {
1476 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1478 break;
1479 case 0b11000: /* PACIAZ */
1480 if (s->pauth_active) {
1481 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1482 new_tmp_a64_zero(s));
1484 break;
1485 case 0b11001: /* PACIASP */
1486 if (s->pauth_active) {
1487 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1489 break;
1490 case 0b11010: /* PACIBZ */
1491 if (s->pauth_active) {
1492 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1493 new_tmp_a64_zero(s));
1495 break;
1496 case 0b11011: /* PACIBSP */
1497 if (s->pauth_active) {
1498 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1500 break;
1501 case 0b11100: /* AUTIAZ */
1502 if (s->pauth_active) {
1503 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1504 new_tmp_a64_zero(s));
1506 break;
1507 case 0b11101: /* AUTIASP */
1508 if (s->pauth_active) {
1509 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1511 break;
1512 case 0b11110: /* AUTIBZ */
1513 if (s->pauth_active) {
1514 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1515 new_tmp_a64_zero(s));
1517 break;
1518 case 0b11111: /* AUTIBSP */
1519 if (s->pauth_active) {
1520 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1522 break;
1523 default:
1524 /* default specified as NOP equivalent */
1525 break;
1529 static void gen_clrex(DisasContext *s, uint32_t insn)
1531 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1534 /* CLREX, DSB, DMB, ISB */
1535 static void handle_sync(DisasContext *s, uint32_t insn,
1536 unsigned int op1, unsigned int op2, unsigned int crm)
1538 TCGBar bar;
1540 if (op1 != 3) {
1541 unallocated_encoding(s);
1542 return;
1545 switch (op2) {
1546 case 2: /* CLREX */
1547 gen_clrex(s, insn);
1548 return;
1549 case 4: /* DSB */
1550 case 5: /* DMB */
1551 switch (crm & 3) {
1552 case 1: /* MBReqTypes_Reads */
1553 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1554 break;
1555 case 2: /* MBReqTypes_Writes */
1556 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1557 break;
1558 default: /* MBReqTypes_All */
1559 bar = TCG_BAR_SC | TCG_MO_ALL;
1560 break;
1562 tcg_gen_mb(bar);
1563 return;
1564 case 6: /* ISB */
1565 /* We need to break the TB after this insn to execute
1566 * a self-modified code correctly and also to take
1567 * any pending interrupts immediately.
1569 reset_btype(s);
1570 gen_goto_tb(s, 0, s->base.pc_next);
1571 return;
1573 case 7: /* SB */
1574 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1575 goto do_unallocated;
1578 * TODO: There is no speculation barrier opcode for TCG;
1579 * MB and end the TB instead.
1581 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1582 gen_goto_tb(s, 0, s->base.pc_next);
1583 return;
1585 default:
1586 do_unallocated:
1587 unallocated_encoding(s);
1588 return;
1592 static void gen_xaflag(void)
1594 TCGv_i32 z = tcg_temp_new_i32();
1596 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1599 * (!C & !Z) << 31
1600 * (!(C | Z)) << 31
1601 * ~((C | Z) << 31)
1602 * ~-(C | Z)
1603 * (C | Z) - 1
1605 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1606 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1608 /* !(Z & C) */
1609 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1610 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1612 /* (!C & Z) << 31 -> -(Z & ~C) */
1613 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1614 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1616 /* C | Z */
1617 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1619 tcg_temp_free_i32(z);
1622 static void gen_axflag(void)
1624 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1625 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1627 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1628 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1630 tcg_gen_movi_i32(cpu_NF, 0);
1631 tcg_gen_movi_i32(cpu_VF, 0);
1634 /* MSR (immediate) - move immediate to processor state field */
1635 static void handle_msr_i(DisasContext *s, uint32_t insn,
1636 unsigned int op1, unsigned int op2, unsigned int crm)
1638 TCGv_i32 t1;
1639 int op = op1 << 3 | op2;
1641 /* End the TB by default, chaining is ok. */
1642 s->base.is_jmp = DISAS_TOO_MANY;
1644 switch (op) {
1645 case 0x00: /* CFINV */
1646 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1647 goto do_unallocated;
1649 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1650 s->base.is_jmp = DISAS_NEXT;
1651 break;
1653 case 0x01: /* XAFlag */
1654 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1655 goto do_unallocated;
1657 gen_xaflag();
1658 s->base.is_jmp = DISAS_NEXT;
1659 break;
1661 case 0x02: /* AXFlag */
1662 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1663 goto do_unallocated;
1665 gen_axflag();
1666 s->base.is_jmp = DISAS_NEXT;
1667 break;
1669 case 0x03: /* UAO */
1670 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1671 goto do_unallocated;
1673 if (crm & 1) {
1674 set_pstate_bits(PSTATE_UAO);
1675 } else {
1676 clear_pstate_bits(PSTATE_UAO);
1678 t1 = tcg_const_i32(s->current_el);
1679 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1680 tcg_temp_free_i32(t1);
1681 break;
1683 case 0x04: /* PAN */
1684 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1685 goto do_unallocated;
1687 if (crm & 1) {
1688 set_pstate_bits(PSTATE_PAN);
1689 } else {
1690 clear_pstate_bits(PSTATE_PAN);
1692 t1 = tcg_const_i32(s->current_el);
1693 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1694 tcg_temp_free_i32(t1);
1695 break;
1697 case 0x05: /* SPSel */
1698 if (s->current_el == 0) {
1699 goto do_unallocated;
1701 t1 = tcg_const_i32(crm & PSTATE_SP);
1702 gen_helper_msr_i_spsel(cpu_env, t1);
1703 tcg_temp_free_i32(t1);
1704 break;
1706 case 0x19: /* SSBS */
1707 if (!dc_isar_feature(aa64_ssbs, s)) {
1708 goto do_unallocated;
1710 if (crm & 1) {
1711 set_pstate_bits(PSTATE_SSBS);
1712 } else {
1713 clear_pstate_bits(PSTATE_SSBS);
1715 /* Don't need to rebuild hflags since SSBS is a nop */
1716 break;
1718 case 0x1a: /* DIT */
1719 if (!dc_isar_feature(aa64_dit, s)) {
1720 goto do_unallocated;
1722 if (crm & 1) {
1723 set_pstate_bits(PSTATE_DIT);
1724 } else {
1725 clear_pstate_bits(PSTATE_DIT);
1727 /* There's no need to rebuild hflags because DIT is a nop */
1728 break;
1730 case 0x1e: /* DAIFSet */
1731 t1 = tcg_const_i32(crm);
1732 gen_helper_msr_i_daifset(cpu_env, t1);
1733 tcg_temp_free_i32(t1);
1734 break;
1736 case 0x1f: /* DAIFClear */
1737 t1 = tcg_const_i32(crm);
1738 gen_helper_msr_i_daifclear(cpu_env, t1);
1739 tcg_temp_free_i32(t1);
1740 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1741 s->base.is_jmp = DISAS_UPDATE_EXIT;
1742 break;
1744 case 0x1c: /* TCO */
1745 if (dc_isar_feature(aa64_mte, s)) {
1746 /* Full MTE is enabled -- set the TCO bit as directed. */
1747 if (crm & 1) {
1748 set_pstate_bits(PSTATE_TCO);
1749 } else {
1750 clear_pstate_bits(PSTATE_TCO);
1752 t1 = tcg_const_i32(s->current_el);
1753 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1754 tcg_temp_free_i32(t1);
1755 /* Many factors, including TCO, go into MTE_ACTIVE. */
1756 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1757 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1758 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1759 s->base.is_jmp = DISAS_NEXT;
1760 } else {
1761 goto do_unallocated;
1763 break;
1765 default:
1766 do_unallocated:
1767 unallocated_encoding(s);
1768 return;
1772 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1774 TCGv_i32 tmp = tcg_temp_new_i32();
1775 TCGv_i32 nzcv = tcg_temp_new_i32();
1777 /* build bit 31, N */
1778 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1779 /* build bit 30, Z */
1780 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1781 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1782 /* build bit 29, C */
1783 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1784 /* build bit 28, V */
1785 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1786 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1787 /* generate result */
1788 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1790 tcg_temp_free_i32(nzcv);
1791 tcg_temp_free_i32(tmp);
1794 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1796 TCGv_i32 nzcv = tcg_temp_new_i32();
1798 /* take NZCV from R[t] */
1799 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1801 /* bit 31, N */
1802 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1803 /* bit 30, Z */
1804 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1805 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1806 /* bit 29, C */
1807 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1808 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1809 /* bit 28, V */
1810 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1811 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1812 tcg_temp_free_i32(nzcv);
1815 /* MRS - move from system register
1816 * MSR (register) - move to system register
1817 * SYS
1818 * SYSL
1819 * These are all essentially the same insn in 'read' and 'write'
1820 * versions, with varying op0 fields.
1822 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1823 unsigned int op0, unsigned int op1, unsigned int op2,
1824 unsigned int crn, unsigned int crm, unsigned int rt)
1826 const ARMCPRegInfo *ri;
1827 TCGv_i64 tcg_rt;
1829 ri = get_arm_cp_reginfo(s->cp_regs,
1830 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1831 crn, crm, op0, op1, op2));
1833 if (!ri) {
1834 /* Unknown register; this might be a guest error or a QEMU
1835 * unimplemented feature.
1837 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1838 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1839 isread ? "read" : "write", op0, op1, crn, crm, op2);
1840 unallocated_encoding(s);
1841 return;
1844 /* Check access permissions */
1845 if (!cp_access_ok(s->current_el, ri, isread)) {
1846 unallocated_encoding(s);
1847 return;
1850 if (ri->accessfn) {
1851 /* Emit code to perform further access permissions checks at
1852 * runtime; this may result in an exception.
1854 TCGv_ptr tmpptr;
1855 TCGv_i32 tcg_syn, tcg_isread;
1856 uint32_t syndrome;
1858 gen_a64_set_pc_im(s->pc_curr);
1859 tmpptr = tcg_const_ptr(ri);
1860 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1861 tcg_syn = tcg_const_i32(syndrome);
1862 tcg_isread = tcg_const_i32(isread);
1863 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1864 tcg_temp_free_ptr(tmpptr);
1865 tcg_temp_free_i32(tcg_syn);
1866 tcg_temp_free_i32(tcg_isread);
1867 } else if (ri->type & ARM_CP_RAISES_EXC) {
1869 * The readfn or writefn might raise an exception;
1870 * synchronize the CPU state in case it does.
1872 gen_a64_set_pc_im(s->pc_curr);
1875 /* Handle special cases first */
1876 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1877 case ARM_CP_NOP:
1878 return;
1879 case ARM_CP_NZCV:
1880 tcg_rt = cpu_reg(s, rt);
1881 if (isread) {
1882 gen_get_nzcv(tcg_rt);
1883 } else {
1884 gen_set_nzcv(tcg_rt);
1886 return;
1887 case ARM_CP_CURRENTEL:
1888 /* Reads as current EL value from pstate, which is
1889 * guaranteed to be constant by the tb flags.
1891 tcg_rt = cpu_reg(s, rt);
1892 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1893 return;
1894 case ARM_CP_DC_ZVA:
1895 /* Writes clear the aligned block of memory which rt points into. */
1896 if (s->mte_active[0]) {
1897 TCGv_i32 t_desc;
1898 int desc = 0;
1900 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1901 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1902 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1903 t_desc = tcg_const_i32(desc);
1905 tcg_rt = new_tmp_a64(s);
1906 gen_helper_mte_check_zva(tcg_rt, cpu_env, t_desc, cpu_reg(s, rt));
1907 tcg_temp_free_i32(t_desc);
1908 } else {
1909 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1911 gen_helper_dc_zva(cpu_env, tcg_rt);
1912 return;
1913 case ARM_CP_DC_GVA:
1915 TCGv_i64 clean_addr, tag;
1918 * DC_GVA, like DC_ZVA, requires that we supply the original
1919 * pointer for an invalid page. Probe that address first.
1921 tcg_rt = cpu_reg(s, rt);
1922 clean_addr = clean_data_tbi(s, tcg_rt);
1923 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
1925 if (s->ata) {
1926 /* Extract the tag from the register to match STZGM. */
1927 tag = tcg_temp_new_i64();
1928 tcg_gen_shri_i64(tag, tcg_rt, 56);
1929 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1930 tcg_temp_free_i64(tag);
1933 return;
1934 case ARM_CP_DC_GZVA:
1936 TCGv_i64 clean_addr, tag;
1938 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
1939 tcg_rt = cpu_reg(s, rt);
1940 clean_addr = clean_data_tbi(s, tcg_rt);
1941 gen_helper_dc_zva(cpu_env, clean_addr);
1943 if (s->ata) {
1944 /* Extract the tag from the register to match STZGM. */
1945 tag = tcg_temp_new_i64();
1946 tcg_gen_shri_i64(tag, tcg_rt, 56);
1947 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1948 tcg_temp_free_i64(tag);
1951 return;
1952 default:
1953 break;
1955 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1956 return;
1957 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1958 return;
1961 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1962 gen_io_start();
1965 tcg_rt = cpu_reg(s, rt);
1967 if (isread) {
1968 if (ri->type & ARM_CP_CONST) {
1969 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1970 } else if (ri->readfn) {
1971 TCGv_ptr tmpptr;
1972 tmpptr = tcg_const_ptr(ri);
1973 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1974 tcg_temp_free_ptr(tmpptr);
1975 } else {
1976 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1978 } else {
1979 if (ri->type & ARM_CP_CONST) {
1980 /* If not forbidden by access permissions, treat as WI */
1981 return;
1982 } else if (ri->writefn) {
1983 TCGv_ptr tmpptr;
1984 tmpptr = tcg_const_ptr(ri);
1985 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1986 tcg_temp_free_ptr(tmpptr);
1987 } else {
1988 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1992 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1993 /* I/O operations must end the TB here (whether read or write) */
1994 s->base.is_jmp = DISAS_UPDATE_EXIT;
1996 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1998 * A write to any coprocessor regiser that ends a TB
1999 * must rebuild the hflags for the next TB.
2001 TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
2002 gen_helper_rebuild_hflags_a64(cpu_env, tcg_el);
2003 tcg_temp_free_i32(tcg_el);
2005 * We default to ending the TB on a coprocessor register write,
2006 * but allow this to be suppressed by the register definition
2007 * (usually only necessary to work around guest bugs).
2009 s->base.is_jmp = DISAS_UPDATE_EXIT;
2013 /* System
2014 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
2015 * +---------------------+---+-----+-----+-------+-------+-----+------+
2016 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
2017 * +---------------------+---+-----+-----+-------+-------+-----+------+
2019 static void disas_system(DisasContext *s, uint32_t insn)
2021 unsigned int l, op0, op1, crn, crm, op2, rt;
2022 l = extract32(insn, 21, 1);
2023 op0 = extract32(insn, 19, 2);
2024 op1 = extract32(insn, 16, 3);
2025 crn = extract32(insn, 12, 4);
2026 crm = extract32(insn, 8, 4);
2027 op2 = extract32(insn, 5, 3);
2028 rt = extract32(insn, 0, 5);
2030 if (op0 == 0) {
2031 if (l || rt != 31) {
2032 unallocated_encoding(s);
2033 return;
2035 switch (crn) {
2036 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2037 handle_hint(s, insn, op1, op2, crm);
2038 break;
2039 case 3: /* CLREX, DSB, DMB, ISB */
2040 handle_sync(s, insn, op1, op2, crm);
2041 break;
2042 case 4: /* MSR (immediate) */
2043 handle_msr_i(s, insn, op1, op2, crm);
2044 break;
2045 default:
2046 unallocated_encoding(s);
2047 break;
2049 return;
2051 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2054 /* Exception generation
2056 * 31 24 23 21 20 5 4 2 1 0
2057 * +-----------------+-----+------------------------+-----+----+
2058 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2059 * +-----------------------+------------------------+----------+
2061 static void disas_exc(DisasContext *s, uint32_t insn)
2063 int opc = extract32(insn, 21, 3);
2064 int op2_ll = extract32(insn, 0, 5);
2065 int imm16 = extract32(insn, 5, 16);
2066 TCGv_i32 tmp;
2068 switch (opc) {
2069 case 0:
2070 /* For SVC, HVC and SMC we advance the single-step state
2071 * machine before taking the exception. This is architecturally
2072 * mandated, to ensure that single-stepping a system call
2073 * instruction works properly.
2075 switch (op2_ll) {
2076 case 1: /* SVC */
2077 gen_ss_advance(s);
2078 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
2079 syn_aa64_svc(imm16), default_exception_el(s));
2080 break;
2081 case 2: /* HVC */
2082 if (s->current_el == 0) {
2083 unallocated_encoding(s);
2084 break;
2086 /* The pre HVC helper handles cases when HVC gets trapped
2087 * as an undefined insn by runtime configuration.
2089 gen_a64_set_pc_im(s->pc_curr);
2090 gen_helper_pre_hvc(cpu_env);
2091 gen_ss_advance(s);
2092 gen_exception_insn(s, s->base.pc_next, EXCP_HVC,
2093 syn_aa64_hvc(imm16), 2);
2094 break;
2095 case 3: /* SMC */
2096 if (s->current_el == 0) {
2097 unallocated_encoding(s);
2098 break;
2100 gen_a64_set_pc_im(s->pc_curr);
2101 tmp = tcg_const_i32(syn_aa64_smc(imm16));
2102 gen_helper_pre_smc(cpu_env, tmp);
2103 tcg_temp_free_i32(tmp);
2104 gen_ss_advance(s);
2105 gen_exception_insn(s, s->base.pc_next, EXCP_SMC,
2106 syn_aa64_smc(imm16), 3);
2107 break;
2108 default:
2109 unallocated_encoding(s);
2110 break;
2112 break;
2113 case 1:
2114 if (op2_ll != 0) {
2115 unallocated_encoding(s);
2116 break;
2118 /* BRK */
2119 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2120 break;
2121 case 2:
2122 if (op2_ll != 0) {
2123 unallocated_encoding(s);
2124 break;
2126 /* HLT. This has two purposes.
2127 * Architecturally, it is an external halting debug instruction.
2128 * Since QEMU doesn't implement external debug, we treat this as
2129 * it is required for halting debug disabled: it will UNDEF.
2130 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2132 if (semihosting_enabled() && imm16 == 0xf000) {
2133 #ifndef CONFIG_USER_ONLY
2134 /* In system mode, don't allow userspace access to semihosting,
2135 * to provide some semblance of security (and for consistency
2136 * with our 32-bit semihosting).
2138 if (s->current_el == 0) {
2139 unsupported_encoding(s, insn);
2140 break;
2142 #endif
2143 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
2144 } else {
2145 unsupported_encoding(s, insn);
2147 break;
2148 case 5:
2149 if (op2_ll < 1 || op2_ll > 3) {
2150 unallocated_encoding(s);
2151 break;
2153 /* DCPS1, DCPS2, DCPS3 */
2154 unsupported_encoding(s, insn);
2155 break;
2156 default:
2157 unallocated_encoding(s);
2158 break;
2162 /* Unconditional branch (register)
2163 * 31 25 24 21 20 16 15 10 9 5 4 0
2164 * +---------------+-------+-------+-------+------+-------+
2165 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2166 * +---------------+-------+-------+-------+------+-------+
2168 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2170 unsigned int opc, op2, op3, rn, op4;
2171 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2172 TCGv_i64 dst;
2173 TCGv_i64 modifier;
2175 opc = extract32(insn, 21, 4);
2176 op2 = extract32(insn, 16, 5);
2177 op3 = extract32(insn, 10, 6);
2178 rn = extract32(insn, 5, 5);
2179 op4 = extract32(insn, 0, 5);
2181 if (op2 != 0x1f) {
2182 goto do_unallocated;
2185 switch (opc) {
2186 case 0: /* BR */
2187 case 1: /* BLR */
2188 case 2: /* RET */
2189 btype_mod = opc;
2190 switch (op3) {
2191 case 0:
2192 /* BR, BLR, RET */
2193 if (op4 != 0) {
2194 goto do_unallocated;
2196 dst = cpu_reg(s, rn);
2197 break;
2199 case 2:
2200 case 3:
2201 if (!dc_isar_feature(aa64_pauth, s)) {
2202 goto do_unallocated;
2204 if (opc == 2) {
2205 /* RETAA, RETAB */
2206 if (rn != 0x1f || op4 != 0x1f) {
2207 goto do_unallocated;
2209 rn = 30;
2210 modifier = cpu_X[31];
2211 } else {
2212 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2213 if (op4 != 0x1f) {
2214 goto do_unallocated;
2216 modifier = new_tmp_a64_zero(s);
2218 if (s->pauth_active) {
2219 dst = new_tmp_a64(s);
2220 if (op3 == 2) {
2221 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2222 } else {
2223 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2225 } else {
2226 dst = cpu_reg(s, rn);
2228 break;
2230 default:
2231 goto do_unallocated;
2233 gen_a64_set_pc(s, dst);
2234 /* BLR also needs to load return address */
2235 if (opc == 1) {
2236 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2238 break;
2240 case 8: /* BRAA */
2241 case 9: /* BLRAA */
2242 if (!dc_isar_feature(aa64_pauth, s)) {
2243 goto do_unallocated;
2245 if ((op3 & ~1) != 2) {
2246 goto do_unallocated;
2248 btype_mod = opc & 1;
2249 if (s->pauth_active) {
2250 dst = new_tmp_a64(s);
2251 modifier = cpu_reg_sp(s, op4);
2252 if (op3 == 2) {
2253 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2254 } else {
2255 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2257 } else {
2258 dst = cpu_reg(s, rn);
2260 gen_a64_set_pc(s, dst);
2261 /* BLRAA also needs to load return address */
2262 if (opc == 9) {
2263 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2265 break;
2267 case 4: /* ERET */
2268 if (s->current_el == 0) {
2269 goto do_unallocated;
2271 switch (op3) {
2272 case 0: /* ERET */
2273 if (op4 != 0) {
2274 goto do_unallocated;
2276 dst = tcg_temp_new_i64();
2277 tcg_gen_ld_i64(dst, cpu_env,
2278 offsetof(CPUARMState, elr_el[s->current_el]));
2279 break;
2281 case 2: /* ERETAA */
2282 case 3: /* ERETAB */
2283 if (!dc_isar_feature(aa64_pauth, s)) {
2284 goto do_unallocated;
2286 if (rn != 0x1f || op4 != 0x1f) {
2287 goto do_unallocated;
2289 dst = tcg_temp_new_i64();
2290 tcg_gen_ld_i64(dst, cpu_env,
2291 offsetof(CPUARMState, elr_el[s->current_el]));
2292 if (s->pauth_active) {
2293 modifier = cpu_X[31];
2294 if (op3 == 2) {
2295 gen_helper_autia(dst, cpu_env, dst, modifier);
2296 } else {
2297 gen_helper_autib(dst, cpu_env, dst, modifier);
2300 break;
2302 default:
2303 goto do_unallocated;
2305 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2306 gen_io_start();
2309 gen_helper_exception_return(cpu_env, dst);
2310 tcg_temp_free_i64(dst);
2311 /* Must exit loop to check un-masked IRQs */
2312 s->base.is_jmp = DISAS_EXIT;
2313 return;
2315 case 5: /* DRPS */
2316 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2317 goto do_unallocated;
2318 } else {
2319 unsupported_encoding(s, insn);
2321 return;
2323 default:
2324 do_unallocated:
2325 unallocated_encoding(s);
2326 return;
2329 switch (btype_mod) {
2330 case 0: /* BR */
2331 if (dc_isar_feature(aa64_bti, s)) {
2332 /* BR to {x16,x17} or !guard -> 1, else 3. */
2333 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2335 break;
2337 case 1: /* BLR */
2338 if (dc_isar_feature(aa64_bti, s)) {
2339 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2340 set_btype(s, 2);
2342 break;
2344 default: /* RET or none of the above. */
2345 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2346 break;
2349 s->base.is_jmp = DISAS_JUMP;
2352 /* Branches, exception generating and system instructions */
2353 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2355 switch (extract32(insn, 25, 7)) {
2356 case 0x0a: case 0x0b:
2357 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2358 disas_uncond_b_imm(s, insn);
2359 break;
2360 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2361 disas_comp_b_imm(s, insn);
2362 break;
2363 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2364 disas_test_b_imm(s, insn);
2365 break;
2366 case 0x2a: /* Conditional branch (immediate) */
2367 disas_cond_b_imm(s, insn);
2368 break;
2369 case 0x6a: /* Exception generation / System */
2370 if (insn & (1 << 24)) {
2371 if (extract32(insn, 22, 2) == 0) {
2372 disas_system(s, insn);
2373 } else {
2374 unallocated_encoding(s);
2376 } else {
2377 disas_exc(s, insn);
2379 break;
2380 case 0x6b: /* Unconditional branch (register) */
2381 disas_uncond_b_reg(s, insn);
2382 break;
2383 default:
2384 unallocated_encoding(s);
2385 break;
2390 * Load/Store exclusive instructions are implemented by remembering
2391 * the value/address loaded, and seeing if these are the same
2392 * when the store is performed. This is not actually the architecturally
2393 * mandated semantics, but it works for typical guest code sequences
2394 * and avoids having to monitor regular stores.
2396 * The store exclusive uses the atomic cmpxchg primitives to avoid
2397 * races in multi-threaded linux-user and when MTTCG softmmu is
2398 * enabled.
2400 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2401 TCGv_i64 addr, int size, bool is_pair)
2403 int idx = get_mem_index(s);
2404 MemOp memop = s->be_data;
2406 g_assert(size <= 3);
2407 if (is_pair) {
2408 g_assert(size >= 2);
2409 if (size == 2) {
2410 /* The pair must be single-copy atomic for the doubleword. */
2411 memop |= MO_64 | MO_ALIGN;
2412 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2413 if (s->be_data == MO_LE) {
2414 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2415 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2416 } else {
2417 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2418 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2420 } else {
2421 /* The pair must be single-copy atomic for *each* doubleword, not
2422 the entire quadword, however it must be quadword aligned. */
2423 memop |= MO_64;
2424 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2425 memop | MO_ALIGN_16);
2427 TCGv_i64 addr2 = tcg_temp_new_i64();
2428 tcg_gen_addi_i64(addr2, addr, 8);
2429 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2430 tcg_temp_free_i64(addr2);
2432 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2433 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2435 } else {
2436 memop |= size | MO_ALIGN;
2437 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2438 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2440 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2443 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2444 TCGv_i64 addr, int size, int is_pair)
2446 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2447 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2448 * [addr] = {Rt};
2449 * if (is_pair) {
2450 * [addr + datasize] = {Rt2};
2452 * {Rd} = 0;
2453 * } else {
2454 * {Rd} = 1;
2456 * env->exclusive_addr = -1;
2458 TCGLabel *fail_label = gen_new_label();
2459 TCGLabel *done_label = gen_new_label();
2460 TCGv_i64 tmp;
2462 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2464 tmp = tcg_temp_new_i64();
2465 if (is_pair) {
2466 if (size == 2) {
2467 if (s->be_data == MO_LE) {
2468 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2469 } else {
2470 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2472 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2473 cpu_exclusive_val, tmp,
2474 get_mem_index(s),
2475 MO_64 | MO_ALIGN | s->be_data);
2476 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2477 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2478 if (!HAVE_CMPXCHG128) {
2479 gen_helper_exit_atomic(cpu_env);
2480 s->base.is_jmp = DISAS_NORETURN;
2481 } else if (s->be_data == MO_LE) {
2482 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2483 cpu_exclusive_addr,
2484 cpu_reg(s, rt),
2485 cpu_reg(s, rt2));
2486 } else {
2487 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2488 cpu_exclusive_addr,
2489 cpu_reg(s, rt),
2490 cpu_reg(s, rt2));
2492 } else if (s->be_data == MO_LE) {
2493 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2494 cpu_reg(s, rt), cpu_reg(s, rt2));
2495 } else {
2496 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2497 cpu_reg(s, rt), cpu_reg(s, rt2));
2499 } else {
2500 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2501 cpu_reg(s, rt), get_mem_index(s),
2502 size | MO_ALIGN | s->be_data);
2503 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2505 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2506 tcg_temp_free_i64(tmp);
2507 tcg_gen_br(done_label);
2509 gen_set_label(fail_label);
2510 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2511 gen_set_label(done_label);
2512 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2515 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2516 int rn, int size)
2518 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2519 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2520 int memidx = get_mem_index(s);
2521 TCGv_i64 clean_addr;
2523 if (rn == 31) {
2524 gen_check_sp_alignment(s);
2526 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2527 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2528 size | MO_ALIGN | s->be_data);
2531 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2532 int rn, int size)
2534 TCGv_i64 s1 = cpu_reg(s, rs);
2535 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2536 TCGv_i64 t1 = cpu_reg(s, rt);
2537 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2538 TCGv_i64 clean_addr;
2539 int memidx = get_mem_index(s);
2541 if (rn == 31) {
2542 gen_check_sp_alignment(s);
2545 /* This is a single atomic access, despite the "pair". */
2546 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2548 if (size == 2) {
2549 TCGv_i64 cmp = tcg_temp_new_i64();
2550 TCGv_i64 val = tcg_temp_new_i64();
2552 if (s->be_data == MO_LE) {
2553 tcg_gen_concat32_i64(val, t1, t2);
2554 tcg_gen_concat32_i64(cmp, s1, s2);
2555 } else {
2556 tcg_gen_concat32_i64(val, t2, t1);
2557 tcg_gen_concat32_i64(cmp, s2, s1);
2560 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2561 MO_64 | MO_ALIGN | s->be_data);
2562 tcg_temp_free_i64(val);
2564 if (s->be_data == MO_LE) {
2565 tcg_gen_extr32_i64(s1, s2, cmp);
2566 } else {
2567 tcg_gen_extr32_i64(s2, s1, cmp);
2569 tcg_temp_free_i64(cmp);
2570 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2571 if (HAVE_CMPXCHG128) {
2572 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2573 if (s->be_data == MO_LE) {
2574 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2575 clean_addr, t1, t2);
2576 } else {
2577 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2578 clean_addr, t1, t2);
2580 tcg_temp_free_i32(tcg_rs);
2581 } else {
2582 gen_helper_exit_atomic(cpu_env);
2583 s->base.is_jmp = DISAS_NORETURN;
2585 } else {
2586 TCGv_i64 d1 = tcg_temp_new_i64();
2587 TCGv_i64 d2 = tcg_temp_new_i64();
2588 TCGv_i64 a2 = tcg_temp_new_i64();
2589 TCGv_i64 c1 = tcg_temp_new_i64();
2590 TCGv_i64 c2 = tcg_temp_new_i64();
2591 TCGv_i64 zero = tcg_const_i64(0);
2593 /* Load the two words, in memory order. */
2594 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2595 MO_64 | MO_ALIGN_16 | s->be_data);
2596 tcg_gen_addi_i64(a2, clean_addr, 8);
2597 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2599 /* Compare the two words, also in memory order. */
2600 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2601 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2602 tcg_gen_and_i64(c2, c2, c1);
2604 /* If compare equal, write back new data, else write back old data. */
2605 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2606 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2607 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2608 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2609 tcg_temp_free_i64(a2);
2610 tcg_temp_free_i64(c1);
2611 tcg_temp_free_i64(c2);
2612 tcg_temp_free_i64(zero);
2614 /* Write back the data from memory to Rs. */
2615 tcg_gen_mov_i64(s1, d1);
2616 tcg_gen_mov_i64(s2, d2);
2617 tcg_temp_free_i64(d1);
2618 tcg_temp_free_i64(d2);
2622 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2623 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2625 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2627 int opc0 = extract32(opc, 0, 1);
2628 int regsize;
2630 if (is_signed) {
2631 regsize = opc0 ? 32 : 64;
2632 } else {
2633 regsize = size == 3 ? 64 : 32;
2635 return regsize == 64;
2638 /* Load/store exclusive
2640 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2641 * +-----+-------------+----+---+----+------+----+-------+------+------+
2642 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2643 * +-----+-------------+----+---+----+------+----+-------+------+------+
2645 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2646 * L: 0 -> store, 1 -> load
2647 * o2: 0 -> exclusive, 1 -> not
2648 * o1: 0 -> single register, 1 -> register pair
2649 * o0: 1 -> load-acquire/store-release, 0 -> not
2651 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2653 int rt = extract32(insn, 0, 5);
2654 int rn = extract32(insn, 5, 5);
2655 int rt2 = extract32(insn, 10, 5);
2656 int rs = extract32(insn, 16, 5);
2657 int is_lasr = extract32(insn, 15, 1);
2658 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2659 int size = extract32(insn, 30, 2);
2660 TCGv_i64 clean_addr;
2662 switch (o2_L_o1_o0) {
2663 case 0x0: /* STXR */
2664 case 0x1: /* STLXR */
2665 if (rn == 31) {
2666 gen_check_sp_alignment(s);
2668 if (is_lasr) {
2669 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2671 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2672 true, rn != 31, size);
2673 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2674 return;
2676 case 0x4: /* LDXR */
2677 case 0x5: /* LDAXR */
2678 if (rn == 31) {
2679 gen_check_sp_alignment(s);
2681 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2682 false, rn != 31, size);
2683 s->is_ldex = true;
2684 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2685 if (is_lasr) {
2686 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2688 return;
2690 case 0x8: /* STLLR */
2691 if (!dc_isar_feature(aa64_lor, s)) {
2692 break;
2694 /* StoreLORelease is the same as Store-Release for QEMU. */
2695 /* fall through */
2696 case 0x9: /* STLR */
2697 /* Generate ISS for non-exclusive accesses including LASR. */
2698 if (rn == 31) {
2699 gen_check_sp_alignment(s);
2701 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2702 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2703 true, rn != 31, size);
2704 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2705 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2706 return;
2708 case 0xc: /* LDLAR */
2709 if (!dc_isar_feature(aa64_lor, s)) {
2710 break;
2712 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2713 /* fall through */
2714 case 0xd: /* LDAR */
2715 /* Generate ISS for non-exclusive accesses including LASR. */
2716 if (rn == 31) {
2717 gen_check_sp_alignment(s);
2719 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2720 false, rn != 31, size);
2721 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2722 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2723 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2724 return;
2726 case 0x2: case 0x3: /* CASP / STXP */
2727 if (size & 2) { /* STXP / STLXP */
2728 if (rn == 31) {
2729 gen_check_sp_alignment(s);
2731 if (is_lasr) {
2732 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2734 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2735 true, rn != 31, size);
2736 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2737 return;
2739 if (rt2 == 31
2740 && ((rt | rs) & 1) == 0
2741 && dc_isar_feature(aa64_atomics, s)) {
2742 /* CASP / CASPL */
2743 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2744 return;
2746 break;
2748 case 0x6: case 0x7: /* CASPA / LDXP */
2749 if (size & 2) { /* LDXP / LDAXP */
2750 if (rn == 31) {
2751 gen_check_sp_alignment(s);
2753 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2754 false, rn != 31, size);
2755 s->is_ldex = true;
2756 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2757 if (is_lasr) {
2758 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2760 return;
2762 if (rt2 == 31
2763 && ((rt | rs) & 1) == 0
2764 && dc_isar_feature(aa64_atomics, s)) {
2765 /* CASPA / CASPAL */
2766 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2767 return;
2769 break;
2771 case 0xa: /* CAS */
2772 case 0xb: /* CASL */
2773 case 0xe: /* CASA */
2774 case 0xf: /* CASAL */
2775 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2776 gen_compare_and_swap(s, rs, rt, rn, size);
2777 return;
2779 break;
2781 unallocated_encoding(s);
2785 * Load register (literal)
2787 * 31 30 29 27 26 25 24 23 5 4 0
2788 * +-----+-------+---+-----+-------------------+-------+
2789 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2790 * +-----+-------+---+-----+-------------------+-------+
2792 * V: 1 -> vector (simd/fp)
2793 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2794 * 10-> 32 bit signed, 11 -> prefetch
2795 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2797 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2799 int rt = extract32(insn, 0, 5);
2800 int64_t imm = sextract32(insn, 5, 19) << 2;
2801 bool is_vector = extract32(insn, 26, 1);
2802 int opc = extract32(insn, 30, 2);
2803 bool is_signed = false;
2804 int size = 2;
2805 TCGv_i64 tcg_rt, clean_addr;
2807 if (is_vector) {
2808 if (opc == 3) {
2809 unallocated_encoding(s);
2810 return;
2812 size = 2 + opc;
2813 if (!fp_access_check(s)) {
2814 return;
2816 } else {
2817 if (opc == 3) {
2818 /* PRFM (literal) : prefetch */
2819 return;
2821 size = 2 + extract32(opc, 0, 1);
2822 is_signed = extract32(opc, 1, 1);
2825 tcg_rt = cpu_reg(s, rt);
2827 clean_addr = tcg_const_i64(s->pc_curr + imm);
2828 if (is_vector) {
2829 do_fp_ld(s, rt, clean_addr, size);
2830 } else {
2831 /* Only unsigned 32bit loads target 32bit registers. */
2832 bool iss_sf = opc != 0;
2834 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2835 true, rt, iss_sf, false);
2837 tcg_temp_free_i64(clean_addr);
2841 * LDNP (Load Pair - non-temporal hint)
2842 * LDP (Load Pair - non vector)
2843 * LDPSW (Load Pair Signed Word - non vector)
2844 * STNP (Store Pair - non-temporal hint)
2845 * STP (Store Pair - non vector)
2846 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2847 * LDP (Load Pair of SIMD&FP)
2848 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2849 * STP (Store Pair of SIMD&FP)
2851 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2852 * +-----+-------+---+---+-------+---+-----------------------------+
2853 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2854 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2856 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2857 * LDPSW/STGP 01
2858 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2859 * V: 0 -> GPR, 1 -> Vector
2860 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2861 * 10 -> signed offset, 11 -> pre-index
2862 * L: 0 -> Store 1 -> Load
2864 * Rt, Rt2 = GPR or SIMD registers to be stored
2865 * Rn = general purpose register containing address
2866 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2868 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2870 int rt = extract32(insn, 0, 5);
2871 int rn = extract32(insn, 5, 5);
2872 int rt2 = extract32(insn, 10, 5);
2873 uint64_t offset = sextract64(insn, 15, 7);
2874 int index = extract32(insn, 23, 2);
2875 bool is_vector = extract32(insn, 26, 1);
2876 bool is_load = extract32(insn, 22, 1);
2877 int opc = extract32(insn, 30, 2);
2879 bool is_signed = false;
2880 bool postindex = false;
2881 bool wback = false;
2882 bool set_tag = false;
2884 TCGv_i64 clean_addr, dirty_addr;
2886 int size;
2888 if (opc == 3) {
2889 unallocated_encoding(s);
2890 return;
2893 if (is_vector) {
2894 size = 2 + opc;
2895 } else if (opc == 1 && !is_load) {
2896 /* STGP */
2897 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2898 unallocated_encoding(s);
2899 return;
2901 size = 3;
2902 set_tag = true;
2903 } else {
2904 size = 2 + extract32(opc, 1, 1);
2905 is_signed = extract32(opc, 0, 1);
2906 if (!is_load && is_signed) {
2907 unallocated_encoding(s);
2908 return;
2912 switch (index) {
2913 case 1: /* post-index */
2914 postindex = true;
2915 wback = true;
2916 break;
2917 case 0:
2918 /* signed offset with "non-temporal" hint. Since we don't emulate
2919 * caches we don't care about hints to the cache system about
2920 * data access patterns, and handle this identically to plain
2921 * signed offset.
2923 if (is_signed) {
2924 /* There is no non-temporal-hint version of LDPSW */
2925 unallocated_encoding(s);
2926 return;
2928 postindex = false;
2929 break;
2930 case 2: /* signed offset, rn not updated */
2931 postindex = false;
2932 break;
2933 case 3: /* pre-index */
2934 postindex = false;
2935 wback = true;
2936 break;
2939 if (is_vector && !fp_access_check(s)) {
2940 return;
2943 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2945 if (rn == 31) {
2946 gen_check_sp_alignment(s);
2949 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2950 if (!postindex) {
2951 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2954 if (set_tag) {
2955 if (!s->ata) {
2957 * TODO: We could rely on the stores below, at least for
2958 * system mode, if we arrange to add MO_ALIGN_16.
2960 gen_helper_stg_stub(cpu_env, dirty_addr);
2961 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2962 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2963 } else {
2964 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2968 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2969 (wback || rn != 31) && !set_tag,
2970 size, 2 << size);
2972 if (is_vector) {
2973 if (is_load) {
2974 do_fp_ld(s, rt, clean_addr, size);
2975 } else {
2976 do_fp_st(s, rt, clean_addr, size);
2978 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2979 if (is_load) {
2980 do_fp_ld(s, rt2, clean_addr, size);
2981 } else {
2982 do_fp_st(s, rt2, clean_addr, size);
2984 } else {
2985 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2986 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2988 if (is_load) {
2989 TCGv_i64 tmp = tcg_temp_new_i64();
2991 /* Do not modify tcg_rt before recognizing any exception
2992 * from the second load.
