machine: Make -machine opts properties of MachineState
[qemu/ar7.git] / hw / arm / omap1.c
blobb28e0521b46bc955d7e4064e5544117a6b8a04c6
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/hw.h"
20 #include "hw/arm/arm.h"
21 #include "hw/arm/omap.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/soc_dma.h"
24 #include "sysemu/blockdev.h"
25 #include "qemu/range.h"
26 #include "hw/sysbus.h"
28 /* Should signal the TCMI/GPMC */
29 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
31 uint8_t ret;
33 OMAP_8B_REG(addr);
34 cpu_physical_memory_read(addr, &ret, 1);
35 return ret;
38 void omap_badwidth_write8(void *opaque, hwaddr addr,
39 uint32_t value)
41 uint8_t val8 = value;
43 OMAP_8B_REG(addr);
44 cpu_physical_memory_write(addr, &val8, 1);
47 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
49 uint16_t ret;
51 OMAP_16B_REG(addr);
52 cpu_physical_memory_read(addr, &ret, 2);
53 return ret;
56 void omap_badwidth_write16(void *opaque, hwaddr addr,
57 uint32_t value)
59 uint16_t val16 = value;
61 OMAP_16B_REG(addr);
62 cpu_physical_memory_write(addr, &val16, 2);
65 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
67 uint32_t ret;
69 OMAP_32B_REG(addr);
70 cpu_physical_memory_read(addr, &ret, 4);
71 return ret;
74 void omap_badwidth_write32(void *opaque, hwaddr addr,
75 uint32_t value)
77 OMAP_32B_REG(addr);
78 cpu_physical_memory_write(addr, &value, 4);
81 /* MPU OS timers */
82 struct omap_mpu_timer_s {
83 MemoryRegion iomem;
84 qemu_irq irq;
85 omap_clk clk;
86 uint32_t val;
87 int64_t time;
88 QEMUTimer *timer;
89 QEMUBH *tick;
90 int64_t rate;
91 int it_ena;
93 int enable;
94 int ptv;
95 int ar;
96 int st;
97 uint32_t reset_val;
100 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
102 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
104 if (timer->st && timer->enable && timer->rate)
105 return timer->val - muldiv64(distance >> (timer->ptv + 1),
106 timer->rate, get_ticks_per_sec());
107 else
108 return timer->val;
111 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
113 timer->val = omap_timer_read(timer);
114 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
117 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
119 int64_t expires;
121 if (timer->enable && timer->st && timer->rate) {
122 timer->val = timer->reset_val; /* Should skip this on clk enable */
123 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
124 get_ticks_per_sec(), timer->rate);
126 /* If timer expiry would be sooner than in about 1 ms and
127 * auto-reload isn't set, then fire immediately. This is a hack
128 * to make systems like PalmOS run in acceptable time. PalmOS
129 * sets the interval to a very low value and polls the status bit
130 * in a busy loop when it wants to sleep just a couple of CPU
131 * ticks. */
132 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
133 timer_mod(timer->timer, timer->time + expires);
134 else
135 qemu_bh_schedule(timer->tick);
136 } else
137 timer_del(timer->timer);
140 static void omap_timer_fire(void *opaque)
142 struct omap_mpu_timer_s *timer = opaque;
144 if (!timer->ar) {
145 timer->val = 0;
146 timer->st = 0;
149 if (timer->it_ena)
150 /* Edge-triggered irq */
151 qemu_irq_pulse(timer->irq);
154 static void omap_timer_tick(void *opaque)
156 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
158 omap_timer_sync(timer);
159 omap_timer_fire(timer);
160 omap_timer_update(timer);
163 static void omap_timer_clk_update(void *opaque, int line, int on)
165 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167 omap_timer_sync(timer);
168 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
169 omap_timer_update(timer);
172 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
174 omap_clk_adduser(timer->clk,
175 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
176 timer->rate = omap_clk_getrate(timer->clk);
179 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
180 unsigned size)
182 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
184 if (size != 4) {
185 return omap_badwidth_read32(opaque, addr);
188 switch (addr) {
189 case 0x00: /* CNTL_TIMER */
190 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
192 case 0x04: /* LOAD_TIM */
193 break;
195 case 0x08: /* READ_TIM */
196 return omap_timer_read(s);
199 OMAP_BAD_REG(addr);
200 return 0;
203 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
204 uint64_t value, unsigned size)
206 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
208 if (size != 4) {
209 return omap_badwidth_write32(opaque, addr, value);
212 switch (addr) {
213 case 0x00: /* CNTL_TIMER */
214 omap_timer_sync(s);
215 s->enable = (value >> 5) & 1;
216 s->ptv = (value >> 2) & 7;
217 s->ar = (value >> 1) & 1;
218 s->st = value & 1;
219 omap_timer_update(s);
220 return;
222 case 0x04: /* LOAD_TIM */
223 s->reset_val = value;
224 return;
226 case 0x08: /* READ_TIM */
227 OMAP_RO_REG(addr);
228 break;
230 default:
231 OMAP_BAD_REG(addr);
235 static const MemoryRegionOps omap_mpu_timer_ops = {
236 .read = omap_mpu_timer_read,
237 .write = omap_mpu_timer_write,
238 .endianness = DEVICE_LITTLE_ENDIAN,
241 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
243 timer_del(s->timer);
244 s->enable = 0;
245 s->reset_val = 31337;
246 s->val = 0;
247 s->ptv = 0;
248 s->ar = 0;
249 s->st = 0;
250 s->it_ena = 1;
253 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
254 hwaddr base,
255 qemu_irq irq, omap_clk clk)
257 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
258 g_malloc0(sizeof(struct omap_mpu_timer_s));
260 s->irq = irq;
261 s->clk = clk;
262 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
263 s->tick = qemu_bh_new(omap_timer_fire, s);
264 omap_mpu_timer_reset(s);
265 omap_timer_clk_setup(s);
267 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
268 "omap-mpu-timer", 0x100);
270 memory_region_add_subregion(system_memory, base, &s->iomem);
272 return s;
275 /* Watchdog timer */
276 struct omap_watchdog_timer_s {
277 struct omap_mpu_timer_s timer;
278 MemoryRegion iomem;
279 uint8_t last_wr;
280 int mode;
281 int free;
282 int reset;
285 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
286 unsigned size)
288 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
290 if (size != 2) {
291 return omap_badwidth_read16(opaque, addr);
294 switch (addr) {
295 case 0x00: /* CNTL_TIMER */
296 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
297 (s->timer.st << 7) | (s->free << 1);
299 case 0x04: /* READ_TIMER */
300 return omap_timer_read(&s->timer);
302 case 0x08: /* TIMER_MODE */
303 return s->mode << 15;
306 OMAP_BAD_REG(addr);
307 return 0;
310 static void omap_wd_timer_write(void *opaque, hwaddr addr,
311 uint64_t value, unsigned size)
313 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
315 if (size != 2) {
316 return omap_badwidth_write16(opaque, addr, value);
319 switch (addr) {
320 case 0x00: /* CNTL_TIMER */
321 omap_timer_sync(&s->timer);
322 s->timer.ptv = (value >> 9) & 7;
323 s->timer.ar = (value >> 8) & 1;
324 s->timer.st = (value >> 7) & 1;
325 s->free = (value >> 1) & 1;
326 omap_timer_update(&s->timer);
327 break;
329 case 0x04: /* LOAD_TIMER */
330 s->timer.reset_val = value & 0xffff;
331 break;
333 case 0x08: /* TIMER_MODE */
334 if (!s->mode && ((value >> 15) & 1))
335 omap_clk_get(s->timer.clk);
336 s->mode |= (value >> 15) & 1;
337 if (s->last_wr == 0xf5) {
338 if ((value & 0xff) == 0xa0) {
339 if (s->mode) {
340 s->mode = 0;
341 omap_clk_put(s->timer.clk);
343 } else {
344 /* XXX: on T|E hardware somehow this has no effect,
345 * on Zire 71 it works as specified. */
346 s->reset = 1;
347 qemu_system_reset_request();
350 s->last_wr = value & 0xff;
351 break;
353 default:
354 OMAP_BAD_REG(addr);
358 static const MemoryRegionOps omap_wd_timer_ops = {
359 .read = omap_wd_timer_read,
360 .write = omap_wd_timer_write,
361 .endianness = DEVICE_NATIVE_ENDIAN,
364 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
366 timer_del(s->timer.timer);
367 if (!s->mode)
368 omap_clk_get(s->timer.clk);
369 s->mode = 1;
370 s->free = 1;
371 s->reset = 0;
372 s->timer.enable = 1;
373 s->timer.it_ena = 1;
374 s->timer.reset_val = 0xffff;
375 s->timer.val = 0;
376 s->timer.st = 0;
377 s->timer.ptv = 0;
378 s->timer.ar = 0;
379 omap_timer_update(&s->timer);
382 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
383 hwaddr base,
384 qemu_irq irq, omap_clk clk)
386 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
387 g_malloc0(sizeof(struct omap_watchdog_timer_s));
389 s->timer.irq = irq;
390 s->timer.clk = clk;
391 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
392 omap_wd_timer_reset(s);
393 omap_timer_clk_setup(&s->timer);
395 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
396 "omap-wd-timer", 0x100);
397 memory_region_add_subregion(memory, base, &s->iomem);
399 return s;
402 /* 32-kHz timer */
403 struct omap_32khz_timer_s {
404 struct omap_mpu_timer_s timer;
405 MemoryRegion iomem;
408 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
409 unsigned size)
411 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
412 int offset = addr & OMAP_MPUI_REG_MASK;
414 if (size != 4) {
415 return omap_badwidth_read32(opaque, addr);
418 switch (offset) {
419 case 0x00: /* TVR */
420 return s->timer.reset_val;
422 case 0x04: /* TCR */
423 return omap_timer_read(&s->timer);
425 case 0x08: /* CR */
426 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
428 default:
429 break;
431 OMAP_BAD_REG(addr);
432 return 0;
435 static void omap_os_timer_write(void *opaque, hwaddr addr,
436 uint64_t value, unsigned size)
438 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
439 int offset = addr & OMAP_MPUI_REG_MASK;
441 if (size != 4) {
442 return omap_badwidth_write32(opaque, addr, value);
445 switch (offset) {
446 case 0x00: /* TVR */
447 s->timer.reset_val = value & 0x00ffffff;
448 break;
450 case 0x04: /* TCR */
451 OMAP_RO_REG(addr);
452 break;
454 case 0x08: /* CR */
455 s->timer.ar = (value >> 3) & 1;
456 s->timer.it_ena = (value >> 2) & 1;
457 if (s->timer.st != (value & 1) || (value & 2)) {
458 omap_timer_sync(&s->timer);
459 s->timer.enable = value & 1;
460 s->timer.st = value & 1;
461 omap_timer_update(&s->timer);
463 break;
465 default:
466 OMAP_BAD_REG(addr);
470 static const MemoryRegionOps omap_os_timer_ops = {
471 .read = omap_os_timer_read,
472 .write = omap_os_timer_write,
473 .endianness = DEVICE_NATIVE_ENDIAN,
476 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
478 timer_del(s->timer.timer);
479 s->timer.enable = 0;
480 s->timer.it_ena = 0;
481 s->timer.reset_val = 0x00ffffff;
482 s->timer.val = 0;
483 s->timer.st = 0;
484 s->timer.ptv = 0;
485 s->timer.ar = 1;
488 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
489 hwaddr base,
490 qemu_irq irq, omap_clk clk)
492 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
493 g_malloc0(sizeof(struct omap_32khz_timer_s));
495 s->timer.irq = irq;
496 s->timer.clk = clk;
497 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
498 omap_os_timer_reset(s);
499 omap_timer_clk_setup(&s->timer);
501 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