2994 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2995 false, 0, false, false);
2996 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2997 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2998 false, 0, false, false);
3000 tcg_gen_mov_i64(tcg_rt, tmp);
3001 tcg_temp_free_i64(tmp);
3002 } else {
3003 do_gpr_st(s, tcg_rt, clean_addr, size,
3004 false, 0, false, false);
3005 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3006 do_gpr_st(s, tcg_rt2, clean_addr, size,
3007 false, 0, false, false);
3011 if (wback) {
3012 if (postindex) {
3013 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3015 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3020 * Load/store (immediate post-indexed)
3021 * Load/store (immediate pre-indexed)
3022 * Load/store (unscaled immediate)
3024 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
3025 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3026 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
3027 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3029 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3030 10 -> unprivileged
3031 * V = 0 -> non-vector
3032 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3033 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3035 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3036 int opc,
3037 int size,
3038 int rt,
3039 bool is_vector)
3041 int rn = extract32(insn, 5, 5);
3042 int imm9 = sextract32(insn, 12, 9);
3043 int idx = extract32(insn, 10, 2);
3044 bool is_signed = false;
3045 bool is_store = false;
3046 bool is_extended = false;
3047 bool is_unpriv = (idx == 2);
3048 bool iss_valid = !is_vector;
3049 bool post_index;
3050 bool writeback;
3051 int memidx;
3053 TCGv_i64 clean_addr, dirty_addr;
3055 if (is_vector) {
3056 size |= (opc & 2) << 1;
3057 if (size > 4 || is_unpriv) {
3058 unallocated_encoding(s);
3059 return;
3061 is_store = ((opc & 1) == 0);
3062 if (!fp_access_check(s)) {
3063 return;
3065 } else {
3066 if (size == 3 && opc == 2) {
3067 /* PRFM - prefetch */
3068 if (idx != 0) {
3069 unallocated_encoding(s);
3070 return;
3072 return;
3074 if (opc == 3 && size > 1) {
3075 unallocated_encoding(s);
3076 return;
3078 is_store = (opc == 0);
3079 is_signed = extract32(opc, 1, 1);
3080 is_extended = (size < 3) && extract32(opc, 0, 1);
3083 switch (idx) {
3084 case 0:
3085 case 2:
3086 post_index = false;
3087 writeback = false;
3088 break;
3089 case 1:
3090 post_index = true;
3091 writeback = true;
3092 break;
3093 case 3:
3094 post_index = false;
3095 writeback = true;
3096 break;
3097 default:
3098 g_assert_not_reached();
3101 if (rn == 31) {
3102 gen_check_sp_alignment(s);
3105 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3106 if (!post_index) {
3107 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3110 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3111 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3112 writeback || rn != 31,
3113 size, is_unpriv, memidx);
3115 if (is_vector) {
3116 if (is_store) {
3117 do_fp_st(s, rt, clean_addr, size);
3118 } else {
3119 do_fp_ld(s, rt, clean_addr, size);
3121 } else {
3122 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3123 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3125 if (is_store) {
3126 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3127 iss_valid, rt, iss_sf, false);
3128 } else {
3129 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
3130 is_signed, is_extended, memidx,
3131 iss_valid, rt, iss_sf, false);
3135 if (writeback) {
3136 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3137 if (post_index) {
3138 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3140 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3145 * Load/store (register offset)
3147 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3148 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3149 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3150 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3152 * For non-vector:
3153 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3154 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3155 * For vector:
3156 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3157 * opc<0>: 0 -> store, 1 -> load
3158 * V: 1 -> vector/simd
3159 * opt: extend encoding (see DecodeRegExtend)
3160 * S: if S=1 then scale (essentially index by sizeof(size))
3161 * Rt: register to transfer into/out of
3162 * Rn: address register or SP for base
3163 * Rm: offset register or ZR for offset
3165 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3166 int opc,
3167 int size,
3168 int rt,
3169 bool is_vector)
3171 int rn = extract32(insn, 5, 5);
3172 int shift = extract32(insn, 12, 1);
3173 int rm = extract32(insn, 16, 5);
3174 int opt = extract32(insn, 13, 3);
3175 bool is_signed = false;
3176 bool is_store = false;
3177 bool is_extended = false;
3179 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3181 if (extract32(opt, 1, 1) == 0) {
3182 unallocated_encoding(s);
3183 return;
3186 if (is_vector) {
3187 size |= (opc & 2) << 1;
3188 if (size > 4) {
3189 unallocated_encoding(s);
3190 return;
3192 is_store = !extract32(opc, 0, 1);
3193 if (!fp_access_check(s)) {
3194 return;
3196 } else {
3197 if (size == 3 && opc == 2) {
3198 /* PRFM - prefetch */
3199 return;
3201 if (opc == 3 && size > 1) {
3202 unallocated_encoding(s);
3203 return;
3205 is_store = (opc == 0);
3206 is_signed = extract32(opc, 1, 1);
3207 is_extended = (size < 3) && extract32(opc, 0, 1);
3210 if (rn == 31) {
3211 gen_check_sp_alignment(s);
3213 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3215 tcg_rm = read_cpu_reg(s, rm, 1);
3216 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3218 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3219 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3221 if (is_vector) {
3222 if (is_store) {
3223 do_fp_st(s, rt, clean_addr, size);
3224 } else {
3225 do_fp_ld(s, rt, clean_addr, size);
3227 } else {
3228 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3229 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3230 if (is_store) {
3231 do_gpr_st(s, tcg_rt, clean_addr, size,
3232 true, rt, iss_sf, false);
3233 } else {
3234 do_gpr_ld(s, tcg_rt, clean_addr, size,
3235 is_signed, is_extended,
3236 true, rt, iss_sf, false);
3242 * Load/store (unsigned immediate)
3244 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3245 * +----+-------+---+-----+-----+------------+-------+------+
3246 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3247 * +----+-------+---+-----+-----+------------+-------+------+
3249 * For non-vector:
3250 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3251 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3252 * For vector:
3253 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3254 * opc<0>: 0 -> store, 1 -> load
3255 * Rn: base address register (inc SP)
3256 * Rt: target register
3258 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3259 int opc,
3260 int size,
3261 int rt,
3262 bool is_vector)
3264 int rn = extract32(insn, 5, 5);
3265 unsigned int imm12 = extract32(insn, 10, 12);
3266 unsigned int offset;
3268 TCGv_i64 clean_addr, dirty_addr;
3270 bool is_store;
3271 bool is_signed = false;
3272 bool is_extended = false;
3274 if (is_vector) {
3275 size |= (opc & 2) << 1;
3276 if (size > 4) {
3277 unallocated_encoding(s);
3278 return;
3280 is_store = !extract32(opc, 0, 1);
3281 if (!fp_access_check(s)) {
3282 return;
3284 } else {
3285 if (size == 3 && opc == 2) {
3286 /* PRFM - prefetch */
3287 return;
3289 if (opc == 3 && size > 1) {
3290 unallocated_encoding(s);
3291 return;
3293 is_store = (opc == 0);
3294 is_signed = extract32(opc, 1, 1);
3295 is_extended = (size < 3) && extract32(opc, 0, 1);
3298 if (rn == 31) {
3299 gen_check_sp_alignment(s);
3301 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3302 offset = imm12 << size;
3303 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3304 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3306 if (is_vector) {
3307 if (is_store) {
3308 do_fp_st(s, rt, clean_addr, size);
3309 } else {
3310 do_fp_ld(s, rt, clean_addr, size);
3312 } else {
3313 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3314 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3315 if (is_store) {
3316 do_gpr_st(s, tcg_rt, clean_addr, size,
3317 true, rt, iss_sf, false);
3318 } else {
3319 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3320 true, rt, iss_sf, false);
3325 /* Atomic memory operations
3327 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3328 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3329 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3330 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3332 * Rt: the result register
3333 * Rn: base address or SP
3334 * Rs: the source register for the operation
3335 * V: vector flag (always 0 as of v8.3)
3336 * A: acquire flag
3337 * R: release flag
3339 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3340 int size, int rt, bool is_vector)
3342 int rs = extract32(insn, 16, 5);
3343 int rn = extract32(insn, 5, 5);
3344 int o3_opc = extract32(insn, 12, 4);
3345 bool r = extract32(insn, 22, 1);
3346 bool a = extract32(insn, 23, 1);
3347 TCGv_i64 tcg_rs, clean_addr;
3348 AtomicThreeOpFn *fn = NULL;
3350 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3351 unallocated_encoding(s);
3352 return;
3354 switch (o3_opc) {
3355 case 000: /* LDADD */
3356 fn = tcg_gen_atomic_fetch_add_i64;
3357 break;
3358 case 001: /* LDCLR */
3359 fn = tcg_gen_atomic_fetch_and_i64;
3360 break;
3361 case 002: /* LDEOR */
3362 fn = tcg_gen_atomic_fetch_xor_i64;
3363 break;
3364 case 003: /* LDSET */
3365 fn = tcg_gen_atomic_fetch_or_i64;
3366 break;
3367 case 004: /* LDSMAX */
3368 fn = tcg_gen_atomic_fetch_smax_i64;
3369 break;
3370 case 005: /* LDSMIN */
3371 fn = tcg_gen_atomic_fetch_smin_i64;
3372 break;
3373 case 006: /* LDUMAX */
3374 fn = tcg_gen_atomic_fetch_umax_i64;
3375 break;
3376 case 007: /* LDUMIN */
3377 fn = tcg_gen_atomic_fetch_umin_i64;
3378 break;
3379 case 010: /* SWP */
3380 fn = tcg_gen_atomic_xchg_i64;
3381 break;
3382 case 014: /* LDAPR, LDAPRH, LDAPRB */
3383 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3384 rs != 31 || a != 1 || r != 0) {
3385 unallocated_encoding(s);
3386 return;
3388 break;
3389 default:
3390 unallocated_encoding(s);
3391 return;
3394 if (rn == 31) {
3395 gen_check_sp_alignment(s);
3397 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3399 if (o3_opc == 014) {
3401 * LDAPR* are a special case because they are a simple load, not a
3402 * fetch-and-do-something op.
3403 * The architectural consistency requirements here are weaker than
3404 * full load-acquire (we only need "load-acquire processor consistent"),
3405 * but we choose to implement them as full LDAQ.
3407 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false,
3408 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3409 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3410 return;
3413 tcg_rs = read_cpu_reg(s, rs, true);
3415 if (o3_opc == 1) { /* LDCLR */
3416 tcg_gen_not_i64(tcg_rs, tcg_rs);
3419 /* The tcg atomic primitives are all full barriers. Therefore we
3420 * can ignore the Acquire and Release bits of this instruction.
3422 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3423 s->be_data | size | MO_ALIGN);
3427 * PAC memory operations
3429 * 31 30 27 26 24 22 21 12 11 10 5 0
3430 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3431 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3432 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3434 * Rt: the result register
3435 * Rn: base address or SP
3436 * V: vector flag (always 0 as of v8.3)
3437 * M: clear for key DA, set for key DB
3438 * W: pre-indexing flag
3439 * S: sign for imm9.
3441 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3442 int size, int rt, bool is_vector)
3444 int rn = extract32(insn, 5, 5);
3445 bool is_wback = extract32(insn, 11, 1);
3446 bool use_key_a = !extract32(insn, 23, 1);
3447 int offset;
3448 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3450 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3451 unallocated_encoding(s);
3452 return;
3455 if (rn == 31) {
3456 gen_check_sp_alignment(s);
3458 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3460 if (s->pauth_active) {
3461 if (use_key_a) {
3462 gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3463 new_tmp_a64_zero(s));
3464 } else {
3465 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3466 new_tmp_a64_zero(s));
3470 /* Form the 10-bit signed, scaled offset. */
3471 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3472 offset = sextract32(offset << size, 0, 10 + size);
3473 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3475 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3476 clean_addr = gen_mte_check1(s, dirty_addr, false,
3477 is_wback || rn != 31, size);
3479 tcg_rt = cpu_reg(s, rt);
3480 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3481 /* extend */ false, /* iss_valid */ !is_wback,
3482 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3484 if (is_wback) {
3485 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3490 * LDAPR/STLR (unscaled immediate)
3492 * 31 30 24 22 21 12 10 5 0
3493 * +------+-------------+-----+---+--------+-----+----+-----+
3494 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3495 * +------+-------------+-----+---+--------+-----+----+-----+
3497 * Rt: source or destination register
3498 * Rn: base register
3499 * imm9: unscaled immediate offset
3500 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3501 * size: size of load/store
3503 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3505 int rt = extract32(insn, 0, 5);
3506 int rn = extract32(insn, 5, 5);
3507 int offset = sextract32(insn, 12, 9);
3508 int opc = extract32(insn, 22, 2);
3509 int size = extract32(insn, 30, 2);
3510 TCGv_i64 clean_addr, dirty_addr;
3511 bool is_store = false;
3512 bool is_signed = false;
3513 bool extend = false;
3514 bool iss_sf;
3516 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3517 unallocated_encoding(s);
3518 return;
3521 switch (opc) {
3522 case 0: /* STLURB */
3523 is_store = true;
3524 break;
3525 case 1: /* LDAPUR* */
3526 break;
3527 case 2: /* LDAPURS* 64-bit variant */
3528 if (size == 3) {
3529 unallocated_encoding(s);
3530 return;
3532 is_signed = true;
3533 break;
3534 case 3: /* LDAPURS* 32-bit variant */
3535 if (size > 1) {
3536 unallocated_encoding(s);
3537 return;
3539 is_signed = true;
3540 extend = true; /* zero-extend 32->64 after signed load */
3541 break;
3542 default:
3543 g_assert_not_reached();
3546 iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3548 if (rn == 31) {
3549 gen_check_sp_alignment(s);
3552 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3553 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3554 clean_addr = clean_data_tbi(s, dirty_addr);
3556 if (is_store) {
3557 /* Store-Release semantics */
3558 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3559 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt, iss_sf, true);
3560 } else {
3562 * Load-AcquirePC semantics; we implement as the slightly more
3563 * restrictive Load-Acquire.
3565 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, is_signed, extend,
3566 true, rt, iss_sf, true);
3567 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3571 /* Load/store register (all forms) */
3572 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3574 int rt = extract32(insn, 0, 5);
3575 int opc = extract32(insn, 22, 2);
3576 bool is_vector = extract32(insn, 26, 1);
3577 int size = extract32(insn, 30, 2);
3579 switch (extract32(insn, 24, 2)) {
3580 case 0:
3581 if (extract32(insn, 21, 1) == 0) {
3582 /* Load/store register (unscaled immediate)
3583 * Load/store immediate pre/post-indexed
3584 * Load/store register unprivileged
3586 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3587 return;
3589 switch (extract32(insn, 10, 2)) {
3590 case 0:
3591 disas_ldst_atomic(s, insn, size, rt, is_vector);
3592 return;
3593 case 2:
3594 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3595 return;
3596 default:
3597 disas_ldst_pac(s, insn, size, rt, is_vector);
3598 return;
3600 break;
3601 case 1:
3602 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3603 return;
3605 unallocated_encoding(s);
3608 /* AdvSIMD load/store multiple structures
3610 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3611 * +---+---+---------------+---+-------------+--------+------+------+------+
3612 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3613 * +---+---+---------------+---+-------------+--------+------+------+------+
3615 * AdvSIMD load/store multiple structures (post-indexed)
3617 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3618 * +---+---+---------------+---+---+---------+--------+------+------+------+
3619 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3620 * +---+---+---------------+---+---+---------+--------+------+------+------+
3622 * Rt: first (or only) SIMD&FP register to be transferred
3623 * Rn: base address or SP
3624 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3626 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3628 int rt = extract32(insn, 0, 5);
3629 int rn = extract32(insn, 5, 5);
3630 int rm = extract32(insn, 16, 5);
3631 int size = extract32(insn, 10, 2);
3632 int opcode = extract32(insn, 12, 4);
3633 bool is_store = !extract32(insn, 22, 1);
3634 bool is_postidx = extract32(insn, 23, 1);
3635 bool is_q = extract32(insn, 30, 1);
3636 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3637 MemOp endian = s->be_data;
3639 int total; /* total bytes */
3640 int elements; /* elements per vector */
3641 int rpt; /* num iterations */
3642 int selem; /* structure elements */
3643 int r;
3645 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3646 unallocated_encoding(s);
3647 return;
3650 if (!is_postidx && rm != 0) {
3651 unallocated_encoding(s);
3652 return;
3655 /* From the shared decode logic */
3656 switch (opcode) {
3657 case 0x0:
3658 rpt = 1;
3659 selem = 4;
3660 break;
3661 case 0x2:
3662 rpt = 4;
3663 selem = 1;
3664 break;
3665 case 0x4:
3666 rpt = 1;
3667 selem = 3;
3668 break;
3669 case 0x6:
3670 rpt = 3;
3671 selem = 1;
3672 break;
3673 case 0x7:
3674 rpt = 1;
3675 selem = 1;
3676 break;
3677 case 0x8:
3678 rpt = 1;
3679 selem = 2;
3680 break;
3681 case 0xa:
3682 rpt = 2;
3683 selem = 1;
3684 break;
3685 default:
3686 unallocated_encoding(s);
3687 return;
3690 if (size == 3 && !is_q && selem != 1) {
3691 /* reserved */
3692 unallocated_encoding(s);
3693 return;
3696 if (!fp_access_check(s)) {
3697 return;
3700 if (rn == 31) {
3701 gen_check_sp_alignment(s);
3704 /* For our purposes, bytes are always little-endian. */
3705 if (size == 0) {
3706 endian = MO_LE;
3709 total = rpt * selem * (is_q ? 16 : 8);
3710 tcg_rn = cpu_reg_sp(s, rn);
3713 * Issue the MTE check vs the logical repeat count, before we
3714 * promote consecutive little-endian elements below.
3716 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3717 size, total);
3720 * Consecutive little-endian elements from a single register
3721 * can be promoted to a larger little-endian operation.
3723 if (selem == 1 && endian == MO_LE) {
3724 size = 3;
3726 elements = (is_q ? 16 : 8) >> size;
3728 tcg_ebytes = tcg_const_i64(1 << size);
3729 for (r = 0; r < rpt; r++) {
3730 int e;
3731 for (e = 0; e < elements; e++) {
3732 int xs;
3733 for (xs = 0; xs < selem; xs++) {
3734 int tt = (rt + r + xs) % 32;
3735 if (is_store) {
3736 do_vec_st(s, tt, e, clean_addr, size, endian);
3737 } else {
3738 do_vec_ld(s, tt, e, clean_addr, size, endian);
3740 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3744 tcg_temp_free_i64(tcg_ebytes);
3746 if (!is_store) {
3747 /* For non-quad operations, setting a slice of the low
3748 * 64 bits of the register clears the high 64 bits (in
3749 * the ARM ARM pseudocode this is implicit in the fact
3750 * that 'rval' is a 64 bit wide variable).
3751 * For quad operations, we might still need to zero the
3752 * high bits of SVE.
3754 for (r = 0; r < rpt * selem; r++) {
3755 int tt = (rt + r) % 32;
3756 clear_vec_high(s, is_q, tt);
3760 if (is_postidx) {
3761 if (rm == 31) {
3762 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3763 } else {
3764 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3769 /* AdvSIMD load/store single structure
3771 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3772 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3773 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3774 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3776 * AdvSIMD load/store single structure (post-indexed)
3778 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3779 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3780 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3781 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3783 * Rt: first (or only) SIMD&FP register to be transferred
3784 * Rn: base address or SP
3785 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3786 * index = encoded in Q:S:size dependent on size
3788 * lane_size = encoded in R, opc
3789 * transfer width = encoded in opc, S, size
3791 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3793 int rt = extract32(insn, 0, 5);
3794 int rn = extract32(insn, 5, 5);
3795 int rm = extract32(insn, 16, 5);
3796 int size = extract32(insn, 10, 2);
3797 int S = extract32(insn, 12, 1);
3798 int opc = extract32(insn, 13, 3);
3799 int R = extract32(insn, 21, 1);
3800 int is_load = extract32(insn, 22, 1);
3801 int is_postidx = extract32(insn, 23, 1);
3802 int is_q = extract32(insn, 30, 1);
3804 int scale = extract32(opc, 1, 2);
3805 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3806 bool replicate = false;
3807 int index = is_q << 3 | S << 2 | size;
3808 int xs, total;
3809 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3811 if (extract32(insn, 31, 1)) {
3812 unallocated_encoding(s);
3813 return;
3815 if (!is_postidx && rm != 0) {
3816 unallocated_encoding(s);
3817 return;
3820 switch (scale) {
3821 case 3:
3822 if (!is_load || S) {
3823 unallocated_encoding(s);
3824 return;
3826 scale = size;
3827 replicate = true;
3828 break;
3829 case 0:
3830 break;
3831 case 1:
3832 if (extract32(size, 0, 1)) {
3833 unallocated_encoding(s);
3834 return;
3836 index >>= 1;
3837 break;
3838 case 2:
3839 if (extract32(size, 1, 1)) {
3840 unallocated_encoding(s);
3841 return;
3843 if (!extract32(size, 0, 1)) {
3844 index >>= 2;
3845 } else {
3846 if (S) {
3847 unallocated_encoding(s);
3848 return;
3850 index >>= 3;
3851 scale = 3;
3853 break;
3854 default:
3855 g_assert_not_reached();
3858 if (!fp_access_check(s)) {
3859 return;
3862 if (rn == 31) {
3863 gen_check_sp_alignment(s);
3866 total = selem << scale;
3867 tcg_rn = cpu_reg_sp(s, rn);
3869 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3870 scale, total);
3872 tcg_ebytes = tcg_const_i64(1 << scale);
3873 for (xs = 0; xs < selem; xs++) {
3874 if (replicate) {
3875 /* Load and replicate to all elements */
3876 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3878 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3879 get_mem_index(s), s->be_data + scale);
3880 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3881 (is_q + 1) * 8, vec_full_reg_size(s),
3882 tcg_tmp);
3883 tcg_temp_free_i64(tcg_tmp);
3884 } else {
3885 /* Load/store one element per register */
3886 if (is_load) {
3887 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3888 } else {
3889 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3892 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3893 rt = (rt + 1) % 32;
3895 tcg_temp_free_i64(tcg_ebytes);
3897 if (is_postidx) {
3898 if (rm == 31) {
3899 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3900 } else {
3901 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3907 * Load/Store memory tags
3909 * 31 30 29 24 22 21 12 10 5 0
3910 * +-----+-------------+-----+---+------+-----+------+------+
3911 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
3912 * +-----+-------------+-----+---+------+-----+------+------+
3914 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3916 int rt = extract32(insn, 0, 5);
3917 int rn = extract32(insn, 5, 5);
3918 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3919 int op2 = extract32(insn, 10, 2);
3920 int op1 = extract32(insn, 22, 2);
3921 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3922 int index = 0;
3923 TCGv_i64 addr, clean_addr, tcg_rt;
3925 /* We checked insn bits [29:24,21] in the caller. */
3926 if (extract32(insn, 30, 2) != 3) {
3927 goto do_unallocated;
3931 * @index is a tri-state variable which has 3 states:
3932 * < 0 : post-index, writeback
3933 * = 0 : signed offset
3934 * > 0 : pre-index, writeback
3936 switch (op1) {
3937 case 0:
3938 if (op2 != 0) {
3939 /* STG */
3940 index = op2 - 2;
3941 } else {
3942 /* STZGM */
3943 if (s->current_el == 0 || offset != 0) {
3944 goto do_unallocated;
3946 is_mult = is_zero = true;
3948 break;
3949 case 1:
3950 if (op2 != 0) {
3951 /* STZG */
3952 is_zero = true;
3953 index = op2 - 2;
3954 } else {
3955 /* LDG */
3956 is_load = true;
3958 break;
3959 case 2:
3960 if (op2 != 0) {
3961 /* ST2G */
3962 is_pair = true;
3963 index = op2 - 2;
3964 } else {
3965 /* STGM */
3966 if (s->current_el == 0 || offset != 0) {
3967 goto do_unallocated;
3969 is_mult = true;
3971 break;
3972 case 3:
3973 if (op2 != 0) {
3974 /* STZ2G */
3975 is_pair = is_zero = true;
3976 index = op2 - 2;
3977 } else {
3978 /* LDGM */
3979 if (s->current_el == 0 || offset != 0) {
3980 goto do_unallocated;
3982 is_mult = is_load = true;
3984 break;
3986 default:
3987 do_unallocated:
3988 unallocated_encoding(s);
3989 return;
3992 if (is_mult
3993 ? !dc_isar_feature(aa64_mte, s)
3994 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
3995 goto do_unallocated;
3998 if (rn == 31) {
3999 gen_check_sp_alignment(s);
4002 addr = read_cpu_reg_sp(s, rn, true);
4003 if (index >= 0) {
4004 /* pre-index or signed offset */
4005 tcg_gen_addi_i64(addr, addr, offset);
4008 if (is_mult) {
4009 tcg_rt = cpu_reg(s, rt);
4011 if (is_zero) {
4012 int size = 4 << s->dcz_blocksize;
4014 if (s->ata) {
4015 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4018 * The non-tags portion of STZGM is mostly like DC_ZVA,
4019 * except the alignment happens before the access.
4021 clean_addr = clean_data_tbi(s, addr);
4022 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4023 gen_helper_dc_zva(cpu_env, clean_addr);
4024 } else if (s->ata) {
4025 if (is_load) {
4026 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4027 } else {
4028 gen_helper_stgm(cpu_env, addr, tcg_rt);
4030 } else {
4031 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4032 int size = 4 << GMID_EL1_BS;
4034 clean_addr = clean_data_tbi(s, addr);
4035 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4036 gen_probe_access(s, clean_addr, acc, size);
4038 if (is_load) {
4039 /* The result tags are zeros. */
4040 tcg_gen_movi_i64(tcg_rt, 0);
4043 return;
4046 if (is_load) {
4047 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4048 tcg_rt = cpu_reg(s, rt);
4049 if (s->ata) {
4050 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4051 } else {
4052 clean_addr = clean_data_tbi(s, addr);
4053 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4054 gen_address_with_allocation_tag0(tcg_rt, addr);
4056 } else {
4057 tcg_rt = cpu_reg_sp(s, rt);
4058 if (!s->ata) {
4060 * For STG and ST2G, we need to check alignment and probe memory.
4061 * TODO: For STZG and STZ2G, we could rely on the stores below,
4062 * at least for system mode; user-only won't enforce alignment.
4064 if (is_pair) {
4065 gen_helper_st2g_stub(cpu_env, addr);
4066 } else {
4067 gen_helper_stg_stub(cpu_env, addr);
4069 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4070 if (is_pair) {
4071 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4072 } else {
4073 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4075 } else {
4076 if (is_pair) {
4077 gen_helper_st2g(cpu_env, addr, tcg_rt);
4078 } else {
4079 gen_helper_stg(cpu_env, addr, tcg_rt);
4084 if (is_zero) {
4085 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4086 TCGv_i64 tcg_zero = tcg_const_i64(0);
4087 int mem_index = get_mem_index(s);
4088 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4090 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4091 MO_Q | MO_ALIGN_16);
4092 for (i = 8; i < n; i += 8) {
4093 tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4094 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_Q);
4096 tcg_temp_free_i64(tcg_zero);
4099 if (index != 0) {
4100 /* pre-index or post-index */
4101 if (index < 0) {
4102 /* post-index */
4103 tcg_gen_addi_i64(addr, addr, offset);
4105 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4109 /* Loads and stores */
4110 static void disas_ldst(DisasContext *s, uint32_t insn)
4112 switch (extract32(insn, 24, 6)) {
4113 case 0x08: /* Load/store exclusive */
4114 disas_ldst_excl(s, insn);
4115 break;
4116 case 0x18: case 0x1c: /* Load register (literal) */
4117 disas_ld_lit(s, insn);
4118 break;
4119 case 0x28: case 0x29:
4120 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4121 disas_ldst_pair(s, insn);
4122 break;
4123 case 0x38: case 0x39:
4124 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4125 disas_ldst_reg(s, insn);
4126 break;
4127 case 0x0c: /* AdvSIMD load/store multiple structures */
4128 disas_ldst_multiple_struct(s, insn);
4129 break;
4130 case 0x0d: /* AdvSIMD load/store single structure */
4131 disas_ldst_single_struct(s, insn);
4132 break;
4133 case 0x19:
4134 if (extract32(insn, 21, 1) != 0) {
4135 disas_ldst_tag(s, insn);
4136 } else if (extract32(insn, 10, 2) == 0) {
4137 disas_ldst_ldapr_stlr(s, insn);
4138 } else {
4139 unallocated_encoding(s);
4141 break;
4142 default:
4143 unallocated_encoding(s);
4144 break;
4148 /* PC-rel. addressing
4149 * 31 30 29 28 24 23 5 4 0
4150 * +----+-------+-----------+-------------------+------+
4151 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4152 * +----+-------+-----------+-------------------+------+
4154 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4156 unsigned int page, rd;
4157 uint64_t base;
4158 uint64_t offset;
4160 page = extract32(insn, 31, 1);
4161 /* SignExtend(immhi:immlo) -> offset */
4162 offset = sextract64(insn, 5, 19);
4163 offset = offset << 2 | extract32(insn, 29, 2);
4164 rd = extract32(insn, 0, 5);
4165 base = s->pc_curr;
4167 if (page) {
4168 /* ADRP (page based) */
4169 base &= ~0xfff;
4170 offset <<= 12;
4173 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
4177 * Add/subtract (immediate)
4179 * 31 30 29 28 23 22 21 10 9 5 4 0
4180 * +--+--+--+-------------+--+-------------+-----+-----+
4181 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4182 * +--+--+--+-------------+--+-------------+-----+-----+
4184 * sf: 0 -> 32bit, 1 -> 64bit
4185 * op: 0 -> add , 1 -> sub
4186 * S: 1 -> set flags
4187 * sh: 1 -> LSL imm by 12
4189 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4191 int rd = extract32(insn, 0, 5);
4192 int rn = extract32(insn, 5, 5);
4193 uint64_t imm = extract32(insn, 10, 12);
4194 bool shift = extract32(insn, 22, 1);
4195 bool setflags = extract32(insn, 29, 1);
4196 bool sub_op = extract32(insn, 30, 1);
4197 bool is_64bit = extract32(insn, 31, 1);
4199 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4200 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4201 TCGv_i64 tcg_result;
4203 if (shift) {
4204 imm <<= 12;
4207 tcg_result = tcg_temp_new_i64();
4208 if (!setflags) {
4209 if (sub_op) {
4210 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4211 } else {
4212 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4214 } else {
4215 TCGv_i64 tcg_imm = tcg_const_i64(imm);
4216 if (sub_op) {
4217 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4218 } else {
4219 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4221 tcg_temp_free_i64(tcg_imm);
4224 if (is_64bit) {
4225 tcg_gen_mov_i64(tcg_rd, tcg_result);
4226 } else {
4227 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4230 tcg_temp_free_i64(tcg_result);
4234 * Add/subtract (immediate, with tags)
4236 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4237 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4238 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4239 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4241 * op: 0 -> add, 1 -> sub
4243 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4245 int rd = extract32(insn, 0, 5);
4246 int rn = extract32(insn, 5, 5);
4247 int uimm4 = extract32(insn, 10, 4);
4248 int uimm6 = extract32(insn, 16, 6);
4249 bool sub_op = extract32(insn, 30, 1);
4250 TCGv_i64 tcg_rn, tcg_rd;
4251 int imm;
4253 /* Test all of sf=1, S=0, o2=0, o3=0. */
4254 if ((insn & 0xa040c000u) != 0x80000000u ||
4255 !dc_isar_feature(aa64_mte_insn_reg, s)) {
4256 unallocated_encoding(s);
4257 return;
4260 imm = uimm6 << LOG2_TAG_GRANULE;
4261 if (sub_op) {
4262 imm = -imm;
4265 tcg_rn = cpu_reg_sp(s, rn);
4266 tcg_rd = cpu_reg_sp(s, rd);
4268 if (s->ata) {
4269 TCGv_i32 offset = tcg_const_i32(imm);
4270 TCGv_i32 tag_offset = tcg_const_i32(uimm4);
4272 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, offset, tag_offset);
4273 tcg_temp_free_i32(tag_offset);
4274 tcg_temp_free_i32(offset);
4275 } else {
4276 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4277 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4281 /* The input should be a value in the bottom e bits (with higher
4282 * bits zero); returns that value replicated into every element
4283 * of size e in a 64 bit integer.
4285 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4287 assert(e != 0);
4288 while (e < 64) {
4289 mask |= mask << e;
4290 e *= 2;
4292 return mask;
4295 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4296 static inline uint64_t bitmask64(unsigned int length)
4298 assert(length > 0 && length <= 64);
4299 return ~0ULL >> (64 - length);
4302 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4303 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4304 * value (ie should cause a guest UNDEF exception), and true if they are
4305 * valid, in which case the decoded bit pattern is written to result.
4307 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4308 unsigned int imms, unsigned int immr)
4310 uint64_t mask;
4311 unsigned e, levels, s, r;
4312 int len;
4314 assert(immn < 2 && imms < 64 && immr < 64);
4316 /* The bit patterns we create here are 64 bit patterns which
4317 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4318 * 64 bits each. Each element contains the same value: a run
4319 * of between 1 and e-1 non-zero bits, rotated within the
4320 * element by between 0 and e-1 bits.
4322 * The element size and run length are encoded into immn (1 bit)
4323 * and imms (6 bits) as follows:
4324 * 64 bit elements: immn = 1, imms = <length of run - 1>
4325 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4326 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4327 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4328 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4329 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4330 * Notice that immn = 0, imms = 11111x is the only combination
4331 * not covered by one of the above options; this is reserved.
4332 * Further, <length of run - 1> all-ones is a reserved pattern.
4334 * In all cases the rotation is by immr % e (and immr is 6 bits).
4337 /* First determine the element size */
4338 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4339 if (len < 1) {
4340 /* This is the immn == 0, imms == 0x11111x case */
4341 return false;
4343 e = 1 << len;
4345 levels = e - 1;
4346 s = imms & levels;
4347 r = immr & levels;
4349 if (s == levels) {
4350 /* <length of run - 1> mustn't be all-ones. */
4351 return false;
4354 /* Create the value of one element: s+1 set bits rotated
4355 * by r within the element (which is e bits wide)...
4357 mask = bitmask64(s + 1);
4358 if (r) {
4359 mask = (mask >> r) | (mask << (e - r));
4360 mask &= bitmask64(e);
4362 /* ...then replicate the element over the whole 64 bit value */
4363 mask = bitfield_replicate(mask, e);
4364 *result = mask;
4365 return true;
4368 /* Logical (immediate)
4369 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4370 * +----+-----+-------------+---+------+------+------+------+
4371 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4372 * +----+-----+-------------+---+------+------+------+------+
4374 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4376 unsigned int sf, opc, is_n, immr, imms, rn, rd;
4377 TCGv_i64 tcg_rd, tcg_rn;
4378 uint64_t wmask;
4379 bool is_and = false;
4381 sf = extract32(insn, 31, 1);
4382 opc = extract32(insn, 29, 2);
4383 is_n = extract32(insn, 22, 1);
4384 immr = extract32(insn, 16, 6);
4385 imms = extract32(insn, 10, 6);
4386 rn = extract32(insn, 5, 5);
4387 rd = extract32(insn, 0, 5);
4389 if (!sf && is_n) {
4390 unallocated_encoding(s);
4391 return;
4394 if (opc == 0x3) { /* ANDS */
4395 tcg_rd = cpu_reg(s, rd);
4396 } else {
4397 tcg_rd = cpu_reg_sp(s, rd);
4399 tcg_rn = cpu_reg(s, rn);
4401 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4402 /* some immediate field values are reserved */
4403 unallocated_encoding(s);
4404 return;
4407 if (!sf) {
4408 wmask &= 0xffffffff;
4411 switch (opc) {
4412 case 0x3: /* ANDS */
4413 case 0x0: /* AND */
4414 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4415 is_and = true;
4416 break;
4417 case 0x1: /* ORR */
4418 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4419 break;
4420 case 0x2: /* EOR */
4421 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4422 break;
4423 default:
4424 assert(FALSE); /* must handle all above */
4425 break;
4428 if (!sf && !is_and) {
4429 /* zero extend final result; we know we can skip this for AND
4430 * since the immediate had the high 32 bits clear.
4432 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4435 if (opc == 3) { /* ANDS */
4436 gen_logic_CC(sf, tcg_rd);
4441 * Move wide (immediate)
4443 * 31 30 29 28 23 22 21 20 5 4 0
4444 * +--+-----+-------------+-----+----------------+------+
4445 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4446 * +--+-----+-------------+-----+----------------+------+
4448 * sf: 0 -> 32 bit, 1 -> 64 bit
4449 * opc: 00 -> N, 10 -> Z, 11 -> K
4450 * hw: shift/16 (0,16, and sf only 32, 48)
4452 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4454 int rd = extract32(insn, 0, 5);
4455 uint64_t imm = extract32(insn, 5, 16);
4456 int sf = extract32(insn, 31, 1);
4457 int opc = extract32(insn, 29, 2);
4458 int pos = extract32(insn, 21, 2) << 4;
4459 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4460 TCGv_i64 tcg_imm;
4462 if (!sf && (pos >= 32)) {
4463 unallocated_encoding(s);
4464 return;
4467 switch (opc) {
4468 case 0: /* MOVN */
4469 case 2: /* MOVZ */
4470 imm <<= pos;
4471 if (opc == 0) {
4472 imm = ~imm;
4474 if (!sf) {
4475 imm &= 0xffffffffu;
4477 tcg_gen_movi_i64(tcg_rd, imm);
4478 break;
4479 case 3: /* MOVK */
4480 tcg_imm = tcg_const_i64(imm);
4481 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
4482 tcg_temp_free_i64(tcg_imm);
4483 if (!sf) {
4484 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4486 break;
4487 default:
4488 unallocated_encoding(s);
4489 break;
4493 /* Bitfield
4494 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4495 * +----+-----+-------------+---+------+------+------+------+
4496 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4497 * +----+-----+-------------+---+------+------+------+------+
4499 static void disas_bitfield(DisasContext *s, uint32_t insn)
4501 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4502 TCGv_i64 tcg_rd, tcg_tmp;
4504 sf = extract32(insn, 31, 1);
4505 opc = extract32(insn, 29, 2);
4506 n = extract32(insn, 22, 1);
4507 ri = extract32(insn, 16, 6);
4508 si = extract32(insn, 10, 6);
4509 rn = extract32(insn, 5, 5);
4510 rd = extract32(insn, 0, 5);
4511 bitsize = sf ? 64 : 32;
4513 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4514 unallocated_encoding(s);
4515 return;
4518 tcg_rd = cpu_reg(s, rd);
4520 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4521 to be smaller than bitsize, we'll never reference data outside the
4522 low 32-bits anyway. */
4523 tcg_tmp = read_cpu_reg(s, rn, 1);
4525 /* Recognize simple(r) extractions. */
4526 if (si >= ri) {
4527 /* Wd<s-r:0> = Wn<s:r> */
4528 len = (si - ri) + 1;
4529 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4530 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4531 goto done;
4532 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534 return;
4536 /* opc == 1, BFXIL fall through to deposit */
4537 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4538 pos = 0;
4539 } else {
4540 /* Handle the ri > si case with a deposit
4541 * Wd<32+s-r,32-r> = Wn<s:0>
4543 len = si + 1;
4544 pos = (bitsize - ri) & (bitsize - 1);
4547 if (opc == 0 && len < ri) {
4548 /* SBFM: sign extend the destination field from len to fill
4549 the balance of the word. Let the deposit below insert all
4550 of those sign bits. */
4551 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4552 len = ri;
4555 if (opc == 1) { /* BFM, BFXIL */
4556 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4557 } else {
4558 /* SBFM or UBFM: We start with zero, and we haven't modified
4559 any bits outside bitsize, therefore the zero-extension
4560 below is unneeded. */
4561 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4562 return;
4565 done:
4566 if (!sf) { /* zero extend final result */
4567 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4571 /* Extract
4572 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4573 * +----+------+-------------+---+----+------+--------+------+------+
4574 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4575 * +----+------+-------------+---+----+------+--------+------+------+
4577 static void disas_extract(DisasContext *s, uint32_t insn)
4579 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4581 sf = extract32(insn, 31, 1);
4582 n = extract32(insn, 22, 1);
4583 rm = extract32(insn, 16, 5);
4584 imm = extract32(insn, 10, 6);
4585 rn = extract32(insn, 5, 5);
4586 rd = extract32(insn, 0, 5);
4587 op21 = extract32(insn, 29, 2);
4588 op0 = extract32(insn, 21, 1);
4589 bitsize = sf ? 64 : 32;
4591 if (sf != n || op21 || op0 || imm >= bitsize) {
4592 unallocated_encoding(s);
4593 } else {
4594 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4596 tcg_rd = cpu_reg(s, rd);
4598 if (unlikely(imm == 0)) {
4599 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4600 * so an extract from bit 0 is a special case.
4602 if (sf) {
4603 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4604 } else {
4605 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4607 } else {
4608 tcg_rm = cpu_reg(s, rm);
4609 tcg_rn = cpu_reg(s, rn);
4611 if (sf) {
4612 /* Specialization to ROR happens in EXTRACT2. */
4613 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4614 } else {
4615 TCGv_i32 t0 = tcg_temp_new_i32();
4617 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4618 if (rm == rn) {
4619 tcg_gen_rotri_i32(t0, t0, imm);
4620 } else {
4621 TCGv_i32 t1 = tcg_temp_new_i32();
4622 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4623 tcg_gen_extract2_i32(t0, t0, t1, imm);
4624 tcg_temp_free_i32(t1);
4626 tcg_gen_extu_i32_i64(tcg_rd, t0);
4627 tcg_temp_free_i32(t0);
4633 /* Data processing - immediate */
4634 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4636 switch (extract32(insn, 23, 6)) {
4637 case 0x20: case 0x21: /* PC-rel. addressing */
4638 disas_pc_rel_adr(s, insn);
4639 break;
4640 case 0x22: /* Add/subtract (immediate) */
4641 disas_add_sub_imm(s, insn);
4642 break;
4643 case 0x23: /* Add/subtract (immediate, with tags) */
4644 disas_add_sub_imm_with_tags(s, insn);
4645 break;
4646 case 0x24: /* Logical (immediate) */
4647 disas_logic_imm(s, insn);
4648 break;
4649 case 0x25: /* Move wide (immediate) */
4650 disas_movw_imm(s, insn);
4651 break;
4652 case 0x26: /* Bitfield */
4653 disas_bitfield(s, insn);
4654 break;
4655 case 0x27: /* Extract */
4656 disas_extract(s, insn);
4657 break;
4658 default:
4659 unallocated_encoding(s);
4660 break;
4664 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4665 * Note that it is the caller's responsibility to ensure that the
4666 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4667 * mandated semantics for out of range shifts.
4669 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4670 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4672 switch (shift_type) {
4673 case A64_SHIFT_TYPE_LSL:
4674 tcg_gen_shl_i64(dst, src, shift_amount);
4675 break;
4676 case A64_SHIFT_TYPE_LSR:
4677 tcg_gen_shr_i64(dst, src, shift_amount);
4678 break;
4679 case A64_SHIFT_TYPE_ASR:
4680 if (!sf) {
4681 tcg_gen_ext32s_i64(dst, src);
4683 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4684 break;
4685 case A64_SHIFT_TYPE_ROR:
4686 if (sf) {
4687 tcg_gen_rotr_i64(dst, src, shift_amount);
4688 } else {
4689 TCGv_i32 t0, t1;
4690 t0 = tcg_temp_new_i32();
4691 t1 = tcg_temp_new_i32();
4692 tcg_gen_extrl_i64_i32(t0, src);
4693 tcg_gen_extrl_i64_i32(t1, shift_amount);
4694 tcg_gen_rotr_i32(t0, t0, t1);
4695 tcg_gen_extu_i32_i64(dst, t0);
4696 tcg_temp_free_i32(t0);
4697 tcg_temp_free_i32(t1);
4699 break;
4700 default:
4701 assert(FALSE); /* all shift types should be handled */
4702 break;
4705 if (!sf) { /* zero extend final result */
4706 tcg_gen_ext32u_i64(dst, dst);
4710 /* Shift a TCGv src by immediate, put result in dst.
4711 * The shift amount must be in range (this should always be true as the
4712 * relevant instructions will UNDEF on bad shift immediates).
4714 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4715 enum a64_shift_type shift_type, unsigned int shift_i)
4717 assert(shift_i < (sf ? 64 : 32));
4719 if (shift_i == 0) {
4720 tcg_gen_mov_i64(dst, src);
4721 } else {
4722 TCGv_i64 shift_const;
4724 shift_const = tcg_const_i64(shift_i);
4725 shift_reg(dst, src, sf, shift_type, shift_const);
4726 tcg_temp_free_i64(shift_const);
4730 /* Logical (shifted register)
4731 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4732 * +----+-----+-----------+-------+---+------+--------+------+------+
4733 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4734 * +----+-----+-----------+-------+---+------+--------+------+------+
4736 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4738 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4739 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4741 sf = extract32(insn, 31, 1);
4742 opc = extract32(insn, 29, 2);
4743 shift_type = extract32(insn, 22, 2);
4744 invert = extract32(insn, 21, 1);
4745 rm = extract32(insn, 16, 5);
4746 shift_amount = extract32(insn, 10, 6);
4747 rn = extract32(insn, 5, 5);
4748 rd = extract32(insn, 0, 5);
4750 if (!sf && (shift_amount & (1 << 5))) {
4751 unallocated_encoding(s);
4752 return;
4755 tcg_rd = cpu_reg(s, rd);
4757 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4758 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4759 * register-register MOV and MVN, so it is worth special casing.
4761 tcg_rm = cpu_reg(s, rm);
4762 if (invert) {
4763 tcg_gen_not_i64(tcg_rd, tcg_rm);
4764 if (!sf) {
4765 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4767 } else {
4768 if (sf) {
4769 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4770 } else {
4771 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4774 return;
4777 tcg_rm = read_cpu_reg(s, rm, sf);
4779 if (shift_amount) {
4780 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4783 tcg_rn = cpu_reg(s, rn);
4785 switch (opc | (invert << 2)) {
4786 case 0: /* AND */
4787 case 3: /* ANDS */
4788 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4789 break;
4790 case 1: /* ORR */
4791 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4792 break;
4793 case 2: /* EOR */
4794 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4795 break;
4796 case 4: /* BIC */
4797 case 7: /* BICS */
4798 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4799 break;
4800 case 5: /* ORN */
4801 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4802 break;
4803 case 6: /* EON */
4804 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4805 break;
4806 default:
4807 assert(FALSE);
4808 break;
4811 if (!sf) {
4812 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4815 if (opc == 3) {
4816 gen_logic_CC(sf, tcg_rd);
4821 * Add/subtract (extended register)
4823 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4824 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4825 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4826 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4828 * sf: 0 -> 32bit, 1 -> 64bit
4829 * op: 0 -> add , 1 -> sub
4830 * S: 1 -> set flags
4831 * opt: 00
4832 * option: extension type (see DecodeRegExtend)
4833 * imm3: optional shift to Rm
4835 * Rd = Rn + LSL(extend(Rm), amount)
4837 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4839 int rd = extract32(insn, 0, 5);
4840 int rn = extract32(insn, 5, 5);
4841 int imm3 = extract32(insn, 10, 3);
4842 int option = extract32(insn, 13, 3);
4843 int rm = extract32(insn, 16, 5);
4844 int opt = extract32(insn, 22, 2);
4845 bool setflags = extract32(insn, 29, 1);
4846 bool sub_op = extract32(insn, 30, 1);
4847 bool sf = extract32(insn, 31, 1);
4849 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4850 TCGv_i64 tcg_rd;
4851 TCGv_i64 tcg_result;
4853 if (imm3 > 4 || opt != 0) {
4854 unallocated_encoding(s);
4855 return;
4858 /* non-flag setting ops may use SP */
4859 if (!setflags) {
4860 tcg_rd = cpu_reg_sp(s, rd);
4861 } else {
4862 tcg_rd = cpu_reg(s, rd);
4864 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4866 tcg_rm = read_cpu_reg(s, rm, sf);
4867 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4869 tcg_result = tcg_temp_new_i64();
4871 if (!setflags) {
4872 if (sub_op) {
4873 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4874 } else {
4875 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4877 } else {
4878 if (sub_op) {
4879 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4880 } else {
4881 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4885 if (sf) {
4886 tcg_gen_mov_i64(tcg_rd, tcg_result);
4887 } else {
4888 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4891 tcg_temp_free_i64(tcg_result);
4895 * Add/subtract (shifted register)
4897 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4898 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4899 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4900 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4902 * sf: 0 -> 32bit, 1 -> 64bit
4903 * op: 0 -> add , 1 -> sub
4904 * S: 1 -> set flags
4905 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4906 * imm6: Shift amount to apply to Rm before the add/sub
4908 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4910 int rd = extract32(insn, 0, 5);
4911 int rn = extract32(insn, 5, 5);
4912 int imm6 = extract32(insn, 10, 6);
4913 int rm = extract32(insn, 16, 5);
4914 int shift_type = extract32(insn, 22, 2);
4915 bool setflags = extract32(insn, 29, 1);
4916 bool sub_op = extract32(insn, 30, 1);
4917 bool sf = extract32(insn, 31, 1);
4919 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4920 TCGv_i64 tcg_rn, tcg_rm;
4921 TCGv_i64 tcg_result;
4923 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4924 unallocated_encoding(s);
4925 return;
4928 tcg_rn = read_cpu_reg(s, rn, sf);
4929 tcg_rm = read_cpu_reg(s, rm, sf);
4931 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4933 tcg_result = tcg_temp_new_i64();
4935 if (!setflags) {
4936 if (sub_op) {
4937 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4938 } else {
4939 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4941 } else {
4942 if (sub_op) {
4943 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4944 } else {
4945 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4949 if (sf) {
4950 tcg_gen_mov_i64(tcg_rd, tcg_result);
4951 } else {
4952 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4955 tcg_temp_free_i64(tcg_result);
4958 /* Data-processing (3 source)
4960 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4961 * +--+------+-----------+------+------+----+------+------+------+
4962 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4963 * +--+------+-----------+------+------+----+------+------+------+
4965 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4967 int rd = extract32(insn, 0, 5);
4968 int rn = extract32(insn, 5, 5);
4969 int ra = extract32(insn, 10, 5);
4970 int rm = extract32(insn, 16, 5);
4971 int op_id = (extract32(insn, 29, 3) << 4) |
4972 (extract32(insn, 21, 3) << 1) |
4973 extract32(insn, 15, 1);
4974 bool sf = extract32(insn, 31, 1);
4975 bool is_sub = extract32(op_id, 0, 1);
4976 bool is_high = extract32(op_id, 2, 1);
4977 bool is_signed = false;
4978 TCGv_i64 tcg_op1;
4979 TCGv_i64 tcg_op2;
4980 TCGv_i64 tcg_tmp;
4982 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4983 switch (op_id) {
4984 case 0x42: /* SMADDL */
4985 case 0x43: /* SMSUBL */
4986 case 0x44: /* SMULH */
4987 is_signed = true;
4988 break;
4989 case 0x0: /* MADD (32bit) */
4990 case 0x1: /* MSUB (32bit) */
4991 case 0x40: /* MADD (64bit) */
4992 case 0x41: /* MSUB (64bit) */
4993 case 0x4a: /* UMADDL */
4994 case 0x4b: /* UMSUBL */
4995 case 0x4c: /* UMULH */
4996 break;
4997 default:
4998 unallocated_encoding(s);
4999 return;
5002 if (is_high) {
5003 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5004 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5005 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5006 TCGv_i64 tcg_rm = cpu_reg(s, rm);
5008 if (is_signed) {
5009 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5010 } else {
5011 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5014 tcg_temp_free_i64(low_bits);
5015 return;
5018 tcg_op1 = tcg_temp_new_i64();
5019 tcg_op2 = tcg_temp_new_i64();
5020 tcg_tmp = tcg_temp_new_i64();
5022 if (op_id < 0x42) {
5023 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5024 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5025 } else {
5026 if (is_signed) {
5027 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5028 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5029 } else {
5030 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5031 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5035 if (ra == 31 && !is_sub) {
5036 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5037 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5038 } else {
5039 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5040 if (is_sub) {
5041 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5042 } else {
5043 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5047 if (!sf) {
5048 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5051 tcg_temp_free_i64(tcg_op1);
5052 tcg_temp_free_i64(tcg_op2);
5053 tcg_temp_free_i64(tcg_tmp);
5056 /* Add/subtract (with carry)
5057 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
5058 * +--+--+--+------------------------+------+-------------+------+-----+
5059 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
5060 * +--+--+--+------------------------+------+-------------+------+-----+
5063 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5065 unsigned int sf, op, setflags, rm, rn, rd;
5066 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5068 sf = extract32(insn, 31, 1);
5069 op = extract32(insn, 30, 1);
5070 setflags = extract32(insn, 29, 1);
5071 rm = extract32(insn, 16, 5);
5072 rn = extract32(insn, 5, 5);
5073 rd = extract32(insn, 0, 5);
5075 tcg_rd = cpu_reg(s, rd);
5076 tcg_rn = cpu_reg(s, rn);
5078 if (op) {
5079 tcg_y = new_tmp_a64(s);
5080 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5081 } else {
5082 tcg_y = cpu_reg(s, rm);
5085 if (setflags) {
5086 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5087 } else {
5088 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5093 * Rotate right into flags
5094 * 31 30 29 21 15 10 5 4 0
5095 * +--+--+--+-----------------+--------+-----------+------+--+------+
5096 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5097 * +--+--+--+-----------------+--------+-----------+------+--+------+
5099 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5101 int mask = extract32(insn, 0, 4);
5102 int o2 = extract32(insn, 4, 1);
5103 int rn = extract32(insn, 5, 5);
5104 int imm6 = extract32(insn, 15, 6);
5105 int sf_op_s = extract32(insn, 29, 3);
5106 TCGv_i64 tcg_rn;
5107 TCGv_i32 nzcv;
5109 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5110 unallocated_encoding(s);
5111 return;
5114 tcg_rn = read_cpu_reg(s, rn, 1);
5115 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5117 nzcv = tcg_temp_new_i32();
5118 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5120 if (mask & 8) { /* N */
5121 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5123 if (mask & 4) { /* Z */
5124 tcg_gen_not_i32(cpu_ZF, nzcv);
5125 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5127 if (mask & 2) { /* C */
5128 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5130 if (mask & 1) { /* V */
5131 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5134 tcg_temp_free_i32(nzcv);
5138 * Evaluate into flags
5139 * 31 30 29 21 15 14 10 5 4 0
5140 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5141 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5142 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5144 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5146 int o3_mask = extract32(insn, 0, 5);
5147 int rn = extract32(insn, 5, 5);
5148 int o2 = extract32(insn, 15, 6);
5149 int sz = extract32(insn, 14, 1);
5150 int sf_op_s = extract32(insn, 29, 3);
5151 TCGv_i32 tmp;
5152 int shift;
5154 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5155 !dc_isar_feature(aa64_condm_4, s)) {
5156 unallocated_encoding(s);
5157 return;
5159 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5161 tmp = tcg_temp_new_i32();
5162 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5163 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5164 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5165 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5166 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5167 tcg_temp_free_i32(tmp);
5170 /* Conditional compare (immediate / register)
5171 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5172 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5173 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5174 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5175 * [1] y [0] [0]
5177 static void disas_cc(DisasContext *s, uint32_t insn)
5179 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5180 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5181 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5182 DisasCompare c;
5184 if (!extract32(insn, 29, 1)) {
5185 unallocated_encoding(s);
5186 return;
5188 if (insn & (1 << 10 | 1 << 4)) {
5189 unallocated_encoding(s);
5190 return;
5192 sf = extract32(insn, 31, 1);
5193 op = extract32(insn, 30, 1);
5194 is_imm = extract32(insn, 11, 1);
5195 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5196 cond = extract32(insn, 12, 4);
5197 rn = extract32(insn, 5, 5);
5198 nzcv = extract32(insn, 0, 4);
5200 /* Set T0 = !COND. */
5201 tcg_t0 = tcg_temp_new_i32();
5202 arm_test_cc(&c, cond);
5203 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5204 arm_free_cc(&c);
5206 /* Load the arguments for the new comparison. */
5207 if (is_imm) {
5208 tcg_y = new_tmp_a64(s);
5209 tcg_gen_movi_i64(tcg_y, y);
5210 } else {
5211 tcg_y = cpu_reg(s, y);
5213 tcg_rn = cpu_reg(s, rn);
5215 /* Set the flags for the new comparison. */
5216 tcg_tmp = tcg_temp_new_i64();
5217 if (op) {
5218 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5219 } else {
5220 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5222 tcg_temp_free_i64(tcg_tmp);
5224 /* If COND was false, force the flags to #nzcv. Compute two masks
5225 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5226 * For tcg hosts that support ANDC, we can make do with just T1.
5227 * In either case, allow the tcg optimizer to delete any unused mask.
5229 tcg_t1 = tcg_temp_new_i32();
5230 tcg_t2 = tcg_temp_new_i32();
5231 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5232 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5234 if (nzcv & 8) { /* N */
5235 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5236 } else {
5237 if (TCG_TARGET_HAS_andc_i32) {
5238 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5239 } else {
5240 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5243 if (nzcv & 4) { /* Z */
5244 if (TCG_TARGET_HAS_andc_i32) {
5245 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5246 } else {
5247 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5249 } else {
5250 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5252 if (nzcv & 2) { /* C */
5253 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5254 } else {
5255 if (TCG_TARGET_HAS_andc_i32) {
5256 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5257 } else {
5258 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5261 if (nzcv & 1) { /* V */
5262 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5263 } else {
5264 if (TCG_TARGET_HAS_andc_i32) {
5265 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5266 } else {
5267 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5270 tcg_temp_free_i32(tcg_t0);
5271 tcg_temp_free_i32(tcg_t1);
5272 tcg_temp_free_i32(tcg_t2);
5275 /* Conditional select
5276 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5277 * +----+----+---+-----------------+------+------+-----+------+------+
5278 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5279 * +----+----+---+-----------------+------+------+-----+------+------+
5281 static void disas_cond_select(DisasContext *s, uint32_t insn)
5283 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5284 TCGv_i64 tcg_rd, zero;
5285 DisasCompare64 c;
5287 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5288 /* S == 1 or op2<1> == 1 */
5289 unallocated_encoding(s);
5290 return;
5292 sf = extract32(insn, 31, 1);
5293 else_inv = extract32(insn, 30, 1);
5294 rm = extract32(insn, 16, 5);
5295 cond = extract32(insn, 12, 4);
5296 else_inc = extract32(insn, 10, 1);
5297 rn = extract32(insn, 5, 5);
5298 rd = extract32(insn, 0, 5);
5300 tcg_rd = cpu_reg(s, rd);
5302 a64_test_cc(&c, cond);
5303 zero = tcg_const_i64(0);
5305 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5306 /* CSET & CSETM. */
5307 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5308 if (else_inv) {
5309 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5311 } else {
5312 TCGv_i64 t_true = cpu_reg(s, rn);
5313 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5314 if (else_inv && else_inc) {
5315 tcg_gen_neg_i64(t_false, t_false);
5316 } else if (else_inv) {
5317 tcg_gen_not_i64(t_false, t_false);
5318 } else if (else_inc) {
5319 tcg_gen_addi_i64(t_false, t_false, 1);
5321 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5324 tcg_temp_free_i64(zero);
5325 a64_free_cc(&c);
5327 if (!sf) {
5328 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5332 static void handle_clz(DisasContext *s, unsigned int sf,
5333 unsigned int rn, unsigned int rd)
5335 TCGv_i64 tcg_rd, tcg_rn;
5336 tcg_rd = cpu_reg(s, rd);
5337 tcg_rn = cpu_reg(s, rn);
5339 if (sf) {
5340 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5341 } else {
5342 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5343 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5344 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5345 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5346 tcg_temp_free_i32(tcg_tmp32);
5350 static void handle_cls(DisasContext *s, unsigned int sf,
5351 unsigned int rn, unsigned int rd)
5353 TCGv_i64 tcg_rd, tcg_rn;
5354 tcg_rd = cpu_reg(s, rd);
5355 tcg_rn = cpu_reg(s, rn);
5357 if (sf) {
5358 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5359 } else {
5360 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5361 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5362 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5363 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5364 tcg_temp_free_i32(tcg_tmp32);
5368 static void handle_rbit(DisasContext *s, unsigned int sf,
5369 unsigned int rn, unsigned int rd)
5371 TCGv_i64 tcg_rd, tcg_rn;
5372 tcg_rd = cpu_reg(s, rd);
5373 tcg_rn = cpu_reg(s, rn);
5375 if (sf) {
5376 gen_helper_rbit64(tcg_rd, tcg_rn);
5377 } else {
5378 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5379 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5380 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5381 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5382 tcg_temp_free_i32(tcg_tmp32);
5386 /* REV with sf==1, opcode==3 ("REV64") */
5387 static void handle_rev64(DisasContext *s, unsigned int sf,
5388 unsigned int rn, unsigned int rd)
5390 if (!sf) {
5391 unallocated_encoding(s);
5392 return;
5394 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5397 /* REV with sf==0, opcode==2
5398 * REV32 (sf==1, opcode==2)
5400 static void handle_rev32(DisasContext *s, unsigned int sf,
5401 unsigned int rn, unsigned int rd)
5403 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5405 if (sf) {
5406 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5407 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5409 /* bswap32_i64 requires zero high word */
5410 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
5411 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
5412 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
5413 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
5414 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
5416 tcg_temp_free_i64(tcg_tmp);
5417 } else {
5418 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
5419 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
5423 /* REV16 (opcode==1) */
5424 static void handle_rev16(DisasContext *s, unsigned int sf,
5425 unsigned int rn, unsigned int rd)
5427 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5428 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5429 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5430 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5432 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5433 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5434 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5435 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5436 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5438 tcg_temp_free_i64(mask);
5439 tcg_temp_free_i64(tcg_tmp);
5442 /* Data-processing (1 source)
5443 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5444 * +----+---+---+-----------------+---------+--------+------+------+
5445 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5446 * +----+---+---+-----------------+---------+--------+------+------+
5448 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5450 unsigned int sf, opcode, opcode2, rn, rd;
5451 TCGv_i64 tcg_rd;
5453 if (extract32(insn, 29, 1)) {
5454 unallocated_encoding(s);
5455 return;
5458 sf = extract32(insn, 31, 1);
5459 opcode = extract32(insn, 10, 6);
5460 opcode2 = extract32(insn, 16, 5);
5461 rn = extract32(insn, 5, 5);
5462 rd = extract32(insn, 0, 5);
5464 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5466 switch (MAP(sf, opcode2, opcode)) {
5467 case MAP(0, 0x00, 0x00): /* RBIT */
5468 case MAP(1, 0x00, 0x00):
5469 handle_rbit(s, sf, rn, rd);
5470 break;
5471 case MAP(0, 0x00, 0x01): /* REV16 */
5472 case MAP(1, 0x00, 0x01):
5473 handle_rev16(s, sf, rn, rd);
5474 break;
5475 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5476 case MAP(1, 0x00, 0x02):
5477 handle_rev32(s, sf, rn, rd);
5478 break;
5479 case MAP(1, 0x00, 0x03): /* REV64 */
5480 handle_rev64(s, sf, rn, rd);
5481 break;
5482 case MAP(0, 0x00, 0x04): /* CLZ */
5483 case MAP(1, 0x00, 0x04):
5484 handle_clz(s, sf, rn, rd);
5485 break;
5486 case MAP(0, 0x00, 0x05): /* CLS */
5487 case MAP(1, 0x00, 0x05):
5488 handle_cls(s, sf, rn, rd);
5489 break;
5490 case MAP(1, 0x01, 0x00): /* PACIA */
5491 if (s->pauth_active) {
5492 tcg_rd = cpu_reg(s, rd);
5493 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5494 } else if (!dc_isar_feature(aa64_pauth, s)) {
5495 goto do_unallocated;
5497 break;
5498 case MAP(1, 0x01, 0x01): /* PACIB */
5499 if (s->pauth_active) {
5500 tcg_rd = cpu_reg(s, rd);
5501 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5502 } else if (!dc_isar_feature(aa64_pauth, s)) {
5503 goto do_unallocated;
5505 break;
5506 case MAP(1, 0x01, 0x02): /* PACDA */
5507 if (s->pauth_active) {
5508 tcg_rd = cpu_reg(s, rd);
5509 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5510 } else if (!dc_isar_feature(aa64_pauth, s)) {
5511 goto do_unallocated;
5513 break;
5514 case MAP(1, 0x01, 0x03): /* PACDB */
5515 if (s->pauth_active) {
5516 tcg_rd = cpu_reg(s, rd);
5517 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5518 } else if (!dc_isar_feature(aa64_pauth, s)) {
5519 goto do_unallocated;
5521 break;
5522 case MAP(1, 0x01, 0x04): /* AUTIA */
5523 if (s->pauth_active) {
5524 tcg_rd = cpu_reg(s, rd);
5525 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5526 } else if (!dc_isar_feature(aa64_pauth, s)) {
5527 goto do_unallocated;
5529 break;
5530 case MAP(1, 0x01, 0x05): /* AUTIB */
5531 if (s->pauth_active) {
5532 tcg_rd = cpu_reg(s, rd);
5533 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5534 } else if (!dc_isar_feature(aa64_pauth, s)) {
5535 goto do_unallocated;
5537 break;
5538 case MAP(1, 0x01, 0x06): /* AUTDA */
5539 if (s->pauth_active) {
5540 tcg_rd = cpu_reg(s, rd);
5541 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5542 } else if (!dc_isar_feature(aa64_pauth, s)) {
5543 goto do_unallocated;
5545 break;
5546 case MAP(1, 0x01, 0x07): /* AUTDB */
5547 if (s->pauth_active) {
5548 tcg_rd = cpu_reg(s, rd);
5549 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5550 } else if (!dc_isar_feature(aa64_pauth, s)) {
5551 goto do_unallocated;
5553 break;
5554 case MAP(1, 0x01, 0x08): /* PACIZA */
5555 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5556 goto do_unallocated;
5557 } else if (s->pauth_active) {
5558 tcg_rd = cpu_reg(s, rd);
5559 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5561 break;
5562 case MAP(1, 0x01, 0x09): /* PACIZB */
5563 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5564 goto do_unallocated;
5565 } else if (s->pauth_active) {
5566 tcg_rd = cpu_reg(s, rd);
5567 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5569 break;
5570 case MAP(1, 0x01, 0x0a): /* PACDZA */
5571 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5572 goto do_unallocated;
5573 } else if (s->pauth_active) {
5574 tcg_rd = cpu_reg(s, rd);
5575 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5577 break;
5578 case MAP(1, 0x01, 0x0b): /* PACDZB */
5579 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5580 goto do_unallocated;
5581 } else if (s->pauth_active) {
5582 tcg_rd = cpu_reg(s, rd);
5583 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5585 break;
5586 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5587 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5588 goto do_unallocated;
5589 } else if (s->pauth_active) {
5590 tcg_rd = cpu_reg(s, rd);
5591 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5593 break;
5594 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5595 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5596 goto do_unallocated;
5597 } else if (s->pauth_active) {
5598 tcg_rd = cpu_reg(s, rd);
5599 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5601 break;
5602 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5603 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5604 goto do_unallocated;
5605 } else if (s->pauth_active) {
5606 tcg_rd = cpu_reg(s, rd);
5607 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5609 break;
5610 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5611 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5612 goto do_unallocated;
5613 } else if (s->pauth_active) {
5614 tcg_rd = cpu_reg(s, rd);
5615 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5617 break;
5618 case MAP(1, 0x01, 0x10): /* XPACI */
5619 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5620 goto do_unallocated;
5621 } else if (s->pauth_active) {
5622 tcg_rd = cpu_reg(s, rd);
5623 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5625 break;
5626 case MAP(1, 0x01, 0x11): /* XPACD */
5627 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5628 goto do_unallocated;
5629 } else if (s->pauth_active) {
5630 tcg_rd = cpu_reg(s, rd);
5631 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5633 break;
5634 default:
5635 do_unallocated:
5636 unallocated_encoding(s);
5637 break;
5640 #undef MAP
5643 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5644 unsigned int rm, unsigned int rn, unsigned int rd)
5646 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5647 tcg_rd = cpu_reg(s, rd);
5649 if (!sf && is_signed) {
5650 tcg_n = new_tmp_a64(s);
5651 tcg_m = new_tmp_a64(s);
5652 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5653 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5654 } else {
5655 tcg_n = read_cpu_reg(s, rn, sf);
5656 tcg_m = read_cpu_reg(s, rm, sf);
5659 if (is_signed) {
5660 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5661 } else {
5662 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5665 if (!sf) { /* zero extend final result */
5666 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5670 /* LSLV, LSRV, ASRV, RORV */
5671 static void handle_shift_reg(DisasContext *s,
5672 enum a64_shift_type shift_type, unsigned int sf,
5673 unsigned int rm, unsigned int rn, unsigned int rd)
5675 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5676 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5677 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5679 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5680 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5681 tcg_temp_free_i64(tcg_shift);
5684 /* CRC32[BHWX], CRC32C[BHWX] */
5685 static void handle_crc32(DisasContext *s,
5686 unsigned int sf, unsigned int sz, bool crc32c,
5687 unsigned int rm, unsigned int rn, unsigned int rd)
5689 TCGv_i64 tcg_acc, tcg_val;
5690 TCGv_i32 tcg_bytes;
5692 if (!dc_isar_feature(aa64_crc32, s)
5693 || (sf == 1 && sz != 3)
5694 || (sf == 0 && sz == 3)) {
5695 unallocated_encoding(s);
5696 return;
5699 if (sz == 3) {
5700 tcg_val = cpu_reg(s, rm);
5701 } else {
5702 uint64_t mask;
5703 switch (sz) {
5704 case 0:
5705 mask = 0xFF;
5706 break;
5707 case 1:
5708 mask = 0xFFFF;
5709 break;
5710 case 2:
5711 mask = 0xFFFFFFFF;
5712 break;
5713 default:
5714 g_assert_not_reached();
5716 tcg_val = new_tmp_a64(s);
5717 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5720 tcg_acc = cpu_reg(s, rn);
5721 tcg_bytes = tcg_const_i32(1 << sz);
5723 if (crc32c) {
5724 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5725 } else {
5726 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5729 tcg_temp_free_i32(tcg_bytes);
5732 /* Data-processing (2 source)
5733 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5734 * +----+---+---+-----------------+------+--------+------+------+
5735 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5736 * +----+---+---+-----------------+------+--------+------+------+
5738 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5740 unsigned int sf, rm, opcode, rn, rd, setflag;
5741 sf = extract32(insn, 31, 1);
5742 setflag = extract32(insn, 29, 1);
5743 rm = extract32(insn, 16, 5);
5744 opcode = extract32(insn, 10, 6);
5745 rn = extract32(insn, 5, 5);
5746 rd = extract32(insn, 0, 5);
5748 if (setflag && opcode != 0) {
5749 unallocated_encoding(s);
5750 return;
5753 switch (opcode) {
5754 case 0: /* SUBP(S) */
5755 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5756 goto do_unallocated;
5757 } else {
5758 TCGv_i64 tcg_n, tcg_m, tcg_d;
5760 tcg_n = read_cpu_reg_sp(s, rn, true);
5761 tcg_m = read_cpu_reg_sp(s, rm, true);
5762 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5763 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5764 tcg_d = cpu_reg(s, rd);
5766 if (setflag) {
5767 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5768 } else {
5769 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5772 break;
5773 case 2: /* UDIV */
5774 handle_div(s, false, sf, rm, rn, rd);
5775 break;
5776 case 3: /* SDIV */
5777 handle_div(s, true, sf, rm, rn, rd);
5778 break;
5779 case 4: /* IRG */
5780 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5781 goto do_unallocated;
5783 if (s->ata) {
5784 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5785 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5786 } else {
5787 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5788 cpu_reg_sp(s, rn));
5790 break;
5791 case 5: /* GMI */
5792 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5793 goto do_unallocated;
5794 } else {
5795 TCGv_i64 t1 = tcg_const_i64(1);
5796 TCGv_i64 t2 = tcg_temp_new_i64();
5798 tcg_gen_extract_i64(t2, cpu_reg_sp(s, rn), 56, 4);
5799 tcg_gen_shl_i64(t1, t1, t2);
5800 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t1);
5802 tcg_temp_free_i64(t1);
5803 tcg_temp_free_i64(t2);
5805 break;
5806 case 8: /* LSLV */
5807 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5808 break;
5809 case 9: /* LSRV */
5810 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5811 break;
5812 case 10: /* ASRV */
5813 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5814 break;
5815 case 11: /* RORV */
5816 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5817 break;
5818 case 12: /* PACGA */
5819 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5820 goto do_unallocated;
5822 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5823 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5824 break;
5825 case 16:
5826 case 17:
5827 case 18:
5828 case 19:
5829 case 20:
5830 case 21:
5831 case 22:
5832 case 23: /* CRC32 */
5834 int sz = extract32(opcode, 0, 2);
5835 bool crc32c = extract32(opcode, 2, 1);
5836 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5837 break;
5839 default:
5840 do_unallocated:
5841 unallocated_encoding(s);
5842 break;
5847 * Data processing - register
5848 * 31 30 29 28 25 21 20 16 10 0
5849 * +--+---+--+---+-------+-----+-------+-------+---------+
5850 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5851 * +--+---+--+---+-------+-----+-------+-------+---------+
5853 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5855 int op0 = extract32(insn, 30, 1);
5856 int op1 = extract32(insn, 28, 1);
5857 int op2 = extract32(insn, 21, 4);
5858 int op3 = extract32(insn, 10, 6);
5860 if (!op1) {
5861 if (op2 & 8) {
5862 if (op2 & 1) {
5863 /* Add/sub (extended register) */
5864 disas_add_sub_ext_reg(s, insn);
5865 } else {
5866 /* Add/sub (shifted register) */
5867 disas_add_sub_reg(s, insn);
5869 } else {
5870 /* Logical (shifted register) */
5871 disas_logic_reg(s, insn);
5873 return;
5876 switch (op2) {
5877 case 0x0:
5878 switch (op3) {
5879 case 0x00: /* Add/subtract (with carry) */
5880 disas_adc_sbc(s, insn);
5881 break;
5883 case 0x01: /* Rotate right into flags */
5884 case 0x21:
5885 disas_rotate_right_into_flags(s, insn);
5886 break;
5888 case 0x02: /* Evaluate into flags */
5889 case 0x12:
5890 case 0x22:
5891 case 0x32:
5892 disas_evaluate_into_flags(s, insn);
5893 break;
5895 default:
5896 goto do_unallocated;
5898 break;
5900 case 0x2: /* Conditional compare */
5901 disas_cc(s, insn); /* both imm and reg forms */
5902 break;
5904 case 0x4: /* Conditional select */
5905 disas_cond_select(s, insn);
5906 break;
5908 case 0x6: /* Data-processing */
5909 if (op0) { /* (1 source) */
5910 disas_data_proc_1src(s, insn);
5911 } else { /* (2 source) */
5912 disas_data_proc_2src(s, insn);
5914 break;
5915 case 0x8 ... 0xf: /* (3 source) */
5916 disas_data_proc_3src(s, insn);
5917 break;
5919 default:
5920 do_unallocated:
5921 unallocated_encoding(s);
5922 break;
5926 static void handle_fp_compare(DisasContext *s, int size,
5927 unsigned int rn, unsigned int rm,
5928 bool cmp_with_zero, bool signal_all_nans)
5930 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5931 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5933 if (size == MO_64) {
5934 TCGv_i64 tcg_vn, tcg_vm;
5936 tcg_vn = read_fp_dreg(s, rn);
5937 if (cmp_with_zero) {
5938 tcg_vm = tcg_const_i64(0);
5939 } else {
5940 tcg_vm = read_fp_dreg(s, rm);
5942 if (signal_all_nans) {
5943 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5944 } else {
5945 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5947 tcg_temp_free_i64(tcg_vn);
5948 tcg_temp_free_i64(tcg_vm);
5949 } else {
5950 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5951 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5953 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5954 if (cmp_with_zero) {
5955 tcg_gen_movi_i32(tcg_vm, 0);
5956 } else {
5957 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5960 switch (size) {
5961 case MO_32:
5962 if (signal_all_nans) {
5963 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5964 } else {
5965 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5967 break;
5968 case MO_16:
5969 if (signal_all_nans) {
5970 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5971 } else {
5972 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5974 break;
5975 default:
5976 g_assert_not_reached();
5979 tcg_temp_free_i32(tcg_vn);
5980 tcg_temp_free_i32(tcg_vm);
5983 tcg_temp_free_ptr(fpst);
5985 gen_set_nzcv(tcg_flags);
5987 tcg_temp_free_i64(tcg_flags);
5990 /* Floating point compare
5991 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5992 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5993 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5994 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5996 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5998 unsigned int mos, type, rm, op, rn, opc, op2r;
5999 int size;
6001 mos = extract32(insn, 29, 3);
6002 type = extract32(insn, 22, 2);
6003 rm = extract32(insn, 16, 5);
6004 op = extract32(insn, 14, 2);
6005 rn = extract32(insn, 5, 5);
6006 opc = extract32(insn, 3, 2);
6007 op2r = extract32(insn, 0, 3);
6009 if (mos || op || op2r) {
6010 unallocated_encoding(s);
6011 return;
6014 switch (type) {
6015 case 0:
6016 size = MO_32;
6017 break;
6018 case 1:
6019 size = MO_64;
6020 break;
6021 case 3:
6022 size = MO_16;
6023 if (dc_isar_feature(aa64_fp16, s)) {
6024 break;
6026 /* fallthru */
6027 default:
6028 unallocated_encoding(s);
6029 return;
6032 if (!fp_access_check(s)) {
6033 return;
6036 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6039 /* Floating point conditional compare
6040 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6041 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6042 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
6043 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6045 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6047 unsigned int mos, type, rm, cond, rn, op, nzcv;
6048 TCGv_i64 tcg_flags;
6049 TCGLabel *label_continue = NULL;
6050 int size;
6052 mos = extract32(insn, 29, 3);
6053 type = extract32(insn, 22, 2);
6054 rm = extract32(insn, 16, 5);
6055 cond = extract32(insn, 12, 4);
6056 rn = extract32(insn, 5, 5);
6057 op = extract32(insn, 4, 1);
6058 nzcv = extract32(insn, 0, 4);
6060 if (mos) {
6061 unallocated_encoding(s);
6062 return;
6065 switch (type) {
6066 case 0:
6067 size = MO_32;
6068 break;
6069 case 1:
6070 size = MO_64;
6071 break;
6072 case 3:
6073 size = MO_16;
6074 if (dc_isar_feature(aa64_fp16, s)) {
6075 break;
6077 /* fallthru */
6078 default:
6079 unallocated_encoding(s);
6080 return;
6083 if (!fp_access_check(s)) {
6084 return;
6087 if (cond < 0x0e) { /* not always */
6088 TCGLabel *label_match = gen_new_label();
6089 label_continue = gen_new_label();
6090 arm_gen_test_cc(cond, label_match);
6091 /* nomatch: */
6092 tcg_flags = tcg_const_i64(nzcv << 28);
6093 gen_set_nzcv(tcg_flags);
6094 tcg_temp_free_i64(tcg_flags);
6095 tcg_gen_br(label_continue);
6096 gen_set_label(label_match);
6099 handle_fp_compare(s, size, rn, rm, false, op);
6101 if (cond < 0x0e) {
6102 gen_set_label(label_continue);
6106 /* Floating point conditional select
6107 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6108 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6109 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6110 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6112 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6114 unsigned int mos, type, rm, cond, rn, rd;
6115 TCGv_i64 t_true, t_false, t_zero;
6116 DisasCompare64 c;
6117 MemOp sz;
6119 mos = extract32(insn, 29, 3);
6120 type = extract32(insn, 22, 2);
6121 rm = extract32(insn, 16, 5);
6122 cond = extract32(insn, 12, 4);
6123 rn = extract32(insn, 5, 5);
6124 rd = extract32(insn, 0, 5);
6126 if (mos) {
6127 unallocated_encoding(s);
6128 return;
6131 switch (type) {
6132 case 0:
6133 sz = MO_32;
6134 break;
6135 case 1:
6136 sz = MO_64;
6137 break;
6138 case 3:
6139 sz = MO_16;
6140 if (dc_isar_feature(aa64_fp16, s)) {
6141 break;
6143 /* fallthru */
6144 default:
6145 unallocated_encoding(s);
6146 return;
6149 if (!fp_access_check(s)) {
6150 return;
6153 /* Zero extend sreg & hreg inputs to 64 bits now. */
6154 t_true = tcg_temp_new_i64();
6155 t_false = tcg_temp_new_i64();
6156 read_vec_element(s, t_true, rn, 0, sz);
6157 read_vec_element(s, t_false, rm, 0, sz);
6159 a64_test_cc(&c, cond);
6160 t_zero = tcg_const_i64(0);
6161 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
6162 tcg_temp_free_i64(t_zero);
6163 tcg_temp_free_i64(t_false);
6164 a64_free_cc(&c);
6166 /* Note that sregs & hregs write back zeros to the high bits,
6167 and we've already done the zero-extension. */
6168 write_fp_dreg(s, rd, t_true);
6169 tcg_temp_free_i64(t_true);
6172 /* Floating-point data-processing (1 source) - half precision */
6173 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6175 TCGv_ptr fpst = NULL;
6176 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6177 TCGv_i32 tcg_res = tcg_temp_new_i32();
6179 switch (opcode) {
6180 case 0x0: /* FMOV */
6181 tcg_gen_mov_i32(tcg_res, tcg_op);
6182 break;
6183 case 0x1: /* FABS */
6184 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6185 break;
6186 case 0x2: /* FNEG */
6187 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6188 break;
6189 case 0x3: /* FSQRT */
6190 fpst = fpstatus_ptr(FPST_FPCR_F16);
6191 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6192 break;
6193 case 0x8: /* FRINTN */
6194 case 0x9: /* FRINTP */
6195 case 0xa: /* FRINTM */
6196 case 0xb: /* FRINTZ */
6197 case 0xc: /* FRINTA */
6199 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6200 fpst = fpstatus_ptr(FPST_FPCR_F16);
6202 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6203 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6205 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6206 tcg_temp_free_i32(tcg_rmode);
6207 break;
6209 case 0xe: /* FRINTX */
6210 fpst = fpstatus_ptr(FPST_FPCR_F16);
6211 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6212 break;
6213 case 0xf: /* FRINTI */
6214 fpst = fpstatus_ptr(FPST_FPCR_F16);
6215 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6216 break;
6217 default:
6218 abort();
6221 write_fp_sreg(s, rd, tcg_res);
6223 if (fpst) {
6224 tcg_temp_free_ptr(fpst);
6226 tcg_temp_free_i32(tcg_op);
6227 tcg_temp_free_i32(tcg_res);
6230 /* Floating-point data-processing (1 source) - single precision */
6231 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6233 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6234 TCGv_i32 tcg_op, tcg_res;
6235 TCGv_ptr fpst;
6236 int rmode = -1;
6238 tcg_op = read_fp_sreg(s, rn);
6239 tcg_res = tcg_temp_new_i32();
6241 switch (opcode) {
6242 case 0x0: /* FMOV */
6243 tcg_gen_mov_i32(tcg_res, tcg_op);
6244 goto done;
6245 case 0x1: /* FABS */
6246 gen_helper_vfp_abss(tcg_res, tcg_op);
6247 goto done;
6248 case 0x2: /* FNEG */
6249 gen_helper_vfp_negs(tcg_res, tcg_op);
6250 goto done;
6251 case 0x3: /* FSQRT */
6252 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6253 goto done;
6254 case 0x8: /* FRINTN */
6255 case 0x9: /* FRINTP */
6256 case 0xa: /* FRINTM */
6257 case 0xb: /* FRINTZ */
6258 case 0xc: /* FRINTA */
6259 rmode = arm_rmode_to_sf(opcode & 7);
6260 gen_fpst = gen_helper_rints;
6261 break;
6262 case 0xe: /* FRINTX */
6263 gen_fpst = gen_helper_rints_exact;
6264 break;
6265 case 0xf: /* FRINTI */
6266 gen_fpst = gen_helper_rints;
6267 break;
6268 case 0x10: /* FRINT32Z */
6269 rmode = float_round_to_zero;
6270 gen_fpst = gen_helper_frint32_s;
6271 break;
6272 case 0x11: /* FRINT32X */
6273 gen_fpst = gen_helper_frint32_s;
6274 break;
6275 case 0x12: /* FRINT64Z */
6276 rmode = float_round_to_zero;
6277 gen_fpst = gen_helper_frint64_s;
6278 break;
6279 case 0x13: /* FRINT64X */
6280 gen_fpst = gen_helper_frint64_s;
6281 break;
6282 default:
6283 g_assert_not_reached();
6286 fpst = fpstatus_ptr(FPST_FPCR);
6287 if (rmode >= 0) {
6288 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6289 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6290 gen_fpst(tcg_res, tcg_op, fpst);
6291 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6292 tcg_temp_free_i32(tcg_rmode);
6293 } else {
6294 gen_fpst(tcg_res, tcg_op, fpst);
6296 tcg_temp_free_ptr(fpst);
6298 done:
6299 write_fp_sreg(s, rd, tcg_res);
6300 tcg_temp_free_i32(tcg_op);
6301 tcg_temp_free_i32(tcg_res);
6304 /* Floating-point data-processing (1 source) - double precision */
6305 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6307 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6308 TCGv_i64 tcg_op, tcg_res;
6309 TCGv_ptr fpst;
6310 int rmode = -1;
6312 switch (opcode) {
6313 case 0x0: /* FMOV */
6314 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6315 return;
6318 tcg_op = read_fp_dreg(s, rn);
6319 tcg_res = tcg_temp_new_i64();
6321 switch (opcode) {
6322 case 0x1: /* FABS */
6323 gen_helper_vfp_absd(tcg_res, tcg_op);
6324 goto done;
6325 case 0x2: /* FNEG */
6326 gen_helper_vfp_negd(tcg_res, tcg_op);
6327 goto done;
6328 case 0x3: /* FSQRT */
6329 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6330 goto done;
6331 case 0x8: /* FRINTN */
6332 case 0x9: /* FRINTP */
6333 case 0xa: /* FRINTM */
6334 case 0xb: /* FRINTZ */
6335 case 0xc: /* FRINTA */
6336 rmode = arm_rmode_to_sf(opcode & 7);
6337 gen_fpst = gen_helper_rintd;
6338 break;
6339 case 0xe: /* FRINTX */
6340 gen_fpst = gen_helper_rintd_exact;
6341 break;
6342 case 0xf: /* FRINTI */
6343 gen_fpst = gen_helper_rintd;
6344 break;
6345 case 0x10: /* FRINT32Z */
6346 rmode = float_round_to_zero;
6347 gen_fpst = gen_helper_frint32_d;
6348 break;
6349 case 0x11: /* FRINT32X */
6350 gen_fpst = gen_helper_frint32_d;
6351 break;
6352 case 0x12: /* FRINT64Z */
6353 rmode = float_round_to_zero;
6354 gen_fpst = gen_helper_frint64_d;
6355 break;
6356 case 0x13: /* FRINT64X */
6357 gen_fpst = gen_helper_frint64_d;
6358 break;
6359 default:
6360 g_assert_not_reached();
6363 fpst = fpstatus_ptr(FPST_FPCR);
6364 if (rmode >= 0) {
6365 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6366 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6367 gen_fpst(tcg_res, tcg_op, fpst);
6368 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6369 tcg_temp_free_i32(tcg_rmode);
6370 } else {
6371 gen_fpst(tcg_res, tcg_op, fpst);
6373 tcg_temp_free_ptr(fpst);
6375 done:
6376 write_fp_dreg(s, rd, tcg_res);
6377 tcg_temp_free_i64(tcg_op);
6378 tcg_temp_free_i64(tcg_res);
6381 static void handle_fp_fcvt(DisasContext *s, int opcode,
6382 int rd, int rn, int dtype, int ntype)
6384 switch (ntype) {
6385 case 0x0:
6387 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6388 if (dtype == 1) {
6389 /* Single to double */
6390 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6391 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6392 write_fp_dreg(s, rd, tcg_rd);
6393 tcg_temp_free_i64(tcg_rd);
6394 } else {
6395 /* Single to half */
6396 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6397 TCGv_i32 ahp = get_ahp_flag();
6398 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6400 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6401 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6402 write_fp_sreg(s, rd, tcg_rd);
6403 tcg_temp_free_i32(tcg_rd);
6404 tcg_temp_free_i32(ahp);
6405 tcg_temp_free_ptr(fpst);
6407 tcg_temp_free_i32(tcg_rn);
6408 break;
6410 case 0x1:
6412 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6413 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6414 if (dtype == 0) {
6415 /* Double to single */
6416 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6417 } else {
6418 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6419 TCGv_i32 ahp = get_ahp_flag();
6420 /* Double to half */
6421 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6422 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6423 tcg_temp_free_ptr(fpst);
6424 tcg_temp_free_i32(ahp);
6426 write_fp_sreg(s, rd, tcg_rd);
6427 tcg_temp_free_i32(tcg_rd);
6428 tcg_temp_free_i64(tcg_rn);
6429 break;
6431 case 0x3:
6433 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6434 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6435 TCGv_i32 tcg_ahp = get_ahp_flag();
6436 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6437 if (dtype == 0) {
6438 /* Half to single */
6439 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6440 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6441 write_fp_sreg(s, rd, tcg_rd);
6442 tcg_temp_free_i32(tcg_rd);
6443 } else {
6444 /* Half to double */
6445 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6446 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6447 write_fp_dreg(s, rd, tcg_rd);
6448 tcg_temp_free_i64(tcg_rd);
6450 tcg_temp_free_i32(tcg_rn);
6451 tcg_temp_free_ptr(tcg_fpst);
6452 tcg_temp_free_i32(tcg_ahp);
6453 break;
6455 default:
6456 abort();
6460 /* Floating point data-processing (1 source)
6461 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6462 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6463 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6464 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6466 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6468 int mos = extract32(insn, 29, 3);
6469 int type = extract32(insn, 22, 2);
6470 int opcode = extract32(insn, 15, 6);
6471 int rn = extract32(insn, 5, 5);
6472 int rd = extract32(insn, 0, 5);
6474 if (mos) {
6475 unallocated_encoding(s);
6476 return;
6479 switch (opcode) {
6480 case 0x4: case 0x5: case 0x7:
6482 /* FCVT between half, single and double precision */
6483 int dtype = extract32(opcode, 0, 2);
6484 if (type == 2 || dtype == type) {
6485 unallocated_encoding(s);
6486 return;
6488 if (!fp_access_check(s)) {
6489 return;
6492 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6493 break;
6496 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6497 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6498 unallocated_encoding(s);
6499 return;
6501 /* fall through */
6502 case 0x0 ... 0x3:
6503 case 0x8 ... 0xc:
6504 case 0xe ... 0xf:
6505 /* 32-to-32 and 64-to-64 ops */
6506 switch (type) {
6507 case 0:
6508 if (!fp_access_check(s)) {
6509 return;
6511 handle_fp_1src_single(s, opcode, rd, rn);
6512 break;
6513 case 1:
6514 if (!fp_access_check(s)) {
6515 return;
6517 handle_fp_1src_double(s, opcode, rd, rn);
6518 break;
6519 case 3:
6520 if (!dc_isar_feature(aa64_fp16, s)) {
6521 unallocated_encoding(s);
6522 return;
6525 if (!fp_access_check(s)) {
6526 return;
6528 handle_fp_1src_half(s, opcode, rd, rn);
6529 break;
6530 default:
6531 unallocated_encoding(s);
6533 break;
6535 default:
6536 unallocated_encoding(s);
6537 break;
6541 /* Floating-point data-processing (2 source) - single precision */
6542 static void handle_fp_2src_single(DisasContext *s, int opcode,
6543 int rd, int rn, int rm)
6545 TCGv_i32 tcg_op1;
6546 TCGv_i32 tcg_op2;
6547 TCGv_i32 tcg_res;
6548 TCGv_ptr fpst;
6550 tcg_res = tcg_temp_new_i32();
6551 fpst = fpstatus_ptr(FPST_FPCR);
6552 tcg_op1 = read_fp_sreg(s, rn);
6553 tcg_op2 = read_fp_sreg(s, rm);
6555 switch (opcode) {
6556 case 0x0: /* FMUL */
6557 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6558 break;
6559 case 0x1: /* FDIV */
6560 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6561 break;
6562 case 0x2: /* FADD */
6563 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6564 break;
6565 case 0x3: /* FSUB */
6566 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6567 break;
6568 case 0x4: /* FMAX */
6569 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6570 break;
6571 case 0x5: /* FMIN */
6572 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6573 break;
6574 case 0x6: /* FMAXNM */
6575 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6576 break;
6577 case 0x7: /* FMINNM */
6578 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6579 break;
6580 case 0x8: /* FNMUL */
6581 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6582 gen_helper_vfp_negs(tcg_res, tcg_res);
6583 break;
6586 write_fp_sreg(s, rd, tcg_res);
6588 tcg_temp_free_ptr(fpst);
6589 tcg_temp_free_i32(tcg_op1);
6590 tcg_temp_free_i32(tcg_op2);
6591 tcg_temp_free_i32(tcg_res);
6594 /* Floating-point data-processing (2 source) - double precision */
6595 static void handle_fp_2src_double(DisasContext *s, int opcode,
6596 int rd, int rn, int rm)
6598 TCGv_i64 tcg_op1;
6599 TCGv_i64 tcg_op2;
6600 TCGv_i64 tcg_res;
6601 TCGv_ptr fpst;
6603 tcg_res = tcg_temp_new_i64();
6604 fpst = fpstatus_ptr(FPST_FPCR);
6605 tcg_op1 = read_fp_dreg(s, rn);
6606 tcg_op2 = read_fp_dreg(s, rm);
6608 switch (opcode) {
6609 case 0x0: /* FMUL */
6610 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6611 break;
6612 case 0x1: /* FDIV */
6613 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6614 break;
6615 case 0x2: /* FADD */
6616 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6617 break;
6618 case 0x3: /* FSUB */
6619 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6620 break;
6621 case 0x4: /* FMAX */
6622 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6623 break;
6624 case 0x5: /* FMIN */
6625 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6626 break;
6627 case 0x6: /* FMAXNM */
6628 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6629 break;
6630 case 0x7: /* FMINNM */
6631 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6632 break;
6633 case 0x8: /* FNMUL */
6634 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6635 gen_helper_vfp_negd(tcg_res, tcg_res);
6636 break;
6639 write_fp_dreg(s, rd, tcg_res);
6641 tcg_temp_free_ptr(fpst);
6642 tcg_temp_free_i64(tcg_op1);
6643 tcg_temp_free_i64(tcg_op2);
6644 tcg_temp_free_i64(tcg_res);
6647 /* Floating-point data-processing (2 source) - half precision */
6648 static void handle_fp_2src_half(DisasContext *s, int opcode,
6649 int rd, int rn, int rm)
6651 TCGv_i32 tcg_op1;
6652 TCGv_i32 tcg_op2;
6653 TCGv_i32 tcg_res;
6654 TCGv_ptr fpst;
6656 tcg_res = tcg_temp_new_i32();
6657 fpst = fpstatus_ptr(FPST_FPCR_F16);
6658 tcg_op1 = read_fp_hreg(s, rn);
6659 tcg_op2 = read_fp_hreg(s, rm);
6661 switch (opcode) {
6662 case 0x0: /* FMUL */
6663 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6664 break;
6665 case 0x1: /* FDIV */
6666 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6667 break;
6668 case 0x2: /* FADD */
6669 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6670 break;
6671 case 0x3: /* FSUB */
6672 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6673 break;
6674 case 0x4: /* FMAX */
6675 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6676 break;
6677 case 0x5: /* FMIN */
6678 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6679 break;
6680 case 0x6: /* FMAXNM */
6681 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6682 break;
6683 case 0x7: /* FMINNM */
6684 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6685 break;
6686 case 0x8: /* FNMUL */
6687 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6688 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6689 break;
6690 default:
6691 g_assert_not_reached();
6694 write_fp_sreg(s, rd, tcg_res);
6696 tcg_temp_free_ptr(fpst);
6697 tcg_temp_free_i32(tcg_op1);
6698 tcg_temp_free_i32(tcg_op2);
6699 tcg_temp_free_i32(tcg_res);
6702 /* Floating point data-processing (2 source)
6703 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6704 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6705 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6706 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6708 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6710 int mos = extract32(insn, 29, 3);
6711 int type = extract32(insn, 22, 2);
6712 int rd = extract32(insn, 0, 5);
6713 int rn = extract32(insn, 5, 5);
6714 int rm = extract32(insn, 16, 5);
6715 int opcode = extract32(insn, 12, 4);
6717 if (opcode > 8 || mos) {
6718 unallocated_encoding(s);
6719 return;
6722 switch (type) {
6723 case 0:
6724 if (!fp_access_check(s)) {
6725 return;
6727 handle_fp_2src_single(s, opcode, rd, rn, rm);
6728 break;
6729 case 1:
6730 if (!fp_access_check(s)) {
6731 return;
6733 handle_fp_2src_double(s, opcode, rd, rn, rm);
6734 break;
6735 case 3:
6736 if (!dc_isar_feature(aa64_fp16, s)) {
6737 unallocated_encoding(s);
6738 return;
6740 if (!fp_access_check(s)) {
6741 return;
6743 handle_fp_2src_half(s, opcode, rd, rn, rm);
6744 break;
6745 default:
6746 unallocated_encoding(s);
6750 /* Floating-point data-processing (3 source) - single precision */
6751 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6752 int rd, int rn, int rm, int ra)
6754 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6755 TCGv_i32 tcg_res = tcg_temp_new_i32();
6756 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6758 tcg_op1 = read_fp_sreg(s, rn);
6759 tcg_op2 = read_fp_sreg(s, rm);
6760 tcg_op3 = read_fp_sreg(s, ra);
6762 /* These are fused multiply-add, and must be done as one
6763 * floating point operation with no rounding between the
6764 * multiplication and addition steps.