502 "omap-os-timer", 0x800);
503 memory_region_add_subregion(memory, base, &s->iomem);
505 return s;
508 /* Ultra Low-Power Device Module */
509 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
510 unsigned size)
512 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
513 uint16_t ret;
515 if (size != 2) {
516 return omap_badwidth_read16(opaque, addr);
519 switch (addr) {
520 case 0x14: /* IT_STATUS */
521 ret = s->ulpd_pm_regs[addr >> 2];
522 s->ulpd_pm_regs[addr >> 2] = 0;
523 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
524 return ret;
526 case 0x18: /* Reserved */
527 case 0x1c: /* Reserved */
528 case 0x20: /* Reserved */
529 case 0x28: /* Reserved */
530 case 0x2c: /* Reserved */
531 OMAP_BAD_REG(addr);
532 /* fall through */
533 case 0x00: /* COUNTER_32_LSB */
534 case 0x04: /* COUNTER_32_MSB */
535 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
536 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
537 case 0x10: /* GAUGING_CTRL */
538 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
539 case 0x30: /* CLOCK_CTRL */
540 case 0x34: /* SOFT_REQ */
541 case 0x38: /* COUNTER_32_FIQ */
542 case 0x3c: /* DPLL_CTRL */
543 case 0x40: /* STATUS_REQ */
544 /* XXX: check clk::usecount state for every clock */
545 case 0x48: /* LOCL_TIME */
546 case 0x4c: /* APLL_CTRL */
547 case 0x50: /* POWER_CTRL */
548 return s->ulpd_pm_regs[addr >> 2];
551 OMAP_BAD_REG(addr);
552 return 0;
555 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
556 uint16_t diff, uint16_t value)
558 if (diff & (1 << 4)) /* USB_MCLK_EN */
559 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
560 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
561 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
564 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
565 uint16_t diff, uint16_t value)
567 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
568 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
569 if (diff & (1 << 1)) /* SOFT_COM_REQ */
570 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
571 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
572 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
573 if (diff & (1 << 3)) /* SOFT_USB_REQ */
574 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
577 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
578 uint64_t value, unsigned size)
580 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
581 int64_t now, ticks;
582 int div, mult;
583 static const int bypass_div[4] = { 1, 2, 4, 4 };
584 uint16_t diff;
586 if (size != 2) {
587 return omap_badwidth_write16(opaque, addr, value);
590 switch (addr) {
591 case 0x00: /* COUNTER_32_LSB */
592 case 0x04: /* COUNTER_32_MSB */
593 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
594 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
595 case 0x14: /* IT_STATUS */
596 case 0x40: /* STATUS_REQ */
597 OMAP_RO_REG(addr);
598 break;
600 case 0x10: /* GAUGING_CTRL */
601 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
602 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
603 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
605 if (value & 1)
606 s->ulpd_gauge_start = now;
607 else {
608 now -= s->ulpd_gauge_start;
610 /* 32-kHz ticks */
611 ticks = muldiv64(now, 32768, get_ticks_per_sec());
612 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
613 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
614 if (ticks >> 32) /* OVERFLOW_32K */
615 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
617 /* High frequency ticks */
618 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
619 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
620 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
621 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
622 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
624 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
625 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
628 s->ulpd_pm_regs[addr >> 2] = value;
629 break;
631 case 0x18: /* Reserved */
632 case 0x1c: /* Reserved */
633 case 0x20: /* Reserved */
634 case 0x28: /* Reserved */
635 case 0x2c: /* Reserved */
636 OMAP_BAD_REG(addr);
637 /* fall through */
638 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
639 case 0x38: /* COUNTER_32_FIQ */
640 case 0x48: /* LOCL_TIME */
641 case 0x50: /* POWER_CTRL */
642 s->ulpd_pm_regs[addr >> 2] = value;
643 break;
645 case 0x30: /* CLOCK_CTRL */
646 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
647 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
648 omap_ulpd_clk_update(s, diff, value);
649 break;
651 case 0x34: /* SOFT_REQ */
652 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
653 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
654 omap_ulpd_req_update(s, diff, value);
655 break;
657 case 0x3c: /* DPLL_CTRL */
658 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
659 * omitted altogether, probably a typo. */
660 /* This register has identical semantics with DPLL(1:3) control
661 * registers, see omap_dpll_write() */
662 diff = s->ulpd_pm_regs[addr >> 2] & value;
663 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
664 if (diff & (0x3ff << 2)) {
665 if (value & (1 << 4)) { /* PLL_ENABLE */
666 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
667 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
668 } else {
669 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
670 mult = 1;
672 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
675 /* Enter the desired mode. */
676 s->ulpd_pm_regs[addr >> 2] =
677 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
678 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
680 /* Act as if the lock is restored. */
681 s->ulpd_pm_regs[addr >> 2] |= 2;
682 break;
684 case 0x4c: /* APLL_CTRL */
685 diff = s->ulpd_pm_regs[addr >> 2] & value;
686 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
687 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
688 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
689 (value & (1 << 0)) ? "apll" : "dpll4"));
690 break;
692 default:
693 OMAP_BAD_REG(addr);
697 static const MemoryRegionOps omap_ulpd_pm_ops = {
698 .read = omap_ulpd_pm_read,
699 .write = omap_ulpd_pm_write,
700 .endianness = DEVICE_NATIVE_ENDIAN,
703 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
705 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
706 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
707 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
708 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
709 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
710 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
711 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
712 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
713 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
714 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
715 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
716 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
717 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
718 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
719 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
720 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
721 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
722 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
723 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
724 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
725 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
726 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
727 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
730 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
731 hwaddr base,
732 struct omap_mpu_state_s *mpu)
734 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
735 "omap-ulpd-pm", 0x800);
736 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
737 omap_ulpd_pm_reset(mpu);
740 /* OMAP Pin Configuration */
741 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
742 unsigned size)
744 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
746 if (size != 4) {
747 return omap_badwidth_read32(opaque, addr);
750 switch (addr) {
751 case 0x00: /* FUNC_MUX_CTRL_0 */
752 case 0x04: /* FUNC_MUX_CTRL_1 */
753 case 0x08: /* FUNC_MUX_CTRL_2 */
754 return s->func_mux_ctrl[addr >> 2];
756 case 0x0c: /* COMP_MODE_CTRL_0 */
757 return s->comp_mode_ctrl[0];
759 case 0x10: /* FUNC_MUX_CTRL_3 */
760 case 0x14: /* FUNC_MUX_CTRL_4 */
761 case 0x18: /* FUNC_MUX_CTRL_5 */
762 case 0x1c: /* FUNC_MUX_CTRL_6 */
763 case 0x20: /* FUNC_MUX_CTRL_7 */
764 case 0x24: /* FUNC_MUX_CTRL_8 */
765 case 0x28: /* FUNC_MUX_CTRL_9 */
766 case 0x2c: /* FUNC_MUX_CTRL_A */
767 case 0x30: /* FUNC_MUX_CTRL_B */
768 case 0x34: /* FUNC_MUX_CTRL_C */
769 case 0x38: /* FUNC_MUX_CTRL_D */
770 return s->func_mux_ctrl[(addr >> 2) - 1];
772 case 0x40: /* PULL_DWN_CTRL_0 */
773 case 0x44: /* PULL_DWN_CTRL_1 */
774 case 0x48: /* PULL_DWN_CTRL_2 */
775 case 0x4c: /* PULL_DWN_CTRL_3 */
776 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
778 case 0x50: /* GATE_INH_CTRL_0 */
779 return s->gate_inh_ctrl[0];
781 case 0x60: /* VOLTAGE_CTRL_0 */
782 return s->voltage_ctrl[0];
784 case 0x70: /* TEST_DBG_CTRL_0 */
785 return s->test_dbg_ctrl[0];
787 case 0x80: /* MOD_CONF_CTRL_0 */
788 return s->mod_conf_ctrl[0];
791 OMAP_BAD_REG(addr);
792 return 0;
795 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
796 uint32_t diff, uint32_t value)
798 if (s->compat1509) {
799 if (diff & (1 << 9)) /* BLUETOOTH */
800 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
801 (~value >> 9) & 1);
802 if (diff & (1 << 7)) /* USB.CLKO */
803 omap_clk_onoff(omap_findclk(s, "usb.clko"),
804 (value >> 7) & 1);
808 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
809 uint32_t diff, uint32_t value)
811 if (s->compat1509) {
812 if (diff & (1U << 31)) {
813 /* MCBSP3_CLK_HIZ_DI */
814 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
816 if (diff & (1 << 1)) {
817 /* CLK32K */
818 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
823 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
824 uint32_t diff, uint32_t value)
826 if (diff & (1U << 31)) {
827 /* CONF_MOD_UART3_CLK_MODE_R */
828 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
829 omap_findclk(s, ((value >> 31) & 1) ?
830 "ck_48m" : "armper_ck"));
832 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
833 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
834 omap_findclk(s, ((value >> 30) & 1) ?
835 "ck_48m" : "armper_ck"));
836 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
837 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
838 omap_findclk(s, ((value >> 29) & 1) ?
839 "ck_48m" : "armper_ck"));
840 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
841 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
842 omap_findclk(s, ((value >> 23) & 1) ?
843 "ck_48m" : "armper_ck"));
844 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
845 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
846 omap_findclk(s, ((value >> 12) & 1) ?
847 "ck_48m" : "armper_ck"));
848 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
849 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
852 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
853 uint64_t value, unsigned size)
855 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
856 uint32_t diff;
858 if (size != 4) {
859 return omap_badwidth_write32(opaque, addr, value);
862 switch (addr) {
863 case 0x00: /* FUNC_MUX_CTRL_0 */
864 diff = s->func_mux_ctrl[addr >> 2] ^ value;
865 s->func_mux_ctrl[addr >> 2] = value;
866 omap_pin_funcmux0_update(s, diff, value);
867 return;
869 case 0x04: /* FUNC_MUX_CTRL_1 */
870 diff = s->func_mux_ctrl[addr >> 2] ^ value;
871 s->func_mux_ctrl[addr >> 2] = value;
872 omap_pin_funcmux1_update(s, diff, value);
873 return;
875 case 0x08: /* FUNC_MUX_CTRL_2 */
876 s->func_mux_ctrl[addr >> 2] = value;
877 return;
879 case 0x0c: /* COMP_MODE_CTRL_0 */
880 s->comp_mode_ctrl[0] = value;
881 s->compat1509 = (value != 0x0000eaef);
882 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
883 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
884 return;
886 case 0x10: /* FUNC_MUX_CTRL_3 */
887 case 0x14: /* FUNC_MUX_CTRL_4 */
888 case 0x18: /* FUNC_MUX_CTRL_5 */
889 case 0x1c: /* FUNC_MUX_CTRL_6 */
890 case 0x20: /* FUNC_MUX_CTRL_7 */
891 case 0x24: /* FUNC_MUX_CTRL_8 */
892 case 0x28: /* FUNC_MUX_CTRL_9 */
893 case 0x2c: /* FUNC_MUX_CTRL_A */
894 case 0x30: /* FUNC_MUX_CTRL_B */
895 case 0x34: /* FUNC_MUX_CTRL_C */
896 case 0x38: /* FUNC_MUX_CTRL_D */
897 s->func_mux_ctrl[(addr >> 2) - 1] = value;
898 return;
900 case 0x40: /* PULL_DWN_CTRL_0 */
901 case 0x44: /* PULL_DWN_CTRL_1 */
902 case 0x48: /* PULL_DWN_CTRL_2 */
903 case 0x4c: /* PULL_DWN_CTRL_3 */
904 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
905 return;
907 case 0x50: /* GATE_INH_CTRL_0 */
908 s->gate_inh_ctrl[0] = value;
909 return;
911 case 0x60: /* VOLTAGE_CTRL_0 */
912 s->voltage_ctrl[0] = value;
913 return;
915 case 0x70: /* TEST_DBG_CTRL_0 */
916 s->test_dbg_ctrl[0] = value;
917 return;
919 case 0x80: /* MOD_CONF_CTRL_0 */
920 diff = s->mod_conf_ctrl[0] ^ value;
921 s->mod_conf_ctrl[0] = value;
922 omap_pin_modconf1_update(s, diff, value);
923 return;
925 default:
926 OMAP_BAD_REG(addr);
930 static const MemoryRegionOps omap_pin_cfg_ops = {
931 .read = omap_pin_cfg_read,
932 .write = omap_pin_cfg_write,
933 .endianness = DEVICE_NATIVE_ENDIAN,
936 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
938 /* Start in Compatibility Mode. */
939 mpu->compat1509 = 1;
940 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
941 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
942 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
943 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
944 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
945 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
946 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
947 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
948 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
949 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
952 static void omap_pin_cfg_init(MemoryRegion *system_memory,
953 hwaddr base,
954 struct omap_mpu_state_s *mpu)
956 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
957 "omap-pin-cfg", 0x800);
958 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
959 omap_pin_cfg_reset(mpu);
962 /* Device Identification, Die Identification */
963 static uint64_t omap_id_read(void *opaque, hwaddr addr,
964 unsigned size)
966 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
968 if (size != 4) {
969 return omap_badwidth_read32(opaque, addr);
972 switch (addr) {
973 case 0xfffe1800: /* DIE_ID_LSB */
974 return 0xc9581f0e;
975 case 0xfffe1804: /* DIE_ID_MSB */
976 return 0xa8858bfa;
978 case 0xfffe2000: /* PRODUCT_ID_LSB */
979 return 0x00aaaafc;
980 case 0xfffe2004: /* PRODUCT_ID_MSB */
981 return 0xcafeb574;
983 case 0xfffed400: /* JTAG_ID_LSB */
984 switch (s->mpu_model) {
985 case omap310:
986 return 0x03310315;
987 case omap1510:
988 return 0x03310115;
989 default:
990 hw_error("%s: bad mpu model\n", __FUNCTION__);
992 break;
994 case 0xfffed404: /* JTAG_ID_MSB */
995 switch (s->mpu_model) {
996 case omap310:
997 return 0xfb57402f;
998 case omap1510:
999 return 0xfb47002f;
1000 default:
1001 hw_error("%s: bad mpu model\n", __FUNCTION__);
1003 break;
1006 OMAP_BAD_REG(addr);
1007 return 0;
1010 static void omap_id_write(void *opaque, hwaddr addr,
1011 uint64_t value, unsigned size)
1013 if (size != 4) {
1014 return omap_badwidth_write32(opaque, addr, value);
1017 OMAP_BAD_REG(addr);
1020 static const MemoryRegionOps omap_id_ops = {
1021 .read = omap_id_read,
1022 .write = omap_id_write,
1023 .endianness = DEVICE_NATIVE_ENDIAN,
1026 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1028 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1029 "omap-id", 0x100000000ULL);
1030 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1031 0xfffe1800, 0x800);
1032 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1033 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1034 0xfffed400, 0x100);
1035 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1036 if (!cpu_is_omap15xx(mpu)) {
1037 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1038 &mpu->id_iomem, 0xfffe2000, 0x800);
1039 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1043 /* MPUI Control (Dummy) */
1044 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1045 unsigned size)
1047 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1049 if (size != 4) {
1050 return omap_badwidth_read32(opaque, addr);
1053 switch (addr) {
1054 case 0x00: /* CTRL */
1055 return s->mpui_ctrl;
1056 case 0x04: /* DEBUG_ADDR */
1057 return 0x01ffffff;
1058 case 0x08: /* DEBUG_DATA */
1059 return 0xffffffff;
1060 case 0x0c: /* DEBUG_FLAG */
1061 return 0x00000800;
1062 case 0x10: /* STATUS */
1063 return 0x00000000;
1065 /* Not in OMAP310 */
1066 case 0x14: /* DSP_STATUS */
1067 case 0x18: /* DSP_BOOT_CONFIG */
1068 return 0x00000000;
1069 case 0x1c: /* DSP_MPUI_CONFIG */
1070 return 0x0000ffff;
1073 OMAP_BAD_REG(addr);
1074 return 0;
1077 static void omap_mpui_write(void *opaque, hwaddr addr,
1078 uint64_t value, unsigned size)
1080 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1082 if (size != 4) {
1083 return omap_badwidth_write32(opaque, addr, value);
1086 switch (addr) {
1087 case 0x00: /* CTRL */
1088 s->mpui_ctrl = value & 0x007fffff;
1089 break;
1091 case 0x04: /* DEBUG_ADDR */
1092 case 0x08: /* DEBUG_DATA */
1093 case 0x0c: /* DEBUG_FLAG */
1094 case 0x10: /* STATUS */
1095 /* Not in OMAP310 */
1096 case 0x14: /* DSP_STATUS */
1097 OMAP_RO_REG(addr);
1098 break;
1099 case 0x18: /* DSP_BOOT_CONFIG */
1100 case 0x1c: /* DSP_MPUI_CONFIG */
1101 break;
1103 default:
1104 OMAP_BAD_REG(addr);
1108 static const MemoryRegionOps omap_mpui_ops = {
1109 .read = omap_mpui_read,
1110 .write = omap_mpui_write,
1111 .endianness = DEVICE_NATIVE_ENDIAN,
1114 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1116 s->mpui_ctrl = 0x0003ff1b;
1119 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1120 struct omap_mpu_state_s *mpu)
1122 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1123 "omap-mpui", 0x100);
1124 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1126 omap_mpui_reset(mpu);
1129 /* TIPB Bridges */
1130 struct omap_tipb_bridge_s {
1131 qemu_irq abort;
1132 MemoryRegion iomem;
1134 int width_intr;
1135 uint16_t control;
1136 uint16_t alloc;
1137 uint16_t buffer;
1138 uint16_t enh_control;
1141 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1142 unsigned size)
1144 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1146 if (size < 2) {
1147 return omap_badwidth_read16(opaque, addr);
1150 switch (addr) {
1151 case 0x00: /* TIPB_CNTL */
1152 return s->control;
1153 case 0x04: /* TIPB_BUS_ALLOC */
1154 return s->alloc;
1155 case 0x08: /* MPU_TIPB_CNTL */
1156 return s->buffer;
1157 case 0x0c: /* ENHANCED_TIPB_CNTL */
1158 return s->enh_control;
1159 case 0x10: /* ADDRESS_DBG */
1160 case 0x14: /* DATA_DEBUG_LOW */
1161 case 0x18: /* DATA_DEBUG_HIGH */
1162 return 0xffff;
1163 case 0x1c: /* DEBUG_CNTR_SIG */
1164 return 0x00f8;
1167 OMAP_BAD_REG(addr);
1168 return 0;
1171 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1172 uint64_t value, unsigned size)
1174 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1176 if (size < 2) {
1177 return omap_badwidth_write16(opaque, addr, value);
1180 switch (addr) {
1181 case 0x00: /* TIPB_CNTL */
1182 s->control = value & 0xffff;
1183 break;
1185 case 0x04: /* TIPB_BUS_ALLOC */
1186 s->alloc = value & 0x003f;
1187 break;
1189 case 0x08: /* MPU_TIPB_CNTL */
1190 s->buffer = value & 0x0003;
1191 break;
1193 case 0x0c: /* ENHANCED_TIPB_CNTL */
1194 s->width_intr = !(value & 2);
1195 s->enh_control = value & 0x000f;
1196 break;
1198 case 0x10: /* ADDRESS_DBG */
1199 case 0x14: /* DATA_DEBUG_LOW */
1200 case 0x18: /* DATA_DEBUG_HIGH */
1201 case 0x1c: /* DEBUG_CNTR_SIG */
1202 OMAP_RO_REG(addr);
1203 break;
1205 default:
1206 OMAP_BAD_REG(addr);
1210 static const MemoryRegionOps omap_tipb_bridge_ops = {
1211 .read = omap_tipb_bridge_read,
1212 .write = omap_tipb_bridge_write,
1213 .endianness = DEVICE_NATIVE_ENDIAN,
1216 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1218 s->control = 0xffff;
1219 s->alloc = 0x0009;
1220 s->buffer = 0x0000;
1221 s->enh_control = 0x000f;
1224 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1225 MemoryRegion *memory, hwaddr base,
1226 qemu_irq abort_irq, omap_clk clk)
1228 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1229 g_malloc0(sizeof(struct omap_tipb_bridge_s));
1231 s->abort = abort_irq;
1232 omap_tipb_bridge_reset(s);
1234 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1235 "omap-tipb-bridge", 0x100);
1236 memory_region_add_subregion(memory, base, &s->iomem);
1238 return s;
1241 /* Dummy Traffic Controller's Memory Interface */
1242 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1243 unsigned size)
1245 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1246 uint32_t ret;
1248 if (size != 4) {
1249 return omap_badwidth_read32(opaque, addr);
1252 switch (addr) {
1253 case 0x00: /* IMIF_PRIO */
1254 case 0x04: /* EMIFS_PRIO */
1255 case 0x08: /* EMIFF_PRIO */
1256 case 0x0c: /* EMIFS_CONFIG */
1257 case 0x10: /* EMIFS_CS0_CONFIG */
1258 case 0x14: /* EMIFS_CS1_CONFIG */
1259 case 0x18: /* EMIFS_CS2_CONFIG */
1260 case 0x1c: /* EMIFS_CS3_CONFIG */
1261 case 0x24: /* EMIFF_MRS */
1262 case 0x28: /* TIMEOUT1 */
1263 case 0x2c: /* TIMEOUT2 */
1264 case 0x30: /* TIMEOUT3 */
1265 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1266 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1267 return s->tcmi_regs[addr >> 2];
1269 case 0x20: /* EMIFF_SDRAM_CONFIG */
1270 ret = s->tcmi_regs[addr >> 2];
1271 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1272 /* XXX: We can try using the VGA_DIRTY flag for this */
1273 return ret;
1276 OMAP_BAD_REG(addr);
1277 return 0;
1280 static void omap_tcmi_write(void *opaque, hwaddr addr,
1281 uint64_t value, unsigned size)
1283 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1285 if (size != 4) {
1286 return omap_badwidth_write32(opaque, addr, value);
1289 switch (addr) {
1290 case 0x00: /* IMIF_PRIO */
1291 case 0x04: /* EMIFS_PRIO */
1292 case 0x08: /* EMIFF_PRIO */
1293 case 0x10: /* EMIFS_CS0_CONFIG */
1294 case 0x14: /* EMIFS_CS1_CONFIG */