6765 * NB that doing the negations here as separate steps is
6766 * correct : an input NaN should come out with its sign bit
6767 * flipped if it is a negated-input.
6769 if (o1 == true) {
6770 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6773 if (o0 != o1) {
6774 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6777 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6779 write_fp_sreg(s, rd, tcg_res);
6781 tcg_temp_free_ptr(fpst);
6782 tcg_temp_free_i32(tcg_op1);
6783 tcg_temp_free_i32(tcg_op2);
6784 tcg_temp_free_i32(tcg_op3);
6785 tcg_temp_free_i32(tcg_res);
6788 /* Floating-point data-processing (3 source) - double precision */
6789 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6790 int rd, int rn, int rm, int ra)
6792 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6793 TCGv_i64 tcg_res = tcg_temp_new_i64();
6794 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6796 tcg_op1 = read_fp_dreg(s, rn);
6797 tcg_op2 = read_fp_dreg(s, rm);
6798 tcg_op3 = read_fp_dreg(s, ra);
6800 /* These are fused multiply-add, and must be done as one
6801 * floating point operation with no rounding between the
6802 * multiplication and addition steps.
6803 * NB that doing the negations here as separate steps is
6804 * correct : an input NaN should come out with its sign bit
6805 * flipped if it is a negated-input.
6807 if (o1 == true) {
6808 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6811 if (o0 != o1) {
6812 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6815 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6817 write_fp_dreg(s, rd, tcg_res);
6819 tcg_temp_free_ptr(fpst);
6820 tcg_temp_free_i64(tcg_op1);
6821 tcg_temp_free_i64(tcg_op2);
6822 tcg_temp_free_i64(tcg_op3);
6823 tcg_temp_free_i64(tcg_res);
6826 /* Floating-point data-processing (3 source) - half precision */
6827 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6828 int rd, int rn, int rm, int ra)
6830 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6831 TCGv_i32 tcg_res = tcg_temp_new_i32();
6832 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6834 tcg_op1 = read_fp_hreg(s, rn);
6835 tcg_op2 = read_fp_hreg(s, rm);
6836 tcg_op3 = read_fp_hreg(s, ra);
6838 /* These are fused multiply-add, and must be done as one
6839 * floating point operation with no rounding between the
6840 * multiplication and addition steps.
6841 * NB that doing the negations here as separate steps is
6842 * correct : an input NaN should come out with its sign bit
6843 * flipped if it is a negated-input.
6845 if (o1 == true) {
6846 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6849 if (o0 != o1) {
6850 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6853 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6855 write_fp_sreg(s, rd, tcg_res);
6857 tcg_temp_free_ptr(fpst);
6858 tcg_temp_free_i32(tcg_op1);
6859 tcg_temp_free_i32(tcg_op2);
6860 tcg_temp_free_i32(tcg_op3);
6861 tcg_temp_free_i32(tcg_res);
6864 /* Floating point data-processing (3 source)
6865 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6866 * +---+---+---+-----------+------+----+------+----+------+------+------+
6867 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6868 * +---+---+---+-----------+------+----+------+----+------+------+------+
6870 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6872 int mos = extract32(insn, 29, 3);
6873 int type = extract32(insn, 22, 2);
6874 int rd = extract32(insn, 0, 5);
6875 int rn = extract32(insn, 5, 5);
6876 int ra = extract32(insn, 10, 5);
6877 int rm = extract32(insn, 16, 5);
6878 bool o0 = extract32(insn, 15, 1);
6879 bool o1 = extract32(insn, 21, 1);
6881 if (mos) {
6882 unallocated_encoding(s);
6883 return;
6886 switch (type) {
6887 case 0:
6888 if (!fp_access_check(s)) {
6889 return;
6891 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6892 break;
6893 case 1:
6894 if (!fp_access_check(s)) {
6895 return;
6897 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6898 break;
6899 case 3:
6900 if (!dc_isar_feature(aa64_fp16, s)) {
6901 unallocated_encoding(s);
6902 return;
6904 if (!fp_access_check(s)) {
6905 return;
6907 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6908 break;
6909 default:
6910 unallocated_encoding(s);
6914 /* Floating point immediate
6915 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6916 * +---+---+---+-----------+------+---+------------+-------+------+------+
6917 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6918 * +---+---+---+-----------+------+---+------------+-------+------+------+
6920 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6922 int rd = extract32(insn, 0, 5);
6923 int imm5 = extract32(insn, 5, 5);
6924 int imm8 = extract32(insn, 13, 8);
6925 int type = extract32(insn, 22, 2);
6926 int mos = extract32(insn, 29, 3);
6927 uint64_t imm;
6928 TCGv_i64 tcg_res;
6929 MemOp sz;
6931 if (mos || imm5) {
6932 unallocated_encoding(s);
6933 return;
6936 switch (type) {
6937 case 0:
6938 sz = MO_32;
6939 break;
6940 case 1:
6941 sz = MO_64;
6942 break;
6943 case 3:
6944 sz = MO_16;
6945 if (dc_isar_feature(aa64_fp16, s)) {
6946 break;
6948 /* fallthru */
6949 default:
6950 unallocated_encoding(s);
6951 return;
6954 if (!fp_access_check(s)) {
6955 return;
6958 imm = vfp_expand_imm(sz, imm8);
6960 tcg_res = tcg_const_i64(imm);
6961 write_fp_dreg(s, rd, tcg_res);
6962 tcg_temp_free_i64(tcg_res);
6965 /* Handle floating point <=> fixed point conversions. Note that we can
6966 * also deal with fp <=> integer conversions as a special case (scale == 64)
6967 * OPTME: consider handling that special case specially or at least skipping
6968 * the call to scalbn in the helpers for zero shifts.
6970 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6971 bool itof, int rmode, int scale, int sf, int type)
6973 bool is_signed = !(opcode & 1);
6974 TCGv_ptr tcg_fpstatus;
6975 TCGv_i32 tcg_shift, tcg_single;
6976 TCGv_i64 tcg_double;
6978 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6980 tcg_shift = tcg_const_i32(64 - scale);
6982 if (itof) {
6983 TCGv_i64 tcg_int = cpu_reg(s, rn);
6984 if (!sf) {
6985 TCGv_i64 tcg_extend = new_tmp_a64(s);
6987 if (is_signed) {
6988 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6989 } else {
6990 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6993 tcg_int = tcg_extend;
6996 switch (type) {
6997 case 1: /* float64 */
6998 tcg_double = tcg_temp_new_i64();
6999 if (is_signed) {
7000 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7001 tcg_shift, tcg_fpstatus);
7002 } else {
7003 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7004 tcg_shift, tcg_fpstatus);
7006 write_fp_dreg(s, rd, tcg_double);
7007 tcg_temp_free_i64(tcg_double);
7008 break;
7010 case 0: /* float32 */
7011 tcg_single = tcg_temp_new_i32();
7012 if (is_signed) {
7013 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7014 tcg_shift, tcg_fpstatus);
7015 } else {
7016 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7017 tcg_shift, tcg_fpstatus);
7019 write_fp_sreg(s, rd, tcg_single);
7020 tcg_temp_free_i32(tcg_single);
7021 break;
7023 case 3: /* float16 */
7024 tcg_single = tcg_temp_new_i32();
7025 if (is_signed) {
7026 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7027 tcg_shift, tcg_fpstatus);
7028 } else {
7029 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7030 tcg_shift, tcg_fpstatus);
7032 write_fp_sreg(s, rd, tcg_single);
7033 tcg_temp_free_i32(tcg_single);
7034 break;
7036 default:
7037 g_assert_not_reached();
7039 } else {
7040 TCGv_i64 tcg_int = cpu_reg(s, rd);
7041 TCGv_i32 tcg_rmode;
7043 if (extract32(opcode, 2, 1)) {
7044 /* There are too many rounding modes to all fit into rmode,
7045 * so FCVTA[US] is a special case.
7047 rmode = FPROUNDING_TIEAWAY;
7050 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7052 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7054 switch (type) {
7055 case 1: /* float64 */
7056 tcg_double = read_fp_dreg(s, rn);
7057 if (is_signed) {
7058 if (!sf) {
7059 gen_helper_vfp_tosld(tcg_int, tcg_double,
7060 tcg_shift, tcg_fpstatus);
7061 } else {
7062 gen_helper_vfp_tosqd(tcg_int, tcg_double,
7063 tcg_shift, tcg_fpstatus);
7065 } else {
7066 if (!sf) {
7067 gen_helper_vfp_tould(tcg_int, tcg_double,
7068 tcg_shift, tcg_fpstatus);
7069 } else {
7070 gen_helper_vfp_touqd(tcg_int, tcg_double,
7071 tcg_shift, tcg_fpstatus);
7074 if (!sf) {
7075 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7077 tcg_temp_free_i64(tcg_double);
7078 break;
7080 case 0: /* float32 */
7081 tcg_single = read_fp_sreg(s, rn);
7082 if (sf) {
7083 if (is_signed) {
7084 gen_helper_vfp_tosqs(tcg_int, tcg_single,
7085 tcg_shift, tcg_fpstatus);
7086 } else {
7087 gen_helper_vfp_touqs(tcg_int, tcg_single,
7088 tcg_shift, tcg_fpstatus);
7090 } else {
7091 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7092 if (is_signed) {
7093 gen_helper_vfp_tosls(tcg_dest, tcg_single,
7094 tcg_shift, tcg_fpstatus);
7095 } else {
7096 gen_helper_vfp_touls(tcg_dest, tcg_single,
7097 tcg_shift, tcg_fpstatus);
7099 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7100 tcg_temp_free_i32(tcg_dest);
7102 tcg_temp_free_i32(tcg_single);
7103 break;
7105 case 3: /* float16 */
7106 tcg_single = read_fp_sreg(s, rn);
7107 if (sf) {
7108 if (is_signed) {
7109 gen_helper_vfp_tosqh(tcg_int, tcg_single,
7110 tcg_shift, tcg_fpstatus);
7111 } else {
7112 gen_helper_vfp_touqh(tcg_int, tcg_single,
7113 tcg_shift, tcg_fpstatus);
7115 } else {
7116 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7117 if (is_signed) {
7118 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7119 tcg_shift, tcg_fpstatus);
7120 } else {
7121 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7122 tcg_shift, tcg_fpstatus);
7124 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7125 tcg_temp_free_i32(tcg_dest);
7127 tcg_temp_free_i32(tcg_single);
7128 break;
7130 default:
7131 g_assert_not_reached();
7134 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7135 tcg_temp_free_i32(tcg_rmode);
7138 tcg_temp_free_ptr(tcg_fpstatus);
7139 tcg_temp_free_i32(tcg_shift);
7142 /* Floating point <-> fixed point conversions
7143 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7144 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7145 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7146 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7148 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7150 int rd = extract32(insn, 0, 5);
7151 int rn = extract32(insn, 5, 5);
7152 int scale = extract32(insn, 10, 6);
7153 int opcode = extract32(insn, 16, 3);
7154 int rmode = extract32(insn, 19, 2);
7155 int type = extract32(insn, 22, 2);
7156 bool sbit = extract32(insn, 29, 1);
7157 bool sf = extract32(insn, 31, 1);
7158 bool itof;
7160 if (sbit || (!sf && scale < 32)) {
7161 unallocated_encoding(s);
7162 return;
7165 switch (type) {
7166 case 0: /* float32 */
7167 case 1: /* float64 */
7168 break;
7169 case 3: /* float16 */
7170 if (dc_isar_feature(aa64_fp16, s)) {
7171 break;
7173 /* fallthru */
7174 default:
7175 unallocated_encoding(s);
7176 return;
7179 switch ((rmode << 3) | opcode) {
7180 case 0x2: /* SCVTF */
7181 case 0x3: /* UCVTF */
7182 itof = true;
7183 break;
7184 case 0x18: /* FCVTZS */
7185 case 0x19: /* FCVTZU */
7186 itof = false;
7187 break;
7188 default:
7189 unallocated_encoding(s);
7190 return;
7193 if (!fp_access_check(s)) {
7194 return;
7197 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7200 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7202 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7203 * without conversion.
7206 if (itof) {
7207 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7208 TCGv_i64 tmp;
7210 switch (type) {
7211 case 0:
7212 /* 32 bit */
7213 tmp = tcg_temp_new_i64();
7214 tcg_gen_ext32u_i64(tmp, tcg_rn);
7215 write_fp_dreg(s, rd, tmp);
7216 tcg_temp_free_i64(tmp);
7217 break;
7218 case 1:
7219 /* 64 bit */
7220 write_fp_dreg(s, rd, tcg_rn);
7221 break;
7222 case 2:
7223 /* 64 bit to top half. */
7224 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7225 clear_vec_high(s, true, rd);
7226 break;
7227 case 3:
7228 /* 16 bit */
7229 tmp = tcg_temp_new_i64();
7230 tcg_gen_ext16u_i64(tmp, tcg_rn);
7231 write_fp_dreg(s, rd, tmp);
7232 tcg_temp_free_i64(tmp);
7233 break;
7234 default:
7235 g_assert_not_reached();
7237 } else {
7238 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7240 switch (type) {
7241 case 0:
7242 /* 32 bit */
7243 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7244 break;
7245 case 1:
7246 /* 64 bit */
7247 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7248 break;
7249 case 2:
7250 /* 64 bits from top half */
7251 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7252 break;
7253 case 3:
7254 /* 16 bit */
7255 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7256 break;
7257 default:
7258 g_assert_not_reached();
7263 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7265 TCGv_i64 t = read_fp_dreg(s, rn);
7266 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7268 gen_helper_fjcvtzs(t, t, fpstatus);
7270 tcg_temp_free_ptr(fpstatus);
7272 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7273 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7274 tcg_gen_movi_i32(cpu_CF, 0);
7275 tcg_gen_movi_i32(cpu_NF, 0);
7276 tcg_gen_movi_i32(cpu_VF, 0);
7278 tcg_temp_free_i64(t);
7281 /* Floating point <-> integer conversions
7282 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7283 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7284 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7285 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7287 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7289 int rd = extract32(insn, 0, 5);
7290 int rn = extract32(insn, 5, 5);
7291 int opcode = extract32(insn, 16, 3);
7292 int rmode = extract32(insn, 19, 2);
7293 int type = extract32(insn, 22, 2);
7294 bool sbit = extract32(insn, 29, 1);
7295 bool sf = extract32(insn, 31, 1);
7296 bool itof = false;
7298 if (sbit) {
7299 goto do_unallocated;
7302 switch (opcode) {
7303 case 2: /* SCVTF */
7304 case 3: /* UCVTF */
7305 itof = true;
7306 /* fallthru */
7307 case 4: /* FCVTAS */
7308 case 5: /* FCVTAU */
7309 if (rmode != 0) {
7310 goto do_unallocated;
7312 /* fallthru */
7313 case 0: /* FCVT[NPMZ]S */
7314 case 1: /* FCVT[NPMZ]U */
7315 switch (type) {
7316 case 0: /* float32 */
7317 case 1: /* float64 */
7318 break;
7319 case 3: /* float16 */
7320 if (!dc_isar_feature(aa64_fp16, s)) {
7321 goto do_unallocated;
7323 break;
7324 default:
7325 goto do_unallocated;
7327 if (!fp_access_check(s)) {
7328 return;
7330 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7331 break;
7333 default:
7334 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7335 case 0b01100110: /* FMOV half <-> 32-bit int */
7336 case 0b01100111:
7337 case 0b11100110: /* FMOV half <-> 64-bit int */
7338 case 0b11100111:
7339 if (!dc_isar_feature(aa64_fp16, s)) {
7340 goto do_unallocated;
7342 /* fallthru */
7343 case 0b00000110: /* FMOV 32-bit */
7344 case 0b00000111:
7345 case 0b10100110: /* FMOV 64-bit */
7346 case 0b10100111:
7347 case 0b11001110: /* FMOV top half of 128-bit */
7348 case 0b11001111:
7349 if (!fp_access_check(s)) {
7350 return;
7352 itof = opcode & 1;
7353 handle_fmov(s, rd, rn, type, itof);
7354 break;
7356 case 0b00111110: /* FJCVTZS */
7357 if (!dc_isar_feature(aa64_jscvt, s)) {
7358 goto do_unallocated;
7359 } else if (fp_access_check(s)) {
7360 handle_fjcvtzs(s, rd, rn);
7362 break;
7364 default:
7365 do_unallocated:
7366 unallocated_encoding(s);
7367 return;
7369 break;
7373 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7374 * 31 30 29 28 25 24 0
7375 * +---+---+---+---------+-----------------------------+
7376 * | | 0 | | 1 1 1 1 | |
7377 * +---+---+---+---------+-----------------------------+
7379 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7381 if (extract32(insn, 24, 1)) {
7382 /* Floating point data-processing (3 source) */
7383 disas_fp_3src(s, insn);
7384 } else if (extract32(insn, 21, 1) == 0) {
7385 /* Floating point to fixed point conversions */
7386 disas_fp_fixed_conv(s, insn);
7387 } else {
7388 switch (extract32(insn, 10, 2)) {
7389 case 1:
7390 /* Floating point conditional compare */
7391 disas_fp_ccomp(s, insn);
7392 break;
7393 case 2:
7394 /* Floating point data-processing (2 source) */
7395 disas_fp_2src(s, insn);
7396 break;
7397 case 3:
7398 /* Floating point conditional select */
7399 disas_fp_csel(s, insn);
7400 break;
7401 case 0:
7402 switch (ctz32(extract32(insn, 12, 4))) {
7403 case 0: /* [15:12] == xxx1 */
7404 /* Floating point immediate */
7405 disas_fp_imm(s, insn);
7406 break;
7407 case 1: /* [15:12] == xx10 */
7408 /* Floating point compare */
7409 disas_fp_compare(s, insn);
7410 break;
7411 case 2: /* [15:12] == x100 */
7412 /* Floating point data-processing (1 source) */
7413 disas_fp_1src(s, insn);
7414 break;
7415 case 3: /* [15:12] == 1000 */
7416 unallocated_encoding(s);
7417 break;
7418 default: /* [15:12] == 0000 */
7419 /* Floating point <-> integer conversions */
7420 disas_fp_int_conv(s, insn);
7421 break;
7423 break;
7428 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7429 int pos)
7431 /* Extract 64 bits from the middle of two concatenated 64 bit
7432 * vector register slices left:right. The extracted bits start
7433 * at 'pos' bits into the right (least significant) side.
7434 * We return the result in tcg_right, and guarantee not to
7435 * trash tcg_left.
7437 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7438 assert(pos > 0 && pos < 64);
7440 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7441 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7442 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7444 tcg_temp_free_i64(tcg_tmp);
7447 /* EXT
7448 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7449 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7450 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7451 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7453 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7455 int is_q = extract32(insn, 30, 1);
7456 int op2 = extract32(insn, 22, 2);
7457 int imm4 = extract32(insn, 11, 4);
7458 int rm = extract32(insn, 16, 5);
7459 int rn = extract32(insn, 5, 5);
7460 int rd = extract32(insn, 0, 5);
7461 int pos = imm4 << 3;
7462 TCGv_i64 tcg_resl, tcg_resh;
7464 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7465 unallocated_encoding(s);
7466 return;
7469 if (!fp_access_check(s)) {
7470 return;
7473 tcg_resh = tcg_temp_new_i64();
7474 tcg_resl = tcg_temp_new_i64();
7476 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7477 * either extracting 128 bits from a 128:128 concatenation, or
7478 * extracting 64 bits from a 64:64 concatenation.
7480 if (!is_q) {
7481 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7482 if (pos != 0) {
7483 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7484 do_ext64(s, tcg_resh, tcg_resl, pos);
7486 } else {
7487 TCGv_i64 tcg_hh;
7488 typedef struct {
7489 int reg;
7490 int elt;
7491 } EltPosns;
7492 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7493 EltPosns *elt = eltposns;
7495 if (pos >= 64) {
7496 elt++;
7497 pos -= 64;
7500 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7501 elt++;
7502 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7503 elt++;
7504 if (pos != 0) {
7505 do_ext64(s, tcg_resh, tcg_resl, pos);
7506 tcg_hh = tcg_temp_new_i64();
7507 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7508 do_ext64(s, tcg_hh, tcg_resh, pos);
7509 tcg_temp_free_i64(tcg_hh);
7513 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7514 tcg_temp_free_i64(tcg_resl);
7515 if (is_q) {
7516 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7518 tcg_temp_free_i64(tcg_resh);
7519 clear_vec_high(s, is_q, rd);
7522 /* TBL/TBX
7523 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7524 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7525 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7526 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7528 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7530 int op2 = extract32(insn, 22, 2);
7531 int is_q = extract32(insn, 30, 1);
7532 int rm = extract32(insn, 16, 5);
7533 int rn = extract32(insn, 5, 5);
7534 int rd = extract32(insn, 0, 5);
7535 int is_tbx = extract32(insn, 12, 1);
7536 int len = (extract32(insn, 13, 2) + 1) * 16;
7538 if (op2 != 0) {
7539 unallocated_encoding(s);
7540 return;
7543 if (!fp_access_check(s)) {
7544 return;
7547 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7548 vec_full_reg_offset(s, rm), cpu_env,
7549 is_q ? 16 : 8, vec_full_reg_size(s),
7550 (len << 6) | (is_tbx << 5) | rn,
7551 gen_helper_simd_tblx);
7554 /* ZIP/UZP/TRN
7555 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7556 * +---+---+-------------+------+---+------+---+------------------+------+
7557 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7558 * +---+---+-------------+------+---+------+---+------------------+------+
7560 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7562 int rd = extract32(insn, 0, 5);
7563 int rn = extract32(insn, 5, 5);
7564 int rm = extract32(insn, 16, 5);
7565 int size = extract32(insn, 22, 2);
7566 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7567 * bit 2 indicates 1 vs 2 variant of the insn.
7569 int opcode = extract32(insn, 12, 2);
7570 bool part = extract32(insn, 14, 1);
7571 bool is_q = extract32(insn, 30, 1);
7572 int esize = 8 << size;
7573 int i, ofs;
7574 int datasize = is_q ? 128 : 64;
7575 int elements = datasize / esize;
7576 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7578 if (opcode == 0 || (size == 3 && !is_q)) {
7579 unallocated_encoding(s);
7580 return;
7583 if (!fp_access_check(s)) {
7584 return;
7587 tcg_resl = tcg_const_i64(0);
7588 tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7589 tcg_res = tcg_temp_new_i64();
7591 for (i = 0; i < elements; i++) {
7592 switch (opcode) {
7593 case 1: /* UZP1/2 */
7595 int midpoint = elements / 2;
7596 if (i < midpoint) {
7597 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7598 } else {
7599 read_vec_element(s, tcg_res, rm,
7600 2 * (i - midpoint) + part, size);
7602 break;
7604 case 2: /* TRN1/2 */
7605 if (i & 1) {
7606 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7607 } else {
7608 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7610 break;
7611 case 3: /* ZIP1/2 */
7613 int base = part * elements / 2;
7614 if (i & 1) {
7615 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7616 } else {
7617 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7619 break;
7621 default:
7622 g_assert_not_reached();
7625 ofs = i * esize;
7626 if (ofs < 64) {
7627 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7628 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7629 } else {
7630 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7631 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7635 tcg_temp_free_i64(tcg_res);
7637 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7638 tcg_temp_free_i64(tcg_resl);
7640 if (is_q) {
7641 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7642 tcg_temp_free_i64(tcg_resh);
7644 clear_vec_high(s, is_q, rd);
7648 * do_reduction_op helper
7650 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7651 * important for correct NaN propagation that we do these
7652 * operations in exactly the order specified by the pseudocode.
7654 * This is a recursive function, TCG temps should be freed by the
7655 * calling function once it is done with the values.
7657 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7658 int esize, int size, int vmap, TCGv_ptr fpst)
7660 if (esize == size) {
7661 int element;
7662 MemOp msize = esize == 16 ? MO_16 : MO_32;
7663 TCGv_i32 tcg_elem;
7665 /* We should have one register left here */
7666 assert(ctpop8(vmap) == 1);
7667 element = ctz32(vmap);
7668 assert(element < 8);
7670 tcg_elem = tcg_temp_new_i32();
7671 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7672 return tcg_elem;
7673 } else {
7674 int bits = size / 2;
7675 int shift = ctpop8(vmap) / 2;
7676 int vmap_lo = (vmap >> shift) & vmap;
7677 int vmap_hi = (vmap & ~vmap_lo);
7678 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7680 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7681 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7682 tcg_res = tcg_temp_new_i32();
7684 switch (fpopcode) {
7685 case 0x0c: /* fmaxnmv half-precision */
7686 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7687 break;
7688 case 0x0f: /* fmaxv half-precision */
7689 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7690 break;
7691 case 0x1c: /* fminnmv half-precision */
7692 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7693 break;
7694 case 0x1f: /* fminv half-precision */
7695 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7696 break;
7697 case 0x2c: /* fmaxnmv */
7698 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7699 break;
7700 case 0x2f: /* fmaxv */
7701 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7702 break;
7703 case 0x3c: /* fminnmv */
7704 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7705 break;
7706 case 0x3f: /* fminv */
7707 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7708 break;
7709 default:
7710 g_assert_not_reached();
7713 tcg_temp_free_i32(tcg_hi);
7714 tcg_temp_free_i32(tcg_lo);
7715 return tcg_res;
7719 /* AdvSIMD across lanes
7720 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7721 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7722 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7723 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7725 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7727 int rd = extract32(insn, 0, 5);
7728 int rn = extract32(insn, 5, 5);
7729 int size = extract32(insn, 22, 2);
7730 int opcode = extract32(insn, 12, 5);
7731 bool is_q = extract32(insn, 30, 1);
7732 bool is_u = extract32(insn, 29, 1);
7733 bool is_fp = false;
7734 bool is_min = false;
7735 int esize;
7736 int elements;
7737 int i;
7738 TCGv_i64 tcg_res, tcg_elt;
7740 switch (opcode) {
7741 case 0x1b: /* ADDV */
7742 if (is_u) {
7743 unallocated_encoding(s);
7744 return;
7746 /* fall through */
7747 case 0x3: /* SADDLV, UADDLV */
7748 case 0xa: /* SMAXV, UMAXV */
7749 case 0x1a: /* SMINV, UMINV */
7750 if (size == 3 || (size == 2 && !is_q)) {
7751 unallocated_encoding(s);
7752 return;
7754 break;
7755 case 0xc: /* FMAXNMV, FMINNMV */
7756 case 0xf: /* FMAXV, FMINV */
7757 /* Bit 1 of size field encodes min vs max and the actual size
7758 * depends on the encoding of the U bit. If not set (and FP16
7759 * enabled) then we do half-precision float instead of single
7760 * precision.
7762 is_min = extract32(size, 1, 1);
7763 is_fp = true;
7764 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7765 size = 1;
7766 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7767 unallocated_encoding(s);
7768 return;
7769 } else {
7770 size = 2;
7772 break;
7773 default:
7774 unallocated_encoding(s);
7775 return;
7778 if (!fp_access_check(s)) {
7779 return;
7782 esize = 8 << size;
7783 elements = (is_q ? 128 : 64) / esize;
7785 tcg_res = tcg_temp_new_i64();
7786 tcg_elt = tcg_temp_new_i64();
7788 /* These instructions operate across all lanes of a vector
7789 * to produce a single result. We can guarantee that a 64
7790 * bit intermediate is sufficient:
7791 * + for [US]ADDLV the maximum element size is 32 bits, and
7792 * the result type is 64 bits
7793 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7794 * same as the element size, which is 32 bits at most
7795 * For the integer operations we can choose to work at 64
7796 * or 32 bits and truncate at the end; for simplicity
7797 * we use 64 bits always. The floating point
7798 * ops do require 32 bit intermediates, though.
7800 if (!is_fp) {
7801 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7803 for (i = 1; i < elements; i++) {
7804 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7806 switch (opcode) {
7807 case 0x03: /* SADDLV / UADDLV */
7808 case 0x1b: /* ADDV */
7809 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7810 break;
7811 case 0x0a: /* SMAXV / UMAXV */
7812 if (is_u) {
7813 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7814 } else {
7815 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7817 break;
7818 case 0x1a: /* SMINV / UMINV */
7819 if (is_u) {
7820 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7821 } else {
7822 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7824 break;
7825 default:
7826 g_assert_not_reached();
7830 } else {
7831 /* Floating point vector reduction ops which work across 32
7832 * bit (single) or 16 bit (half-precision) intermediates.
7833 * Note that correct NaN propagation requires that we do these
7834 * operations in exactly the order specified by the pseudocode.
7836 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7837 int fpopcode = opcode | is_min << 4 | is_u << 5;
7838 int vmap = (1 << elements) - 1;
7839 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7840 (is_q ? 128 : 64), vmap, fpst);
7841 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7842 tcg_temp_free_i32(tcg_res32);
7843 tcg_temp_free_ptr(fpst);
7846 tcg_temp_free_i64(tcg_elt);
7848 /* Now truncate the result to the width required for the final output */
7849 if (opcode == 0x03) {
7850 /* SADDLV, UADDLV: result is 2*esize */
7851 size++;
7854 switch (size) {
7855 case 0:
7856 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7857 break;
7858 case 1:
7859 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7860 break;
7861 case 2:
7862 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7863 break;
7864 case 3:
7865 break;
7866 default:
7867 g_assert_not_reached();
7870 write_fp_dreg(s, rd, tcg_res);
7871 tcg_temp_free_i64(tcg_res);
7874 /* DUP (Element, Vector)
7876 * 31 30 29 21 20 16 15 10 9 5 4 0
7877 * +---+---+-------------------+--------+-------------+------+------+
7878 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7879 * +---+---+-------------------+--------+-------------+------+------+
7881 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7883 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7884 int imm5)
7886 int size = ctz32(imm5);
7887 int index;
7889 if (size > 3 || (size == 3 && !is_q)) {
7890 unallocated_encoding(s);
7891 return;
7894 if (!fp_access_check(s)) {
7895 return;
7898 index = imm5 >> (size + 1);
7899 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7900 vec_reg_offset(s, rn, index, size),
7901 is_q ? 16 : 8, vec_full_reg_size(s));
7904 /* DUP (element, scalar)
7905 * 31 21 20 16 15 10 9 5 4 0
7906 * +-----------------------+--------+-------------+------+------+
7907 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7908 * +-----------------------+--------+-------------+------+------+
7910 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7911 int imm5)
7913 int size = ctz32(imm5);
7914 int index;
7915 TCGv_i64 tmp;
7917 if (size > 3) {
7918 unallocated_encoding(s);
7919 return;
7922 if (!fp_access_check(s)) {
7923 return;
7926 index = imm5 >> (size + 1);
7928 /* This instruction just extracts the specified element and
7929 * zero-extends it into the bottom of the destination register.
7931 tmp = tcg_temp_new_i64();
7932 read_vec_element(s, tmp, rn, index, size);
7933 write_fp_dreg(s, rd, tmp);
7934 tcg_temp_free_i64(tmp);
7937 /* DUP (General)
7939 * 31 30 29 21 20 16 15 10 9 5 4 0
7940 * +---+---+-------------------+--------+-------------+------+------+
7941 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7942 * +---+---+-------------------+--------+-------------+------+------+
7944 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7946 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7947 int imm5)
7949 int size = ctz32(imm5);
7950 uint32_t dofs, oprsz, maxsz;
7952 if (size > 3 || ((size == 3) && !is_q)) {
7953 unallocated_encoding(s);
7954 return;
7957 if (!fp_access_check(s)) {
7958 return;
7961 dofs = vec_full_reg_offset(s, rd);
7962 oprsz = is_q ? 16 : 8;
7963 maxsz = vec_full_reg_size(s);
7965 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7968 /* INS (Element)
7970 * 31 21 20 16 15 14 11 10 9 5 4 0
7971 * +-----------------------+--------+------------+---+------+------+
7972 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7973 * +-----------------------+--------+------------+---+------+------+
7975 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7976 * index: encoded in imm5<4:size+1>
7978 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7979 int imm4, int imm5)
7981 int size = ctz32(imm5);
7982 int src_index, dst_index;
7983 TCGv_i64 tmp;
7985 if (size > 3) {
7986 unallocated_encoding(s);
7987 return;
7990 if (!fp_access_check(s)) {
7991 return;
7994 dst_index = extract32(imm5, 1+size, 5);
7995 src_index = extract32(imm4, size, 4);
7997 tmp = tcg_temp_new_i64();
7999 read_vec_element(s, tmp, rn, src_index, size);
8000 write_vec_element(s, tmp, rd, dst_index, size);
8002 tcg_temp_free_i64(tmp);
8004 /* INS is considered a 128-bit write for SVE. */
8005 clear_vec_high(s, true, rd);
8009 /* INS (General)
8011 * 31 21 20 16 15 10 9 5 4 0
8012 * +-----------------------+--------+-------------+------+------+
8013 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
8014 * +-----------------------+--------+-------------+------+------+
8016 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8017 * index: encoded in imm5<4:size+1>
8019 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
8021 int size = ctz32(imm5);
8022 int idx;
8024 if (size > 3) {
8025 unallocated_encoding(s);
8026 return;
8029 if (!fp_access_check(s)) {
8030 return;
8033 idx = extract32(imm5, 1 + size, 4 - size);
8034 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8036 /* INS is considered a 128-bit write for SVE. */
8037 clear_vec_high(s, true, rd);
8041 * UMOV (General)
8042 * SMOV (General)
8044 * 31 30 29 21 20 16 15 12 10 9 5 4 0
8045 * +---+---+-------------------+--------+-------------+------+------+
8046 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
8047 * +---+---+-------------------+--------+-------------+------+------+
8049 * U: unsigned when set
8050 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8052 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8053 int rn, int rd, int imm5)
8055 int size = ctz32(imm5);
8056 int element;
8057 TCGv_i64 tcg_rd;
8059 /* Check for UnallocatedEncodings */
8060 if (is_signed) {
8061 if (size > 2 || (size == 2 && !is_q)) {
8062 unallocated_encoding(s);
8063 return;
8065 } else {
8066 if (size > 3
8067 || (size < 3 && is_q)
8068 || (size == 3 && !is_q)) {
8069 unallocated_encoding(s);
8070 return;
8074 if (!fp_access_check(s)) {
8075 return;
8078 element = extract32(imm5, 1+size, 4);
8080 tcg_rd = cpu_reg(s, rd);
8081 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8082 if (is_signed && !is_q) {
8083 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8087 /* AdvSIMD copy
8088 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8089 * +---+---+----+-----------------+------+---+------+---+------+------+
8090 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8091 * +---+---+----+-----------------+------+---+------+---+------+------+
8093 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8095 int rd = extract32(insn, 0, 5);
8096 int rn = extract32(insn, 5, 5);
8097 int imm4 = extract32(insn, 11, 4);
8098 int op = extract32(insn, 29, 1);
8099 int is_q = extract32(insn, 30, 1);
8100 int imm5 = extract32(insn, 16, 5);
8102 if (op) {
8103 if (is_q) {
8104 /* INS (element) */
8105 handle_simd_inse(s, rd, rn, imm4, imm5);
8106 } else {
8107 unallocated_encoding(s);
8109 } else {
8110 switch (imm4) {
8111 case 0:
8112 /* DUP (element - vector) */
8113 handle_simd_dupe(s, is_q, rd, rn, imm5);
8114 break;
8115 case 1:
8116 /* DUP (general) */
8117 handle_simd_dupg(s, is_q, rd, rn, imm5);
8118 break;
8119 case 3:
8120 if (is_q) {
8121 /* INS (general) */
8122 handle_simd_insg(s, rd, rn, imm5);
8123 } else {
8124 unallocated_encoding(s);
8126 break;
8127 case 5:
8128 case 7:
8129 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8130 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8131 break;
8132 default:
8133 unallocated_encoding(s);
8134 break;
8139 /* AdvSIMD modified immediate
8140 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8141 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8142 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8143 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8145 * There are a number of operations that can be carried out here:
8146 * MOVI - move (shifted) imm into register
8147 * MVNI - move inverted (shifted) imm into register
8148 * ORR - bitwise OR of (shifted) imm with register
8149 * BIC - bitwise clear of (shifted) imm with register
8150 * With ARMv8.2 we also have:
8151 * FMOV half-precision
8153 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8155 int rd = extract32(insn, 0, 5);
8156 int cmode = extract32(insn, 12, 4);
8157 int cmode_3_1 = extract32(cmode, 1, 3);
8158 int cmode_0 = extract32(cmode, 0, 1);
8159 int o2 = extract32(insn, 11, 1);
8160 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8161 bool is_neg = extract32(insn, 29, 1);
8162 bool is_q = extract32(insn, 30, 1);
8163 uint64_t imm = 0;
8165 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8166 /* Check for FMOV (vector, immediate) - half-precision */
8167 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8168 unallocated_encoding(s);
8169 return;
8173 if (!fp_access_check(s)) {
8174 return;
8177 /* See AdvSIMDExpandImm() in ARM ARM */
8178 switch (cmode_3_1) {
8179 case 0: /* Replicate(Zeros(24):imm8, 2) */
8180 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
8181 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
8182 case 3: /* Replicate(imm8:Zeros(24), 2) */
8184 int shift = cmode_3_1 * 8;
8185 imm = bitfield_replicate(abcdefgh << shift, 32);
8186 break;
8188 case 4: /* Replicate(Zeros(8):imm8, 4) */
8189 case 5: /* Replicate(imm8:Zeros(8), 4) */
8191 int shift = (cmode_3_1 & 0x1) * 8;
8192 imm = bitfield_replicate(abcdefgh << shift, 16);
8193 break;
8195 case 6:
8196 if (cmode_0) {
8197 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
8198 imm = (abcdefgh << 16) | 0xffff;
8199 } else {
8200 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
8201 imm = (abcdefgh << 8) | 0xff;
8203 imm = bitfield_replicate(imm, 32);
8204 break;
8205 case 7:
8206 if (!cmode_0 && !is_neg) {
8207 imm = bitfield_replicate(abcdefgh, 8);
8208 } else if (!cmode_0 && is_neg) {
8209 int i;
8210 imm = 0;
8211 for (i = 0; i < 8; i++) {
8212 if ((abcdefgh) & (1 << i)) {
8213 imm |= 0xffULL << (i * 8);
8216 } else if (cmode_0) {
8217 if (is_neg) {
8218 imm = (abcdefgh & 0x3f) << 48;
8219 if (abcdefgh & 0x80) {
8220 imm |= 0x8000000000000000ULL;
8222 if (abcdefgh & 0x40) {
8223 imm |= 0x3fc0000000000000ULL;
8224 } else {
8225 imm |= 0x4000000000000000ULL;
8227 } else {
8228 if (o2) {
8229 /* FMOV (vector, immediate) - half-precision */
8230 imm = vfp_expand_imm(MO_16, abcdefgh);
8231 /* now duplicate across the lanes */
8232 imm = bitfield_replicate(imm, 16);
8233 } else {
8234 imm = (abcdefgh & 0x3f) << 19;
8235 if (abcdefgh & 0x80) {
8236 imm |= 0x80000000;
8238 if (abcdefgh & 0x40) {
8239 imm |= 0x3e000000;
8240 } else {
8241 imm |= 0x40000000;
8243 imm |= (imm << 32);
8247 break;
8248 default:
8249 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
8250 g_assert_not_reached();
8253 if (cmode_3_1 != 7 && is_neg) {
8254 imm = ~imm;
8257 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8258 /* MOVI or MVNI, with MVNI negation handled above. */
8259 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8260 vec_full_reg_size(s), imm);
8261 } else {
8262 /* ORR or BIC, with BIC negation to AND handled above. */
8263 if (is_neg) {
8264 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8265 } else {
8266 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8271 /* AdvSIMD scalar copy
8272 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8273 * +-----+----+-----------------+------+---+------+---+------+------+
8274 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8275 * +-----+----+-----------------+------+---+------+---+------+------+
8277 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8279 int rd = extract32(insn, 0, 5);
8280 int rn = extract32(insn, 5, 5);
8281 int imm4 = extract32(insn, 11, 4);
8282 int imm5 = extract32(insn, 16, 5);
8283 int op = extract32(insn, 29, 1);
8285 if (op != 0 || imm4 != 0) {
8286 unallocated_encoding(s);
8287 return;
8290 /* DUP (element, scalar) */
8291 handle_simd_dupes(s, rd, rn, imm5);
8294 /* AdvSIMD scalar pairwise
8295 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8296 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8297 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8298 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8300 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8302 int u = extract32(insn, 29, 1);
8303 int size = extract32(insn, 22, 2);
8304 int opcode = extract32(insn, 12, 5);
8305 int rn = extract32(insn, 5, 5);
8306 int rd = extract32(insn, 0, 5);
8307 TCGv_ptr fpst;
8309 /* For some ops (the FP ones), size[1] is part of the encoding.
8310 * For ADDP strictly it is not but size[1] is always 1 for valid
8311 * encodings.
8313 opcode |= (extract32(size, 1, 1) << 5);
8315 switch (opcode) {
8316 case 0x3b: /* ADDP */
8317 if (u || size != 3) {
8318 unallocated_encoding(s);
8319 return;
8321 if (!fp_access_check(s)) {
8322 return;
8325 fpst = NULL;
8326 break;
8327 case 0xc: /* FMAXNMP */
8328 case 0xd: /* FADDP */
8329 case 0xf: /* FMAXP */
8330 case 0x2c: /* FMINNMP */
8331 case 0x2f: /* FMINP */
8332 /* FP op, size[0] is 32 or 64 bit*/
8333 if (!u) {
8334 if (!dc_isar_feature(aa64_fp16, s)) {
8335 unallocated_encoding(s);
8336 return;
8337 } else {
8338 size = MO_16;
8340 } else {
8341 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8344 if (!fp_access_check(s)) {
8345 return;
8348 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8349 break;
8350 default:
8351 unallocated_encoding(s);
8352 return;
8355 if (size == MO_64) {
8356 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8357 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8358 TCGv_i64 tcg_res = tcg_temp_new_i64();
8360 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8361 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8363 switch (opcode) {
8364 case 0x3b: /* ADDP */
8365 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8366 break;
8367 case 0xc: /* FMAXNMP */
8368 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8369 break;
8370 case 0xd: /* FADDP */
8371 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8372 break;
8373 case 0xf: /* FMAXP */
8374 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8375 break;
8376 case 0x2c: /* FMINNMP */
8377 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8378 break;
8379 case 0x2f: /* FMINP */
8380 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8381 break;
8382 default:
8383 g_assert_not_reached();
8386 write_fp_dreg(s, rd, tcg_res);
8388 tcg_temp_free_i64(tcg_op1);
8389 tcg_temp_free_i64(tcg_op2);
8390 tcg_temp_free_i64(tcg_res);
8391 } else {
8392 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8393 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8394 TCGv_i32 tcg_res = tcg_temp_new_i32();
8396 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8397 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8399 if (size == MO_16) {
8400 switch (opcode) {
8401 case 0xc: /* FMAXNMP */
8402 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8403 break;
8404 case 0xd: /* FADDP */
8405 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8406 break;
8407 case 0xf: /* FMAXP */
8408 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8409 break;
8410 case 0x2c: /* FMINNMP */
8411 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8412 break;
8413 case 0x2f: /* FMINP */
8414 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8415 break;
8416 default:
8417 g_assert_not_reached();
8419 } else {
8420 switch (opcode) {
8421 case 0xc: /* FMAXNMP */
8422 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8423 break;
8424 case 0xd: /* FADDP */
8425 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8426 break;
8427 case 0xf: /* FMAXP */
8428 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8429 break;
8430 case 0x2c: /* FMINNMP */
8431 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8432 break;
8433 case 0x2f: /* FMINP */
8434 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8435 break;
8436 default:
8437 g_assert_not_reached();
8441 write_fp_sreg(s, rd, tcg_res);
8443 tcg_temp_free_i32(tcg_op1);
8444 tcg_temp_free_i32(tcg_op2);
8445 tcg_temp_free_i32(tcg_res);
8448 if (fpst) {
8449 tcg_temp_free_ptr(fpst);
8454 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8456 * This code is handles the common shifting code and is used by both
8457 * the vector and scalar code.
8459 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8460 TCGv_i64 tcg_rnd, bool accumulate,
8461 bool is_u, int size, int shift)
8463 bool extended_result = false;
8464 bool round = tcg_rnd != NULL;
8465 int ext_lshift = 0;
8466 TCGv_i64 tcg_src_hi;
8468 if (round && size == 3) {
8469 extended_result = true;
8470 ext_lshift = 64 - shift;
8471 tcg_src_hi = tcg_temp_new_i64();
8472 } else if (shift == 64) {
8473 if (!accumulate && is_u) {
8474 /* result is zero */
8475 tcg_gen_movi_i64(tcg_res, 0);
8476 return;
8480 /* Deal with the rounding step */
8481 if (round) {
8482 if (extended_result) {
8483 TCGv_i64 tcg_zero = tcg_const_i64(0);
8484 if (!is_u) {
8485 /* take care of sign extending tcg_res */
8486 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8487 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8488 tcg_src, tcg_src_hi,
8489 tcg_rnd, tcg_zero);
8490 } else {
8491 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8492 tcg_src, tcg_zero,
8493 tcg_rnd, tcg_zero);
8495 tcg_temp_free_i64(tcg_zero);
8496 } else {
8497 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8501 /* Now do the shift right */
8502 if (round && extended_result) {
8503 /* extended case, >64 bit precision required */
8504 if (ext_lshift == 0) {
8505 /* special case, only high bits matter */
8506 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8507 } else {
8508 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8509 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8510 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8512 } else {
8513 if (is_u) {
8514 if (shift == 64) {
8515 /* essentially shifting in 64 zeros */
8516 tcg_gen_movi_i64(tcg_src, 0);
8517 } else {
8518 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8520 } else {
8521 if (shift == 64) {
8522 /* effectively extending the sign-bit */
8523 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8524 } else {
8525 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8530 if (accumulate) {
8531 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8532 } else {
8533 tcg_gen_mov_i64(tcg_res, tcg_src);
8536 if (extended_result) {
8537 tcg_temp_free_i64(tcg_src_hi);
8541 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8542 static void handle_scalar_simd_shri(DisasContext *s,
8543 bool is_u, int immh, int immb,
8544 int opcode, int rn, int rd)
8546 const int size = 3;
8547 int immhb = immh << 3 | immb;
8548 int shift = 2 * (8 << size) - immhb;
8549 bool accumulate = false;
8550 bool round = false;
8551 bool insert = false;
8552 TCGv_i64 tcg_rn;
8553 TCGv_i64 tcg_rd;
8554 TCGv_i64 tcg_round;
8556 if (!extract32(immh, 3, 1)) {
8557 unallocated_encoding(s);
8558 return;
8561 if (!fp_access_check(s)) {
8562 return;
8565 switch (opcode) {
8566 case 0x02: /* SSRA / USRA (accumulate) */
8567 accumulate = true;
8568 break;
8569 case 0x04: /* SRSHR / URSHR (rounding) */
8570 round = true;
8571 break;
8572 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8573 accumulate = round = true;
8574 break;
8575 case 0x08: /* SRI */
8576 insert = true;
8577 break;
8580 if (round) {
8581 uint64_t round_const = 1ULL << (shift - 1);
8582 tcg_round = tcg_const_i64(round_const);
8583 } else {
8584 tcg_round = NULL;
8587 tcg_rn = read_fp_dreg(s, rn);
8588 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8590 if (insert) {
8591 /* shift count same as element size is valid but does nothing;
8592 * special case to avoid potential shift by 64.
8594 int esize = 8 << size;
8595 if (shift != esize) {
8596 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8597 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8599 } else {
8600 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8601 accumulate, is_u, size, shift);
8604 write_fp_dreg(s, rd, tcg_rd);
8606 tcg_temp_free_i64(tcg_rn);
8607 tcg_temp_free_i64(tcg_rd);
8608 if (round) {
8609 tcg_temp_free_i64(tcg_round);
8613 /* SHL/SLI - Scalar shift left */
8614 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8615 int immh, int immb, int opcode,
8616 int rn, int rd)
8618 int size = 32 - clz32(immh) - 1;
8619 int immhb = immh << 3 | immb;
8620 int shift = immhb - (8 << size);
8621 TCGv_i64 tcg_rn;
8622 TCGv_i64 tcg_rd;
8624 if (!extract32(immh, 3, 1)) {
8625 unallocated_encoding(s);
8626 return;
8629 if (!fp_access_check(s)) {
8630 return;
8633 tcg_rn = read_fp_dreg(s, rn);
8634 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8636 if (insert) {
8637 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8638 } else {
8639 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8642 write_fp_dreg(s, rd, tcg_rd);
8644 tcg_temp_free_i64(tcg_rn);
8645 tcg_temp_free_i64(tcg_rd);
8648 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8649 * (signed/unsigned) narrowing */
8650 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8651 bool is_u_shift, bool is_u_narrow,
8652 int immh, int immb, int opcode,
8653 int rn, int rd)
8655 int immhb = immh << 3 | immb;
8656 int size = 32 - clz32(immh) - 1;
8657 int esize = 8 << size;
8658 int shift = (2 * esize) - immhb;
8659 int elements = is_scalar ? 1 : (64 / esize);
8660 bool round = extract32(opcode, 0, 1);
8661 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8662 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8663 TCGv_i32 tcg_rd_narrowed;
8664 TCGv_i64 tcg_final;
8666 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8667 { gen_helper_neon_narrow_sat_s8,
8668 gen_helper_neon_unarrow_sat8 },
8669 { gen_helper_neon_narrow_sat_s16,
8670 gen_helper_neon_unarrow_sat16 },
8671 { gen_helper_neon_narrow_sat_s32,
8672 gen_helper_neon_unarrow_sat32 },
8673 { NULL, NULL },
8675 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8676 gen_helper_neon_narrow_sat_u8,
8677 gen_helper_neon_narrow_sat_u16,
8678 gen_helper_neon_narrow_sat_u32,
8679 NULL
8681 NeonGenNarrowEnvFn *narrowfn;
8683 int i;
8685 assert(size < 4);
8687 if (extract32(immh, 3, 1)) {
8688 unallocated_encoding(s);
8689 return;
8692 if (!fp_access_check(s)) {
8693 return;
8696 if (is_u_shift) {
8697 narrowfn = unsigned_narrow_fns[size];
8698 } else {
8699 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8702 tcg_rn = tcg_temp_new_i64();
8703 tcg_rd = tcg_temp_new_i64();
8704 tcg_rd_narrowed = tcg_temp_new_i32();
8705 tcg_final = tcg_const_i64(0);
8707 if (round) {
8708 uint64_t round_const = 1ULL << (shift - 1);
8709 tcg_round = tcg_const_i64(round_const);
8710 } else {
8711 tcg_round = NULL;
8714 for (i = 0; i < elements; i++) {
8715 read_vec_element(s, tcg_rn, rn, i, ldop);
8716 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8717 false, is_u_shift, size+1, shift);
8718 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8719 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8720 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8723 if (!is_q) {
8724 write_vec_element(s, tcg_final, rd, 0, MO_64);
8725 } else {
8726 write_vec_element(s, tcg_final, rd, 1, MO_64);
8729 if (round) {
8730 tcg_temp_free_i64(tcg_round);
8732 tcg_temp_free_i64(tcg_rn);
8733 tcg_temp_free_i64(tcg_rd);
8734 tcg_temp_free_i32(tcg_rd_narrowed);
8735 tcg_temp_free_i64(tcg_final);
8737 clear_vec_high(s, is_q, rd);
8740 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8741 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8742 bool src_unsigned, bool dst_unsigned,
8743 int immh, int immb, int rn, int rd)
8745 int immhb = immh << 3 | immb;
8746 int size = 32 - clz32(immh) - 1;
8747 int shift = immhb - (8 << size);
8748 int pass;
8750 assert(immh != 0);
8751 assert(!(scalar && is_q));
8753 if (!scalar) {
8754 if (!is_q && extract32(immh, 3, 1)) {
8755 unallocated_encoding(s);
8756 return;
8759 /* Since we use the variable-shift helpers we must
8760 * replicate the shift count into each element of
8761 * the tcg_shift value.
8763 switch (size) {
8764 case 0:
8765 shift |= shift << 8;
8766 /* fall through */
8767 case 1:
8768 shift |= shift << 16;
8769 break;
8770 case 2:
8771 case 3:
8772 break;
8773 default:
8774 g_assert_not_reached();
8778 if (!fp_access_check(s)) {
8779 return;
8782 if (size == 3) {
8783 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8784 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8785 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8786 { NULL, gen_helper_neon_qshl_u64 },
8788 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8789 int maxpass = is_q ? 2 : 1;
8791 for (pass = 0; pass < maxpass; pass++) {
8792 TCGv_i64 tcg_op = tcg_temp_new_i64();
8794 read_vec_element(s, tcg_op, rn, pass, MO_64);
8795 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8796 write_vec_element(s, tcg_op, rd, pass, MO_64);
8798 tcg_temp_free_i64(tcg_op);
8800 tcg_temp_free_i64(tcg_shift);
8801 clear_vec_high(s, is_q, rd);
8802 } else {
8803 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8804 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8806 { gen_helper_neon_qshl_s8,
8807 gen_helper_neon_qshl_s16,
8808 gen_helper_neon_qshl_s32 },
8809 { gen_helper_neon_qshlu_s8,
8810 gen_helper_neon_qshlu_s16,
8811 gen_helper_neon_qshlu_s32 }
8812 }, {
8813 { NULL, NULL, NULL },
8814 { gen_helper_neon_qshl_u8,
8815 gen_helper_neon_qshl_u16,
8816 gen_helper_neon_qshl_u32 }
8819 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8820 MemOp memop = scalar ? size : MO_32;
8821 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8823 for (pass = 0; pass < maxpass; pass++) {
8824 TCGv_i32 tcg_op = tcg_temp_new_i32();
8826 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8827 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8828 if (scalar) {
8829 switch (size) {
8830 case 0:
8831 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8832 break;
8833 case 1:
8834 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8835 break;
8836 case 2:
8837 break;
8838 default:
8839 g_assert_not_reached();
8841 write_fp_sreg(s, rd, tcg_op);
8842 } else {
8843 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8846 tcg_temp_free_i32(tcg_op);
8848 tcg_temp_free_i32(tcg_shift);
8850 if (!scalar) {
8851 clear_vec_high(s, is_q, rd);
8856 /* Common vector code for handling integer to FP conversion */
8857 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8858 int elements, int is_signed,
8859 int fracbits, int size)
8861 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8862 TCGv_i32 tcg_shift = NULL;
8864 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8865 int pass;
8867 if (fracbits || size == MO_64) {
8868 tcg_shift = tcg_const_i32(fracbits);
8871 if (size == MO_64) {
8872 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8873 TCGv_i64 tcg_double = tcg_temp_new_i64();
8875 for (pass = 0; pass < elements; pass++) {
8876 read_vec_element(s, tcg_int64, rn, pass, mop);
8878 if (is_signed) {
8879 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8880 tcg_shift, tcg_fpst);
8881 } else {
8882 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8883 tcg_shift, tcg_fpst);
8885 if (elements == 1) {
8886 write_fp_dreg(s, rd, tcg_double);
8887 } else {
8888 write_vec_element(s, tcg_double, rd, pass, MO_64);
8892 tcg_temp_free_i64(tcg_int64);
8893 tcg_temp_free_i64(tcg_double);
8895 } else {
8896 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8897 TCGv_i32 tcg_float = tcg_temp_new_i32();
8899 for (pass = 0; pass < elements; pass++) {
8900 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8902 switch (size) {
8903 case MO_32:
8904 if (fracbits) {
8905 if (is_signed) {
8906 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8907 tcg_shift, tcg_fpst);
8908 } else {
8909 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8910 tcg_shift, tcg_fpst);
8912 } else {
8913 if (is_signed) {
8914 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8915 } else {
8916 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8919 break;
8920 case MO_16:
8921 if (fracbits) {
8922 if (is_signed) {
8923 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8924 tcg_shift, tcg_fpst);
8925 } else {
8926 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8927 tcg_shift, tcg_fpst);
8929 } else {
8930 if (is_signed) {
8931 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8932 } else {
8933 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8936 break;
8937 default:
8938 g_assert_not_reached();
8941 if (elements == 1) {
8942 write_fp_sreg(s, rd, tcg_float);
8943 } else {
8944 write_vec_element_i32(s, tcg_float, rd, pass, size);
8948 tcg_temp_free_i32(tcg_int32);
8949 tcg_temp_free_i32(tcg_float);
8952 tcg_temp_free_ptr(tcg_fpst);
8953 if (tcg_shift) {
8954 tcg_temp_free_i32(tcg_shift);
8957 clear_vec_high(s, elements << size == 16, rd);
8960 /* UCVTF/SCVTF - Integer to FP conversion */
8961 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8962 bool is_q, bool is_u,
8963 int immh, int immb, int opcode,
8964 int rn, int rd)
8966 int size, elements, fracbits;
8967 int immhb = immh << 3 | immb;
8969 if (immh & 8) {
8970 size = MO_64;
8971 if (!is_scalar && !is_q) {
8972 unallocated_encoding(s);
8973 return;
8975 } else if (immh & 4) {
8976 size = MO_32;
8977 } else if (immh & 2) {
8978 size = MO_16;
8979 if (!dc_isar_feature(aa64_fp16, s)) {
8980 unallocated_encoding(s);
8981 return;
8983 } else {
8984 /* immh == 0 would be a failure of the decode logic */
8985 g_assert(immh == 1);
8986 unallocated_encoding(s);
8987 return;
8990 if (is_scalar) {
8991 elements = 1;
8992 } else {
8993 elements = (8 << is_q) >> size;
8995 fracbits = (16 << size) - immhb;
8997 if (!fp_access_check(s)) {
8998 return;
9001 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9004 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9005 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9006 bool is_q, bool is_u,
9007 int immh, int immb, int rn, int rd)
9009 int immhb = immh << 3 | immb;
9010 int pass, size, fracbits;
9011 TCGv_ptr tcg_fpstatus;
9012 TCGv_i32 tcg_rmode, tcg_shift;
9014 if (immh & 0x8) {
9015 size = MO_64;
9016 if (!is_scalar && !is_q) {
9017 unallocated_encoding(s);
9018 return;
9020 } else if (immh & 0x4) {
9021 size = MO_32;
9022 } else if (immh & 0x2) {
9023 size = MO_16;
9024 if (!dc_isar_feature(aa64_fp16, s)) {
9025 unallocated_encoding(s);
9026 return;
9028 } else {
9029 /* Should have split out AdvSIMD modified immediate earlier. */
9030 assert(immh == 1);
9031 unallocated_encoding(s);
9032 return;
9035 if (!fp_access_check(s)) {
9036 return;
9039 assert(!(is_scalar && is_q));
9041 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
9042 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9043 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9044 fracbits = (16 << size) - immhb;
9045 tcg_shift = tcg_const_i32(fracbits);
9047 if (size == MO_64) {
9048 int maxpass = is_scalar ? 1 : 2;
9050 for (pass = 0; pass < maxpass; pass++) {
9051 TCGv_i64 tcg_op = tcg_temp_new_i64();
9053 read_vec_element(s, tcg_op, rn, pass, MO_64);
9054 if (is_u) {
9055 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9056 } else {
9057 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9059 write_vec_element(s, tcg_op, rd, pass, MO_64);
9060 tcg_temp_free_i64(tcg_op);
9062 clear_vec_high(s, is_q, rd);
9063 } else {
9064 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9065 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9067 switch (size) {
9068 case MO_16:
9069 if (is_u) {
9070 fn = gen_helper_vfp_touhh;
9071 } else {
9072 fn = gen_helper_vfp_toshh;
9074 break;
9075 case MO_32:
9076 if (is_u) {
9077 fn = gen_helper_vfp_touls;
9078 } else {
9079 fn = gen_helper_vfp_tosls;
9081 break;
9082 default:
9083 g_assert_not_reached();
9086 for (pass = 0; pass < maxpass; pass++) {
9087 TCGv_i32 tcg_op = tcg_temp_new_i32();
9089 read_vec_element_i32(s, tcg_op, rn, pass, size);
9090 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9091 if (is_scalar) {
9092 write_fp_sreg(s, rd, tcg_op);
9093 } else {
9094 write_vec_element_i32(s, tcg_op, rd, pass, size);
9096 tcg_temp_free_i32(tcg_op);
9098 if (!is_scalar) {
9099 clear_vec_high(s, is_q, rd);
9103 tcg_temp_free_ptr(tcg_fpstatus);
9104 tcg_temp_free_i32(tcg_shift);
9105 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9106 tcg_temp_free_i32(tcg_rmode);
9109 /* AdvSIMD scalar shift by immediate
9110 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9111 * +-----+---+-------------+------+------+--------+---+------+------+
9112 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9113 * +-----+---+-------------+------+------+--------+---+------+------+
9115 * This is the scalar version so it works on a fixed sized registers
9117 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9119 int rd = extract32(insn, 0, 5);
9120 int rn = extract32(insn, 5, 5);
9121 int opcode = extract32(insn, 11, 5);
9122 int immb = extract32(insn, 16, 3);
9123 int immh = extract32(insn, 19, 4);
9124 bool is_u = extract32(insn, 29, 1);
9126 if (immh == 0) {
9127 unallocated_encoding(s);
9128 return;
9131 switch (opcode) {
9132 case 0x08: /* SRI */
9133 if (!is_u) {
9134 unallocated_encoding(s);
9135 return;
9137 /* fall through */
9138 case 0x00: /* SSHR / USHR */
9139 case 0x02: /* SSRA / USRA */
9140 case 0x04: /* SRSHR / URSHR */
9141 case 0x06: /* SRSRA / URSRA */
9142 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9143 break;
9144 case 0x0a: /* SHL / SLI */
9145 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9146 break;
9147 case 0x1c: /* SCVTF, UCVTF */
9148 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9149 opcode, rn, rd);
9150 break;
9151 case 0x10: /* SQSHRUN, SQSHRUN2 */
9152 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9153 if (!is_u) {
9154 unallocated_encoding(s);
9155 return;
9157 handle_vec_simd_sqshrn(s, true, false, false, true,
9158 immh, immb, opcode, rn, rd);
9159 break;
9160 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9161 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9162 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9163 immh, immb, opcode, rn, rd);
9164 break;
9165 case 0xc: /* SQSHLU */
9166 if (!is_u) {
9167 unallocated_encoding(s);
9168 return;
9170 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9171 break;
9172 case 0xe: /* SQSHL, UQSHL */
9173 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9174 break;
9175 case 0x1f: /* FCVTZS, FCVTZU */
9176 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9177 break;
9178 default:
9179 unallocated_encoding(s);
9180 break;
9184 /* AdvSIMD scalar three different
9185 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9186 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9187 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9188 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9190 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9192 bool is_u = extract32(insn, 29, 1);
9193 int size = extract32(insn, 22, 2);
9194 int opcode = extract32(insn, 12, 4);
9195 int rm = extract32(insn, 16, 5);
9196 int rn = extract32(insn, 5, 5);
9197 int rd = extract32(insn, 0, 5);
9199 if (is_u) {
9200 unallocated_encoding(s);
9201 return;
9204 switch (opcode) {
9205 case 0x9: /* SQDMLAL, SQDMLAL2 */
9206 case 0xb: /* SQDMLSL, SQDMLSL2 */
9207 case 0xd: /* SQDMULL, SQDMULL2 */
9208 if (size == 0 || size == 3) {
9209 unallocated_encoding(s);
9210 return;
9212 break;
9213 default:
9214 unallocated_encoding(s);
9215 return;
9218 if (!fp_access_check(s)) {
9219 return;
9222 if (size == 2) {
9223 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9224 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9225 TCGv_i64 tcg_res = tcg_temp_new_i64();
9227 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9228 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9230 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9231 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9233 switch (opcode) {
9234 case 0xd: /* SQDMULL, SQDMULL2 */
9235 break;
9236 case 0xb: /* SQDMLSL, SQDMLSL2 */
9237 tcg_gen_neg_i64(tcg_res, tcg_res);
9238 /* fall through */
9239 case 0x9: /* SQDMLAL, SQDMLAL2 */
9240 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9241 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9242 tcg_res, tcg_op1);
9243 break;
9244 default:
9245 g_assert_not_reached();
9248 write_fp_dreg(s, rd, tcg_res);
9250 tcg_temp_free_i64(tcg_op1);
9251 tcg_temp_free_i64(tcg_op2);
9252 tcg_temp_free_i64(tcg_res);
9253 } else {
9254 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9255 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9256 TCGv_i64 tcg_res = tcg_temp_new_i64();
9258 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9259 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9261 switch (opcode) {
9262 case 0xd: /* SQDMULL, SQDMULL2 */
9263 break;
9264 case 0xb: /* SQDMLSL, SQDMLSL2 */
9265 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9266 /* fall through */
9267 case 0x9: /* SQDMLAL, SQDMLAL2 */
9269 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9270 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9271 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9272 tcg_res, tcg_op3);
9273 tcg_temp_free_i64(tcg_op3);
9274 break;
9276 default:
9277 g_assert_not_reached();
9280 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9281 write_fp_dreg(s, rd, tcg_res);
9283 tcg_temp_free_i32(tcg_op1);
9284 tcg_temp_free_i32(tcg_op2);
9285 tcg_temp_free_i64(tcg_res);
9289 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9290 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9292 /* Handle 64x64->64 opcodes which are shared between the scalar
9293 * and vector 3-same groups. We cover every opcode where size == 3
9294 * is valid in either the three-reg-same (integer, not pairwise)
9295 * or scalar-three-reg-same groups.
9297 TCGCond cond;
9299 switch (opcode) {
9300 case 0x1: /* SQADD */
9301 if (u) {
9302 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9303 } else {
9304 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9306 break;
9307 case 0x5: /* SQSUB */
9308 if (u) {
9309 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9310 } else {
9311 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9313 break;
9314 case 0x6: /* CMGT, CMHI */
9315 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9316 * We implement this using setcond (test) and then negating.
9318 cond = u ? TCG_COND_GTU : TCG_COND_GT;
9319 do_cmop:
9320 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9321 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9322 break;
9323 case 0x7: /* CMGE, CMHS */
9324 cond = u ? TCG_COND_GEU : TCG_COND_GE;
9325 goto do_cmop;
9326 case 0x11: /* CMTST, CMEQ */
9327 if (u) {
9328 cond = TCG_COND_EQ;
9329 goto do_cmop;
9331 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9332 break;
9333 case 0x8: /* SSHL, USHL */
9334 if (u) {
9335 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9336 } else {
9337 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9339 break;
9340 case 0x9: /* SQSHL, UQSHL */
9341 if (u) {
9342 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9343 } else {
9344 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9346 break;
9347 case 0xa: /* SRSHL, URSHL */
9348 if (u) {
9349 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9350 } else {
9351 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9353 break;
9354 case 0xb: /* SQRSHL, UQRSHL */
9355 if (u) {
9356 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9357 } else {
9358 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9360 break;
9361 case 0x10: /* ADD, SUB */
9362 if (u) {
9363 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9364 } else {
9365 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9367 break;
9368 default:
9369 g_assert_not_reached();
9373 /* Handle the 3-same-operands float operations; shared by the scalar
9374 * and vector encodings. The caller must filter out any encodings
9375 * not allocated for the encoding it is dealing with.
9377 static void handle_3same_float(DisasContext *s, int size, int elements,
9378 int fpopcode, int rd, int rn, int rm)
9380 int pass;
9381 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9383 for (pass = 0; pass < elements; pass++) {
9384 if (size) {
9385 /* Double */
9386 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9387 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9388 TCGv_i64 tcg_res = tcg_temp_new_i64();
9390 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9391 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9393 switch (fpopcode) {
9394 case 0x39: /* FMLS */
9395 /* As usual for ARM, separate negation for fused multiply-add */
9396 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9397 /* fall through */
9398 case 0x19: /* FMLA */
9399 read_vec_element(s, tcg_res, rd, pass, MO_64);
9400 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9401 tcg_res, fpst);
9402 break;
9403 case 0x18: /* FMAXNM */
9404 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9405 break;
9406 case 0x1a: /* FADD */
9407 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9408 break;
9409 case 0x1b: /* FMULX */
9410 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9411 break;
9412 case 0x1c: /* FCMEQ */
9413 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9414 break;
9415 case 0x1e: /* FMAX */
9416 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9417 break;
9418 case 0x1f: /* FRECPS */
9419 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9420 break;
9421 case 0x38: /* FMINNM */
9422 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9423 break;
9424 case 0x3a: /* FSUB */
9425 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9426 break;
9427 case 0x3e: /* FMIN */
9428 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9429 break;
9430 case 0x3f: /* FRSQRTS */
9431 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9432 break;
9433 case 0x5b: /* FMUL */
9434 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9435 break;
9436 case 0x5c: /* FCMGE */
9437 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9438 break;
9439 case 0x5d: /* FACGE */
9440 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9441 break;
9442 case 0x5f: /* FDIV */
9443 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9444 break;
9445 case 0x7a: /* FABD */
9446 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9447 gen_helper_vfp_absd(tcg_res, tcg_res);
9448 break;
9449 case 0x7c: /* FCMGT */
9450 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9451 break;
9452 case 0x7d: /* FACGT */
9453 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9454 break;
9455 default:
9456 g_assert_not_reached();
9459 write_vec_element(s, tcg_res, rd, pass, MO_64);
9461 tcg_temp_free_i64(tcg_res);
9462 tcg_temp_free_i64(tcg_op1);
9463 tcg_temp_free_i64(tcg_op2);
9464 } else {
9465 /* Single */
9466 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9467 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9468 TCGv_i32 tcg_res = tcg_temp_new_i32();
9470 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9471 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9473 switch (fpopcode) {
9474 case 0x39: /* FMLS */
9475 /* As usual for ARM, separate negation for fused multiply-add */
9476 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9477 /* fall through */
9478 case 0x19: /* FMLA */
9479 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9480 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9481 tcg_res, fpst);
9482 break;
9483 case 0x1a: /* FADD */
9484 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9485 break;
9486 case 0x1b: /* FMULX */
9487 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9488 break;
9489 case 0x1c: /* FCMEQ */
9490 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9491 break;
9492 case 0x1e: /* FMAX */
9493 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9494 break;
9495 case 0x1f: /* FRECPS */
9496 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9497 break;
9498 case 0x18: /* FMAXNM */
9499 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9500 break;
9501 case 0x38: /* FMINNM */
9502 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9503 break;
9504 case 0x3a: /* FSUB */
9505 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9506 break;
9507 case 0x3e: /* FMIN */
9508 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9509 break;
9510 case 0x3f: /* FRSQRTS */
9511 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9512 break;
9513 case 0x5b: /* FMUL */
9514 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9515 break;
9516 case 0x5c: /* FCMGE */
9517 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9518 break;
9519 case 0x5d: /* FACGE */
9520 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9521 break;
9522 case 0x5f: /* FDIV */
9523 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9524 break;
9525 case 0x7a: /* FABD */
9526 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9527 gen_helper_vfp_abss(tcg_res, tcg_res);
9528 break;
9529 case 0x7c: /* FCMGT */
9530 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9531 break;
9532 case 0x7d: /* FACGT */
9533 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9534 break;
9535 default:
9536 g_assert_not_reached();
9539 if (elements == 1) {
9540 /* scalar single so clear high part */
9541 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9543 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9544 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9545 tcg_temp_free_i64(tcg_tmp);
9546 } else {
9547 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9550 tcg_temp_free_i32(tcg_res);
9551 tcg_temp_free_i32(tcg_op1);
9552 tcg_temp_free_i32(tcg_op2);
9556 tcg_temp_free_ptr(fpst);
9558 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9561 /* AdvSIMD scalar three same
9562 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9563 * +-----+---+-----------+------+---+------+--------+---+------+------+
9564 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9565 * +-----+---+-----------+------+---+------+--------+---+------+------+
9567 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9569 int rd = extract32(insn, 0, 5);
9570 int rn = extract32(insn, 5, 5);
9571 int opcode = extract32(insn, 11, 5);
9572 int rm = extract32(insn, 16, 5);
9573 int size = extract32(insn, 22, 2);
9574 bool u = extract32(insn, 29, 1);
9575 TCGv_i64 tcg_rd;
9577 if (opcode >= 0x18) {
9578 /* Floating point: U, size[1] and opcode indicate operation */
9579 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9580 switch (fpopcode) {
9581 case 0x1b: /* FMULX */
9582 case 0x1f: /* FRECPS */
9583 case 0x3f: /* FRSQRTS */
9584 case 0x5d: /* FACGE */
9585 case 0x7d: /* FACGT */
9586 case 0x1c: /* FCMEQ */
9587 case 0x5c: /* FCMGE */
9588 case 0x7c: /* FCMGT */
9589 case 0x7a: /* FABD */
9590 break;
9591 default:
9592 unallocated_encoding(s);
9593 return;
9596 if (!fp_access_check(s)) {
9597 return;
9600 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9601 return;
9604 switch (opcode) {
9605 case 0x1: /* SQADD, UQADD */
9606 case 0x5: /* SQSUB, UQSUB */
9607 case 0x9: /* SQSHL, UQSHL */
9608 case 0xb: /* SQRSHL, UQRSHL */
9609 break;
9610 case 0x8: /* SSHL, USHL */
9611 case 0xa: /* SRSHL, URSHL */
9612 case 0x6: /* CMGT, CMHI */
9613 case 0x7: /* CMGE, CMHS */
9614 case 0x11: /* CMTST, CMEQ */
9615 case 0x10: /* ADD, SUB (vector) */
9616 if (size != 3) {
9617 unallocated_encoding(s);
9618 return;
9620 break;
9621 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9622 if (size != 1 && size != 2) {
9623 unallocated_encoding(s);
9624 return;
9626 break;
9627 default:
9628 unallocated_encoding(s);
9629 return;
9632 if (!fp_access_check(s)) {
9633 return;
9636 tcg_rd = tcg_temp_new_i64();
9638 if (size == 3) {
9639 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9640 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9642 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9643 tcg_temp_free_i64(tcg_rn);
9644 tcg_temp_free_i64(tcg_rm);
9645 } else {
9646 /* Do a single operation on the lowest element in the vector.
9647 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9648 * no side effects for all these operations.
9649 * OPTME: special-purpose helpers would avoid doing some
9650 * unnecessary work in the helper for the 8 and 16 bit cases.
9652 NeonGenTwoOpEnvFn *genenvfn;
9653 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9654 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9655 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9657 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9658 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9660 switch (opcode) {
9661 case 0x1: /* SQADD, UQADD */
9663 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9664 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9665 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9666 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9668 genenvfn = fns[size][u];
9669 break;
9671 case 0x5: /* SQSUB, UQSUB */
9673 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9674 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9675 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9676 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9678 genenvfn = fns[size][u];
9679 break;
9681 case 0x9: /* SQSHL, UQSHL */
9683 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9684 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9685 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9686 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9688 genenvfn = fns[size][u];
9689 break;
9691 case 0xb: /* SQRSHL, UQRSHL */
9693 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9694 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9695 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9696 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9698 genenvfn = fns[size][u];
9699 break;
9701 case 0x16: /* SQDMULH, SQRDMULH */
9703 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9704 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9705 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9707 assert(size == 1 || size == 2);
9708 genenvfn = fns[size - 1][u];
9709 break;
9711 default:
9712 g_assert_not_reached();
9715 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9716 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9717 tcg_temp_free_i32(tcg_rd32);
9718 tcg_temp_free_i32(tcg_rn);
9719 tcg_temp_free_i32(tcg_rm);
9722 write_fp_dreg(s, rd, tcg_rd);
9724 tcg_temp_free_i64(tcg_rd);
9727 /* AdvSIMD scalar three same FP16
9728 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9729 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9730 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9731 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9732 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9733 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9735 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9736 uint32_t insn)
9738 int rd = extract32(insn, 0, 5);
9739 int rn = extract32(insn, 5, 5);
9740 int opcode = extract32(insn, 11, 3);
9741 int rm = extract32(insn, 16, 5);
9742 bool u = extract32(insn, 29, 1);
9743 bool a = extract32(insn, 23, 1);
9744 int fpopcode = opcode | (a << 3) | (u << 4);
9745 TCGv_ptr fpst;
9746 TCGv_i32 tcg_op1;
9747 TCGv_i32 tcg_op2;
9748 TCGv_i32 tcg_res;
9750 switch (fpopcode) {
9751 case 0x03: /* FMULX */
9752 case 0x04: /* FCMEQ (reg) */
9753 case 0x07: /* FRECPS */
9754 case 0x0f: /* FRSQRTS */
9755 case 0x14: /* FCMGE (reg) */
9756 case 0x15: /* FACGE */
9757 case 0x1a: /* FABD */
9758 case 0x1c: /* FCMGT (reg) */
9759 case 0x1d: /* FACGT */
9760 break;
9761 default:
9762 unallocated_encoding(s);
9763 return;
9766 if (!dc_isar_feature(aa64_fp16, s)) {
9767 unallocated_encoding(s);
9770 if (!fp_access_check(s)) {
9771 return;
9774 fpst = fpstatus_ptr(FPST_FPCR_F16);
9776 tcg_op1 = read_fp_hreg(s, rn);
9777 tcg_op2 = read_fp_hreg(s, rm);
9778 tcg_res = tcg_temp_new_i32();
9780 switch (fpopcode) {
9781 case 0x03: /* FMULX */
9782 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9783 break;
9784 case 0x04: /* FCMEQ (reg) */
9785 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9786 break;
9787 case 0x07: /* FRECPS */
9788 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9789 break;
9790 case 0x0f: /* FRSQRTS */
9791 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9792 break;
9793 case 0x14: /* FCMGE (reg) */
9794 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9795 break;
9796 case 0x15: /* FACGE */
9797 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9798 break;
9799 case 0x1a: /* FABD */
9800 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9801 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9802 break;
9803 case 0x1c: /* FCMGT (reg) */
9804 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9805 break;
9806 case 0x1d: /* FACGT */
9807 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9808 break;
9809 default:
9810 g_assert_not_reached();
9813 write_fp_sreg(s, rd, tcg_res);
9816 tcg_temp_free_i32(tcg_res);
9817 tcg_temp_free_i32(tcg_op1);
9818 tcg_temp_free_i32(tcg_op2);
9819 tcg_temp_free_ptr(fpst);
9822 /* AdvSIMD scalar three same extra
9823 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9824 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9825 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9826 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9828 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9829 uint32_t insn)
9831 int rd = extract32(insn, 0, 5);
9832 int rn = extract32(insn, 5, 5);
9833 int opcode = extract32(insn, 11, 4);
9834 int rm = extract32(insn, 16, 5);
9835 int size = extract32(insn, 22, 2);
9836 bool u = extract32(insn, 29, 1);
9837 TCGv_i32 ele1, ele2, ele3;
9838 TCGv_i64 res;
9839 bool feature;
9841 switch (u * 16 + opcode) {
9842 case 0x10: /* SQRDMLAH (vector) */
9843 case 0x11: /* SQRDMLSH (vector) */
9844 if (size != 1 && size != 2) {
9845 unallocated_encoding(s);
9846 return;
9848 feature = dc_isar_feature(aa64_rdm, s);
9849 break;
9850 default:
9851 unallocated_encoding(s);
9852 return;
9854 if (!feature) {
9855 unallocated_encoding(s);
9856 return;
9858 if (!fp_access_check(s)) {
9859 return;
9862 /* Do a single operation on the lowest element in the vector.
9863 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9864 * with no side effects for all these operations.
9865 * OPTME: special-purpose helpers would avoid doing some
9866 * unnecessary work in the helper for the 16 bit cases.
9868 ele1 = tcg_temp_new_i32();
9869 ele2 = tcg_temp_new_i32();
9870 ele3 = tcg_temp_new_i32();
9872 read_vec_element_i32(s, ele1, rn, 0, size);
9873 read_vec_element_i32(s, ele2, rm, 0, size);
9874 read_vec_element_i32(s, ele3, rd, 0, size);
9876 switch (opcode) {
9877 case 0x0: /* SQRDMLAH */
9878 if (size == 1) {
9879 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9880 } else {
9881 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9883 break;
9884 case 0x1: /* SQRDMLSH */
9885 if (size == 1) {
9886 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9887 } else {
9888 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9890 break;
9891 default:
9892 g_assert_not_reached();
9894 tcg_temp_free_i32(ele1);
9895 tcg_temp_free_i32(ele2);
9897 res = tcg_temp_new_i64();
9898 tcg_gen_extu_i32_i64(res, ele3);
9899 tcg_temp_free_i32(ele3);
9901 write_fp_dreg(s, rd, res);
9902 tcg_temp_free_i64(res);
9905 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9906 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9907 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9909 /* Handle 64->64 opcodes which are shared between the scalar and
9910 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9911 * is valid in either group and also the double-precision fp ops.
9912 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9913 * requires them.
9915 TCGCond cond;
9917 switch (opcode) {
9918 case 0x4: /* CLS, CLZ */
9919 if (u) {
9920 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9921 } else {
9922 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9924 break;
9925 case 0x5: /* NOT */
9926 /* This opcode is shared with CNT and RBIT but we have earlier
9927 * enforced that size == 3 if and only if this is the NOT insn.
9929 tcg_gen_not_i64(tcg_rd, tcg_rn);
9930 break;
9931 case 0x7: /* SQABS, SQNEG */
9932 if (u) {
9933 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9934 } else {
9935 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9937 break;
9938 case 0xa: /* CMLT */
9939 /* 64 bit integer comparison against zero, result is
9940 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9941 * subtracting 1.