1295 case 0x18: /* EMIFS_CS2_CONFIG */
1296 case 0x1c: /* EMIFS_CS3_CONFIG */
1297 case 0x20: /* EMIFF_SDRAM_CONFIG */
1298 case 0x24: /* EMIFF_MRS */
1299 case 0x28: /* TIMEOUT1 */
1300 case 0x2c: /* TIMEOUT2 */
1301 case 0x30: /* TIMEOUT3 */
1302 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1303 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1304 s->tcmi_regs[addr >> 2] = value;
1305 break;
1306 case 0x0c: /* EMIFS_CONFIG */
1307 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1308 break;
1310 default:
1311 OMAP_BAD_REG(addr);
1315 static const MemoryRegionOps omap_tcmi_ops = {
1316 .read = omap_tcmi_read,
1317 .write = omap_tcmi_write,
1318 .endianness = DEVICE_NATIVE_ENDIAN,
1321 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1323 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1324 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1325 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1326 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1327 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1328 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1329 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1330 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1331 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1332 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1333 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1334 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1335 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1336 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1337 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1340 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1341 struct omap_mpu_state_s *mpu)
1343 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1344 "omap-tcmi", 0x100);
1345 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1346 omap_tcmi_reset(mpu);
1349 /* Digital phase-locked loops control */
1350 struct dpll_ctl_s {
1351 MemoryRegion iomem;
1352 uint16_t mode;
1353 omap_clk dpll;
1356 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1357 unsigned size)
1359 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1361 if (size != 2) {
1362 return omap_badwidth_read16(opaque, addr);
1365 if (addr == 0x00) /* CTL_REG */
1366 return s->mode;
1368 OMAP_BAD_REG(addr);
1369 return 0;
1372 static void omap_dpll_write(void *opaque, hwaddr addr,
1373 uint64_t value, unsigned size)
1375 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1376 uint16_t diff;
1377 static const int bypass_div[4] = { 1, 2, 4, 4 };
1378 int div, mult;
1380 if (size != 2) {
1381 return omap_badwidth_write16(opaque, addr, value);
1384 if (addr == 0x00) { /* CTL_REG */
1385 /* See omap_ulpd_pm_write() too */
1386 diff = s->mode & value;
1387 s->mode = value & 0x2fff;
1388 if (diff & (0x3ff << 2)) {
1389 if (value & (1 << 4)) { /* PLL_ENABLE */
1390 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1391 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1392 } else {
1393 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1394 mult = 1;
1396 omap_clk_setrate(s->dpll, div, mult);
1399 /* Enter the desired mode. */
1400 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1402 /* Act as if the lock is restored. */
1403 s->mode |= 2;
1404 } else {
1405 OMAP_BAD_REG(addr);
1409 static const MemoryRegionOps omap_dpll_ops = {
1410 .read = omap_dpll_read,
1411 .write = omap_dpll_write,
1412 .endianness = DEVICE_NATIVE_ENDIAN,
1415 static void omap_dpll_reset(struct dpll_ctl_s *s)
1417 s->mode = 0x2002;
1418 omap_clk_setrate(s->dpll, 1, 1);
1421 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1422 hwaddr base, omap_clk clk)
1424 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1425 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1427 s->dpll = clk;
1428 omap_dpll_reset(s);
1430 memory_region_add_subregion(memory, base, &s->iomem);
1431 return s;
1434 /* MPU Clock/Reset/Power Mode Control */
1435 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1436 unsigned size)
1438 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1440 if (size != 2) {
1441 return omap_badwidth_read16(opaque, addr);
1444 switch (addr) {
1445 case 0x00: /* ARM_CKCTL */
1446 return s->clkm.arm_ckctl;
1448 case 0x04: /* ARM_IDLECT1 */
1449 return s->clkm.arm_idlect1;
1451 case 0x08: /* ARM_IDLECT2 */
1452 return s->clkm.arm_idlect2;
1454 case 0x0c: /* ARM_EWUPCT */
1455 return s->clkm.arm_ewupct;
1457 case 0x10: /* ARM_RSTCT1 */
1458 return s->clkm.arm_rstct1;
1460 case 0x14: /* ARM_RSTCT2 */
1461 return s->clkm.arm_rstct2;
1463 case 0x18: /* ARM_SYSST */
1464 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1466 case 0x1c: /* ARM_CKOUT1 */
1467 return s->clkm.arm_ckout1;
1469 case 0x20: /* ARM_CKOUT2 */
1470 break;
1473 OMAP_BAD_REG(addr);
1474 return 0;
1477 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1478 uint16_t diff, uint16_t value)
1480 omap_clk clk;
1482 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1483 if (value & (1 << 14))
1484 /* Reserved */;
1485 else {
1486 clk = omap_findclk(s, "arminth_ck");
1487 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1490 if (diff & (1 << 12)) { /* ARM_TIMXO */
1491 clk = omap_findclk(s, "armtim_ck");
1492 if (value & (1 << 12))
1493 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1494 else
1495 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1497 /* XXX: en_dspck */
1498 if (diff & (3 << 10)) { /* DSPMMUDIV */
1499 clk = omap_findclk(s, "dspmmu_ck");
1500 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1502 if (diff & (3 << 8)) { /* TCDIV */
1503 clk = omap_findclk(s, "tc_ck");
1504 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1506 if (diff & (3 << 6)) { /* DSPDIV */
1507 clk = omap_findclk(s, "dsp_ck");
1508 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1510 if (diff & (3 << 4)) { /* ARMDIV */
1511 clk = omap_findclk(s, "arm_ck");
1512 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1514 if (diff & (3 << 2)) { /* LCDDIV */
1515 clk = omap_findclk(s, "lcd_ck");
1516 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1518 if (diff & (3 << 0)) { /* PERDIV */
1519 clk = omap_findclk(s, "armper_ck");
1520 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1524 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1525 uint16_t diff, uint16_t value)
1527 omap_clk clk;
1529 if (value & (1 << 11)) { /* SETARM_IDLE */
1530 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1532 if (!(value & (1 << 10))) /* WKUP_MODE */
1533 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1535 #define SET_CANIDLE(clock, bit) \
1536 if (diff & (1 << bit)) { \
1537 clk = omap_findclk(s, clock); \
1538 omap_clk_canidle(clk, (value >> bit) & 1); \
1540 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1541 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1542 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1543 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1544 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1545 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1546 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1547 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1548 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1549 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1550 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1551 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1552 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1553 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1556 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1557 uint16_t diff, uint16_t value)
1559 omap_clk clk;
1561 #define SET_ONOFF(clock, bit) \
1562 if (diff & (1 << bit)) { \
1563 clk = omap_findclk(s, clock); \
1564 omap_clk_onoff(clk, (value >> bit) & 1); \
1566 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1567 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1568 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1569 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1570 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1571 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1572 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1573 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1574 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1575 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1576 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1579 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1580 uint16_t diff, uint16_t value)
1582 omap_clk clk;
1584 if (diff & (3 << 4)) { /* TCLKOUT */
1585 clk = omap_findclk(s, "tclk_out");
1586 switch ((value >> 4) & 3) {
1587 case 1:
1588 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1589 omap_clk_onoff(clk, 1);
1590 break;
1591 case 2:
1592 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1593 omap_clk_onoff(clk, 1);
1594 break;
1595 default:
1596 omap_clk_onoff(clk, 0);
1599 if (diff & (3 << 2)) { /* DCLKOUT */
1600 clk = omap_findclk(s, "dclk_out");
1601 switch ((value >> 2) & 3) {
1602 case 0:
1603 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1604 break;
1605 case 1:
1606 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1607 break;
1608 case 2:
1609 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1610 break;
1611 case 3:
1612 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1613 break;
1616 if (diff & (3 << 0)) { /* ACLKOUT */
1617 clk = omap_findclk(s, "aclk_out");
1618 switch ((value >> 0) & 3) {
1619 case 1:
1620 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1621 omap_clk_onoff(clk, 1);
1622 break;
1623 case 2:
1624 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1625 omap_clk_onoff(clk, 1);
1626 break;
1627 case 3:
1628 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1629 omap_clk_onoff(clk, 1);
1630 break;
1631 default:
1632 omap_clk_onoff(clk, 0);
1637 static void omap_clkm_write(void *opaque, hwaddr addr,
1638 uint64_t value, unsigned size)
1640 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1641 uint16_t diff;
1642 omap_clk clk;
1643 static const char *clkschemename[8] = {
1644 "fully synchronous", "fully asynchronous", "synchronous scalable",
1645 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1648 if (size != 2) {
1649 return omap_badwidth_write16(opaque, addr, value);
1652 switch (addr) {
1653 case 0x00: /* ARM_CKCTL */
1654 diff = s->clkm.arm_ckctl ^ value;
1655 s->clkm.arm_ckctl = value & 0x7fff;
1656 omap_clkm_ckctl_update(s, diff, value);
1657 return;
1659 case 0x04: /* ARM_IDLECT1 */
1660 diff = s->clkm.arm_idlect1 ^ value;
1661 s->clkm.arm_idlect1 = value & 0x0fff;
1662 omap_clkm_idlect1_update(s, diff, value);
1663 return;
1665 case 0x08: /* ARM_IDLECT2 */
1666 diff = s->clkm.arm_idlect2 ^ value;
1667 s->clkm.arm_idlect2 = value & 0x07ff;
1668 omap_clkm_idlect2_update(s, diff, value);
1669 return;
1671 case 0x0c: /* ARM_EWUPCT */
1672 s->clkm.arm_ewupct = value & 0x003f;
1673 return;
1675 case 0x10: /* ARM_RSTCT1 */
1676 diff = s->clkm.arm_rstct1 ^ value;
1677 s->clkm.arm_rstct1 = value & 0x0007;
1678 if (value & 9) {
1679 qemu_system_reset_request();
1680 s->clkm.cold_start = 0xa;
1682 if (diff & ~value & 4) { /* DSP_RST */
1683 omap_mpui_reset(s);
1684 omap_tipb_bridge_reset(s->private_tipb);
1685 omap_tipb_bridge_reset(s->public_tipb);
1687 if (diff & 2) { /* DSP_EN */
1688 clk = omap_findclk(s, "dsp_ck");
1689 omap_clk_canidle(clk, (~value >> 1) & 1);