9943 cond = TCG_COND_LT;
9944 do_cmop:
9945 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9946 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9947 break;
9948 case 0x8: /* CMGT, CMGE */
9949 cond = u ? TCG_COND_GE : TCG_COND_GT;
9950 goto do_cmop;
9951 case 0x9: /* CMEQ, CMLE */
9952 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9953 goto do_cmop;
9954 case 0xb: /* ABS, NEG */
9955 if (u) {
9956 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9957 } else {
9958 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9960 break;
9961 case 0x2f: /* FABS */
9962 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9963 break;
9964 case 0x6f: /* FNEG */
9965 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9966 break;
9967 case 0x7f: /* FSQRT */
9968 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9969 break;
9970 case 0x1a: /* FCVTNS */
9971 case 0x1b: /* FCVTMS */
9972 case 0x1c: /* FCVTAS */
9973 case 0x3a: /* FCVTPS */
9974 case 0x3b: /* FCVTZS */
9976 TCGv_i32 tcg_shift = tcg_const_i32(0);
9977 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9978 tcg_temp_free_i32(tcg_shift);
9979 break;
9981 case 0x5a: /* FCVTNU */
9982 case 0x5b: /* FCVTMU */
9983 case 0x5c: /* FCVTAU */
9984 case 0x7a: /* FCVTPU */
9985 case 0x7b: /* FCVTZU */
9987 TCGv_i32 tcg_shift = tcg_const_i32(0);
9988 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9989 tcg_temp_free_i32(tcg_shift);
9990 break;
9992 case 0x18: /* FRINTN */
9993 case 0x19: /* FRINTM */
9994 case 0x38: /* FRINTP */
9995 case 0x39: /* FRINTZ */
9996 case 0x58: /* FRINTA */
9997 case 0x79: /* FRINTI */
9998 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9999 break;
10000 case 0x59: /* FRINTX */
10001 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
10002 break;
10003 case 0x1e: /* FRINT32Z */
10004 case 0x5e: /* FRINT32X */
10005 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
10006 break;
10007 case 0x1f: /* FRINT64Z */
10008 case 0x5f: /* FRINT64X */
10009 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
10010 break;
10011 default:
10012 g_assert_not_reached();
10016 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
10017 bool is_scalar, bool is_u, bool is_q,
10018 int size, int rn, int rd)
10020 bool is_double = (size == MO_64);
10021 TCGv_ptr fpst;
10023 if (!fp_access_check(s)) {
10024 return;
10027 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10029 if (is_double) {
10030 TCGv_i64 tcg_op = tcg_temp_new_i64();
10031 TCGv_i64 tcg_zero = tcg_const_i64(0);
10032 TCGv_i64 tcg_res = tcg_temp_new_i64();
10033 NeonGenTwoDoubleOpFn *genfn;
10034 bool swap = false;
10035 int pass;
10037 switch (opcode) {
10038 case 0x2e: /* FCMLT (zero) */
10039 swap = true;
10040 /* fallthrough */
10041 case 0x2c: /* FCMGT (zero) */
10042 genfn = gen_helper_neon_cgt_f64;
10043 break;
10044 case 0x2d: /* FCMEQ (zero) */
10045 genfn = gen_helper_neon_ceq_f64;
10046 break;
10047 case 0x6d: /* FCMLE (zero) */
10048 swap = true;
10049 /* fall through */
10050 case 0x6c: /* FCMGE (zero) */
10051 genfn = gen_helper_neon_cge_f64;
10052 break;
10053 default:
10054 g_assert_not_reached();
10057 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10058 read_vec_element(s, tcg_op, rn, pass, MO_64);
10059 if (swap) {
10060 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10061 } else {
10062 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10064 write_vec_element(s, tcg_res, rd, pass, MO_64);
10066 tcg_temp_free_i64(tcg_res);
10067 tcg_temp_free_i64(tcg_zero);
10068 tcg_temp_free_i64(tcg_op);
10070 clear_vec_high(s, !is_scalar, rd);
10071 } else {
10072 TCGv_i32 tcg_op = tcg_temp_new_i32();
10073 TCGv_i32 tcg_zero = tcg_const_i32(0);
10074 TCGv_i32 tcg_res = tcg_temp_new_i32();
10075 NeonGenTwoSingleOpFn *genfn;
10076 bool swap = false;
10077 int pass, maxpasses;
10079 if (size == MO_16) {
10080 switch (opcode) {
10081 case 0x2e: /* FCMLT (zero) */
10082 swap = true;
10083 /* fall through */
10084 case 0x2c: /* FCMGT (zero) */
10085 genfn = gen_helper_advsimd_cgt_f16;
10086 break;
10087 case 0x2d: /* FCMEQ (zero) */
10088 genfn = gen_helper_advsimd_ceq_f16;
10089 break;
10090 case 0x6d: /* FCMLE (zero) */
10091 swap = true;
10092 /* fall through */
10093 case 0x6c: /* FCMGE (zero) */
10094 genfn = gen_helper_advsimd_cge_f16;
10095 break;
10096 default:
10097 g_assert_not_reached();
10099 } else {
10100 switch (opcode) {
10101 case 0x2e: /* FCMLT (zero) */
10102 swap = true;
10103 /* fall through */
10104 case 0x2c: /* FCMGT (zero) */
10105 genfn = gen_helper_neon_cgt_f32;
10106 break;
10107 case 0x2d: /* FCMEQ (zero) */
10108 genfn = gen_helper_neon_ceq_f32;
10109 break;
10110 case 0x6d: /* FCMLE (zero) */
10111 swap = true;
10112 /* fall through */
10113 case 0x6c: /* FCMGE (zero) */
10114 genfn = gen_helper_neon_cge_f32;
10115 break;
10116 default:
10117 g_assert_not_reached();
10121 if (is_scalar) {
10122 maxpasses = 1;
10123 } else {
10124 int vector_size = 8 << is_q;
10125 maxpasses = vector_size >> size;
10128 for (pass = 0; pass < maxpasses; pass++) {
10129 read_vec_element_i32(s, tcg_op, rn, pass, size);
10130 if (swap) {
10131 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10132 } else {
10133 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10135 if (is_scalar) {
10136 write_fp_sreg(s, rd, tcg_res);
10137 } else {
10138 write_vec_element_i32(s, tcg_res, rd, pass, size);
10141 tcg_temp_free_i32(tcg_res);
10142 tcg_temp_free_i32(tcg_zero);
10143 tcg_temp_free_i32(tcg_op);
10144 if (!is_scalar) {
10145 clear_vec_high(s, is_q, rd);
10149 tcg_temp_free_ptr(fpst);
10152 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10153 bool is_scalar, bool is_u, bool is_q,
10154 int size, int rn, int rd)
10156 bool is_double = (size == 3);
10157 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10159 if (is_double) {
10160 TCGv_i64 tcg_op = tcg_temp_new_i64();
10161 TCGv_i64 tcg_res = tcg_temp_new_i64();
10162 int pass;
10164 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10165 read_vec_element(s, tcg_op, rn, pass, MO_64);
10166 switch (opcode) {
10167 case 0x3d: /* FRECPE */
10168 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10169 break;
10170 case 0x3f: /* FRECPX */
10171 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10172 break;
10173 case 0x7d: /* FRSQRTE */
10174 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10175 break;
10176 default:
10177 g_assert_not_reached();
10179 write_vec_element(s, tcg_res, rd, pass, MO_64);
10181 tcg_temp_free_i64(tcg_res);
10182 tcg_temp_free_i64(tcg_op);
10183 clear_vec_high(s, !is_scalar, rd);
10184 } else {
10185 TCGv_i32 tcg_op = tcg_temp_new_i32();
10186 TCGv_i32 tcg_res = tcg_temp_new_i32();
10187 int pass, maxpasses;
10189 if (is_scalar) {
10190 maxpasses = 1;
10191 } else {
10192 maxpasses = is_q ? 4 : 2;
10195 for (pass = 0; pass < maxpasses; pass++) {
10196 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10198 switch (opcode) {
10199 case 0x3c: /* URECPE */
10200 gen_helper_recpe_u32(tcg_res, tcg_op);
10201 break;
10202 case 0x3d: /* FRECPE */
10203 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10204 break;
10205 case 0x3f: /* FRECPX */
10206 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10207 break;
10208 case 0x7d: /* FRSQRTE */
10209 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10210 break;
10211 default:
10212 g_assert_not_reached();
10215 if (is_scalar) {
10216 write_fp_sreg(s, rd, tcg_res);
10217 } else {
10218 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10221 tcg_temp_free_i32(tcg_res);
10222 tcg_temp_free_i32(tcg_op);
10223 if (!is_scalar) {
10224 clear_vec_high(s, is_q, rd);
10227 tcg_temp_free_ptr(fpst);
10230 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10231 int opcode, bool u, bool is_q,
10232 int size, int rn, int rd)
10234 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10235 * in the source becomes a size element in the destination).
10237 int pass;
10238 TCGv_i32 tcg_res[2];
10239 int destelt = is_q ? 2 : 0;
10240 int passes = scalar ? 1 : 2;
10242 if (scalar) {
10243 tcg_res[1] = tcg_const_i32(0);
10246 for (pass = 0; pass < passes; pass++) {
10247 TCGv_i64 tcg_op = tcg_temp_new_i64();
10248 NeonGenNarrowFn *genfn = NULL;
10249 NeonGenNarrowEnvFn *genenvfn = NULL;
10251 if (scalar) {
10252 read_vec_element(s, tcg_op, rn, pass, size + 1);
10253 } else {
10254 read_vec_element(s, tcg_op, rn, pass, MO_64);
10256 tcg_res[pass] = tcg_temp_new_i32();
10258 switch (opcode) {
10259 case 0x12: /* XTN, SQXTUN */
10261 static NeonGenNarrowFn * const xtnfns[3] = {
10262 gen_helper_neon_narrow_u8,
10263 gen_helper_neon_narrow_u16,
10264 tcg_gen_extrl_i64_i32,
10266 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10267 gen_helper_neon_unarrow_sat8,
10268 gen_helper_neon_unarrow_sat16,
10269 gen_helper_neon_unarrow_sat32,
10271 if (u) {
10272 genenvfn = sqxtunfns[size];
10273 } else {
10274 genfn = xtnfns[size];
10276 break;
10278 case 0x14: /* SQXTN, UQXTN */
10280 static NeonGenNarrowEnvFn * const fns[3][2] = {
10281 { gen_helper_neon_narrow_sat_s8,
10282 gen_helper_neon_narrow_sat_u8 },
10283 { gen_helper_neon_narrow_sat_s16,
10284 gen_helper_neon_narrow_sat_u16 },
10285 { gen_helper_neon_narrow_sat_s32,
10286 gen_helper_neon_narrow_sat_u32 },
10288 genenvfn = fns[size][u];
10289 break;
10291 case 0x16: /* FCVTN, FCVTN2 */
10292 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10293 if (size == 2) {
10294 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10295 } else {
10296 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10297 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10298 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10299 TCGv_i32 ahp = get_ahp_flag();
10301 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10302 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10303 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10304 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10305 tcg_temp_free_i32(tcg_lo);
10306 tcg_temp_free_i32(tcg_hi);
10307 tcg_temp_free_ptr(fpst);
10308 tcg_temp_free_i32(ahp);
10310 break;
10311 case 0x56: /* FCVTXN, FCVTXN2 */
10312 /* 64 bit to 32 bit float conversion
10313 * with von Neumann rounding (round to odd)
10315 assert(size == 2);
10316 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10317 break;
10318 default:
10319 g_assert_not_reached();
10322 if (genfn) {
10323 genfn(tcg_res[pass], tcg_op);
10324 } else if (genenvfn) {
10325 genenvfn(tcg_res[pass], cpu_env, tcg_op);
10328 tcg_temp_free_i64(tcg_op);
10331 for (pass = 0; pass < 2; pass++) {
10332 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10333 tcg_temp_free_i32(tcg_res[pass]);
10335 clear_vec_high(s, is_q, rd);
10338 /* Remaining saturating accumulating ops */
10339 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10340 bool is_q, int size, int rn, int rd)
10342 bool is_double = (size == 3);
10344 if (is_double) {
10345 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10346 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10347 int pass;
10349 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10350 read_vec_element(s, tcg_rn, rn, pass, MO_64);
10351 read_vec_element(s, tcg_rd, rd, pass, MO_64);
10353 if (is_u) { /* USQADD */
10354 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10355 } else { /* SUQADD */
10356 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10358 write_vec_element(s, tcg_rd, rd, pass, MO_64);
10360 tcg_temp_free_i64(tcg_rd);
10361 tcg_temp_free_i64(tcg_rn);
10362 clear_vec_high(s, !is_scalar, rd);
10363 } else {
10364 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10365 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10366 int pass, maxpasses;
10368 if (is_scalar) {
10369 maxpasses = 1;
10370 } else {
10371 maxpasses = is_q ? 4 : 2;
10374 for (pass = 0; pass < maxpasses; pass++) {
10375 if (is_scalar) {
10376 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10377 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10378 } else {
10379 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10380 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10383 if (is_u) { /* USQADD */
10384 switch (size) {
10385 case 0:
10386 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10387 break;
10388 case 1:
10389 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10390 break;
10391 case 2:
10392 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10393 break;
10394 default:
10395 g_assert_not_reached();
10397 } else { /* SUQADD */
10398 switch (size) {
10399 case 0:
10400 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10401 break;
10402 case 1:
10403 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10404 break;
10405 case 2:
10406 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10407 break;
10408 default:
10409 g_assert_not_reached();
10413 if (is_scalar) {
10414 TCGv_i64 tcg_zero = tcg_const_i64(0);
10415 write_vec_element(s, tcg_zero, rd, 0, MO_64);
10416 tcg_temp_free_i64(tcg_zero);
10418 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10420 tcg_temp_free_i32(tcg_rd);
10421 tcg_temp_free_i32(tcg_rn);
10422 clear_vec_high(s, is_q, rd);
10426 /* AdvSIMD scalar two reg misc
10427 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10428 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10429 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10430 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10432 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10434 int rd = extract32(insn, 0, 5);
10435 int rn = extract32(insn, 5, 5);
10436 int opcode = extract32(insn, 12, 5);
10437 int size = extract32(insn, 22, 2);
10438 bool u = extract32(insn, 29, 1);
10439 bool is_fcvt = false;
10440 int rmode;
10441 TCGv_i32 tcg_rmode;
10442 TCGv_ptr tcg_fpstatus;
10444 switch (opcode) {
10445 case 0x3: /* USQADD / SUQADD*/
10446 if (!fp_access_check(s)) {
10447 return;
10449 handle_2misc_satacc(s, true, u, false, size, rn, rd);
10450 return;
10451 case 0x7: /* SQABS / SQNEG */
10452 break;
10453 case 0xa: /* CMLT */
10454 if (u) {
10455 unallocated_encoding(s);
10456 return;
10458 /* fall through */
10459 case 0x8: /* CMGT, CMGE */
10460 case 0x9: /* CMEQ, CMLE */
10461 case 0xb: /* ABS, NEG */
10462 if (size != 3) {
10463 unallocated_encoding(s);
10464 return;
10466 break;
10467 case 0x12: /* SQXTUN */
10468 if (!u) {
10469 unallocated_encoding(s);
10470 return;
10472 /* fall through */
10473 case 0x14: /* SQXTN, UQXTN */
10474 if (size == 3) {
10475 unallocated_encoding(s);
10476 return;
10478 if (!fp_access_check(s)) {
10479 return;
10481 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10482 return;
10483 case 0xc ... 0xf:
10484 case 0x16 ... 0x1d:
10485 case 0x1f:
10486 /* Floating point: U, size[1] and opcode indicate operation;
10487 * size[0] indicates single or double precision.
10489 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10490 size = extract32(size, 0, 1) ? 3 : 2;
10491 switch (opcode) {
10492 case 0x2c: /* FCMGT (zero) */
10493 case 0x2d: /* FCMEQ (zero) */
10494 case 0x2e: /* FCMLT (zero) */
10495 case 0x6c: /* FCMGE (zero) */
10496 case 0x6d: /* FCMLE (zero) */
10497 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10498 return;
10499 case 0x1d: /* SCVTF */
10500 case 0x5d: /* UCVTF */
10502 bool is_signed = (opcode == 0x1d);
10503 if (!fp_access_check(s)) {
10504 return;
10506 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10507 return;
10509 case 0x3d: /* FRECPE */
10510 case 0x3f: /* FRECPX */
10511 case 0x7d: /* FRSQRTE */
10512 if (!fp_access_check(s)) {
10513 return;
10515 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10516 return;
10517 case 0x1a: /* FCVTNS */
10518 case 0x1b: /* FCVTMS */
10519 case 0x3a: /* FCVTPS */
10520 case 0x3b: /* FCVTZS */
10521 case 0x5a: /* FCVTNU */
10522 case 0x5b: /* FCVTMU */
10523 case 0x7a: /* FCVTPU */
10524 case 0x7b: /* FCVTZU */
10525 is_fcvt = true;
10526 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10527 break;
10528 case 0x1c: /* FCVTAS */
10529 case 0x5c: /* FCVTAU */
10530 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10531 is_fcvt = true;
10532 rmode = FPROUNDING_TIEAWAY;
10533 break;
10534 case 0x56: /* FCVTXN, FCVTXN2 */
10535 if (size == 2) {
10536 unallocated_encoding(s);
10537 return;
10539 if (!fp_access_check(s)) {
10540 return;
10542 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10543 return;
10544 default:
10545 unallocated_encoding(s);
10546 return;
10548 break;
10549 default:
10550 unallocated_encoding(s);
10551 return;
10554 if (!fp_access_check(s)) {
10555 return;
10558 if (is_fcvt) {
10559 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10560 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10561 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10562 } else {
10563 tcg_rmode = NULL;
10564 tcg_fpstatus = NULL;
10567 if (size == 3) {
10568 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10569 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10571 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10572 write_fp_dreg(s, rd, tcg_rd);
10573 tcg_temp_free_i64(tcg_rd);
10574 tcg_temp_free_i64(tcg_rn);
10575 } else {
10576 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10577 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10579 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10581 switch (opcode) {
10582 case 0x7: /* SQABS, SQNEG */
10584 NeonGenOneOpEnvFn *genfn;
10585 static NeonGenOneOpEnvFn * const fns[3][2] = {
10586 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10587 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10588 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10590 genfn = fns[size][u];
10591 genfn(tcg_rd, cpu_env, tcg_rn);
10592 break;
10594 case 0x1a: /* FCVTNS */
10595 case 0x1b: /* FCVTMS */
10596 case 0x1c: /* FCVTAS */
10597 case 0x3a: /* FCVTPS */
10598 case 0x3b: /* FCVTZS */
10600 TCGv_i32 tcg_shift = tcg_const_i32(0);
10601 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10602 tcg_temp_free_i32(tcg_shift);
10603 break;
10605 case 0x5a: /* FCVTNU */
10606 case 0x5b: /* FCVTMU */
10607 case 0x5c: /* FCVTAU */
10608 case 0x7a: /* FCVTPU */
10609 case 0x7b: /* FCVTZU */
10611 TCGv_i32 tcg_shift = tcg_const_i32(0);
10612 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10613 tcg_temp_free_i32(tcg_shift);
10614 break;
10616 default:
10617 g_assert_not_reached();
10620 write_fp_sreg(s, rd, tcg_rd);
10621 tcg_temp_free_i32(tcg_rd);
10622 tcg_temp_free_i32(tcg_rn);
10625 if (is_fcvt) {
10626 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10627 tcg_temp_free_i32(tcg_rmode);
10628 tcg_temp_free_ptr(tcg_fpstatus);
10632 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10633 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10634 int immh, int immb, int opcode, int rn, int rd)
10636 int size = 32 - clz32(immh) - 1;
10637 int immhb = immh << 3 | immb;
10638 int shift = 2 * (8 << size) - immhb;
10639 GVecGen2iFn *gvec_fn;
10641 if (extract32(immh, 3, 1) && !is_q) {
10642 unallocated_encoding(s);
10643 return;
10645 tcg_debug_assert(size <= 3);
10647 if (!fp_access_check(s)) {
10648 return;
10651 switch (opcode) {
10652 case 0x02: /* SSRA / USRA (accumulate) */
10653 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10654 break;
10656 case 0x08: /* SRI */
10657 gvec_fn = gen_gvec_sri;
10658 break;
10660 case 0x00: /* SSHR / USHR */
10661 if (is_u) {
10662 if (shift == 8 << size) {
10663 /* Shift count the same size as element size produces zero. */
10664 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10665 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10666 return;
10668 gvec_fn = tcg_gen_gvec_shri;
10669 } else {
10670 /* Shift count the same size as element size produces all sign. */
10671 if (shift == 8 << size) {
10672 shift -= 1;
10674 gvec_fn = tcg_gen_gvec_sari;
10676 break;
10678 case 0x04: /* SRSHR / URSHR (rounding) */
10679 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10680 break;
10682 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10683 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10684 break;
10686 default:
10687 g_assert_not_reached();
10690 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10693 /* SHL/SLI - Vector shift left */
10694 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10695 int immh, int immb, int opcode, int rn, int rd)
10697 int size = 32 - clz32(immh) - 1;
10698 int immhb = immh << 3 | immb;
10699 int shift = immhb - (8 << size);
10701 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10702 assert(size >= 0 && size <= 3);
10704 if (extract32(immh, 3, 1) && !is_q) {
10705 unallocated_encoding(s);
10706 return;
10709 if (!fp_access_check(s)) {
10710 return;
10713 if (insert) {
10714 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10715 } else {
10716 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10720 /* USHLL/SHLL - Vector shift left with widening */
10721 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10722 int immh, int immb, int opcode, int rn, int rd)
10724 int size = 32 - clz32(immh) - 1;
10725 int immhb = immh << 3 | immb;
10726 int shift = immhb - (8 << size);
10727 int dsize = 64;
10728 int esize = 8 << size;
10729 int elements = dsize/esize;
10730 TCGv_i64 tcg_rn = new_tmp_a64(s);
10731 TCGv_i64 tcg_rd = new_tmp_a64(s);
10732 int i;
10734 if (size >= 3) {
10735 unallocated_encoding(s);
10736 return;
10739 if (!fp_access_check(s)) {
10740 return;
10743 /* For the LL variants the store is larger than the load,
10744 * so if rd == rn we would overwrite parts of our input.
10745 * So load everything right now and use shifts in the main loop.
10747 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10749 for (i = 0; i < elements; i++) {
10750 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10751 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10752 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10753 write_vec_element(s, tcg_rd, rd, i, size + 1);
10757 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10758 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10759 int immh, int immb, int opcode, int rn, int rd)
10761 int immhb = immh << 3 | immb;
10762 int size = 32 - clz32(immh) - 1;
10763 int dsize = 64;
10764 int esize = 8 << size;
10765 int elements = dsize/esize;
10766 int shift = (2 * esize) - immhb;
10767 bool round = extract32(opcode, 0, 1);
10768 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10769 TCGv_i64 tcg_round;
10770 int i;
10772 if (extract32(immh, 3, 1)) {
10773 unallocated_encoding(s);
10774 return;
10777 if (!fp_access_check(s)) {
10778 return;
10781 tcg_rn = tcg_temp_new_i64();
10782 tcg_rd = tcg_temp_new_i64();
10783 tcg_final = tcg_temp_new_i64();
10784 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10786 if (round) {
10787 uint64_t round_const = 1ULL << (shift - 1);
10788 tcg_round = tcg_const_i64(round_const);
10789 } else {
10790 tcg_round = NULL;
10793 for (i = 0; i < elements; i++) {
10794 read_vec_element(s, tcg_rn, rn, i, size+1);
10795 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10796 false, true, size+1, shift);
10798 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10801 if (!is_q) {
10802 write_vec_element(s, tcg_final, rd, 0, MO_64);
10803 } else {
10804 write_vec_element(s, tcg_final, rd, 1, MO_64);
10806 if (round) {
10807 tcg_temp_free_i64(tcg_round);
10809 tcg_temp_free_i64(tcg_rn);
10810 tcg_temp_free_i64(tcg_rd);
10811 tcg_temp_free_i64(tcg_final);
10813 clear_vec_high(s, is_q, rd);
10817 /* AdvSIMD shift by immediate
10818 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10819 * +---+---+---+-------------+------+------+--------+---+------+------+
10820 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10821 * +---+---+---+-------------+------+------+--------+---+------+------+
10823 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10825 int rd = extract32(insn, 0, 5);
10826 int rn = extract32(insn, 5, 5);
10827 int opcode = extract32(insn, 11, 5);
10828 int immb = extract32(insn, 16, 3);
10829 int immh = extract32(insn, 19, 4);
10830 bool is_u = extract32(insn, 29, 1);
10831 bool is_q = extract32(insn, 30, 1);
10833 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10834 assert(immh != 0);
10836 switch (opcode) {
10837 case 0x08: /* SRI */
10838 if (!is_u) {
10839 unallocated_encoding(s);
10840 return;
10842 /* fall through */
10843 case 0x00: /* SSHR / USHR */
10844 case 0x02: /* SSRA / USRA (accumulate) */
10845 case 0x04: /* SRSHR / URSHR (rounding) */
10846 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10847 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10848 break;
10849 case 0x0a: /* SHL / SLI */
10850 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10851 break;
10852 case 0x10: /* SHRN */
10853 case 0x11: /* RSHRN / SQRSHRUN */
10854 if (is_u) {
10855 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10856 opcode, rn, rd);
10857 } else {
10858 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10860 break;
10861 case 0x12: /* SQSHRN / UQSHRN */
10862 case 0x13: /* SQRSHRN / UQRSHRN */
10863 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10864 opcode, rn, rd);
10865 break;
10866 case 0x14: /* SSHLL / USHLL */
10867 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10868 break;
10869 case 0x1c: /* SCVTF / UCVTF */
10870 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10871 opcode, rn, rd);
10872 break;
10873 case 0xc: /* SQSHLU */
10874 if (!is_u) {
10875 unallocated_encoding(s);
10876 return;
10878 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10879 break;
10880 case 0xe: /* SQSHL, UQSHL */
10881 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10882 break;
10883 case 0x1f: /* FCVTZS/ FCVTZU */
10884 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10885 return;
10886 default:
10887 unallocated_encoding(s);
10888 return;
10892 /* Generate code to do a "long" addition or subtraction, ie one done in
10893 * TCGv_i64 on vector lanes twice the width specified by size.
10895 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10896 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10898 static NeonGenTwo64OpFn * const fns[3][2] = {
10899 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10900 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10901 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10903 NeonGenTwo64OpFn *genfn;
10904 assert(size < 3);
10906 genfn = fns[size][is_sub];
10907 genfn(tcg_res, tcg_op1, tcg_op2);
10910 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10911 int opcode, int rd, int rn, int rm)
10913 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10914 TCGv_i64 tcg_res[2];
10915 int pass, accop;
10917 tcg_res[0] = tcg_temp_new_i64();
10918 tcg_res[1] = tcg_temp_new_i64();
10920 /* Does this op do an adding accumulate, a subtracting accumulate,
10921 * or no accumulate at all?
10923 switch (opcode) {
10924 case 5:
10925 case 8:
10926 case 9:
10927 accop = 1;
10928 break;
10929 case 10:
10930 case 11:
10931 accop = -1;
10932 break;
10933 default:
10934 accop = 0;
10935 break;
10938 if (accop != 0) {
10939 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10940 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10943 /* size == 2 means two 32x32->64 operations; this is worth special
10944 * casing because we can generally handle it inline.
10946 if (size == 2) {
10947 for (pass = 0; pass < 2; pass++) {
10948 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10949 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10950 TCGv_i64 tcg_passres;
10951 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10953 int elt = pass + is_q * 2;
10955 read_vec_element(s, tcg_op1, rn, elt, memop);
10956 read_vec_element(s, tcg_op2, rm, elt, memop);
10958 if (accop == 0) {
10959 tcg_passres = tcg_res[pass];
10960 } else {
10961 tcg_passres = tcg_temp_new_i64();
10964 switch (opcode) {
10965 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10966 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10967 break;
10968 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10969 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10970 break;
10971 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10972 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10974 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10975 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10977 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10978 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10979 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10980 tcg_passres,
10981 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10982 tcg_temp_free_i64(tcg_tmp1);
10983 tcg_temp_free_i64(tcg_tmp2);
10984 break;
10986 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10987 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10988 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10989 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10990 break;
10991 case 9: /* SQDMLAL, SQDMLAL2 */
10992 case 11: /* SQDMLSL, SQDMLSL2 */
10993 case 13: /* SQDMULL, SQDMULL2 */
10994 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10995 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10996 tcg_passres, tcg_passres);
10997 break;
10998 default:
10999 g_assert_not_reached();
11002 if (opcode == 9 || opcode == 11) {
11003 /* saturating accumulate ops */
11004 if (accop < 0) {
11005 tcg_gen_neg_i64(tcg_passres, tcg_passres);
11007 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
11008 tcg_res[pass], tcg_passres);
11009 } else if (accop > 0) {
11010 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
11011 } else if (accop < 0) {
11012 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
11015 if (accop != 0) {
11016 tcg_temp_free_i64(tcg_passres);
11019 tcg_temp_free_i64(tcg_op1);
11020 tcg_temp_free_i64(tcg_op2);
11022 } else {
11023 /* size 0 or 1, generally helper functions */
11024 for (pass = 0; pass < 2; pass++) {
11025 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11026 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11027 TCGv_i64 tcg_passres;
11028 int elt = pass + is_q * 2;
11030 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
11031 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
11033 if (accop == 0) {
11034 tcg_passres = tcg_res[pass];
11035 } else {
11036 tcg_passres = tcg_temp_new_i64();
11039 switch (opcode) {
11040 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11041 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11043 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
11044 static NeonGenWidenFn * const widenfns[2][2] = {
11045 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11046 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11048 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11050 widenfn(tcg_op2_64, tcg_op2);
11051 widenfn(tcg_passres, tcg_op1);
11052 gen_neon_addl(size, (opcode == 2), tcg_passres,
11053 tcg_passres, tcg_op2_64);
11054 tcg_temp_free_i64(tcg_op2_64);
11055 break;
11057 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11058 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11059 if (size == 0) {
11060 if (is_u) {
11061 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11062 } else {
11063 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11065 } else {
11066 if (is_u) {
11067 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11068 } else {
11069 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11072 break;
11073 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11074 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11075 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11076 if (size == 0) {
11077 if (is_u) {
11078 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11079 } else {
11080 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11082 } else {
11083 if (is_u) {
11084 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11085 } else {
11086 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11089 break;
11090 case 9: /* SQDMLAL, SQDMLAL2 */
11091 case 11: /* SQDMLSL, SQDMLSL2 */
11092 case 13: /* SQDMULL, SQDMULL2 */
11093 assert(size == 1);
11094 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11095 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11096 tcg_passres, tcg_passres);
11097 break;
11098 default:
11099 g_assert_not_reached();
11101 tcg_temp_free_i32(tcg_op1);
11102 tcg_temp_free_i32(tcg_op2);
11104 if (accop != 0) {
11105 if (opcode == 9 || opcode == 11) {
11106 /* saturating accumulate ops */
11107 if (accop < 0) {
11108 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11110 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11111 tcg_res[pass],
11112 tcg_passres);
11113 } else {
11114 gen_neon_addl(size, (accop < 0), tcg_res[pass],
11115 tcg_res[pass], tcg_passres);
11117 tcg_temp_free_i64(tcg_passres);
11122 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11123 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11124 tcg_temp_free_i64(tcg_res[0]);
11125 tcg_temp_free_i64(tcg_res[1]);
11128 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11129 int opcode, int rd, int rn, int rm)
11131 TCGv_i64 tcg_res[2];
11132 int part = is_q ? 2 : 0;
11133 int pass;
11135 for (pass = 0; pass < 2; pass++) {
11136 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11137 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11138 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11139 static NeonGenWidenFn * const widenfns[3][2] = {
11140 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11141 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11142 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11144 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11146 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11147 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11148 widenfn(tcg_op2_wide, tcg_op2);
11149 tcg_temp_free_i32(tcg_op2);
11150 tcg_res[pass] = tcg_temp_new_i64();
11151 gen_neon_addl(size, (opcode == 3),
11152 tcg_res[pass], tcg_op1, tcg_op2_wide);
11153 tcg_temp_free_i64(tcg_op1);
11154 tcg_temp_free_i64(tcg_op2_wide);
11157 for (pass = 0; pass < 2; pass++) {
11158 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11159 tcg_temp_free_i64(tcg_res[pass]);
11163 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11165 tcg_gen_addi_i64(in, in, 1U << 31);
11166 tcg_gen_extrh_i64_i32(res, in);
11169 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11170 int opcode, int rd, int rn, int rm)
11172 TCGv_i32 tcg_res[2];
11173 int part = is_q ? 2 : 0;
11174 int pass;
11176 for (pass = 0; pass < 2; pass++) {
11177 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11178 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11179 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11180 static NeonGenNarrowFn * const narrowfns[3][2] = {
11181 { gen_helper_neon_narrow_high_u8,
11182 gen_helper_neon_narrow_round_high_u8 },
11183 { gen_helper_neon_narrow_high_u16,
11184 gen_helper_neon_narrow_round_high_u16 },
11185 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11187 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11189 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11190 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11192 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11194 tcg_temp_free_i64(tcg_op1);
11195 tcg_temp_free_i64(tcg_op2);
11197 tcg_res[pass] = tcg_temp_new_i32();
11198 gennarrow(tcg_res[pass], tcg_wideres);
11199 tcg_temp_free_i64(tcg_wideres);
11202 for (pass = 0; pass < 2; pass++) {
11203 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11204 tcg_temp_free_i32(tcg_res[pass]);
11206 clear_vec_high(s, is_q, rd);
11209 /* AdvSIMD three different
11210 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
11211 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11212 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
11213 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11215 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11217 /* Instructions in this group fall into three basic classes
11218 * (in each case with the operation working on each element in
11219 * the input vectors):
11220 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11221 * 128 bit input)
11222 * (2) wide 64 x 128 -> 128
11223 * (3) narrowing 128 x 128 -> 64
11224 * Here we do initial decode, catch unallocated cases and
11225 * dispatch to separate functions for each class.
11227 int is_q = extract32(insn, 30, 1);
11228 int is_u = extract32(insn, 29, 1);
11229 int size = extract32(insn, 22, 2);
11230 int opcode = extract32(insn, 12, 4);
11231 int rm = extract32(insn, 16, 5);
11232 int rn = extract32(insn, 5, 5);
11233 int rd = extract32(insn, 0, 5);
11235 switch (opcode) {
11236 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11237 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11238 /* 64 x 128 -> 128 */
11239 if (size == 3) {
11240 unallocated_encoding(s);
11241 return;
11243 if (!fp_access_check(s)) {
11244 return;
11246 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11247 break;
11248 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11249 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11250 /* 128 x 128 -> 64 */
11251 if (size == 3) {
11252 unallocated_encoding(s);
11253 return;
11255 if (!fp_access_check(s)) {
11256 return;
11258 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11259 break;
11260 case 14: /* PMULL, PMULL2 */
11261 if (is_u) {
11262 unallocated_encoding(s);
11263 return;
11265 switch (size) {
11266 case 0: /* PMULL.P8 */
11267 if (!fp_access_check(s)) {
11268 return;
11270 /* The Q field specifies lo/hi half input for this insn. */
11271 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11272 gen_helper_neon_pmull_h);
11273 break;
11275 case 3: /* PMULL.P64 */
11276 if (!dc_isar_feature(aa64_pmull, s)) {
11277 unallocated_encoding(s);
11278 return;
11280 if (!fp_access_check(s)) {
11281 return;
11283 /* The Q field specifies lo/hi half input for this insn. */
11284 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11285 gen_helper_gvec_pmull_q);
11286 break;
11288 default:
11289 unallocated_encoding(s);
11290 break;
11292 return;
11293 case 9: /* SQDMLAL, SQDMLAL2 */
11294 case 11: /* SQDMLSL, SQDMLSL2 */
11295 case 13: /* SQDMULL, SQDMULL2 */
11296 if (is_u || size == 0) {
11297 unallocated_encoding(s);
11298 return;
11300 /* fall through */
11301 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11302 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11303 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11304 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11305 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11306 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11307 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11308 /* 64 x 64 -> 128 */
11309 if (size == 3) {
11310 unallocated_encoding(s);
11311 return;
11313 if (!fp_access_check(s)) {
11314 return;
11317 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11318 break;
11319 default:
11320 /* opcode 15 not allocated */
11321 unallocated_encoding(s);
11322 break;
11326 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11327 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11329 int rd = extract32(insn, 0, 5);
11330 int rn = extract32(insn, 5, 5);
11331 int rm = extract32(insn, 16, 5);
11332 int size = extract32(insn, 22, 2);
11333 bool is_u = extract32(insn, 29, 1);
11334 bool is_q = extract32(insn, 30, 1);
11336 if (!fp_access_check(s)) {
11337 return;
11340 switch (size + 4 * is_u) {
11341 case 0: /* AND */
11342 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11343 return;
11344 case 1: /* BIC */
11345 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11346 return;
11347 case 2: /* ORR */
11348 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11349 return;
11350 case 3: /* ORN */
11351 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11352 return;
11353 case 4: /* EOR */
11354 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11355 return;
11357 case 5: /* BSL bitwise select */
11358 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11359 return;
11360 case 6: /* BIT, bitwise insert if true */
11361 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11362 return;
11363 case 7: /* BIF, bitwise insert if false */
11364 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11365 return;
11367 default:
11368 g_assert_not_reached();
11372 /* Pairwise op subgroup of C3.6.16.
11374 * This is called directly or via the handle_3same_float for float pairwise
11375 * operations where the opcode and size are calculated differently.
11377 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11378 int size, int rn, int rm, int rd)
11380 TCGv_ptr fpst;
11381 int pass;
11383 /* Floating point operations need fpst */
11384 if (opcode >= 0x58) {
11385 fpst = fpstatus_ptr(FPST_FPCR);
11386 } else {
11387 fpst = NULL;
11390 if (!fp_access_check(s)) {
11391 return;
11394 /* These operations work on the concatenated rm:rn, with each pair of
11395 * adjacent elements being operated on to produce an element in the result.
11397 if (size == 3) {
11398 TCGv_i64 tcg_res[2];
11400 for (pass = 0; pass < 2; pass++) {
11401 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11402 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11403 int passreg = (pass == 0) ? rn : rm;
11405 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11406 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11407 tcg_res[pass] = tcg_temp_new_i64();
11409 switch (opcode) {
11410 case 0x17: /* ADDP */
11411 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11412 break;
11413 case 0x58: /* FMAXNMP */
11414 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11415 break;
11416 case 0x5a: /* FADDP */
11417 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11418 break;
11419 case 0x5e: /* FMAXP */
11420 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11421 break;
11422 case 0x78: /* FMINNMP */
11423 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11424 break;
11425 case 0x7e: /* FMINP */
11426 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11427 break;
11428 default:
11429 g_assert_not_reached();
11432 tcg_temp_free_i64(tcg_op1);
11433 tcg_temp_free_i64(tcg_op2);
11436 for (pass = 0; pass < 2; pass++) {
11437 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11438 tcg_temp_free_i64(tcg_res[pass]);
11440 } else {
11441 int maxpass = is_q ? 4 : 2;
11442 TCGv_i32 tcg_res[4];
11444 for (pass = 0; pass < maxpass; pass++) {
11445 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11446 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11447 NeonGenTwoOpFn *genfn = NULL;
11448 int passreg = pass < (maxpass / 2) ? rn : rm;
11449 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11451 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11452 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11453 tcg_res[pass] = tcg_temp_new_i32();
11455 switch (opcode) {
11456 case 0x17: /* ADDP */
11458 static NeonGenTwoOpFn * const fns[3] = {
11459 gen_helper_neon_padd_u8,
11460 gen_helper_neon_padd_u16,
11461 tcg_gen_add_i32,
11463 genfn = fns[size];
11464 break;
11466 case 0x14: /* SMAXP, UMAXP */
11468 static NeonGenTwoOpFn * const fns[3][2] = {
11469 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11470 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11471 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11473 genfn = fns[size][u];
11474 break;
11476 case 0x15: /* SMINP, UMINP */
11478 static NeonGenTwoOpFn * const fns[3][2] = {
11479 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11480 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11481 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11483 genfn = fns[size][u];
11484 break;
11486 /* The FP operations are all on single floats (32 bit) */
11487 case 0x58: /* FMAXNMP */
11488 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11489 break;
11490 case 0x5a: /* FADDP */
11491 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11492 break;
11493 case 0x5e: /* FMAXP */
11494 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11495 break;
11496 case 0x78: /* FMINNMP */
11497 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11498 break;
11499 case 0x7e: /* FMINP */
11500 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11501 break;
11502 default:
11503 g_assert_not_reached();
11506 /* FP ops called directly, otherwise call now */
11507 if (genfn) {
11508 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11511 tcg_temp_free_i32(tcg_op1);
11512 tcg_temp_free_i32(tcg_op2);
11515 for (pass = 0; pass < maxpass; pass++) {
11516 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11517 tcg_temp_free_i32(tcg_res[pass]);
11519 clear_vec_high(s, is_q, rd);
11522 if (fpst) {
11523 tcg_temp_free_ptr(fpst);
11527 /* Floating point op subgroup of C3.6.16. */
11528 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11530 /* For floating point ops, the U, size[1] and opcode bits
11531 * together indicate the operation. size[0] indicates single
11532 * or double.