1691 return;
1693 case 0x14: /* ARM_RSTCT2 */
1694 s->clkm.arm_rstct2 = value & 0x0001;
1695 return;
1697 case 0x18: /* ARM_SYSST */
1698 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1699 s->clkm.clocking_scheme = (value >> 11) & 7;
1700 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1701 clkschemename[s->clkm.clocking_scheme]);
1703 s->clkm.cold_start &= value & 0x3f;
1704 return;
1706 case 0x1c: /* ARM_CKOUT1 */
1707 diff = s->clkm.arm_ckout1 ^ value;
1708 s->clkm.arm_ckout1 = value & 0x003f;
1709 omap_clkm_ckout1_update(s, diff, value);
1710 return;
1712 case 0x20: /* ARM_CKOUT2 */
1713 default:
1714 OMAP_BAD_REG(addr);
1718 static const MemoryRegionOps omap_clkm_ops = {
1719 .read = omap_clkm_read,
1720 .write = omap_clkm_write,
1721 .endianness = DEVICE_NATIVE_ENDIAN,
1724 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1725 unsigned size)
1727 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1728 CPUState *cpu = CPU(s->cpu);
1730 if (size != 2) {
1731 return omap_badwidth_read16(opaque, addr);
1734 switch (addr) {
1735 case 0x04: /* DSP_IDLECT1 */
1736 return s->clkm.dsp_idlect1;
1738 case 0x08: /* DSP_IDLECT2 */
1739 return s->clkm.dsp_idlect2;
1741 case 0x14: /* DSP_RSTCT2 */
1742 return s->clkm.dsp_rstct2;
1744 case 0x18: /* DSP_SYSST */
1745 cpu = CPU(s->cpu);
1746 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1747 (cpu->halted << 6); /* Quite useless... */
1750 OMAP_BAD_REG(addr);
1751 return 0;
1754 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1755 uint16_t diff, uint16_t value)
1757 omap_clk clk;
1759 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1762 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1763 uint16_t diff, uint16_t value)
1765 omap_clk clk;
1767 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1770 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1771 uint64_t value, unsigned size)
1773 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1774 uint16_t diff;
1776 if (size != 2) {
1777 return omap_badwidth_write16(opaque, addr, value);
1780 switch (addr) {
1781 case 0x04: /* DSP_IDLECT1 */
1782 diff = s->clkm.dsp_idlect1 ^ value;
1783 s->clkm.dsp_idlect1 = value & 0x01f7;
1784 omap_clkdsp_idlect1_update(s, diff, value);
1785 break;
1787 case 0x08: /* DSP_IDLECT2 */
1788 s->clkm.dsp_idlect2 = value & 0x0037;
1789 diff = s->clkm.dsp_idlect1 ^ value;
1790 omap_clkdsp_idlect2_update(s, diff, value);
1791 break;
1793 case 0x14: /* DSP_RSTCT2 */
1794 s->clkm.dsp_rstct2 = value & 0x0001;
1795 break;
1797 case 0x18: /* DSP_SYSST */
1798 s->clkm.cold_start &= value & 0x3f;
1799 break;
1801 default:
1802 OMAP_BAD_REG(addr);
1806 static const MemoryRegionOps omap_clkdsp_ops = {
1807 .read = omap_clkdsp_read,
1808 .write = omap_clkdsp_write,
1809 .endianness = DEVICE_NATIVE_ENDIAN,
1812 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1814 if (s->wdt && s->wdt->reset)
1815 s->clkm.cold_start = 0x6;
1816 s->clkm.clocking_scheme = 0;
1817 omap_clkm_ckctl_update(s, ~0, 0x3000);
1818 s->clkm.arm_ckctl = 0x3000;
1819 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1820 s->clkm.arm_idlect1 = 0x0400;
1821 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1822 s->clkm.arm_idlect2 = 0x0100;
1823 s->clkm.arm_ewupct = 0x003f;
1824 s->clkm.arm_rstct1 = 0x0000;
1825 s->clkm.arm_rstct2 = 0x0000;
1826 s->clkm.arm_ckout1 = 0x0015;
1827 s->clkm.dpll1_mode = 0x2002;
1828 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1829 s->clkm.dsp_idlect1 = 0x0040;
1830 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1831 s->clkm.dsp_idlect2 = 0x0000;
1832 s->clkm.dsp_rstct2 = 0x0000;
1835 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1836 hwaddr dsp_base, struct omap_mpu_state_s *s)
1838 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1839 "omap-clkm", 0x100);
1840 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1841 "omap-clkdsp", 0x1000);
1843 s->clkm.arm_idlect1 = 0x03ff;
1844 s->clkm.arm_idlect2 = 0x0100;
1845 s->clkm.dsp_idlect1 = 0x0002;
1846 omap_clkm_reset(s);
1847 s->clkm.cold_start = 0x3a;
1849 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1850 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1853 /* MPU I/O */
1854 struct omap_mpuio_s {
1855 qemu_irq irq;
1856 qemu_irq kbd_irq;
1857 qemu_irq *in;
1858 qemu_irq handler[16];
1859 qemu_irq wakeup;
1860 MemoryRegion iomem;
1862 uint16_t inputs;
1863 uint16_t outputs;
1864 uint16_t dir;
1865 uint16_t edge;
1866 uint16_t mask;
1867 uint16_t ints;
1869 uint16_t debounce;
1870 uint16_t latch;
1871 uint8_t event;
1873 uint8_t buttons[5];
1874 uint8_t row_latch;
1875 uint8_t cols;
1876 int kbd_mask;
1877 int clk;
1880 static void omap_mpuio_set(void *opaque, int line, int level)
1882 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1883 uint16_t prev = s->inputs;
1885 if (level)
1886 s->inputs |= 1 << line;
1887 else
1888 s->inputs &= ~(1 << line);
1890 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1891 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1892 s->ints |= 1 << line;
1893 qemu_irq_raise(s->irq);
1894 /* TODO: wakeup */
1896 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1897 (s->event >> 1) == line) /* PIN_SELECT */
1898 s->latch = s->inputs;
1902 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1904 int i;
1905 uint8_t *row, rows = 0, cols = ~s->cols;
1907 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1908 if (*row & cols)
1909 rows |= i;
1911 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1912 s->row_latch = ~rows;
1915 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1916 unsigned size)
1918 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1919 int offset = addr & OMAP_MPUI_REG_MASK;
1920 uint16_t ret;
1922 if (size != 2) {
1923 return omap_badwidth_read16(opaque, addr);
1926 switch (offset) {
1927 case 0x00: /* INPUT_LATCH */
1928 return s->inputs;
1930 case 0x04: /* OUTPUT_REG */
1931 return s->outputs;
1933 case 0x08: /* IO_CNTL */
1934 return s->dir;
1936 case 0x10: /* KBR_LATCH */
1937 return s->row_latch;
1939 case 0x14: /* KBC_REG */
1940 return s->cols;
1942 case 0x18: /* GPIO_EVENT_MODE_REG */
1943 return s->event;
1945 case 0x1c: /* GPIO_INT_EDGE_REG */
1946 return s->edge;
1948 case 0x20: /* KBD_INT */
1949 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1951 case 0x24: /* GPIO_INT */
1952 ret = s->ints;
1953 s->ints &= s->mask;
1954 if (ret)
1955 qemu_irq_lower(s->irq);
1956 return ret;
1958 case 0x28: /* KBD_MASKIT */
1959 return s->kbd_mask;
1961 case 0x2c: /* GPIO_MASKIT */
1962 return s->mask;
1964 case 0x30: /* GPIO_DEBOUNCING_REG */
1965 return s->debounce;
1967 case 0x34: /* GPIO_LATCH_REG */
1968 return s->latch;
1971 OMAP_BAD_REG(addr);
1972 return 0;
1975 static void omap_mpuio_write(void *opaque, hwaddr addr,
1976 uint64_t value, unsigned size)
1978 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1979 int offset = addr & OMAP_MPUI_REG_MASK;
1980 uint16_t diff;
1981 int ln;
1983 if (size != 2) {
1984 return omap_badwidth_write16(opaque, addr, value);
1987 switch (offset) {
1988 case 0x04: /* OUTPUT_REG */
1989 diff = (s->outputs ^ value) & ~s->dir;
1990 s->outputs = value;
1991 while ((ln = ffs(diff))) {
1992 ln --;
1993 if (s->handler[ln])
1994 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1995 diff &= ~(1 << ln);
1997 break;
1999 case 0x08: /* IO_CNTL */
2000 diff = s->outputs & (s->dir ^ value);
2001 s->dir = value;
2003 value = s->outputs & ~s->dir;
2004 while ((ln = ffs(diff))) {
2005 ln --;
2006 if (s->handler[ln])
2007 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2008 diff &= ~(1 << ln);
2010 break;
2012 case 0x14: /* KBC_REG */
2013 s->cols = value;
2014 omap_mpuio_kbd_update(s);
2015 break;
2017 case 0x18: /* GPIO_EVENT_MODE_REG */
2018 s->event = value & 0x1f;
2019 break;
2021 case 0x1c: /* GPIO_INT_EDGE_REG */
2022 s->edge = value;
2023 break;
2025 case 0x28: /* KBD_MASKIT */
2026 s->kbd_mask = value & 1;
2027 omap_mpuio_kbd_update(s);
2028 break;
2030 case 0x2c: /* GPIO_MASKIT */
2031 s->mask = value;
2032 break;
2034 case 0x30: /* GPIO_DEBOUNCING_REG */
2035 s->debounce = value & 0x1ff;
2036 break;
2038 case 0x00: /* INPUT_LATCH */
2039 case 0x10: /* KBR_LATCH */
2040 case 0x20: /* KBD_INT */
2041 case 0x24: /* GPIO_INT */
2042 case 0x34: /* GPIO_LATCH_REG */
2043 OMAP_RO_REG(addr);
2044 return;
2046 default:
2047 OMAP_BAD_REG(addr);
2048 return;
2052 static const MemoryRegionOps omap_mpuio_ops = {
2053 .read = omap_mpuio_read,
2054 .write = omap_mpuio_write,
2055 .endianness = DEVICE_NATIVE_ENDIAN,
2058 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2060 s->inputs = 0;
2061 s->outputs = 0;
2062 s->dir = ~0;
2063 s->event = 0;
2064 s->edge = 0;
2065 s->kbd_mask = 0;
2066 s->mask = 0;
2067 s->debounce = 0;
2068 s->latch = 0;
2069 s->ints = 0;
2070 s->row_latch = 0x1f;
2071 s->clk = 1;
2074 static void omap_mpuio_onoff(void *opaque, int line, int on)
2076 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2078 s->clk = on;
2079 if (on)
2080 omap_mpuio_kbd_update(s);
2083 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2084 hwaddr base,
2085 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2086 omap_clk clk)
2088 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2089 g_malloc0(sizeof(struct omap_mpuio_s));
2091 s->irq = gpio_int;
2092 s->kbd_irq = kbd_int;
2093 s->wakeup = wakeup;
2094 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2095 omap_mpuio_reset(s);
2097 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2098 "omap-mpuio", 0x800);
2099 memory_region_add_subregion(memory, base, &s->iomem);
2101 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2103 return s;
2106 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2108 return s->in;
2111 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2113 if (line >= 16 || line < 0)
2114 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2115 s->handler[line] = handler;
2118 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2120 if (row >= 5 || row < 0)
2121 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2123 if (down)
2124 s->buttons[row] |= 1 << col;
2125 else
2126 s->buttons[row] &= ~(1 << col);
2128 omap_mpuio_kbd_update(s);
2131 /* MicroWire Interface */
2132 struct omap_uwire_s {
2133 MemoryRegion iomem;
2134 qemu_irq txirq;
2135 qemu_irq rxirq;
2136 qemu_irq txdrq;
2138 uint16_t txbuf;
2139 uint16_t rxbuf;
2140 uint16_t control;
2141 uint16_t setup[5];
2143 uWireSlave *chip[4];
2146 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2148 int chipselect = (s->control >> 10) & 3; /* INDEX */
2149 uWireSlave *slave = s->chip[chipselect];
2151 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2152 if (s->control & (1 << 12)) /* CS_CMD */
2153 if (slave && slave->send)
2154 slave->send(slave->opaque,
2155 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2156 s->control &= ~(1 << 14); /* CSRB */
2157 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2158 * a DRQ. When is the level IRQ supposed to be reset? */
2161 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2162 if (s->control & (1 << 12)) /* CS_CMD */
2163 if (slave && slave->receive)
2164 s->rxbuf = slave->receive(slave->opaque);
2165 s->control |= 1 << 15; /* RDRB */
2166 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2167 * a DRQ. When is the level IRQ supposed to be reset? */
2171 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2172 unsigned size)
2174 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2175 int offset = addr & OMAP_MPUI_REG_MASK;
2177 if (size != 2) {
2178 return omap_badwidth_read16(opaque, addr);
2181 switch (offset) {
2182 case 0x00: /* RDR */
2183 s->control &= ~(1 << 15); /* RDRB */
2184 return s->rxbuf;
2186 case 0x04: /* CSR */
2187 return s->control;
2189 case 0x08: /* SR1 */
2190 return s->setup[0];
2191 case 0x0c: /* SR2 */
2192 return s->setup[1];
2193 case 0x10: /* SR3 */
2194 return s->setup[2];
2195 case 0x14: /* SR4 */
2196 return s->setup[3];
2197 case 0x18: /* SR5 */
2198 return s->setup[4];
2201 OMAP_BAD_REG(addr);
2202 return 0;
2205 static void omap_uwire_write(void *opaque, hwaddr addr,
2206 uint64_t value, unsigned size)
2208 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2209 int offset = addr & OMAP_MPUI_REG_MASK;
2211 if (size != 2) {
2212 return omap_badwidth_write16(opaque, addr, value);
2215 switch (offset) {
2216 case 0x00: /* TDR */
2217 s->txbuf = value; /* TD */
2218 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2219 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2220 (s->control & (1 << 12)))) { /* CS_CMD */
2221 s->control |= 1 << 14; /* CSRB */
2222 omap_uwire_transfer_start(s);
2224 break;
2226 case 0x04: /* CSR */
2227 s->control = value & 0x1fff;
2228 if (value & (1 << 13)) /* START */
2229 omap_uwire_transfer_start(s);
2230 break;
2232 case 0x08: /* SR1 */
2233 s->setup[0] = value & 0x003f;
2234 break;
2236 case 0x0c: /* SR2 */
2237 s->setup[1] = value & 0x0fc0;
2238 break;
2240 case 0x10: /* SR3 */
2241 s->setup[2] = value & 0x0003;
2242 break;
2244 case 0x14: /* SR4 */
2245 s->setup[3] = value & 0x0001;
2246 break;
2248 case 0x18: /* SR5 */
2249 s->setup[4] = value & 0x000f;
2250 break;
2252 default:
2253 OMAP_BAD_REG(addr);
2254 return;
2258 static const MemoryRegionOps omap_uwire_ops = {
2259 .read = omap_uwire_read,
2260 .write = omap_uwire_write,
2261 .endianness = DEVICE_NATIVE_ENDIAN,
2264 static void omap_uwire_reset(struct omap_uwire_s *s)
2266 s->control = 0;
2267 s->setup[0] = 0;
2268 s->setup[1] = 0;
2269 s->setup[2] = 0;
2270 s->setup[3] = 0;
2271 s->setup[4] = 0;
2274 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2275 hwaddr base,
2276 qemu_irq txirq, qemu_irq rxirq,
2277 qemu_irq dma,
2278 omap_clk clk)
2280 struct omap_uwire_s *s = (struct omap_uwire_s *)
2281 g_malloc0(sizeof(struct omap_uwire_s));
2283 s->txirq = txirq;
2284 s->rxirq = rxirq;
2285 s->txdrq = dma;
2286 omap_uwire_reset(s);
2288 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2289 memory_region_add_subregion(system_memory, base, &s->iomem);
2291 return s;
2294 void omap_uwire_attach(struct omap_uwire_s *s,
2295 uWireSlave *slave, int chipselect)
2297 if (chipselect < 0 || chipselect > 3) {
2298 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2299 exit(-1);
2302 s->chip[chipselect] = slave;
2305 /* Pseudonoise Pulse-Width Light Modulator */
2306 struct omap_pwl_s {
2307 MemoryRegion iomem;
2308 uint8_t output;
2309 uint8_t level;
2310 uint8_t enable;
2311 int clk;
2314 static void omap_pwl_update(struct omap_pwl_s *s)
2316 int output = (s->clk && s->enable) ? s->level : 0;
2318 if (output != s->output) {
2319 s->output = output;
2320 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2324 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2325 unsigned size)
2327 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2328 int offset = addr & OMAP_MPUI_REG_MASK;
2330 if (size != 1) {
2331 return omap_badwidth_read8(opaque, addr);
2334 switch (offset) {
2335 case 0x00: /* PWL_LEVEL */
2336 return s->level;
2337 case 0x04: /* PWL_CTRL */
2338 return s->enable;
2340 OMAP_BAD_REG(addr);
2341 return 0;
2344 static void omap_pwl_write(void *opaque, hwaddr addr,
2345 uint64_t value, unsigned size)
2347 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2348 int offset = addr & OMAP_MPUI_REG_MASK;
2350 if (size != 1) {
2351 return omap_badwidth_write8(opaque, addr, value);
2354 switch (offset) {
2355 case 0x00: /* PWL_LEVEL */
2356 s->level = value;
2357 omap_pwl_update(s);
2358 break;
2359 case 0x04: /* PWL_CTRL */
2360 s->enable = value & 1;
2361 omap_pwl_update(s);
2362 break;
2363 default:
2364 OMAP_BAD_REG(addr);
2365 return;
2369 static const MemoryRegionOps omap_pwl_ops = {
2370 .read = omap_pwl_read,
2371 .write = omap_pwl_write,
2372 .endianness = DEVICE_NATIVE_ENDIAN,
2375 static void omap_pwl_reset(struct omap_pwl_s *s)
2377 s->output = 0;
2378 s->level = 0;
2379 s->enable = 0;
2380 s->clk = 1;
2381 omap_pwl_update(s);
2384 static void omap_pwl_clk_update(void *opaque, int line, int on)
2386 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2388 s->clk = on;
2389 omap_pwl_update(s);
2392 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2393 hwaddr base,
2394 omap_clk clk)
2396 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2398 omap_pwl_reset(s);
2400 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2401 "omap-pwl", 0x800);
2402 memory_region_add_subregion(system_memory, base, &s->iomem);
2404 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2405 return s;
2408 /* Pulse-Width Tone module */
2409 struct omap_pwt_s {
2410 MemoryRegion iomem;
2411 uint8_t frc;
2412 uint8_t vrc;
2413 uint8_t gcr;
2414 omap_clk clk;
2417 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2418 unsigned size)
2420 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2421 int offset = addr & OMAP_MPUI_REG_MASK;
2423 if (size != 1) {
2424 return omap_badwidth_read8(opaque, addr);
2427 switch (offset) {
2428 case 0x00: /* FRC */
2429 return s->frc;
2430 case 0x04: /* VCR */
2431 return s->vrc;
2432 case 0x08: /* GCR */
2433 return s->gcr;
2435 OMAP_BAD_REG(addr);
2436 return 0;
2439 static void omap_pwt_write(void *opaque, hwaddr addr,
2440 uint64_t value, unsigned size)
2442 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2443 int offset = addr & OMAP_MPUI_REG_MASK;
2445 if (size != 1) {
2446 return omap_badwidth_write8(opaque, addr, value);
2449 switch (offset) {
2450 case 0x00: /* FRC */
2451 s->frc = value & 0x3f;
2452 break;
2453 case 0x04: /* VRC */
2454 if ((value ^ s->vrc) & 1) {
2455 if (value & 1)
2456 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2457 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2458 ((omap_clk_getrate(s->clk) >> 3) /
2459 /* Pre-multiplexer divider */
2460 ((s->gcr & 2) ? 1 : 154) /
2461 /* Octave multiplexer */
2462 (2 << (value & 3)) *
2463 /* 101/107 divider */
2464 ((value & (1 << 2)) ? 101 : 107) *
2465 /* 49/55 divider */
2466 ((value & (1 << 3)) ? 49 : 55) *
2467 /* 50/63 divider */
2468 ((value & (1 << 4)) ? 50 : 63) *
2469 /* 80/127 divider */
2470 ((value & (1 << 5)) ? 80 : 127) /
2471 (107 * 55 * 63 * 127)));
2472 else
2473 printf("%s: silence!\n", __FUNCTION__);
2475 s->vrc = value & 0x7f;
2476 break;
2477 case 0x08: /* GCR */
2478 s->gcr = value & 3;
2479 break;
2480 default:
2481 OMAP_BAD_REG(addr);
2482 return;
2486 static const MemoryRegionOps omap_pwt_ops = {
2487 .read =omap_pwt_read,
2488 .write = omap_pwt_write,
2489 .endianness = DEVICE_NATIVE_ENDIAN,
2492 static void omap_pwt_reset(struct omap_pwt_s *s)
2494 s->frc = 0;
2495 s->vrc = 0;
2496 s->gcr = 0;
2499 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2500 hwaddr base,
2501 omap_clk clk)
2503 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2504 s->clk = clk;
2505 omap_pwt_reset(s);
2507 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2508 "omap-pwt", 0x800);
2509 memory_region_add_subregion(system_memory, base, &s->iomem);
2510 return s;
2513 /* Real-time Clock module */
2514 struct omap_rtc_s {
2515 MemoryRegion iomem;
2516 qemu_irq irq;
2517 qemu_irq alarm;
2518 QEMUTimer *clk;
2520 uint8_t interrupts;
2521 uint8_t status;
2522 int16_t comp_reg;
2523 int running;
2524 int pm_am;
2525 int auto_comp;
2526 int round;
2527 struct tm alarm_tm;
2528 time_t alarm_ti;
2530 struct tm current_tm;
2531 time_t ti;
2532 uint64_t tick;
2535 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2537 /* s->alarm is level-triggered */
2538 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2541 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2543 s->alarm_ti = mktimegm(&s->alarm_tm);
2544 if (s->alarm_ti == -1)
2545 printf("%s: conversion failed\n", __FUNCTION__);
2548 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2549 unsigned size)
2551 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2552 int offset = addr & OMAP_MPUI_REG_MASK;
2553 uint8_t i;
2555 if (size != 1) {
2556 return omap_badwidth_read8(opaque, addr);
2559 switch (offset) {
2560 case 0x00: /* SECONDS_REG */
2561 return to_bcd(s->current_tm.tm_sec);
2563 case 0x04: /* MINUTES_REG */
2564 return to_bcd(s->current_tm.tm_min);
2566 case 0x08: /* HOURS_REG */
2567 if (s->pm_am)
2568 return ((s->current_tm.tm_hour > 11) << 7) |
2569 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2570 else
2571 return to_bcd(s->current_tm.tm_hour);
2573 case 0x0c: /* DAYS_REG */
2574 return to_bcd(s->current_tm.tm_mday);
2576 case 0x10: /* MONTHS_REG */
2577 return to_bcd(s->current_tm.tm_mon + 1);
2579 case 0x14: /* YEARS_REG */
2580 return to_bcd(s->current_tm.tm_year % 100);
2582 case 0x18: /* WEEK_REG */
2583 return s->current_tm.tm_wday;
2585 case 0x20: /* ALARM_SECONDS_REG */
2586 return to_bcd(s->alarm_tm.tm_sec);
2588 case 0x24: /* ALARM_MINUTES_REG */
2589 return to_bcd(s->alarm_tm.tm_min);
2591 case 0x28: /* ALARM_HOURS_REG */
2592 if (s->pm_am)
2593 return ((s->alarm_tm.tm_hour > 11) << 7) |
2594 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2595 else
2596 return to_bcd(s->alarm_tm.tm_hour);
2598 case 0x2c: /* ALARM_DAYS_REG */
2599 return to_bcd(s->alarm_tm.tm_mday);
2601 case 0x30: /* ALARM_MONTHS_REG */
2602 return to_bcd(s->alarm_tm.tm_mon + 1);
2604 case 0x34: /* ALARM_YEARS_REG */
2605 return to_bcd(s->alarm_tm.tm_year % 100);
2607 case 0x40: /* RTC_CTRL_REG */
2608 return (s->pm_am << 3) | (s->auto_comp << 2) |
2609 (s->round << 1) | s->running;
2611 case 0x44: /* RTC_STATUS_REG */
2612 i = s->status;
2613 s->status &= ~0x3d;
2614 return i;
2616 case 0x48: /* RTC_INTERRUPTS_REG */
2617 return s->interrupts;
2619 case 0x4c: /* RTC_COMP_LSB_REG */
2620 return ((uint16_t) s->comp_reg) & 0xff;
2622 case 0x50: /* RTC_COMP_MSB_REG */
2623 return ((uint16_t) s->comp_reg) >> 8;
2626 OMAP_BAD_REG(addr);
2627 return 0;
2630 static void omap_rtc_write(void *opaque, hwaddr addr,
2631 uint64_t value, unsigned size)
2633 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2634 int offset = addr & OMAP_MPUI_REG_MASK;
2635 struct tm new_tm;
2636 time_t ti[2];
2638 if (size != 1) {
2639 return omap_badwidth_write8(opaque, addr, value);
2642 switch (offset) {
2643 case 0x00: /* SECONDS_REG */
2644 #ifdef ALMDEBUG
2645 printf("RTC SEC_REG <-- %02x\n", value);
2646 #endif
2647 s->ti -= s->current_tm.tm_sec;
2648 s->ti += from_bcd(value);
2649 return;
2651 case 0x04: /* MINUTES_REG */
2652 #ifdef ALMDEBUG
2653 printf("RTC MIN_REG <-- %02x\n", value);
2654 #endif
2655 s->ti -= s->current_tm.tm_min * 60;
2656 s->ti += from_bcd(value) * 60;
2657 return;
2659 case 0x08: /* HOURS_REG */
2660 #ifdef ALMDEBUG
2661 printf("RTC HRS_REG <-- %02x\n", value);
2662 #endif
2663 s->ti -= s->current_tm.tm_hour * 3600;
2664 if (s->pm_am) {
2665 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2666 s->ti += ((value >> 7) & 1) * 43200;
2667 } else
2668 s->ti += from_bcd(value & 0x3f) * 3600;
2669 return;
2671 case 0x0c: /* DAYS_REG */