11534 int fpopcode = extract32(insn, 11, 5)
11535 | (extract32(insn, 23, 1) << 5)
11536 | (extract32(insn, 29, 1) << 6);
11537 int is_q = extract32(insn, 30, 1);
11538 int size = extract32(insn, 22, 1);
11539 int rm = extract32(insn, 16, 5);
11540 int rn = extract32(insn, 5, 5);
11541 int rd = extract32(insn, 0, 5);
11543 int datasize = is_q ? 128 : 64;
11544 int esize = 32 << size;
11545 int elements = datasize / esize;
11547 if (size == 1 && !is_q) {
11548 unallocated_encoding(s);
11549 return;
11552 switch (fpopcode) {
11553 case 0x58: /* FMAXNMP */
11554 case 0x5a: /* FADDP */
11555 case 0x5e: /* FMAXP */
11556 case 0x78: /* FMINNMP */
11557 case 0x7e: /* FMINP */
11558 if (size && !is_q) {
11559 unallocated_encoding(s);
11560 return;
11562 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11563 rn, rm, rd);
11564 return;
11565 case 0x1b: /* FMULX */
11566 case 0x1f: /* FRECPS */
11567 case 0x3f: /* FRSQRTS */
11568 case 0x5d: /* FACGE */
11569 case 0x7d: /* FACGT */
11570 case 0x19: /* FMLA */
11571 case 0x39: /* FMLS */
11572 case 0x18: /* FMAXNM */
11573 case 0x1a: /* FADD */
11574 case 0x1c: /* FCMEQ */
11575 case 0x1e: /* FMAX */
11576 case 0x38: /* FMINNM */
11577 case 0x3a: /* FSUB */
11578 case 0x3e: /* FMIN */
11579 case 0x5b: /* FMUL */
11580 case 0x5c: /* FCMGE */
11581 case 0x5f: /* FDIV */
11582 case 0x7a: /* FABD */
11583 case 0x7c: /* FCMGT */
11584 if (!fp_access_check(s)) {
11585 return;
11587 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11588 return;
11590 case 0x1d: /* FMLAL */
11591 case 0x3d: /* FMLSL */
11592 case 0x59: /* FMLAL2 */
11593 case 0x79: /* FMLSL2 */
11594 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11595 unallocated_encoding(s);
11596 return;
11598 if (fp_access_check(s)) {
11599 int is_s = extract32(insn, 23, 1);
11600 int is_2 = extract32(insn, 29, 1);
11601 int data = (is_2 << 1) | is_s;
11602 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11603 vec_full_reg_offset(s, rn),
11604 vec_full_reg_offset(s, rm), cpu_env,
11605 is_q ? 16 : 8, vec_full_reg_size(s),
11606 data, gen_helper_gvec_fmlal_a64);
11608 return;
11610 default:
11611 unallocated_encoding(s);
11612 return;
11616 /* Integer op subgroup of C3.6.16. */
11617 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11619 int is_q = extract32(insn, 30, 1);
11620 int u = extract32(insn, 29, 1);
11621 int size = extract32(insn, 22, 2);
11622 int opcode = extract32(insn, 11, 5);
11623 int rm = extract32(insn, 16, 5);
11624 int rn = extract32(insn, 5, 5);
11625 int rd = extract32(insn, 0, 5);
11626 int pass;
11627 TCGCond cond;
11629 switch (opcode) {
11630 case 0x13: /* MUL, PMUL */
11631 if (u && size != 0) {
11632 unallocated_encoding(s);
11633 return;
11635 /* fall through */
11636 case 0x0: /* SHADD, UHADD */
11637 case 0x2: /* SRHADD, URHADD */
11638 case 0x4: /* SHSUB, UHSUB */
11639 case 0xc: /* SMAX, UMAX */
11640 case 0xd: /* SMIN, UMIN */
11641 case 0xe: /* SABD, UABD */
11642 case 0xf: /* SABA, UABA */
11643 case 0x12: /* MLA, MLS */
11644 if (size == 3) {
11645 unallocated_encoding(s);
11646 return;
11648 break;
11649 case 0x16: /* SQDMULH, SQRDMULH */
11650 if (size == 0 || size == 3) {
11651 unallocated_encoding(s);
11652 return;
11654 break;
11655 default:
11656 if (size == 3 && !is_q) {
11657 unallocated_encoding(s);
11658 return;
11660 break;
11663 if (!fp_access_check(s)) {
11664 return;
11667 switch (opcode) {
11668 case 0x01: /* SQADD, UQADD */
11669 if (u) {
11670 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11671 } else {
11672 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11674 return;
11675 case 0x05: /* SQSUB, UQSUB */
11676 if (u) {
11677 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11678 } else {
11679 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11681 return;
11682 case 0x08: /* SSHL, USHL */
11683 if (u) {
11684 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11685 } else {
11686 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11688 return;
11689 case 0x0c: /* SMAX, UMAX */
11690 if (u) {
11691 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11692 } else {
11693 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11695 return;
11696 case 0x0d: /* SMIN, UMIN */
11697 if (u) {
11698 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11699 } else {
11700 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11702 return;
11703 case 0xe: /* SABD, UABD */
11704 if (u) {
11705 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11706 } else {
11707 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11709 return;
11710 case 0xf: /* SABA, UABA */
11711 if (u) {
11712 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11713 } else {
11714 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11716 return;
11717 case 0x10: /* ADD, SUB */
11718 if (u) {
11719 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11720 } else {
11721 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11723 return;
11724 case 0x13: /* MUL, PMUL */
11725 if (!u) { /* MUL */
11726 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11727 } else { /* PMUL */
11728 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11730 return;
11731 case 0x12: /* MLA, MLS */
11732 if (u) {
11733 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11734 } else {
11735 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11737 return;
11738 case 0x16: /* SQDMULH, SQRDMULH */
11740 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11741 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11742 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11744 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11746 return;
11747 case 0x11:
11748 if (!u) { /* CMTST */
11749 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11750 return;
11752 /* else CMEQ */
11753 cond = TCG_COND_EQ;
11754 goto do_gvec_cmp;
11755 case 0x06: /* CMGT, CMHI */
11756 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11757 goto do_gvec_cmp;
11758 case 0x07: /* CMGE, CMHS */
11759 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11760 do_gvec_cmp:
11761 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11762 vec_full_reg_offset(s, rn),
11763 vec_full_reg_offset(s, rm),
11764 is_q ? 16 : 8, vec_full_reg_size(s));
11765 return;
11768 if (size == 3) {
11769 assert(is_q);
11770 for (pass = 0; pass < 2; pass++) {
11771 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11772 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11773 TCGv_i64 tcg_res = tcg_temp_new_i64();
11775 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11776 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11778 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11780 write_vec_element(s, tcg_res, rd, pass, MO_64);
11782 tcg_temp_free_i64(tcg_res);
11783 tcg_temp_free_i64(tcg_op1);
11784 tcg_temp_free_i64(tcg_op2);
11786 } else {
11787 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11788 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11789 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11790 TCGv_i32 tcg_res = tcg_temp_new_i32();
11791 NeonGenTwoOpFn *genfn = NULL;
11792 NeonGenTwoOpEnvFn *genenvfn = NULL;
11794 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11795 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11797 switch (opcode) {
11798 case 0x0: /* SHADD, UHADD */
11800 static NeonGenTwoOpFn * const fns[3][2] = {
11801 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11802 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11803 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11805 genfn = fns[size][u];
11806 break;
11808 case 0x2: /* SRHADD, URHADD */
11810 static NeonGenTwoOpFn * const fns[3][2] = {
11811 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11812 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11813 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11815 genfn = fns[size][u];
11816 break;
11818 case 0x4: /* SHSUB, UHSUB */
11820 static NeonGenTwoOpFn * const fns[3][2] = {
11821 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11822 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11823 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11825 genfn = fns[size][u];
11826 break;
11828 case 0x9: /* SQSHL, UQSHL */
11830 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11831 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11832 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11833 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11835 genenvfn = fns[size][u];
11836 break;
11838 case 0xa: /* SRSHL, URSHL */
11840 static NeonGenTwoOpFn * const fns[3][2] = {
11841 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11842 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11843 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11845 genfn = fns[size][u];
11846 break;
11848 case 0xb: /* SQRSHL, UQRSHL */
11850 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11851 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11852 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11853 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11855 genenvfn = fns[size][u];
11856 break;
11858 default:
11859 g_assert_not_reached();
11862 if (genenvfn) {
11863 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11864 } else {
11865 genfn(tcg_res, tcg_op1, tcg_op2);
11868 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11870 tcg_temp_free_i32(tcg_res);
11871 tcg_temp_free_i32(tcg_op1);
11872 tcg_temp_free_i32(tcg_op2);
11875 clear_vec_high(s, is_q, rd);
11878 /* AdvSIMD three same
11879 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11880 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11881 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11882 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11884 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11886 int opcode = extract32(insn, 11, 5);
11888 switch (opcode) {
11889 case 0x3: /* logic ops */
11890 disas_simd_3same_logic(s, insn);
11891 break;
11892 case 0x17: /* ADDP */
11893 case 0x14: /* SMAXP, UMAXP */
11894 case 0x15: /* SMINP, UMINP */
11896 /* Pairwise operations */
11897 int is_q = extract32(insn, 30, 1);
11898 int u = extract32(insn, 29, 1);
11899 int size = extract32(insn, 22, 2);
11900 int rm = extract32(insn, 16, 5);
11901 int rn = extract32(insn, 5, 5);
11902 int rd = extract32(insn, 0, 5);
11903 if (opcode == 0x17) {
11904 if (u || (size == 3 && !is_q)) {
11905 unallocated_encoding(s);
11906 return;
11908 } else {
11909 if (size == 3) {
11910 unallocated_encoding(s);
11911 return;
11914 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11915 break;
11917 case 0x18 ... 0x31:
11918 /* floating point ops, sz[1] and U are part of opcode */
11919 disas_simd_3same_float(s, insn);
11920 break;
11921 default:
11922 disas_simd_3same_int(s, insn);
11923 break;
11928 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11930 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11931 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11932 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11933 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11935 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11936 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11939 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11941 int opcode, fpopcode;
11942 int is_q, u, a, rm, rn, rd;
11943 int datasize, elements;
11944 int pass;
11945 TCGv_ptr fpst;
11946 bool pairwise = false;
11948 if (!dc_isar_feature(aa64_fp16, s)) {
11949 unallocated_encoding(s);
11950 return;
11953 if (!fp_access_check(s)) {
11954 return;
11957 /* For these floating point ops, the U, a and opcode bits
11958 * together indicate the operation.
11960 opcode = extract32(insn, 11, 3);
11961 u = extract32(insn, 29, 1);
11962 a = extract32(insn, 23, 1);
11963 is_q = extract32(insn, 30, 1);
11964 rm = extract32(insn, 16, 5);
11965 rn = extract32(insn, 5, 5);
11966 rd = extract32(insn, 0, 5);
11968 fpopcode = opcode | (a << 3) | (u << 4);
11969 datasize = is_q ? 128 : 64;
11970 elements = datasize / 16;
11972 switch (fpopcode) {
11973 case 0x10: /* FMAXNMP */
11974 case 0x12: /* FADDP */
11975 case 0x16: /* FMAXP */
11976 case 0x18: /* FMINNMP */
11977 case 0x1e: /* FMINP */
11978 pairwise = true;
11979 break;
11982 fpst = fpstatus_ptr(FPST_FPCR_F16);
11984 if (pairwise) {
11985 int maxpass = is_q ? 8 : 4;
11986 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11987 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11988 TCGv_i32 tcg_res[8];
11990 for (pass = 0; pass < maxpass; pass++) {
11991 int passreg = pass < (maxpass / 2) ? rn : rm;
11992 int passelt = (pass << 1) & (maxpass - 1);
11994 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11995 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11996 tcg_res[pass] = tcg_temp_new_i32();
11998 switch (fpopcode) {
11999 case 0x10: /* FMAXNMP */
12000 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
12001 fpst);
12002 break;
12003 case 0x12: /* FADDP */
12004 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12005 break;
12006 case 0x16: /* FMAXP */
12007 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12008 break;
12009 case 0x18: /* FMINNMP */
12010 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
12011 fpst);
12012 break;
12013 case 0x1e: /* FMINP */
12014 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12015 break;
12016 default:
12017 g_assert_not_reached();
12021 for (pass = 0; pass < maxpass; pass++) {
12022 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
12023 tcg_temp_free_i32(tcg_res[pass]);
12026 tcg_temp_free_i32(tcg_op1);
12027 tcg_temp_free_i32(tcg_op2);
12029 } else {
12030 for (pass = 0; pass < elements; pass++) {
12031 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12032 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12033 TCGv_i32 tcg_res = tcg_temp_new_i32();
12035 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12036 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12038 switch (fpopcode) {
12039 case 0x0: /* FMAXNM */
12040 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12041 break;
12042 case 0x1: /* FMLA */
12043 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12044 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12045 fpst);
12046 break;
12047 case 0x2: /* FADD */
12048 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12049 break;
12050 case 0x3: /* FMULX */
12051 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12052 break;
12053 case 0x4: /* FCMEQ */
12054 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12055 break;
12056 case 0x6: /* FMAX */
12057 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12058 break;
12059 case 0x7: /* FRECPS */
12060 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12061 break;
12062 case 0x8: /* FMINNM */
12063 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12064 break;
12065 case 0x9: /* FMLS */
12066 /* As usual for ARM, separate negation for fused multiply-add */
12067 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12068 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12069 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12070 fpst);
12071 break;
12072 case 0xa: /* FSUB */
12073 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12074 break;
12075 case 0xe: /* FMIN */
12076 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12077 break;
12078 case 0xf: /* FRSQRTS */
12079 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12080 break;
12081 case 0x13: /* FMUL */
12082 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12083 break;
12084 case 0x14: /* FCMGE */
12085 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12086 break;
12087 case 0x15: /* FACGE */
12088 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12089 break;
12090 case 0x17: /* FDIV */
12091 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12092 break;
12093 case 0x1a: /* FABD */
12094 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12095 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12096 break;
12097 case 0x1c: /* FCMGT */
12098 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12099 break;
12100 case 0x1d: /* FACGT */
12101 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12102 break;
12103 default:
12104 fprintf(stderr, "%s: insn 0x%04x, fpop 0x%2x @ 0x%" PRIx64 "\n",
12105 __func__, insn, fpopcode, s->pc_curr);
12106 g_assert_not_reached();
12109 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12110 tcg_temp_free_i32(tcg_res);
12111 tcg_temp_free_i32(tcg_op1);
12112 tcg_temp_free_i32(tcg_op2);
12116 tcg_temp_free_ptr(fpst);
12118 clear_vec_high(s, is_q, rd);
12121 /* AdvSIMD three same extra
12122 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
12123 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12124 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
12125 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12127 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12129 int rd = extract32(insn, 0, 5);
12130 int rn = extract32(insn, 5, 5);
12131 int opcode = extract32(insn, 11, 4);
12132 int rm = extract32(insn, 16, 5);
12133 int size = extract32(insn, 22, 2);
12134 bool u = extract32(insn, 29, 1);
12135 bool is_q = extract32(insn, 30, 1);
12136 bool feature;
12137 int rot;
12139 switch (u * 16 + opcode) {
12140 case 0x10: /* SQRDMLAH (vector) */
12141 case 0x11: /* SQRDMLSH (vector) */
12142 if (size != 1 && size != 2) {
12143 unallocated_encoding(s);
12144 return;
12146 feature = dc_isar_feature(aa64_rdm, s);
12147 break;
12148 case 0x02: /* SDOT (vector) */
12149 case 0x12: /* UDOT (vector) */
12150 if (size != MO_32) {
12151 unallocated_encoding(s);
12152 return;
12154 feature = dc_isar_feature(aa64_dp, s);
12155 break;
12156 case 0x18: /* FCMLA, #0 */
12157 case 0x19: /* FCMLA, #90 */
12158 case 0x1a: /* FCMLA, #180 */
12159 case 0x1b: /* FCMLA, #270 */
12160 case 0x1c: /* FCADD, #90 */
12161 case 0x1e: /* FCADD, #270 */
12162 if (size == 0
12163 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12164 || (size == 3 && !is_q)) {
12165 unallocated_encoding(s);
12166 return;
12168 feature = dc_isar_feature(aa64_fcma, s);
12169 break;
12170 default:
12171 unallocated_encoding(s);
12172 return;
12174 if (!feature) {
12175 unallocated_encoding(s);
12176 return;
12178 if (!fp_access_check(s)) {
12179 return;
12182 switch (opcode) {
12183 case 0x0: /* SQRDMLAH (vector) */
12184 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12185 return;
12187 case 0x1: /* SQRDMLSH (vector) */
12188 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12189 return;
12191 case 0x2: /* SDOT / UDOT */
12192 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
12193 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12194 return;
12196 case 0x8: /* FCMLA, #0 */
12197 case 0x9: /* FCMLA, #90 */
12198 case 0xa: /* FCMLA, #180 */
12199 case 0xb: /* FCMLA, #270 */
12200 rot = extract32(opcode, 0, 2);
12201 switch (size) {
12202 case 1:
12203 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
12204 gen_helper_gvec_fcmlah);
12205 break;
12206 case 2:
12207 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
12208 gen_helper_gvec_fcmlas);
12209 break;
12210 case 3:
12211 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
12212 gen_helper_gvec_fcmlad);
12213 break;
12214 default:
12215 g_assert_not_reached();
12217 return;
12219 case 0xc: /* FCADD, #90 */
12220 case 0xe: /* FCADD, #270 */
12221 rot = extract32(opcode, 1, 1);
12222 switch (size) {
12223 case 1:
12224 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12225 gen_helper_gvec_fcaddh);
12226 break;
12227 case 2:
12228 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12229 gen_helper_gvec_fcadds);
12230 break;
12231 case 3:
12232 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12233 gen_helper_gvec_fcaddd);
12234 break;
12235 default:
12236 g_assert_not_reached();
12238 return;
12240 default:
12241 g_assert_not_reached();
12245 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12246 int size, int rn, int rd)
12248 /* Handle 2-reg-misc ops which are widening (so each size element
12249 * in the source becomes a 2*size element in the destination.
12250 * The only instruction like this is FCVTL.
12252 int pass;
12254 if (size == 3) {
12255 /* 32 -> 64 bit fp conversion */
12256 TCGv_i64 tcg_res[2];
12257 int srcelt = is_q ? 2 : 0;
12259 for (pass = 0; pass < 2; pass++) {
12260 TCGv_i32 tcg_op = tcg_temp_new_i32();
12261 tcg_res[pass] = tcg_temp_new_i64();
12263 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12264 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12265 tcg_temp_free_i32(tcg_op);
12267 for (pass = 0; pass < 2; pass++) {
12268 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12269 tcg_temp_free_i64(tcg_res[pass]);
12271 } else {
12272 /* 16 -> 32 bit fp conversion */
12273 int srcelt = is_q ? 4 : 0;
12274 TCGv_i32 tcg_res[4];
12275 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12276 TCGv_i32 ahp = get_ahp_flag();
12278 for (pass = 0; pass < 4; pass++) {
12279 tcg_res[pass] = tcg_temp_new_i32();
12281 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12282 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12283 fpst, ahp);
12285 for (pass = 0; pass < 4; pass++) {
12286 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12287 tcg_temp_free_i32(tcg_res[pass]);
12290 tcg_temp_free_ptr(fpst);
12291 tcg_temp_free_i32(ahp);
12295 static void handle_rev(DisasContext *s, int opcode, bool u,
12296 bool is_q, int size, int rn, int rd)
12298 int op = (opcode << 1) | u;
12299 int opsz = op + size;
12300 int grp_size = 3 - opsz;
12301 int dsize = is_q ? 128 : 64;
12302 int i;
12304 if (opsz >= 3) {
12305 unallocated_encoding(s);
12306 return;
12309 if (!fp_access_check(s)) {
12310 return;
12313 if (size == 0) {
12314 /* Special case bytes, use bswap op on each group of elements */
12315 int groups = dsize / (8 << grp_size);
12317 for (i = 0; i < groups; i++) {
12318 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12320 read_vec_element(s, tcg_tmp, rn, i, grp_size);
12321 switch (grp_size) {
12322 case MO_16:
12323 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
12324 break;
12325 case MO_32:
12326 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
12327 break;
12328 case MO_64:
12329 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12330 break;
12331 default:
12332 g_assert_not_reached();
12334 write_vec_element(s, tcg_tmp, rd, i, grp_size);
12335 tcg_temp_free_i64(tcg_tmp);
12337 clear_vec_high(s, is_q, rd);
12338 } else {
12339 int revmask = (1 << grp_size) - 1;
12340 int esize = 8 << size;
12341 int elements = dsize / esize;
12342 TCGv_i64 tcg_rn = tcg_temp_new_i64();
12343 TCGv_i64 tcg_rd = tcg_const_i64(0);
12344 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12346 for (i = 0; i < elements; i++) {
12347 int e_rev = (i & 0xf) ^ revmask;
12348 int off = e_rev * esize;
12349 read_vec_element(s, tcg_rn, rn, i, size);
12350 if (off >= 64) {
12351 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12352 tcg_rn, off - 64, esize);
12353 } else {
12354 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12357 write_vec_element(s, tcg_rd, rd, 0, MO_64);
12358 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12360 tcg_temp_free_i64(tcg_rd_hi);
12361 tcg_temp_free_i64(tcg_rd);
12362 tcg_temp_free_i64(tcg_rn);
12366 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12367 bool is_q, int size, int rn, int rd)
12369 /* Implement the pairwise operations from 2-misc:
12370 * SADDLP, UADDLP, SADALP, UADALP.
12371 * These all add pairs of elements in the input to produce a
12372 * double-width result element in the output (possibly accumulating).
12374 bool accum = (opcode == 0x6);
12375 int maxpass = is_q ? 2 : 1;
12376 int pass;
12377 TCGv_i64 tcg_res[2];
12379 if (size == 2) {
12380 /* 32 + 32 -> 64 op */
12381 MemOp memop = size + (u ? 0 : MO_SIGN);
12383 for (pass = 0; pass < maxpass; pass++) {
12384 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12385 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12387 tcg_res[pass] = tcg_temp_new_i64();
12389 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12390 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12391 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12392 if (accum) {
12393 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12394 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12397 tcg_temp_free_i64(tcg_op1);
12398 tcg_temp_free_i64(tcg_op2);
12400 } else {
12401 for (pass = 0; pass < maxpass; pass++) {
12402 TCGv_i64 tcg_op = tcg_temp_new_i64();
12403 NeonGenOne64OpFn *genfn;
12404 static NeonGenOne64OpFn * const fns[2][2] = {
12405 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12406 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12409 genfn = fns[size][u];
12411 tcg_res[pass] = tcg_temp_new_i64();
12413 read_vec_element(s, tcg_op, rn, pass, MO_64);
12414 genfn(tcg_res[pass], tcg_op);
12416 if (accum) {
12417 read_vec_element(s, tcg_op, rd, pass, MO_64);
12418 if (size == 0) {
12419 gen_helper_neon_addl_u16(tcg_res[pass],
12420 tcg_res[pass], tcg_op);
12421 } else {
12422 gen_helper_neon_addl_u32(tcg_res[pass],
12423 tcg_res[pass], tcg_op);
12426 tcg_temp_free_i64(tcg_op);
12429 if (!is_q) {
12430 tcg_res[1] = tcg_const_i64(0);
12432 for (pass = 0; pass < 2; pass++) {
12433 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12434 tcg_temp_free_i64(tcg_res[pass]);
12438 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12440 /* Implement SHLL and SHLL2 */
12441 int pass;
12442 int part = is_q ? 2 : 0;
12443 TCGv_i64 tcg_res[2];
12445 for (pass = 0; pass < 2; pass++) {
12446 static NeonGenWidenFn * const widenfns[3] = {
12447 gen_helper_neon_widen_u8,
12448 gen_helper_neon_widen_u16,
12449 tcg_gen_extu_i32_i64,
12451 NeonGenWidenFn *widenfn = widenfns[size];
12452 TCGv_i32 tcg_op = tcg_temp_new_i32();
12454 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12455 tcg_res[pass] = tcg_temp_new_i64();
12456 widenfn(tcg_res[pass], tcg_op);
12457 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12459 tcg_temp_free_i32(tcg_op);
12462 for (pass = 0; pass < 2; pass++) {
12463 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12464 tcg_temp_free_i64(tcg_res[pass]);
12468 /* AdvSIMD two reg misc
12469 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12470 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12471 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12472 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12474 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12476 int size = extract32(insn, 22, 2);
12477 int opcode = extract32(insn, 12, 5);
12478 bool u = extract32(insn, 29, 1);
12479 bool is_q = extract32(insn, 30, 1);
12480 int rn = extract32(insn, 5, 5);
12481 int rd = extract32(insn, 0, 5);
12482 bool need_fpstatus = false;
12483 bool need_rmode = false;
12484 int rmode = -1;
12485 TCGv_i32 tcg_rmode;
12486 TCGv_ptr tcg_fpstatus;
12488 switch (opcode) {
12489 case 0x0: /* REV64, REV32 */
12490 case 0x1: /* REV16 */
12491 handle_rev(s, opcode, u, is_q, size, rn, rd);
12492 return;
12493 case 0x5: /* CNT, NOT, RBIT */
12494 if (u && size == 0) {
12495 /* NOT */
12496 break;
12497 } else if (u && size == 1) {
12498 /* RBIT */
12499 break;
12500 } else if (!u && size == 0) {
12501 /* CNT */
12502 break;
12504 unallocated_encoding(s);
12505 return;
12506 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12507 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12508 if (size == 3) {
12509 unallocated_encoding(s);
12510 return;
12512 if (!fp_access_check(s)) {
12513 return;
12516 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12517 return;
12518 case 0x4: /* CLS, CLZ */
12519 if (size == 3) {
12520 unallocated_encoding(s);
12521 return;
12523 break;
12524 case 0x2: /* SADDLP, UADDLP */
12525 case 0x6: /* SADALP, UADALP */
12526 if (size == 3) {
12527 unallocated_encoding(s);
12528 return;
12530 if (!fp_access_check(s)) {
12531 return;
12533 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12534 return;
12535 case 0x13: /* SHLL, SHLL2 */
12536 if (u == 0 || size == 3) {
12537 unallocated_encoding(s);
12538 return;
12540 if (!fp_access_check(s)) {
12541 return;
12543 handle_shll(s, is_q, size, rn, rd);
12544 return;
12545 case 0xa: /* CMLT */
12546 if (u == 1) {
12547 unallocated_encoding(s);
12548 return;
12550 /* fall through */
12551 case 0x8: /* CMGT, CMGE */
12552 case 0x9: /* CMEQ, CMLE */
12553 case 0xb: /* ABS, NEG */
12554 if (size == 3 && !is_q) {
12555 unallocated_encoding(s);
12556 return;
12558 break;
12559 case 0x3: /* SUQADD, USQADD */
12560 if (size == 3 && !is_q) {
12561 unallocated_encoding(s);
12562 return;
12564 if (!fp_access_check(s)) {
12565 return;
12567 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12568 return;
12569 case 0x7: /* SQABS, SQNEG */
12570 if (size == 3 && !is_q) {
12571 unallocated_encoding(s);
12572 return;
12574 break;
12575 case 0xc ... 0xf:
12576 case 0x16 ... 0x1f:
12578 /* Floating point: U, size[1] and opcode indicate operation;
12579 * size[0] indicates single or double precision.
12581 int is_double = extract32(size, 0, 1);
12582 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12583 size = is_double ? 3 : 2;
12584 switch (opcode) {
12585 case 0x2f: /* FABS */
12586 case 0x6f: /* FNEG */
12587 if (size == 3 && !is_q) {
12588 unallocated_encoding(s);
12589 return;
12591 break;
12592 case 0x1d: /* SCVTF */
12593 case 0x5d: /* UCVTF */
12595 bool is_signed = (opcode == 0x1d) ? true : false;
12596 int elements = is_double ? 2 : is_q ? 4 : 2;
12597 if (is_double && !is_q) {
12598 unallocated_encoding(s);
12599 return;
12601 if (!fp_access_check(s)) {
12602 return;
12604 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12605 return;
12607 case 0x2c: /* FCMGT (zero) */
12608 case 0x2d: /* FCMEQ (zero) */
12609 case 0x2e: /* FCMLT (zero) */
12610 case 0x6c: /* FCMGE (zero) */
12611 case 0x6d: /* FCMLE (zero) */
12612 if (size == 3 && !is_q) {
12613 unallocated_encoding(s);
12614 return;
12616 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12617 return;
12618 case 0x7f: /* FSQRT */
12619 if (size == 3 && !is_q) {
12620 unallocated_encoding(s);
12621 return;
12623 break;
12624 case 0x1a: /* FCVTNS */
12625 case 0x1b: /* FCVTMS */
12626 case 0x3a: /* FCVTPS */
12627 case 0x3b: /* FCVTZS */
12628 case 0x5a: /* FCVTNU */
12629 case 0x5b: /* FCVTMU */
12630 case 0x7a: /* FCVTPU */
12631 case 0x7b: /* FCVTZU */
12632 need_fpstatus = true;
12633 need_rmode = true;
12634 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12635 if (size == 3 && !is_q) {
12636 unallocated_encoding(s);
12637 return;
12639 break;
12640 case 0x5c: /* FCVTAU */
12641 case 0x1c: /* FCVTAS */
12642 need_fpstatus = true;
12643 need_rmode = true;
12644 rmode = FPROUNDING_TIEAWAY;
12645 if (size == 3 && !is_q) {
12646 unallocated_encoding(s);
12647 return;
12649 break;
12650 case 0x3c: /* URECPE */
12651 if (size == 3) {
12652 unallocated_encoding(s);
12653 return;
12655 /* fall through */
12656 case 0x3d: /* FRECPE */
12657 case 0x7d: /* FRSQRTE */
12658 if (size == 3 && !is_q) {
12659 unallocated_encoding(s);
12660 return;
12662 if (!fp_access_check(s)) {
12663 return;
12665 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12666 return;
12667 case 0x56: /* FCVTXN, FCVTXN2 */
12668 if (size == 2) {
12669 unallocated_encoding(s);
12670 return;
12672 /* fall through */
12673 case 0x16: /* FCVTN, FCVTN2 */
12674 /* handle_2misc_narrow does a 2*size -> size operation, but these
12675 * instructions encode the source size rather than dest size.
12677 if (!fp_access_check(s)) {
12678 return;
12680 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12681 return;
12682 case 0x17: /* FCVTL, FCVTL2 */
12683 if (!fp_access_check(s)) {
12684 return;
12686 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12687 return;
12688 case 0x18: /* FRINTN */
12689 case 0x19: /* FRINTM */
12690 case 0x38: /* FRINTP */
12691 case 0x39: /* FRINTZ */
12692 need_rmode = true;
12693 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12694 /* fall through */
12695 case 0x59: /* FRINTX */
12696 case 0x79: /* FRINTI */
12697 need_fpstatus = true;
12698 if (size == 3 && !is_q) {
12699 unallocated_encoding(s);
12700 return;
12702 break;
12703 case 0x58: /* FRINTA */
12704 need_rmode = true;
12705 rmode = FPROUNDING_TIEAWAY;
12706 need_fpstatus = true;
12707 if (size == 3 && !is_q) {
12708 unallocated_encoding(s);
12709 return;
12711 break;
12712 case 0x7c: /* URSQRTE */
12713 if (size == 3) {
12714 unallocated_encoding(s);
12715 return;
12717 break;
12718 case 0x1e: /* FRINT32Z */
12719 case 0x1f: /* FRINT64Z */
12720 need_rmode = true;
12721 rmode = FPROUNDING_ZERO;
12722 /* fall through */
12723 case 0x5e: /* FRINT32X */
12724 case 0x5f: /* FRINT64X */
12725 need_fpstatus = true;
12726 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12727 unallocated_encoding(s);
12728 return;
12730 break;
12731 default:
12732 unallocated_encoding(s);
12733 return;
12735 break;
12737 default:
12738 unallocated_encoding(s);
12739 return;
12742 if (!fp_access_check(s)) {
12743 return;
12746 if (need_fpstatus || need_rmode) {
12747 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12748 } else {
12749 tcg_fpstatus = NULL;
12751 if (need_rmode) {
12752 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12753 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12754 } else {
12755 tcg_rmode = NULL;
12758 switch (opcode) {
12759 case 0x5:
12760 if (u && size == 0) { /* NOT */
12761 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12762 return;
12764 break;
12765 case 0x8: /* CMGT, CMGE */
12766 if (u) {
12767 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12768 } else {
12769 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12771 return;
12772 case 0x9: /* CMEQ, CMLE */
12773 if (u) {
12774 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12775 } else {
12776 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12778 return;
12779 case 0xa: /* CMLT */
12780 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12781 return;
12782 case 0xb:
12783 if (u) { /* ABS, NEG */
12784 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12785 } else {
12786 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12788 return;
12791 if (size == 3) {
12792 /* All 64-bit element operations can be shared with scalar 2misc */
12793 int pass;
12795 /* Coverity claims (size == 3 && !is_q) has been eliminated
12796 * from all paths leading to here.
12798 tcg_debug_assert(is_q);
12799 for (pass = 0; pass < 2; pass++) {
12800 TCGv_i64 tcg_op = tcg_temp_new_i64();
12801 TCGv_i64 tcg_res = tcg_temp_new_i64();
12803 read_vec_element(s, tcg_op, rn, pass, MO_64);
12805 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12806 tcg_rmode, tcg_fpstatus);
12808 write_vec_element(s, tcg_res, rd, pass, MO_64);
12810 tcg_temp_free_i64(tcg_res);
12811 tcg_temp_free_i64(tcg_op);
12813 } else {
12814 int pass;
12816 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12817 TCGv_i32 tcg_op = tcg_temp_new_i32();
12818 TCGv_i32 tcg_res = tcg_temp_new_i32();
12820 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12822 if (size == 2) {
12823 /* Special cases for 32 bit elements */
12824 switch (opcode) {
12825 case 0x4: /* CLS */
12826 if (u) {
12827 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12828 } else {
12829 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12831 break;
12832 case 0x7: /* SQABS, SQNEG */
12833 if (u) {
12834 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12835 } else {
12836 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12838 break;
12839 case 0x2f: /* FABS */
12840 gen_helper_vfp_abss(tcg_res, tcg_op);
12841 break;
12842 case 0x6f: /* FNEG */
12843 gen_helper_vfp_negs(tcg_res, tcg_op);
12844 break;
12845 case 0x7f: /* FSQRT */
12846 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12847 break;
12848 case 0x1a: /* FCVTNS */
12849 case 0x1b: /* FCVTMS */
12850 case 0x1c: /* FCVTAS */
12851 case 0x3a: /* FCVTPS */
12852 case 0x3b: /* FCVTZS */
12854 TCGv_i32 tcg_shift = tcg_const_i32(0);
12855 gen_helper_vfp_tosls(tcg_res, tcg_op,
12856 tcg_shift, tcg_fpstatus);
12857 tcg_temp_free_i32(tcg_shift);
12858 break;
12860 case 0x5a: /* FCVTNU */
12861 case 0x5b: /* FCVTMU */
12862 case 0x5c: /* FCVTAU */
12863 case 0x7a: /* FCVTPU */
12864 case 0x7b: /* FCVTZU */
12866 TCGv_i32 tcg_shift = tcg_const_i32(0);
12867 gen_helper_vfp_touls(tcg_res, tcg_op,
12868 tcg_shift, tcg_fpstatus);
12869 tcg_temp_free_i32(tcg_shift);
12870 break;
12872 case 0x18: /* FRINTN */
12873 case 0x19: /* FRINTM */
12874 case 0x38: /* FRINTP */
12875 case 0x39: /* FRINTZ */
12876 case 0x58: /* FRINTA */
12877 case 0x79: /* FRINTI */
12878 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12879 break;
12880 case 0x59: /* FRINTX */
12881 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12882 break;
12883 case 0x7c: /* URSQRTE */
12884 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12885 break;
12886 case 0x1e: /* FRINT32Z */
12887 case 0x5e: /* FRINT32X */
12888 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12889 break;
12890 case 0x1f: /* FRINT64Z */
12891 case 0x5f: /* FRINT64X */
12892 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12893 break;
12894 default:
12895 g_assert_not_reached();
12897 } else {
12898 /* Use helpers for 8 and 16 bit elements */
12899 switch (opcode) {
12900 case 0x5: /* CNT, RBIT */
12901 /* For these two insns size is part of the opcode specifier
12902 * (handled earlier); they always operate on byte elements.
12904 if (u) {
12905 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12906 } else {
12907 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12909 break;
12910 case 0x7: /* SQABS, SQNEG */
12912 NeonGenOneOpEnvFn *genfn;
12913 static NeonGenOneOpEnvFn * const fns[2][2] = {
12914 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12915 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12917 genfn = fns[size][u];
12918 genfn(tcg_res, cpu_env, tcg_op);
12919 break;
12921 case 0x4: /* CLS, CLZ */
12922 if (u) {
12923 if (size == 0) {
12924 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12925 } else {
12926 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12928 } else {
12929 if (size == 0) {
12930 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12931 } else {
12932 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12935 break;
12936 default:
12937 g_assert_not_reached();
12941 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12943 tcg_temp_free_i32(tcg_res);
12944 tcg_temp_free_i32(tcg_op);
12947 clear_vec_high(s, is_q, rd);
12949 if (need_rmode) {
12950 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12951 tcg_temp_free_i32(tcg_rmode);
12953 if (need_fpstatus) {
12954 tcg_temp_free_ptr(tcg_fpstatus);
12958 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12960 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12961 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12962 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12963 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12964 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12965 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12967 * This actually covers two groups where scalar access is governed by
12968 * bit 28. A bunch of the instructions (float to integral) only exist
12969 * in the vector form and are un-allocated for the scalar decode. Also
12970 * in the scalar decode Q is always 1.
12972 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12974 int fpop, opcode, a, u;
12975 int rn, rd;
12976 bool is_q;
12977 bool is_scalar;
12978 bool only_in_vector = false;
12980 int pass;
12981 TCGv_i32 tcg_rmode = NULL;
12982 TCGv_ptr tcg_fpstatus = NULL;
12983 bool need_rmode = false;
12984 bool need_fpst = true;
12985 int rmode;
12987 if (!dc_isar_feature(aa64_fp16, s)) {
12988 unallocated_encoding(s);
12989 return;
12992 rd = extract32(insn, 0, 5);
12993 rn = extract32(insn, 5, 5);
12995 a = extract32(insn, 23, 1);
12996 u = extract32(insn, 29, 1);
12997 is_scalar = extract32(insn, 28, 1);
12998 is_q = extract32(insn, 30, 1);
13000 opcode = extract32(insn, 12, 5);
13001 fpop = deposit32(opcode, 5, 1, a);
13002 fpop = deposit32(fpop, 6, 1, u);
13004 switch (fpop) {
13005 case 0x1d: /* SCVTF */
13006 case 0x5d: /* UCVTF */
13008 int elements;
13010 if (is_scalar) {
13011 elements = 1;
13012 } else {
13013 elements = (is_q ? 8 : 4);
13016 if (!fp_access_check(s)) {
13017 return;
13019 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
13020 return;
13022 break;
13023 case 0x2c: /* FCMGT (zero) */
13024 case 0x2d: /* FCMEQ (zero) */
13025 case 0x2e: /* FCMLT (zero) */
13026 case 0x6c: /* FCMGE (zero) */
13027 case 0x6d: /* FCMLE (zero) */
13028 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13029 return;
13030 case 0x3d: /* FRECPE */
13031 case 0x3f: /* FRECPX */
13032 break;
13033 case 0x18: /* FRINTN */
13034 need_rmode = true;
13035 only_in_vector = true;
13036 rmode = FPROUNDING_TIEEVEN;
13037 break;
13038 case 0x19: /* FRINTM */
13039 need_rmode = true;
13040 only_in_vector = true;
13041 rmode = FPROUNDING_NEGINF;
13042 break;
13043 case 0x38: /* FRINTP */
13044 need_rmode = true;
13045 only_in_vector = true;
13046 rmode = FPROUNDING_POSINF;
13047 break;
13048 case 0x39: /* FRINTZ */
13049 need_rmode = true;
13050 only_in_vector = true;
13051 rmode = FPROUNDING_ZERO;
13052 break;
13053 case 0x58: /* FRINTA */
13054 need_rmode = true;
13055 only_in_vector = true;
13056 rmode = FPROUNDING_TIEAWAY;
13057 break;
13058 case 0x59: /* FRINTX */
13059 case 0x79: /* FRINTI */
13060 only_in_vector = true;
13061 /* current rounding mode */
13062 break;
13063 case 0x1a: /* FCVTNS */
13064 need_rmode = true;
13065 rmode = FPROUNDING_TIEEVEN;
13066 break;
13067 case 0x1b: /* FCVTMS */
13068 need_rmode = true;
13069 rmode = FPROUNDING_NEGINF;
13070 break;
13071 case 0x1c: /* FCVTAS */
13072 need_rmode = true;
13073 rmode = FPROUNDING_TIEAWAY;
13074 break;
13075 case 0x3a: /* FCVTPS */
13076 need_rmode = true;
13077 rmode = FPROUNDING_POSINF;
13078 break;
13079 case 0x3b: /* FCVTZS */
13080 need_rmode = true;
13081 rmode = FPROUNDING_ZERO;
13082 break;
13083 case 0x5a: /* FCVTNU */
13084 need_rmode = true;
13085 rmode = FPROUNDING_TIEEVEN;
13086 break;
13087 case 0x5b: /* FCVTMU */
13088 need_rmode = true;
13089 rmode = FPROUNDING_NEGINF;
13090 break;
13091 case 0x5c: /* FCVTAU */
13092 need_rmode = true;
13093 rmode = FPROUNDING_TIEAWAY;
13094 break;
13095 case 0x7a: /* FCVTPU */
13096 need_rmode = true;
13097 rmode = FPROUNDING_POSINF;
13098 break;
13099 case 0x7b: /* FCVTZU */
13100 need_rmode = true;
13101 rmode = FPROUNDING_ZERO;
13102 break;
13103 case 0x2f: /* FABS */
13104 case 0x6f: /* FNEG */
13105 need_fpst = false;
13106 break;
13107 case 0x7d: /* FRSQRTE */
13108 case 0x7f: /* FSQRT (vector) */
13109 break;
13110 default:
13111 fprintf(stderr, "%s: insn 0x%04x fpop 0x%2x\n", __func__, insn, fpop);
13112 g_assert_not_reached();
13116 /* Check additional constraints for the scalar encoding */
13117 if (is_scalar) {
13118 if (!is_q) {
13119 unallocated_encoding(s);
13120 return;
13122 /* FRINTxx is only in the vector form */
13123 if (only_in_vector) {
13124 unallocated_encoding(s);
13125 return;
13129 if (!fp_access_check(s)) {
13130 return;
13133 if (need_rmode || need_fpst) {
13134 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
13137 if (need_rmode) {
13138 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13139 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13142 if (is_scalar) {
13143 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13144 TCGv_i32 tcg_res = tcg_temp_new_i32();
13146 switch (fpop) {
13147 case 0x1a: /* FCVTNS */
13148 case 0x1b: /* FCVTMS */
13149 case 0x1c: /* FCVTAS */
13150 case 0x3a: /* FCVTPS */
13151 case 0x3b: /* FCVTZS */
13152 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13153 break;
13154 case 0x3d: /* FRECPE */
13155 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13156 break;
13157 case 0x3f: /* FRECPX */
13158 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13159 break;
13160 case 0x5a: /* FCVTNU */
13161 case 0x5b: /* FCVTMU */
13162 case 0x5c: /* FCVTAU */
13163 case 0x7a: /* FCVTPU */
13164 case 0x7b: /* FCVTZU */
13165 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13166 break;
13167 case 0x6f: /* FNEG */
13168 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13169 break;
13170 case 0x7d: /* FRSQRTE */
13171 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13172 break;
13173 default:
13174 g_assert_not_reached();
13177 /* limit any sign extension going on */
13178 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13179 write_fp_sreg(s, rd, tcg_res);
13181 tcg_temp_free_i32(tcg_res);
13182 tcg_temp_free_i32(tcg_op);
13183 } else {
13184 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13185 TCGv_i32 tcg_op = tcg_temp_new_i32();
13186 TCGv_i32 tcg_res = tcg_temp_new_i32();
13188 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13190 switch (fpop) {
13191 case 0x1a: /* FCVTNS */
13192 case 0x1b: /* FCVTMS */
13193 case 0x1c: /* FCVTAS */
13194 case 0x3a: /* FCVTPS */
13195 case 0x3b: /* FCVTZS */
13196 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13197 break;
13198 case 0x3d: /* FRECPE */
13199 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13200 break;
13201 case 0x5a: /* FCVTNU */
13202 case 0x5b: /* FCVTMU */
13203 case 0x5c: /* FCVTAU */
13204 case 0x7a: /* FCVTPU */
13205 case 0x7b: /* FCVTZU */
13206 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13207 break;
13208 case 0x18: /* FRINTN */
13209 case 0x19: /* FRINTM */
13210 case 0x38: /* FRINTP */
13211 case 0x39: /* FRINTZ */
13212 case 0x58: /* FRINTA */
13213 case 0x79: /* FRINTI */
13214 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13215 break;
13216 case 0x59: /* FRINTX */
13217 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13218 break;
13219 case 0x2f: /* FABS */
13220 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13221 break;
13222 case 0x6f: /* FNEG */
13223 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13224 break;
13225 case 0x7d: /* FRSQRTE */
13226 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13227 break;
13228 case 0x7f: /* FSQRT */
13229 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13230 break;
13231 default:
13232 g_assert_not_reached();
13235 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13237 tcg_temp_free_i32(tcg_res);
13238 tcg_temp_free_i32(tcg_op);
13241 clear_vec_high(s, is_q, rd);
13244 if (tcg_rmode) {
13245 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13246 tcg_temp_free_i32(tcg_rmode);
13249 if (tcg_fpstatus) {
13250 tcg_temp_free_ptr(tcg_fpstatus);
13254 /* AdvSIMD scalar x indexed element
13255 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13256 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13257 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13258 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13259 * AdvSIMD vector x indexed element
13260 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13261 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13262 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13263 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13265 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13267 /* This encoding has two kinds of instruction:
13268 * normal, where we perform elt x idxelt => elt for each
13269 * element in the vector
13270 * long, where we perform elt x idxelt and generate a result of
13271 * double the width of the input element
13272 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13274 bool is_scalar = extract32(insn, 28, 1);
13275 bool is_q = extract32(insn, 30, 1);
13276 bool u = extract32(insn, 29, 1);
13277 int size = extract32(insn, 22, 2);
13278 int l = extract32(insn, 21, 1);
13279 int m = extract32(insn, 20, 1);
13280 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13281 int rm = extract32(insn, 16, 4);
13282 int opcode = extract32(insn, 12, 4);
13283 int h = extract32(insn, 11, 1);
13284 int rn = extract32(insn, 5, 5);
13285 int rd = extract32(insn, 0, 5);
13286 bool is_long = false;
13287 int is_fp = 0;
13288 bool is_fp16 = false;
13289 int index;
13290 TCGv_ptr fpst;
13292 switch (16 * u + opcode) {
13293 case 0x08: /* MUL */
13294 case 0x10: /* MLA */
13295 case 0x14: /* MLS */
13296 if (is_scalar) {
13297 unallocated_encoding(s);
13298 return;
13300 break;
13301 case 0x02: /* SMLAL, SMLAL2 */
13302 case 0x12: /* UMLAL, UMLAL2 */
13303 case 0x06: /* SMLSL, SMLSL2 */
13304 case 0x16: /* UMLSL, UMLSL2 */
13305 case 0x0a: /* SMULL, SMULL2 */
13306 case 0x1a: /* UMULL, UMULL2 */
13307 if (is_scalar) {
13308 unallocated_encoding(s);
13309 return;
13311 is_long = true;
13312 break;
13313 case 0x03: /* SQDMLAL, SQDMLAL2 */
13314 case 0x07: /* SQDMLSL, SQDMLSL2 */
13315 case 0x0b: /* SQDMULL, SQDMULL2 */
13316 is_long = true;
13317 break;
13318 case 0x0c: /* SQDMULH */
13319 case 0x0d: /* SQRDMULH */
13320 break;
13321 case 0x01: /* FMLA */
13322 case 0x05: /* FMLS */
13323 case 0x09: /* FMUL */
13324 case 0x19: /* FMULX */
13325 is_fp = 1;
13326 break;
13327 case 0x1d: /* SQRDMLAH */
13328 case 0x1f: /* SQRDMLSH */
13329 if (!dc_isar_feature(aa64_rdm, s)) {
13330 unallocated_encoding(s);
13331 return;
13333 break;
13334 case 0x0e: /* SDOT */
13335 case 0x1e: /* UDOT */
13336 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13337 unallocated_encoding(s);
13338 return;
13340 break;
13341 case 0x11: /* FCMLA #0 */
13342 case 0x13: /* FCMLA #90 */
13343 case 0x15: /* FCMLA #180 */
13344 case 0x17: /* FCMLA #270 */
13345 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13346 unallocated_encoding(s);
13347 return;
13349 is_fp = 2;
13350 break;
13351 case 0x00: /* FMLAL */
13352 case 0x04: /* FMLSL */
13353 case 0x18: /* FMLAL2 */
13354 case 0x1c: /* FMLSL2 */
13355 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13356 unallocated_encoding(s);
13357 return;
13359 size = MO_16;
13360 /* is_fp, but we pass cpu_env not fp_status. */
13361 break;
13362 default:
13363 unallocated_encoding(s);
13364 return;
13367 switch (is_fp) {
13368 case 1: /* normal fp */
13369 /* convert insn encoded size to MemOp size */
13370 switch (size) {
13371 case 0: /* half-precision */
13372 size = MO_16;
13373 is_fp16 = true;
13374 break;
13375 case MO_32: /* single precision */
13376 case MO_64: /* double precision */
13377 break;
13378 default:
13379 unallocated_encoding(s);
13380 return;
13382 break;
13384 case 2: /* complex fp */
13385 /* Each indexable element is a complex pair. */
13386 size += 1;
13387 switch (size) {
13388 case MO_32:
13389 if (h && !is_q) {
13390 unallocated_encoding(s);
13391 return;
13393 is_fp16 = true;
13394 break;
13395 case MO_64:
13396 break;
13397 default:
13398 unallocated_encoding(s);
13399 return;
13401 break;
13403 default: /* integer */
13404 switch (size) {
13405 case MO_8:
13406 case MO_64:
13407 unallocated_encoding(s);
13408 return;
13410 break;
13412 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13413 unallocated_encoding(s);
13414 return;
13417 /* Given MemOp size, adjust register and indexing. */
13418 switch (size) {
13419 case MO_16:
13420 index = h << 2 | l << 1 | m;
13421 break;
13422 case MO_32:
13423 index = h << 1 | l;
13424 rm |= m << 4;
13425 break;
13426 case MO_64:
13427 if (l || !is_q) {
13428 unallocated_encoding(s);
13429 return;
13431 index = h;
13432 rm |= m << 4;
13433 break;
13434 default:
13435 g_assert_not_reached();
13438 if (!fp_access_check(s)) {
13439 return;
13442 if (is_fp) {
13443 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13444 } else {
13445 fpst = NULL;
13448 switch (16 * u + opcode) {
13449 case 0x0e: /* SDOT */
13450 case 0x1e: /* UDOT */
13451 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
13452 u ? gen_helper_gvec_udot_idx_b
13453 : gen_helper_gvec_sdot_idx_b);
13454 return;
13455 case 0x11: /* FCMLA #0 */
13456 case 0x13: /* FCMLA #90 */
13457 case 0x15: /* FCMLA #180 */
13458 case 0x17: /* FCMLA #270 */
13460 int rot = extract32(insn, 13, 2);
13461 int data = (index << 2) | rot;
13462 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13463 vec_full_reg_offset(s, rn),
13464 vec_full_reg_offset(s, rm), fpst,
13465 is_q ? 16 : 8, vec_full_reg_size(s), data,
13466 size == MO_64
13467 ? gen_helper_gvec_fcmlas_idx
13468 : gen_helper_gvec_fcmlah_idx);
13469 tcg_temp_free_ptr(fpst);
13471 return;
13473 case 0x00: /* FMLAL */
13474 case 0x04: /* FMLSL */
13475 case 0x18: /* FMLAL2 */
13476 case 0x1c: /* FMLSL2 */
13478 int is_s = extract32(opcode, 2, 1);
13479 int is_2 = u;
13480 int data = (index << 2) | (is_2 << 1) | is_s;
13481 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13482 vec_full_reg_offset(s, rn),
13483 vec_full_reg_offset(s, rm), cpu_env,
13484 is_q ? 16 : 8, vec_full_reg_size(s),
13485 data, gen_helper_gvec_fmlal_idx_a64);
13487 return;
13489 case 0x08: /* MUL */
13490 if (!is_long && !is_scalar) {
13491 static gen_helper_gvec_3 * const fns[3] = {
13492 gen_helper_gvec_mul_idx_h,
13493 gen_helper_gvec_mul_idx_s,
13494 gen_helper_gvec_mul_idx_d,
13496 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13497 vec_full_reg_offset(s, rn),
13498 vec_full_reg_offset(s, rm),
13499 is_q ? 16 : 8, vec_full_reg_size(s),
13500 index, fns[size - 1]);
13501 return;
13503 break;
13505 case 0x10: /* MLA */
13506 if (!is_long && !is_scalar) {
13507 static gen_helper_gvec_4 * const fns[3] = {
13508 gen_helper_gvec_mla_idx_h,
13509 gen_helper_gvec_mla_idx_s,
13510 gen_helper_gvec_mla_idx_d,
13512 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13513 vec_full_reg_offset(s, rn),
13514 vec_full_reg_offset(s, rm),
13515 vec_full_reg_offset(s, rd),
13516 is_q ? 16 : 8, vec_full_reg_size(s),
13517 index, fns[size - 1]);
13518 return;
13520 break;
13522 case 0x14: /* MLS */
13523 if (!is_long && !is_scalar) {
13524 static gen_helper_gvec_4 * const fns[3] = {
13525 gen_helper_gvec_mls_idx_h,
13526 gen_helper_gvec_mls_idx_s,
13527 gen_helper_gvec_mls_idx_d,
13529 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13530 vec_full_reg_offset(s, rn),
13531 vec_full_reg_offset(s, rm),
13532 vec_full_reg_offset(s, rd),
13533 is_q ? 16 : 8, vec_full_reg_size(s),
13534 index, fns[size - 1]);
13535 return;
13537 break;
13540 if (size == 3) {
13541 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13542 int pass;
13544 assert(is_fp && is_q && !is_long);
13546 read_vec_element(s, tcg_idx, rm, index, MO_64);
13548 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13549 TCGv_i64 tcg_op = tcg_temp_new_i64();
13550 TCGv_i64 tcg_res = tcg_temp_new_i64();
13552 read_vec_element(s, tcg_op, rn, pass, MO_64);
13554 switch (16 * u + opcode) {
13555 case 0x05: /* FMLS */
13556 /* As usual for ARM, separate negation for fused multiply-add */
13557 gen_helper_vfp_negd(tcg_op, tcg_op);
13558 /* fall through */
13559 case 0x01: /* FMLA */
13560 read_vec_element(s, tcg_res, rd, pass, MO_64);
13561 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13562 break;
13563 case 0x09: /* FMUL */
13564 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13565 break;
13566 case 0x19: /* FMULX */
13567 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13568 break;
13569 default:
13570 g_assert_not_reached();
13573 write_vec_element(s, tcg_res, rd, pass, MO_64);
13574 tcg_temp_free_i64(tcg_op);
13575 tcg_temp_free_i64(tcg_res);
13578 tcg_temp_free_i64(tcg_idx);
13579 clear_vec_high(s, !is_scalar, rd);
13580 } else if (!is_long) {
13581 /* 32 bit floating point, or 16 or 32 bit integer.