2672 #ifdef ALMDEBUG
2673 printf("RTC DAY_REG <-- %02x\n", value);
2674 #endif
2675 s->ti -= s->current_tm.tm_mday * 86400;
2676 s->ti += from_bcd(value) * 86400;
2677 return;
2679 case 0x10: /* MONTHS_REG */
2680 #ifdef ALMDEBUG
2681 printf("RTC MTH_REG <-- %02x\n", value);
2682 #endif
2683 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2684 new_tm.tm_mon = from_bcd(value);
2685 ti[0] = mktimegm(&s->current_tm);
2686 ti[1] = mktimegm(&new_tm);
2688 if (ti[0] != -1 && ti[1] != -1) {
2689 s->ti -= ti[0];
2690 s->ti += ti[1];
2691 } else {
2692 /* A less accurate version */
2693 s->ti -= s->current_tm.tm_mon * 2592000;
2694 s->ti += from_bcd(value) * 2592000;
2696 return;
2698 case 0x14: /* YEARS_REG */
2699 #ifdef ALMDEBUG
2700 printf("RTC YRS_REG <-- %02x\n", value);
2701 #endif
2702 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2703 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2704 ti[0] = mktimegm(&s->current_tm);
2705 ti[1] = mktimegm(&new_tm);
2707 if (ti[0] != -1 && ti[1] != -1) {
2708 s->ti -= ti[0];
2709 s->ti += ti[1];
2710 } else {
2711 /* A less accurate version */
2712 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2713 s->ti += (time_t)from_bcd(value) * 31536000;
2715 return;
2717 case 0x18: /* WEEK_REG */
2718 return; /* Ignored */
2720 case 0x20: /* ALARM_SECONDS_REG */
2721 #ifdef ALMDEBUG
2722 printf("ALM SEC_REG <-- %02x\n", value);
2723 #endif
2724 s->alarm_tm.tm_sec = from_bcd(value);
2725 omap_rtc_alarm_update(s);
2726 return;
2728 case 0x24: /* ALARM_MINUTES_REG */
2729 #ifdef ALMDEBUG
2730 printf("ALM MIN_REG <-- %02x\n", value);
2731 #endif
2732 s->alarm_tm.tm_min = from_bcd(value);
2733 omap_rtc_alarm_update(s);
2734 return;
2736 case 0x28: /* ALARM_HOURS_REG */
2737 #ifdef ALMDEBUG
2738 printf("ALM HRS_REG <-- %02x\n", value);
2739 #endif
2740 if (s->pm_am)
2741 s->alarm_tm.tm_hour =
2742 ((from_bcd(value & 0x3f)) % 12) +
2743 ((value >> 7) & 1) * 12;
2744 else
2745 s->alarm_tm.tm_hour = from_bcd(value);
2746 omap_rtc_alarm_update(s);
2747 return;
2749 case 0x2c: /* ALARM_DAYS_REG */
2750 #ifdef ALMDEBUG
2751 printf("ALM DAY_REG <-- %02x\n", value);
2752 #endif
2753 s->alarm_tm.tm_mday = from_bcd(value);
2754 omap_rtc_alarm_update(s);
2755 return;
2757 case 0x30: /* ALARM_MONTHS_REG */
2758 #ifdef ALMDEBUG
2759 printf("ALM MON_REG <-- %02x\n", value);
2760 #endif
2761 s->alarm_tm.tm_mon = from_bcd(value);
2762 omap_rtc_alarm_update(s);
2763 return;
2765 case 0x34: /* ALARM_YEARS_REG */
2766 #ifdef ALMDEBUG
2767 printf("ALM YRS_REG <-- %02x\n", value);
2768 #endif
2769 s->alarm_tm.tm_year = from_bcd(value);
2770 omap_rtc_alarm_update(s);
2771 return;
2773 case 0x40: /* RTC_CTRL_REG */
2774 #ifdef ALMDEBUG
2775 printf("RTC CONTROL <-- %02x\n", value);
2776 #endif
2777 s->pm_am = (value >> 3) & 1;
2778 s->auto_comp = (value >> 2) & 1;
2779 s->round = (value >> 1) & 1;
2780 s->running = value & 1;
2781 s->status &= 0xfd;
2782 s->status |= s->running << 1;
2783 return;
2785 case 0x44: /* RTC_STATUS_REG */
2786 #ifdef ALMDEBUG
2787 printf("RTC STATUSL <-- %02x\n", value);
2788 #endif
2789 s->status &= ~((value & 0xc0) ^ 0x80);
2790 omap_rtc_interrupts_update(s);
2791 return;
2793 case 0x48: /* RTC_INTERRUPTS_REG */
2794 #ifdef ALMDEBUG
2795 printf("RTC INTRS <-- %02x\n", value);
2796 #endif
2797 s->interrupts = value;
2798 return;
2800 case 0x4c: /* RTC_COMP_LSB_REG */
2801 #ifdef ALMDEBUG
2802 printf("RTC COMPLSB <-- %02x\n", value);
2803 #endif
2804 s->comp_reg &= 0xff00;
2805 s->comp_reg |= 0x00ff & value;
2806 return;
2808 case 0x50: /* RTC_COMP_MSB_REG */
2809 #ifdef ALMDEBUG
2810 printf("RTC COMPMSB <-- %02x\n", value);
2811 #endif
2812 s->comp_reg &= 0x00ff;
2813 s->comp_reg |= 0xff00 & (value << 8);
2814 return;
2816 default:
2817 OMAP_BAD_REG(addr);
2818 return;
2822 static const MemoryRegionOps omap_rtc_ops = {
2823 .read = omap_rtc_read,
2824 .write = omap_rtc_write,
2825 .endianness = DEVICE_NATIVE_ENDIAN,
2828 static void omap_rtc_tick(void *opaque)
2830 struct omap_rtc_s *s = opaque;
2832 if (s->round) {
2833 /* Round to nearest full minute. */
2834 if (s->current_tm.tm_sec < 30)
2835 s->ti -= s->current_tm.tm_sec;
2836 else
2837 s->ti += 60 - s->current_tm.tm_sec;
2839 s->round = 0;
2842 localtime_r(&s->ti, &s->current_tm);
2844 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2845 s->status |= 0x40;
2846 omap_rtc_interrupts_update(s);
2849 if (s->interrupts & 0x04)
2850 switch (s->interrupts & 3) {
2851 case 0:
2852 s->status |= 0x04;
2853 qemu_irq_pulse(s->irq);
2854 break;
2855 case 1:
2856 if (s->current_tm.tm_sec)
2857 break;
2858 s->status |= 0x08;
2859 qemu_irq_pulse(s->irq);
2860 break;
2861 case 2:
2862 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2863 break;
2864 s->status |= 0x10;
2865 qemu_irq_pulse(s->irq);
2866 break;
2867 case 3:
2868 if (s->current_tm.tm_sec ||
2869 s->current_tm.tm_min || s->current_tm.tm_hour)
2870 break;
2871 s->status |= 0x20;
2872 qemu_irq_pulse(s->irq);
2873 break;
2876 /* Move on */
2877 if (s->running)
2878 s->ti ++;
2879 s->tick += 1000;
2882 * Every full hour add a rough approximation of the compensation
2883 * register to the 32kHz Timer (which drives the RTC) value.
2885 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2886 s->tick += s->comp_reg * 1000 / 32768;
2888 timer_mod(s->clk, s->tick);
2891 static void omap_rtc_reset(struct omap_rtc_s *s)
2893 struct tm tm;
2895 s->interrupts = 0;
2896 s->comp_reg = 0;
2897 s->running = 0;
2898 s->pm_am = 0;
2899 s->auto_comp = 0;
2900 s->round = 0;
2901 s->tick = qemu_clock_get_ms(rtc_clock);
2902 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2903 s->alarm_tm.tm_mday = 0x01;
2904 s->status = 1 << 7;
2905 qemu_get_timedate(&tm, 0);
2906 s->ti = mktimegm(&tm);
2908 omap_rtc_alarm_update(s);
2909 omap_rtc_tick(s);
2912 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2913 hwaddr base,
2914 qemu_irq timerirq, qemu_irq alarmirq,
2915 omap_clk clk)
2917 struct omap_rtc_s *s = (struct omap_rtc_s *)
2918 g_malloc0(sizeof(struct omap_rtc_s));
2920 s->irq = timerirq;
2921 s->alarm = alarmirq;
2922 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2924 omap_rtc_reset(s);
2926 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2927 "omap-rtc", 0x800);
2928 memory_region_add_subregion(system_memory, base, &s->iomem);
2930 return s;
2933 /* Multi-channel Buffered Serial Port interfaces */
2934 struct omap_mcbsp_s {
2935 MemoryRegion iomem;
2936 qemu_irq txirq;
2937 qemu_irq rxirq;
2938 qemu_irq txdrq;
2939 qemu_irq rxdrq;
2941 uint16_t spcr[2];
2942 uint16_t rcr[2];
2943 uint16_t xcr[2];
2944 uint16_t srgr[2];
2945 uint16_t mcr[2];
2946 uint16_t pcr;
2947 uint16_t rcer[8];
2948 uint16_t xcer[8];
2949 int tx_rate;
2950 int rx_rate;
2951 int tx_req;
2952 int rx_req;
2954 I2SCodec *codec;
2955 QEMUTimer *source_timer;
2956 QEMUTimer *sink_timer;
2959 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2961 int irq;
2963 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2964 case 0:
2965 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2966 break;
2967 case 3:
2968 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2969 break;
2970 default:
2971 irq = 0;
2972 break;
2975 if (irq)
2976 qemu_irq_pulse(s->rxirq);
2978 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2979 case 0:
2980 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2981 break;
2982 case 3:
2983 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2984 break;
2985 default:
2986 irq = 0;
2987 break;
2990 if (irq)
2991 qemu_irq_pulse(s->txirq);
2994 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2996 if ((s->spcr[0] >> 1) & 1) /* RRDY */
2997 s->spcr[0] |= 1 << 2; /* RFULL */
2998 s->spcr[0] |= 1 << 1; /* RRDY */
2999 qemu_irq_raise(s->rxdrq);
3000 omap_mcbsp_intr_update(s);
3003 static void omap_mcbsp_source_tick(void *opaque)
3005 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3006 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3008 if (!s->rx_rate)
3009 return;
3010 if (s->rx_req)
3011 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3013 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3015 omap_mcbsp_rx_newdata(s);
3016 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3017 get_ticks_per_sec());
3020 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3022 if (!s->codec || !s->codec->rts)
3023 omap_mcbsp_source_tick(s);
3024 else if (s->codec->in.len) {
3025 s->rx_req = s->codec->in.len;
3026 omap_mcbsp_rx_newdata(s);
3030 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3032 timer_del(s->source_timer);
3035 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3037 s->spcr[0] &= ~(1 << 1); /* RRDY */
3038 qemu_irq_lower(s->rxdrq);
3039 omap_mcbsp_intr_update(s);
3042 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3044 s->spcr[1] |= 1 << 1; /* XRDY */
3045 qemu_irq_raise(s->txdrq);
3046 omap_mcbsp_intr_update(s);
3049 static void omap_mcbsp_sink_tick(void *opaque)
3051 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3052 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3054 if (!s->tx_rate)
3055 return;
3056 if (s->tx_req)
3057 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3059 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3061 omap_mcbsp_tx_newdata(s);
3062 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3063 get_ticks_per_sec());
3066 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3068 if (!s->codec || !s->codec->cts)
3069 omap_mcbsp_sink_tick(s);
3070 else if (s->codec->out.size) {
3071 s->tx_req = s->codec->out.size;
3072 omap_mcbsp_tx_newdata(s);
3076 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3078 s->spcr[1] &= ~(1 << 1); /* XRDY */
3079 qemu_irq_lower(s->txdrq);
3080 omap_mcbsp_intr_update(s);
3081 if (s->codec && s->codec->cts)
3082 s->codec->tx_swallow(s->codec->opaque);
3085 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3087 s->tx_req = 0;
3088 omap_mcbsp_tx_done(s);
3089 timer_del(s->sink_timer);
3092 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3094 int prev_rx_rate, prev_tx_rate;
3095 int rx_rate = 0, tx_rate = 0;
3096 int cpu_rate = 1500000; /* XXX */
3098 /* TODO: check CLKSTP bit */
3099 if (s->spcr[1] & (1 << 6)) { /* GRST */
3100 if (s->spcr[0] & (1 << 0)) { /* RRST */
3101 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3102 (s->pcr & (1 << 8))) { /* CLKRM */
3103 if (~s->pcr & (1 << 7)) /* SCLKME */
3104 rx_rate = cpu_rate /
3105 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3106 } else
3107 if (s->codec)
3108 rx_rate = s->codec->rx_rate;
3111 if (s->spcr[1] & (1 << 0)) { /* XRST */
3112 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3113 (s->pcr & (1 << 9))) { /* CLKXM */
3114 if (~s->pcr & (1 << 7)) /* SCLKME */
3115 tx_rate = cpu_rate /
3116 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3117 } else
3118 if (s->codec)
3119 tx_rate = s->codec->tx_rate;
3122 prev_tx_rate = s->tx_rate;
3123 prev_rx_rate = s->rx_rate;
3124 s->tx_rate = tx_rate;
3125 s->rx_rate = rx_rate;
3127 if (s->codec)
3128 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3130 if (!prev_tx_rate && tx_rate)
3131 omap_mcbsp_tx_start(s);
3132 else if (s->tx_rate && !tx_rate)
3133 omap_mcbsp_tx_stop(s);
3135 if (!prev_rx_rate && rx_rate)
3136 omap_mcbsp_rx_start(s);
3137 else if (prev_tx_rate && !tx_rate)
3138 omap_mcbsp_rx_stop(s);
3141 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3142 unsigned size)