13582 * For the 16 bit scalar case we use the usual Neon helpers and
13583 * rely on the fact that 0 op 0 == 0 with no side effects.
13585 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13586 int pass, maxpasses;
13588 if (is_scalar) {
13589 maxpasses = 1;
13590 } else {
13591 maxpasses = is_q ? 4 : 2;
13594 read_vec_element_i32(s, tcg_idx, rm, index, size);
13596 if (size == 1 && !is_scalar) {
13597 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13598 * the index into both halves of the 32 bit tcg_idx and then use
13599 * the usual Neon helpers.
13601 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13604 for (pass = 0; pass < maxpasses; pass++) {
13605 TCGv_i32 tcg_op = tcg_temp_new_i32();
13606 TCGv_i32 tcg_res = tcg_temp_new_i32();
13608 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13610 switch (16 * u + opcode) {
13611 case 0x08: /* MUL */
13612 case 0x10: /* MLA */
13613 case 0x14: /* MLS */
13615 static NeonGenTwoOpFn * const fns[2][2] = {
13616 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13617 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13619 NeonGenTwoOpFn *genfn;
13620 bool is_sub = opcode == 0x4;
13622 if (size == 1) {
13623 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13624 } else {
13625 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13627 if (opcode == 0x8) {
13628 break;
13630 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13631 genfn = fns[size - 1][is_sub];
13632 genfn(tcg_res, tcg_op, tcg_res);
13633 break;
13635 case 0x05: /* FMLS */
13636 case 0x01: /* FMLA */
13637 read_vec_element_i32(s, tcg_res, rd, pass,
13638 is_scalar ? size : MO_32);
13639 switch (size) {
13640 case 1:
13641 if (opcode == 0x5) {
13642 /* As usual for ARM, separate negation for fused
13643 * multiply-add */
13644 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13646 if (is_scalar) {
13647 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13648 tcg_res, fpst);
13649 } else {
13650 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13651 tcg_res, fpst);
13653 break;
13654 case 2:
13655 if (opcode == 0x5) {
13656 /* As usual for ARM, separate negation for
13657 * fused multiply-add */
13658 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13660 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13661 tcg_res, fpst);
13662 break;
13663 default:
13664 g_assert_not_reached();
13666 break;
13667 case 0x09: /* FMUL */
13668 switch (size) {
13669 case 1:
13670 if (is_scalar) {
13671 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13672 tcg_idx, fpst);
13673 } else {
13674 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13675 tcg_idx, fpst);
13677 break;
13678 case 2:
13679 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13680 break;
13681 default:
13682 g_assert_not_reached();
13684 break;
13685 case 0x19: /* FMULX */
13686 switch (size) {
13687 case 1:
13688 if (is_scalar) {
13689 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13690 tcg_idx, fpst);
13691 } else {
13692 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13693 tcg_idx, fpst);
13695 break;
13696 case 2:
13697 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13698 break;
13699 default:
13700 g_assert_not_reached();
13702 break;
13703 case 0x0c: /* SQDMULH */
13704 if (size == 1) {
13705 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13706 tcg_op, tcg_idx);
13707 } else {
13708 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13709 tcg_op, tcg_idx);
13711 break;
13712 case 0x0d: /* SQRDMULH */
13713 if (size == 1) {
13714 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13715 tcg_op, tcg_idx);
13716 } else {
13717 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13718 tcg_op, tcg_idx);
13720 break;
13721 case 0x1d: /* SQRDMLAH */
13722 read_vec_element_i32(s, tcg_res, rd, pass,
13723 is_scalar ? size : MO_32);
13724 if (size == 1) {
13725 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13726 tcg_op, tcg_idx, tcg_res);
13727 } else {
13728 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13729 tcg_op, tcg_idx, tcg_res);
13731 break;
13732 case 0x1f: /* SQRDMLSH */
13733 read_vec_element_i32(s, tcg_res, rd, pass,
13734 is_scalar ? size : MO_32);
13735 if (size == 1) {
13736 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13737 tcg_op, tcg_idx, tcg_res);
13738 } else {
13739 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13740 tcg_op, tcg_idx, tcg_res);
13742 break;
13743 default:
13744 g_assert_not_reached();
13747 if (is_scalar) {
13748 write_fp_sreg(s, rd, tcg_res);
13749 } else {
13750 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13753 tcg_temp_free_i32(tcg_op);
13754 tcg_temp_free_i32(tcg_res);
13757 tcg_temp_free_i32(tcg_idx);
13758 clear_vec_high(s, is_q, rd);
13759 } else {
13760 /* long ops: 16x16->32 or 32x32->64 */
13761 TCGv_i64 tcg_res[2];
13762 int pass;
13763 bool satop = extract32(opcode, 0, 1);
13764 MemOp memop = MO_32;
13766 if (satop || !u) {
13767 memop |= MO_SIGN;
13770 if (size == 2) {
13771 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13773 read_vec_element(s, tcg_idx, rm, index, memop);
13775 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13776 TCGv_i64 tcg_op = tcg_temp_new_i64();
13777 TCGv_i64 tcg_passres;
13778 int passelt;
13780 if (is_scalar) {
13781 passelt = 0;
13782 } else {
13783 passelt = pass + (is_q * 2);
13786 read_vec_element(s, tcg_op, rn, passelt, memop);
13788 tcg_res[pass] = tcg_temp_new_i64();
13790 if (opcode == 0xa || opcode == 0xb) {
13791 /* Non-accumulating ops */
13792 tcg_passres = tcg_res[pass];
13793 } else {
13794 tcg_passres = tcg_temp_new_i64();
13797 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13798 tcg_temp_free_i64(tcg_op);
13800 if (satop) {
13801 /* saturating, doubling */
13802 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13803 tcg_passres, tcg_passres);
13806 if (opcode == 0xa || opcode == 0xb) {
13807 continue;
13810 /* Accumulating op: handle accumulate step */
13811 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13813 switch (opcode) {
13814 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13815 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13816 break;
13817 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13818 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13819 break;
13820 case 0x7: /* SQDMLSL, SQDMLSL2 */
13821 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13822 /* fall through */
13823 case 0x3: /* SQDMLAL, SQDMLAL2 */
13824 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13825 tcg_res[pass],
13826 tcg_passres);
13827 break;
13828 default:
13829 g_assert_not_reached();
13831 tcg_temp_free_i64(tcg_passres);
13833 tcg_temp_free_i64(tcg_idx);
13835 clear_vec_high(s, !is_scalar, rd);
13836 } else {
13837 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13839 assert(size == 1);
13840 read_vec_element_i32(s, tcg_idx, rm, index, size);
13842 if (!is_scalar) {
13843 /* The simplest way to handle the 16x16 indexed ops is to
13844 * duplicate the index into both halves of the 32 bit tcg_idx
13845 * and then use the usual Neon helpers.
13847 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13850 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13851 TCGv_i32 tcg_op = tcg_temp_new_i32();
13852 TCGv_i64 tcg_passres;
13854 if (is_scalar) {
13855 read_vec_element_i32(s, tcg_op, rn, pass, size);
13856 } else {
13857 read_vec_element_i32(s, tcg_op, rn,
13858 pass + (is_q * 2), MO_32);
13861 tcg_res[pass] = tcg_temp_new_i64();
13863 if (opcode == 0xa || opcode == 0xb) {
13864 /* Non-accumulating ops */
13865 tcg_passres = tcg_res[pass];
13866 } else {
13867 tcg_passres = tcg_temp_new_i64();
13870 if (memop & MO_SIGN) {
13871 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13872 } else {
13873 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13875 if (satop) {
13876 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13877 tcg_passres, tcg_passres);
13879 tcg_temp_free_i32(tcg_op);
13881 if (opcode == 0xa || opcode == 0xb) {
13882 continue;
13885 /* Accumulating op: handle accumulate step */
13886 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13888 switch (opcode) {
13889 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13890 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13891 tcg_passres);
13892 break;
13893 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13894 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13895 tcg_passres);
13896 break;
13897 case 0x7: /* SQDMLSL, SQDMLSL2 */
13898 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13899 /* fall through */
13900 case 0x3: /* SQDMLAL, SQDMLAL2 */
13901 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13902 tcg_res[pass],
13903 tcg_passres);
13904 break;
13905 default:
13906 g_assert_not_reached();
13908 tcg_temp_free_i64(tcg_passres);
13910 tcg_temp_free_i32(tcg_idx);
13912 if (is_scalar) {
13913 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13917 if (is_scalar) {
13918 tcg_res[1] = tcg_const_i64(0);
13921 for (pass = 0; pass < 2; pass++) {
13922 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13923 tcg_temp_free_i64(tcg_res[pass]);
13927 if (fpst) {
13928 tcg_temp_free_ptr(fpst);
13932 /* Crypto AES
13933 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13934 * +-----------------+------+-----------+--------+-----+------+------+
13935 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13936 * +-----------------+------+-----------+--------+-----+------+------+
13938 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13940 int size = extract32(insn, 22, 2);
13941 int opcode = extract32(insn, 12, 5);
13942 int rn = extract32(insn, 5, 5);
13943 int rd = extract32(insn, 0, 5);
13944 int decrypt;
13945 gen_helper_gvec_2 *genfn2 = NULL;
13946 gen_helper_gvec_3 *genfn3 = NULL;
13948 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13949 unallocated_encoding(s);
13950 return;
13953 switch (opcode) {
13954 case 0x4: /* AESE */
13955 decrypt = 0;
13956 genfn3 = gen_helper_crypto_aese;
13957 break;
13958 case 0x6: /* AESMC */
13959 decrypt = 0;
13960 genfn2 = gen_helper_crypto_aesmc;
13961 break;
13962 case 0x5: /* AESD */
13963 decrypt = 1;
13964 genfn3 = gen_helper_crypto_aese;
13965 break;
13966 case 0x7: /* AESIMC */
13967 decrypt = 1;
13968 genfn2 = gen_helper_crypto_aesmc;
13969 break;
13970 default:
13971 unallocated_encoding(s);
13972 return;
13975 if (!fp_access_check(s)) {
13976 return;
13978 if (genfn2) {
13979 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13980 } else {
13981 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13985 /* Crypto three-reg SHA
13986 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13987 * +-----------------+------+---+------+---+--------+-----+------+------+
13988 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13989 * +-----------------+------+---+------+---+--------+-----+------+------+
13991 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13993 int size = extract32(insn, 22, 2);
13994 int opcode = extract32(insn, 12, 3);
13995 int rm = extract32(insn, 16, 5);
13996 int rn = extract32(insn, 5, 5);
13997 int rd = extract32(insn, 0, 5);
13998 gen_helper_gvec_3 *genfn;
13999 bool feature;
14001 if (size != 0) {
14002 unallocated_encoding(s);
14003 return;
14006 switch (opcode) {
14007 case 0: /* SHA1C */
14008 genfn = gen_helper_crypto_sha1c;
14009 feature = dc_isar_feature(aa64_sha1, s);
14010 break;
14011 case 1: /* SHA1P */
14012 genfn = gen_helper_crypto_sha1p;
14013 feature = dc_isar_feature(aa64_sha1, s);
14014 break;
14015 case 2: /* SHA1M */
14016 genfn = gen_helper_crypto_sha1m;
14017 feature = dc_isar_feature(aa64_sha1, s);
14018 break;
14019 case 3: /* SHA1SU0 */
14020 genfn = gen_helper_crypto_sha1su0;
14021 feature = dc_isar_feature(aa64_sha1, s);
14022 break;
14023 case 4: /* SHA256H */
14024 genfn = gen_helper_crypto_sha256h;
14025 feature = dc_isar_feature(aa64_sha256, s);
14026 break;
14027 case 5: /* SHA256H2 */
14028 genfn = gen_helper_crypto_sha256h2;
14029 feature = dc_isar_feature(aa64_sha256, s);
14030 break;
14031 case 6: /* SHA256SU1 */
14032 genfn = gen_helper_crypto_sha256su1;
14033 feature = dc_isar_feature(aa64_sha256, s);
14034 break;
14035 default:
14036 unallocated_encoding(s);
14037 return;
14040 if (!feature) {
14041 unallocated_encoding(s);
14042 return;
14045 if (!fp_access_check(s)) {
14046 return;
14048 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
14051 /* Crypto two-reg SHA
14052 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14053 * +-----------------+------+-----------+--------+-----+------+------+
14054 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14055 * +-----------------+------+-----------+--------+-----+------+------+
14057 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
14059 int size = extract32(insn, 22, 2);
14060 int opcode = extract32(insn, 12, 5);
14061 int rn = extract32(insn, 5, 5);
14062 int rd = extract32(insn, 0, 5);
14063 gen_helper_gvec_2 *genfn;
14064 bool feature;
14066 if (size != 0) {
14067 unallocated_encoding(s);
14068 return;
14071 switch (opcode) {
14072 case 0: /* SHA1H */
14073 feature = dc_isar_feature(aa64_sha1, s);
14074 genfn = gen_helper_crypto_sha1h;
14075 break;
14076 case 1: /* SHA1SU1 */
14077 feature = dc_isar_feature(aa64_sha1, s);
14078 genfn = gen_helper_crypto_sha1su1;
14079 break;
14080 case 2: /* SHA256SU0 */
14081 feature = dc_isar_feature(aa64_sha256, s);
14082 genfn = gen_helper_crypto_sha256su0;
14083 break;
14084 default:
14085 unallocated_encoding(s);
14086 return;
14089 if (!feature) {
14090 unallocated_encoding(s);
14091 return;
14094 if (!fp_access_check(s)) {
14095 return;
14097 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14100 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14102 tcg_gen_rotli_i64(d, m, 1);
14103 tcg_gen_xor_i64(d, d, n);
14106 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14108 tcg_gen_rotli_vec(vece, d, m, 1);
14109 tcg_gen_xor_vec(vece, d, d, n);
14112 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14113 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14115 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14116 static const GVecGen3 op = {
14117 .fni8 = gen_rax1_i64,
14118 .fniv = gen_rax1_vec,
14119 .opt_opc = vecop_list,
14120 .fno = gen_helper_crypto_rax1,
14121 .vece = MO_64,
14123 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14126 /* Crypto three-reg SHA512
14127 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14128 * +-----------------------+------+---+---+-----+--------+------+------+
14129 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
14130 * +-----------------------+------+---+---+-----+--------+------+------+
14132 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14134 int opcode = extract32(insn, 10, 2);
14135 int o = extract32(insn, 14, 1);
14136 int rm = extract32(insn, 16, 5);
14137 int rn = extract32(insn, 5, 5);
14138 int rd = extract32(insn, 0, 5);
14139 bool feature;
14140 gen_helper_gvec_3 *oolfn = NULL;
14141 GVecGen3Fn *gvecfn = NULL;
14143 if (o == 0) {
14144 switch (opcode) {
14145 case 0: /* SHA512H */
14146 feature = dc_isar_feature(aa64_sha512, s);
14147 oolfn = gen_helper_crypto_sha512h;
14148 break;
14149 case 1: /* SHA512H2 */
14150 feature = dc_isar_feature(aa64_sha512, s);
14151 oolfn = gen_helper_crypto_sha512h2;
14152 break;
14153 case 2: /* SHA512SU1 */
14154 feature = dc_isar_feature(aa64_sha512, s);
14155 oolfn = gen_helper_crypto_sha512su1;
14156 break;
14157 case 3: /* RAX1 */
14158 feature = dc_isar_feature(aa64_sha3, s);
14159 gvecfn = gen_gvec_rax1;
14160 break;
14161 default:
14162 g_assert_not_reached();
14164 } else {
14165 switch (opcode) {
14166 case 0: /* SM3PARTW1 */
14167 feature = dc_isar_feature(aa64_sm3, s);
14168 oolfn = gen_helper_crypto_sm3partw1;
14169 break;
14170 case 1: /* SM3PARTW2 */
14171 feature = dc_isar_feature(aa64_sm3, s);
14172 oolfn = gen_helper_crypto_sm3partw2;
14173 break;
14174 case 2: /* SM4EKEY */
14175 feature = dc_isar_feature(aa64_sm4, s);
14176 oolfn = gen_helper_crypto_sm4ekey;
14177 break;
14178 default:
14179 unallocated_encoding(s);
14180 return;
14184 if (!feature) {
14185 unallocated_encoding(s);
14186 return;
14189 if (!fp_access_check(s)) {
14190 return;
14193 if (oolfn) {
14194 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14195 } else {
14196 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14200 /* Crypto two-reg SHA512
14201 * 31 12 11 10 9 5 4 0
14202 * +-----------------------------------------+--------+------+------+
14203 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
14204 * +-----------------------------------------+--------+------+------+
14206 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14208 int opcode = extract32(insn, 10, 2);
14209 int rn = extract32(insn, 5, 5);
14210 int rd = extract32(insn, 0, 5);
14211 bool feature;
14213 switch (opcode) {
14214 case 0: /* SHA512SU0 */
14215 feature = dc_isar_feature(aa64_sha512, s);
14216 break;
14217 case 1: /* SM4E */
14218 feature = dc_isar_feature(aa64_sm4, s);
14219 break;
14220 default:
14221 unallocated_encoding(s);
14222 return;
14225 if (!feature) {
14226 unallocated_encoding(s);
14227 return;
14230 if (!fp_access_check(s)) {
14231 return;
14234 switch (opcode) {
14235 case 0: /* SHA512SU0 */
14236 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14237 break;
14238 case 1: /* SM4E */
14239 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14240 break;
14241 default:
14242 g_assert_not_reached();
14246 /* Crypto four-register
14247 * 31 23 22 21 20 16 15 14 10 9 5 4 0
14248 * +-------------------+-----+------+---+------+------+------+
14249 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
14250 * +-------------------+-----+------+---+------+------+------+
14252 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14254 int op0 = extract32(insn, 21, 2);
14255 int rm = extract32(insn, 16, 5);
14256 int ra = extract32(insn, 10, 5);
14257 int rn = extract32(insn, 5, 5);
14258 int rd = extract32(insn, 0, 5);
14259 bool feature;
14261 switch (op0) {
14262 case 0: /* EOR3 */
14263 case 1: /* BCAX */
14264 feature = dc_isar_feature(aa64_sha3, s);
14265 break;
14266 case 2: /* SM3SS1 */
14267 feature = dc_isar_feature(aa64_sm3, s);
14268 break;
14269 default:
14270 unallocated_encoding(s);
14271 return;
14274 if (!feature) {
14275 unallocated_encoding(s);
14276 return;
14279 if (!fp_access_check(s)) {
14280 return;
14283 if (op0 < 2) {
14284 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14285 int pass;
14287 tcg_op1 = tcg_temp_new_i64();
14288 tcg_op2 = tcg_temp_new_i64();
14289 tcg_op3 = tcg_temp_new_i64();
14290 tcg_res[0] = tcg_temp_new_i64();
14291 tcg_res[1] = tcg_temp_new_i64();
14293 for (pass = 0; pass < 2; pass++) {
14294 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14295 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14296 read_vec_element(s, tcg_op3, ra, pass, MO_64);
14298 if (op0 == 0) {
14299 /* EOR3 */
14300 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14301 } else {
14302 /* BCAX */
14303 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14305 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14307 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14308 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14310 tcg_temp_free_i64(tcg_op1);
14311 tcg_temp_free_i64(tcg_op2);
14312 tcg_temp_free_i64(tcg_op3);
14313 tcg_temp_free_i64(tcg_res[0]);
14314 tcg_temp_free_i64(tcg_res[1]);
14315 } else {
14316 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14318 tcg_op1 = tcg_temp_new_i32();
14319 tcg_op2 = tcg_temp_new_i32();
14320 tcg_op3 = tcg_temp_new_i32();
14321 tcg_res = tcg_temp_new_i32();
14322 tcg_zero = tcg_const_i32(0);
14324 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14325 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14326 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14328 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14329 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14330 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14331 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14333 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14334 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14335 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14336 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14338 tcg_temp_free_i32(tcg_op1);
14339 tcg_temp_free_i32(tcg_op2);
14340 tcg_temp_free_i32(tcg_op3);
14341 tcg_temp_free_i32(tcg_res);
14342 tcg_temp_free_i32(tcg_zero);
14346 /* Crypto XAR
14347 * 31 21 20 16 15 10 9 5 4 0
14348 * +-----------------------+------+--------+------+------+
14349 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
14350 * +-----------------------+------+--------+------+------+
14352 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14354 int rm = extract32(insn, 16, 5);
14355 int imm6 = extract32(insn, 10, 6);
14356 int rn = extract32(insn, 5, 5);
14357 int rd = extract32(insn, 0, 5);
14358 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
14359 int pass;
14361 if (!dc_isar_feature(aa64_sha3, s)) {
14362 unallocated_encoding(s);
14363 return;
14366 if (!fp_access_check(s)) {
14367 return;
14370 tcg_op1 = tcg_temp_new_i64();
14371 tcg_op2 = tcg_temp_new_i64();
14372 tcg_res[0] = tcg_temp_new_i64();
14373 tcg_res[1] = tcg_temp_new_i64();
14375 for (pass = 0; pass < 2; pass++) {
14376 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14377 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14379 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
14380 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
14382 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14383 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14385 tcg_temp_free_i64(tcg_op1);
14386 tcg_temp_free_i64(tcg_op2);
14387 tcg_temp_free_i64(tcg_res[0]);
14388 tcg_temp_free_i64(tcg_res[1]);
14391 /* Crypto three-reg imm2
14392 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14393 * +-----------------------+------+-----+------+--------+------+------+
14394 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14395 * +-----------------------+------+-----+------+--------+------+------+
14397 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14399 static gen_helper_gvec_3 * const fns[4] = {
14400 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14401 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14403 int opcode = extract32(insn, 10, 2);
14404 int imm2 = extract32(insn, 12, 2);
14405 int rm = extract32(insn, 16, 5);
14406 int rn = extract32(insn, 5, 5);
14407 int rd = extract32(insn, 0, 5);
14409 if (!dc_isar_feature(aa64_sm3, s)) {
14410 unallocated_encoding(s);
14411 return;
14414 if (!fp_access_check(s)) {
14415 return;
14418 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14421 /* C3.6 Data processing - SIMD, inc Crypto
14423 * As the decode gets a little complex we are using a table based
14424 * approach for this part of the decode.
14426 static const AArch64DecodeTable data_proc_simd[] = {
14427 /* pattern , mask , fn */
14428 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14429 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14430 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14431 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14432 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14433 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14434 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14435 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14436 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14437 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14438 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14439 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14440 { 0x2e000000, 0xbf208400, disas_simd_ext },
14441 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14442 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14443 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14444 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14445 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14446 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14447 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14448 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14449 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14450 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14451 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14452 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14453 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14454 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14455 { 0xce800000, 0xffe00000, disas_crypto_xar },
14456 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14457 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14458 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14459 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14460 { 0x00000000, 0x00000000, NULL }
14463 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14465 /* Note that this is called with all non-FP cases from
14466 * table C3-6 so it must UNDEF for entries not specifically
14467 * allocated to instructions in that table.
14469 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14470 if (fn) {
14471 fn(s, insn);
14472 } else {
14473 unallocated_encoding(s);
14477 /* C3.6 Data processing - SIMD and floating point */
14478 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14480 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14481 disas_data_proc_fp(s, insn);
14482 } else {
14483 /* SIMD, including crypto */
14484 disas_data_proc_simd(s, insn);
14489 * is_guarded_page:
14490 * @env: The cpu environment
14491 * @s: The DisasContext
14493 * Return true if the page is guarded.
14495 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14497 uint64_t addr = s->base.pc_first;
14498 #ifdef CONFIG_USER_ONLY
14499 return page_get_flags(addr) & PAGE_BTI;
14500 #else
14501 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14502 unsigned int index = tlb_index(env, mmu_idx, addr);
14503 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14506 * We test this immediately after reading an insn, which means
14507 * that any normal page must be in the TLB. The only exception
14508 * would be for executing from flash or device memory, which
14509 * does not retain the TLB entry.
14511 * FIXME: Assume false for those, for now. We could use
14512 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14513 * table entry even for that case.
14515 return (tlb_hit(entry->addr_code, addr) &&
14516 arm_tlb_bti_gp(&env_tlb(env)->d[mmu_idx].iotlb[index].attrs));
14517 #endif
14521 * btype_destination_ok:
14522 * @insn: The instruction at the branch destination
14523 * @bt: SCTLR_ELx.BT
14524 * @btype: PSTATE.BTYPE, and is non-zero
14526 * On a guarded page, there are a limited number of insns
14527 * that may be present at the branch target:
14528 * - branch target identifiers,
14529 * - paciasp, pacibsp,
14530 * - BRK insn
14531 * - HLT insn
14532 * Anything else causes a Branch Target Exception.
14534 * Return true if the branch is compatible, false to raise BTITRAP.
14536 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14538 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14539 /* HINT space */
14540 switch (extract32(insn, 5, 7)) {
14541 case 0b011001: /* PACIASP */
14542 case 0b011011: /* PACIBSP */
14544 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14545 * with btype == 3. Otherwise all btype are ok.
14547 return !bt || btype != 3;
14548 case 0b100000: /* BTI */
14549 /* Not compatible with any btype. */
14550 return false;
14551 case 0b100010: /* BTI c */
14552 /* Not compatible with btype == 3 */
14553 return btype != 3;
14554 case 0b100100: /* BTI j */
14555 /* Not compatible with btype == 2 */
14556 return btype != 2;
14557 case 0b100110: /* BTI jc */
14558 /* Compatible with any btype. */
14559 return true;
14561 } else {
14562 switch (insn & 0xffe0001fu) {
14563 case 0xd4200000u: /* BRK */
14564 case 0xd4400000u: /* HLT */
14565 /* Give priority to the breakpoint exception. */
14566 return true;
14569 return false;
14572 /* C3.1 A64 instruction index by encoding */
14573 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
14575 uint32_t insn;
14577 s->pc_curr = s->base.pc_next;
14578 insn = arm_ldl_code(env, s->base.pc_next, s->sctlr_b);
14579 s->insn = insn;
14580 s->base.pc_next += 4;
14582 s->fp_access_checked = false;
14583 s->sve_access_checked = false;
14585 if (dc_isar_feature(aa64_bti, s)) {
14586 if (s->base.num_insns == 1) {
14588 * At the first insn of the TB, compute s->guarded_page.
14589 * We delayed computing this until successfully reading
14590 * the first insn of the TB, above. This (mostly) ensures
14591 * that the softmmu tlb entry has been populated, and the
14592 * page table GP bit is available.
14594 * Note that we need to compute this even if btype == 0,
14595 * because this value is used for BR instructions later
14596 * where ENV is not available.
14598 s->guarded_page = is_guarded_page(env, s);
14600 /* First insn can have btype set to non-zero. */
14601 tcg_debug_assert(s->btype >= 0);
14604 * Note that the Branch Target Exception has fairly high
14605 * priority -- below debugging exceptions but above most
14606 * everything else. This allows us to handle this now
14607 * instead of waiting until the insn is otherwise decoded.
14609 if (s->btype != 0
14610 && s->guarded_page
14611 && !btype_destination_ok(insn, s->bt, s->btype)) {
14612 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14613 syn_btitrap(s->btype),
14614 default_exception_el(s));
14615 return;
14617 } else {
14618 /* Not the first insn: btype must be 0. */
14619 tcg_debug_assert(s->btype == 0);
14623 switch (extract32(insn, 25, 4)) {
14624 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14625 unallocated_encoding(s);
14626 break;
14627 case 0x2:
14628 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14629 unallocated_encoding(s);
14631 break;
14632 case 0x8: case 0x9: /* Data processing - immediate */
14633 disas_data_proc_imm(s, insn);
14634 break;
14635 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14636 disas_b_exc_sys(s, insn);
14637 break;
14638 case 0x4:
14639 case 0x6:
14640 case 0xc:
14641 case 0xe: /* Loads and stores */
14642 disas_ldst(s, insn);
14643 break;
14644 case 0x5:
14645 case 0xd: /* Data processing - register */
14646 disas_data_proc_reg(s, insn);
14647 break;
14648 case 0x7:
14649 case 0xf: /* Data processing - SIMD and floating point */
14650 disas_data_proc_simd_fp(s, insn);
14651 break;
14652 default:
14653 assert(FALSE); /* all 15 cases should be handled above */
14654 break;
14657 /* if we allocated any temporaries, free them here */
14658 free_tmp_a64(s);
14661 * After execution of most insns, btype is reset to 0.
14662 * Note that we set btype == -1 when the insn sets btype.
14664 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14665 reset_btype(s);
14669 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14670 CPUState *cpu)
14672 DisasContext *dc = container_of(dcbase, DisasContext, base);
14673 CPUARMState *env = cpu->env_ptr;
14674 ARMCPU *arm_cpu = env_archcpu(env);
14675 uint32_t tb_flags = dc->base.tb->flags;
14676 int bound, core_mmu_idx;
14678 dc->isar = &arm_cpu->isar;
14679 dc->condjmp = 0;
14681 dc->aarch64 = 1;
14682 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14683 * there is no secure EL1, so we route exceptions to EL3.
14685 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14686 !arm_el_is_aa64(env, 3);
14687 dc->thumb = 0;
14688 dc->sctlr_b = 0;
14689 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14690 dc->condexec_mask = 0;
14691 dc->condexec_cond = 0;
14692 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14693 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14694 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14695 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14696 dc->tcma = FIELD_EX32(tb_flags, TBFLAG_A64, TCMA);
14697 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14698 #if !defined(CONFIG_USER_ONLY)
14699 dc->user = (dc->current_el == 0);
14700 #endif
14701 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14702 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14703 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14704 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14705 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14706 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14707 dc->unpriv = FIELD_EX32(tb_flags, TBFLAG_A64, UNPRIV);
14708 dc->ata = FIELD_EX32(tb_flags, TBFLAG_A64, ATA);
14709 dc->mte_active[0] = FIELD_EX32(tb_flags, TBFLAG_A64, MTE_ACTIVE);
14710 dc->mte_active[1] = FIELD_EX32(tb_flags, TBFLAG_A64, MTE0_ACTIVE);
14711 dc->vec_len = 0;
14712 dc->vec_stride = 0;
14713 dc->cp_regs = arm_cpu->cp_regs;
14714 dc->features = env->features;
14715 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14717 #ifdef CONFIG_USER_ONLY
14718 /* In sve_probe_page, we assume TBI is enabled. */
14719 tcg_debug_assert(dc->tbid & 1);
14720 #endif
14722 /* Single step state. The code-generation logic here is:
14723 * SS_ACTIVE == 0:
14724 * generate code with no special handling for single-stepping (except
14725 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14726 * this happens anyway because those changes are all system register or
14727 * PSTATE writes).
14728 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14729 * emit code for one insn
14730 * emit code to clear PSTATE.SS
14731 * emit code to generate software step exception for completed step
14732 * end TB (as usual for having generated an exception)
14733 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14734 * emit code to generate a software step exception
14735 * end the TB
14737 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14738 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14739 dc->is_ldex = false;
14740 dc->debug_target_el = FIELD_EX32(tb_flags, TBFLAG_ANY, DEBUG_TARGET_EL);
14742 /* Bound the number of insns to execute to those left on the page. */
14743 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14745 /* If architectural single step active, limit to 1. */
14746 if (dc->ss_active) {
14747 bound = 1;
14749 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14751 init_tmp_a64_array(dc);
14754 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14758 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14760 DisasContext *dc = container_of(dcbase, DisasContext, base);
14762 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14763 dc->insn_start = tcg_last_op();
14766 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14767 const CPUBreakpoint *bp)
14769 DisasContext *dc = container_of(dcbase, DisasContext, base);
14771 if (bp->flags & BP_CPU) {
14772 gen_a64_set_pc_im(dc->base.pc_next);
14773 gen_helper_check_breakpoints(cpu_env);
14774 /* End the TB early; it likely won't be executed */
14775 dc->base.is_jmp = DISAS_TOO_MANY;
14776 } else {
14777 gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG);
14778 /* The address covered by the breakpoint must be
14779 included in [tb->pc, tb->pc + tb->size) in order
14780 to for it to be properly cleared -- thus we
14781 increment the PC here so that the logic setting
14782 tb->size below does the right thing. */
14783 dc->base.pc_next += 4;
14784 dc->base.is_jmp = DISAS_NORETURN;
14787 return true;
14790 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14792 DisasContext *dc = container_of(dcbase, DisasContext, base);
14793 CPUARMState *env = cpu->env_ptr;
14795 if (dc->ss_active && !dc->pstate_ss) {
14796 /* Singlestep state is Active-pending.
14797 * If we're in this state at the start of a TB then either
14798 * a) we just took an exception to an EL which is being debugged
14799 * and this is the first insn in the exception handler
14800 * b) debug exceptions were masked and we just unmasked them
14801 * without changing EL (eg by clearing PSTATE.D)
14802 * In either case we're going to take a swstep exception in the
14803 * "did not step an insn" case, and so the syndrome ISV and EX
14804 * bits should be zero.
14806 assert(dc->base.num_insns == 1);
14807 gen_swstep_exception(dc, 0, 0);
14808 dc->base.is_jmp = DISAS_NORETURN;
14809 } else {
14810 disas_a64_insn(env, dc);
14813 translator_loop_temp_check(&dc->base);
14816 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14818 DisasContext *dc = container_of(dcbase, DisasContext, base);
14820 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14821 /* Note that this means single stepping WFI doesn't halt the CPU.
14822 * For conditional branch insns this is harmless unreachable code as
14823 * gen_goto_tb() has already handled emitting the debug exception
14824 * (and thus a tb-jump is not possible when singlestepping).
14826 switch (dc->base.is_jmp) {
14827 default:
14828 gen_a64_set_pc_im(dc->base.pc_next);
14829 /* fall through */
14830 case DISAS_EXIT:
14831 case DISAS_JUMP:
14832 if (dc->base.singlestep_enabled) {
14833 gen_exception_internal(EXCP_DEBUG);
14834 } else {
14835 gen_step_complete_exception(dc);
14837 break;
14838 case DISAS_NORETURN:
14839 break;
14841 } else {
14842 switch (dc->base.is_jmp) {
14843 case DISAS_NEXT:
14844 case DISAS_TOO_MANY:
14845 gen_goto_tb(dc, 1, dc->base.pc_next);
14846 break;
14847 default:
14848 case DISAS_UPDATE_EXIT:
14849 gen_a64_set_pc_im(dc->base.pc_next);
14850 /* fall through */
14851 case DISAS_EXIT:
14852 tcg_gen_exit_tb(NULL, 0);
14853 break;
14854 case DISAS_UPDATE_NOCHAIN:
14855 gen_a64_set_pc_im(dc->base.pc_next);
14856 /* fall through */
14857 case DISAS_JUMP:
14858 tcg_gen_lookup_and_goto_ptr();
14859 break;
14860 case DISAS_NORETURN:
14861 case DISAS_SWI:
14862 break;
14863 case DISAS_WFE:
14864 gen_a64_set_pc_im(dc->base.pc_next);
14865 gen_helper_wfe(cpu_env);
14866 break;
14867 case DISAS_YIELD:
14868 gen_a64_set_pc_im(dc->base.pc_next);
14869 gen_helper_yield(cpu_env);
14870 break;
14871 case DISAS_WFI:
14873 /* This is a special case because we don't want to just halt the CPU
14874 * if trying to debug across a WFI.
14876 TCGv_i32 tmp = tcg_const_i32(4);
14878 gen_a64_set_pc_im(dc->base.pc_next);
14879 gen_helper_wfi(cpu_env, tmp);
14880 tcg_temp_free_i32(tmp);
14881 /* The helper doesn't necessarily throw an exception, but we
14882 * must go back to the main loop to check for interrupts anyway.
14884 tcg_gen_exit_tb(NULL, 0);
14885 break;
14891 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14892 CPUState *cpu)
14894 DisasContext *dc = container_of(dcbase, DisasContext, base);
14896 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14897 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14900 const TranslatorOps aarch64_translator_ops = {
14901 .init_disas_context = aarch64_tr_init_disas_context,
14902 .tb_start = aarch64_tr_tb_start,
14903 .insn_start = aarch64_tr_insn_start,
14904 .breakpoint_check = aarch64_tr_breakpoint_check,
14905 .translate_insn = aarch64_tr_translate_insn,
14906 .tb_stop = aarch64_tr_tb_stop,
14907 .disas_log = aarch64_tr_disas_log,