3144 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3145 int offset = addr & OMAP_MPUI_REG_MASK;
3146 uint16_t ret;
3148 if (size != 2) {
3149 return omap_badwidth_read16(opaque, addr);
3152 switch (offset) {
3153 case 0x00: /* DRR2 */
3154 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3155 return 0x0000;
3156 /* Fall through. */
3157 case 0x02: /* DRR1 */
3158 if (s->rx_req < 2) {
3159 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3160 omap_mcbsp_rx_done(s);
3161 } else {
3162 s->tx_req -= 2;
3163 if (s->codec && s->codec->in.len >= 2) {
3164 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3165 ret |= s->codec->in.fifo[s->codec->in.start ++];
3166 s->codec->in.len -= 2;
3167 } else
3168 ret = 0x0000;
3169 if (!s->tx_req)
3170 omap_mcbsp_rx_done(s);
3171 return ret;
3173 return 0x0000;
3175 case 0x04: /* DXR2 */
3176 case 0x06: /* DXR1 */
3177 return 0x0000;
3179 case 0x08: /* SPCR2 */
3180 return s->spcr[1];
3181 case 0x0a: /* SPCR1 */
3182 return s->spcr[0];
3183 case 0x0c: /* RCR2 */
3184 return s->rcr[1];
3185 case 0x0e: /* RCR1 */
3186 return s->rcr[0];
3187 case 0x10: /* XCR2 */
3188 return s->xcr[1];
3189 case 0x12: /* XCR1 */
3190 return s->xcr[0];
3191 case 0x14: /* SRGR2 */
3192 return s->srgr[1];
3193 case 0x16: /* SRGR1 */
3194 return s->srgr[0];
3195 case 0x18: /* MCR2 */
3196 return s->mcr[1];
3197 case 0x1a: /* MCR1 */
3198 return s->mcr[0];
3199 case 0x1c: /* RCERA */
3200 return s->rcer[0];
3201 case 0x1e: /* RCERB */
3202 return s->rcer[1];
3203 case 0x20: /* XCERA */
3204 return s->xcer[0];
3205 case 0x22: /* XCERB */
3206 return s->xcer[1];
3207 case 0x24: /* PCR0 */
3208 return s->pcr;
3209 case 0x26: /* RCERC */
3210 return s->rcer[2];
3211 case 0x28: /* RCERD */
3212 return s->rcer[3];
3213 case 0x2a: /* XCERC */
3214 return s->xcer[2];
3215 case 0x2c: /* XCERD */
3216 return s->xcer[3];
3217 case 0x2e: /* RCERE */
3218 return s->rcer[4];
3219 case 0x30: /* RCERF */
3220 return s->rcer[5];
3221 case 0x32: /* XCERE */
3222 return s->xcer[4];
3223 case 0x34: /* XCERF */
3224 return s->xcer[5];
3225 case 0x36: /* RCERG */
3226 return s->rcer[6];
3227 case 0x38: /* RCERH */
3228 return s->rcer[7];
3229 case 0x3a: /* XCERG */
3230 return s->xcer[6];
3231 case 0x3c: /* XCERH */
3232 return s->xcer[7];
3235 OMAP_BAD_REG(addr);
3236 return 0;
3239 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3240 uint32_t value)
3242 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3243 int offset = addr & OMAP_MPUI_REG_MASK;
3245 switch (offset) {
3246 case 0x00: /* DRR2 */
3247 case 0x02: /* DRR1 */
3248 OMAP_RO_REG(addr);
3249 return;
3251 case 0x04: /* DXR2 */
3252 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3253 return;
3254 /* Fall through. */
3255 case 0x06: /* DXR1 */
3256 if (s->tx_req > 1) {
3257 s->tx_req -= 2;
3258 if (s->codec && s->codec->cts) {
3259 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3260 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3262 if (s->tx_req < 2)
3263 omap_mcbsp_tx_done(s);
3264 } else
3265 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3266 return;
3268 case 0x08: /* SPCR2 */
3269 s->spcr[1] &= 0x0002;
3270 s->spcr[1] |= 0x03f9 & value;
3271 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3272 if (~value & 1) /* XRST */
3273 s->spcr[1] &= ~6;
3274 omap_mcbsp_req_update(s);
3275 return;
3276 case 0x0a: /* SPCR1 */
3277 s->spcr[0] &= 0x0006;
3278 s->spcr[0] |= 0xf8f9 & value;
3279 if (value & (1 << 15)) /* DLB */
3280 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3281 if (~value & 1) { /* RRST */
3282 s->spcr[0] &= ~6;
3283 s->rx_req = 0;
3284 omap_mcbsp_rx_done(s);
3286 omap_mcbsp_req_update(s);
3287 return;
3289 case 0x0c: /* RCR2 */
3290 s->rcr[1] = value & 0xffff;
3291 return;
3292 case 0x0e: /* RCR1 */
3293 s->rcr[0] = value & 0x7fe0;
3294 return;
3295 case 0x10: /* XCR2 */
3296 s->xcr[1] = value & 0xffff;
3297 return;
3298 case 0x12: /* XCR1 */
3299 s->xcr[0] = value & 0x7fe0;
3300 return;
3301 case 0x14: /* SRGR2 */
3302 s->srgr[1] = value & 0xffff;
3303 omap_mcbsp_req_update(s);
3304 return;
3305 case 0x16: /* SRGR1 */
3306 s->srgr[0] = value & 0xffff;
3307 omap_mcbsp_req_update(s);
3308 return;
3309 case 0x18: /* MCR2 */
3310 s->mcr[1] = value & 0x03e3;
3311 if (value & 3) /* XMCM */
3312 printf("%s: Tx channel selection mode enable attempt\n",
3313 __FUNCTION__);
3314 return;
3315 case 0x1a: /* MCR1 */
3316 s->mcr[0] = value & 0x03e1;
3317 if (value & 1) /* RMCM */
3318 printf("%s: Rx channel selection mode enable attempt\n",
3319 __FUNCTION__);
3320 return;
3321 case 0x1c: /* RCERA */
3322 s->rcer[0] = value & 0xffff;
3323 return;
3324 case 0x1e: /* RCERB */
3325 s->rcer[1] = value & 0xffff;
3326 return;
3327 case 0x20: /* XCERA */
3328 s->xcer[0] = value & 0xffff;
3329 return;
3330 case 0x22: /* XCERB */
3331 s->xcer[1] = value & 0xffff;
3332 return;
3333 case 0x24: /* PCR0 */
3334 s->pcr = value & 0x7faf;
3335 return;
3336 case 0x26: /* RCERC */
3337 s->rcer[2] = value & 0xffff;
3338 return;
3339 case 0x28: /* RCERD */
3340 s->rcer[3] = value & 0xffff;
3341 return;
3342 case 0x2a: /* XCERC */
3343 s->xcer[2] = value & 0xffff;
3344 return;
3345 case 0x2c: /* XCERD */
3346 s->xcer[3] = value & 0xffff;
3347 return;
3348 case 0x2e: /* RCERE */
3349 s->rcer[4] = value & 0xffff;
3350 return;
3351 case 0x30: /* RCERF */
3352 s->rcer[5] = value & 0xffff;
3353 return;
3354 case 0x32: /* XCERE */
3355 s->xcer[4] = value & 0xffff;
3356 return;
3357 case 0x34: /* XCERF */
3358 s->xcer[5] = value & 0xffff;
3359 return;
3360 case 0x36: /* RCERG */
3361 s->rcer[6] = value & 0xffff;
3362 return;
3363 case 0x38: /* RCERH */
3364 s->rcer[7] = value & 0xffff;
3365 return;
3366 case 0x3a: /* XCERG */
3367 s->xcer[6] = value & 0xffff;
3368 return;
3369 case 0x3c: /* XCERH */
3370 s->xcer[7] = value & 0xffff;
3371 return;
3374 OMAP_BAD_REG(addr);
3377 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3378 uint32_t value)
3380 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3381 int offset = addr & OMAP_MPUI_REG_MASK;
3383 if (offset == 0x04) { /* DXR */
3384 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3385 return;
3386 if (s->tx_req > 3) {
3387 s->tx_req -= 4;
3388 if (s->codec && s->codec->cts) {
3389 s->codec->out.fifo[s->codec->out.len ++] =
3390 (value >> 24) & 0xff;
3391 s->codec->out.fifo[s->codec->out.len ++] =
3392 (value >> 16) & 0xff;
3393 s->codec->out.fifo[s->codec->out.len ++] =
3394 (value >> 8) & 0xff;
3395 s->codec->out.fifo[s->codec->out.len ++] =
3396 (value >> 0) & 0xff;
3398 if (s->tx_req < 4)
3399 omap_mcbsp_tx_done(s);
3400 } else
3401 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3402 return;
3405 omap_badwidth_write16(opaque, addr, value);
3408 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3409 uint64_t value, unsigned size)
3411 switch (size) {
3412 case 2: return omap_mcbsp_writeh(opaque, addr, value);
3413 case 4: return omap_mcbsp_writew(opaque, addr, value);
3414 default: return omap_badwidth_write16(opaque, addr, value);
3418 static const MemoryRegionOps omap_mcbsp_ops = {
3419 .read = omap_mcbsp_read,
3420 .write = omap_mcbsp_write,
3421 .endianness = DEVICE_NATIVE_ENDIAN,
3424 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3426 memset(&s->spcr, 0, sizeof(s->spcr));
3427 memset(&s->rcr, 0, sizeof(s->rcr));
3428 memset(&s->xcr, 0, sizeof(s->xcr));
3429 s->srgr[0] = 0x0001;
3430 s->srgr[1] = 0x2000;
3431 memset(&s->mcr, 0, sizeof(s->mcr));
3432 memset(&s->pcr, 0, sizeof(s->pcr));
3433 memset(&s->rcer, 0, sizeof(s->rcer));
3434 memset(&s->xcer, 0, sizeof(s->xcer));
3435 s->tx_req = 0;
3436 s->rx_req = 0;
3437 s->tx_rate = 0;
3438 s->rx_rate = 0;
3439 timer_del(s->source_timer);
3440 timer_del(s->sink_timer);
3443 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3444 hwaddr base,
3445 qemu_irq txirq, qemu_irq rxirq,
3446 qemu_irq *dma, omap_clk clk)
3448 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3449 g_malloc0(sizeof(struct omap_mcbsp_s));
3451 s->txirq = txirq;
3452 s->rxirq = rxirq;
3453 s->txdrq = dma[0];
3454 s->rxdrq = dma[1];
3455 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3456 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3457 omap_mcbsp_reset(s);
3459 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3460 memory_region_add_subregion(system_memory, base, &s->iomem);
3462 return s;
3465 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3467 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3469 if (s->rx_rate) {
3470 s->rx_req = s->codec->in.len;
3471 omap_mcbsp_rx_newdata(s);
3475 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3477 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3479 if (s->tx_rate) {
3480 s->tx_req = s->codec->out.size;
3481 omap_mcbsp_tx_newdata(s);
3485 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3487 s->codec = slave;
3488 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3489 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3492 /* LED Pulse Generators */
3493 struct omap_lpg_s {
3494 MemoryRegion iomem;
3495 QEMUTimer *tm;
3497 uint8_t control;
3498 uint8_t power;
3499 int64_t on;
3500 int64_t period;
3501 int clk;
3502 int cycle;
3505 static void omap_lpg_tick(void *opaque)
3507 struct omap_lpg_s *s = opaque;
3509 if (s->cycle)
3510 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3511 else
3512 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3514 s->cycle = !s->cycle;
3515 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3518 static void omap_lpg_update(struct omap_lpg_s *s)
3520 int64_t on, period = 1, ticks = 1000;
3521 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3523 if (~s->control & (1 << 6)) /* LPGRES */
3524 on = 0;
3525 else if (s->control & (1 << 7)) /* PERM_ON */
3526 on = period;
3527 else {
3528 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3529 256 / 32);
3530 on = (s->clk && s->power) ? muldiv64(ticks,
3531 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3534 timer_del(s->tm);
3535 if (on == period && s->on < s->period)
3536 printf("%s: LED is on\n", __FUNCTION__);
3537 else if (on == 0 && s->on)
3538 printf("%s: LED is off\n", __FUNCTION__);
3539 else if (on && (on != s->on || period != s->period)) {
3540 s->cycle = 0;
3541 s->on = on;
3542 s->period = period;
3543 omap_lpg_tick(s);
3544 return;
3547 s->on = on;
3548 s->period = period;
3551 static void omap_lpg_reset(struct omap_lpg_s *s)
3553 s->control = 0x00;
3554 s->power = 0x00;
3555 s->clk = 1;
3556 omap_lpg_update(s);
3559 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3560 unsigned size)
3562 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3563 int offset = addr & OMAP_MPUI_REG_MASK;
3565 if (size != 1) {
3566 return omap_badwidth_read8(opaque, addr);
3569 switch (offset) {
3570 case 0x00: /* LCR */
3571 return s->control;
3573 case 0x04: /* PMR */
3574 return s->power;
3577 OMAP_BAD_REG(addr);
3578 return 0;
3581 static void omap_lpg_write(void *opaque, hwaddr addr,
3582 uint64_t value, unsigned size)
3584 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3585 int offset = addr & OMAP_MPUI_REG_MASK;
3587 if (size != 1) {
3588 return omap_badwidth_write8(opaque, addr, value);
3591 switch (offset) {
3592 case 0x00: /* LCR */
3593 if (~value & (1 << 6)) /* LPGRES */
3594 omap_lpg_reset(s);
3595 s->control = value & 0xff;
3596 omap_lpg_update(s);
3597 return;
3599 case 0x04: /* PMR */
3600 s->power = value & 0x01;
3601 omap_lpg_update(s);
3602 return;
3604 default:
3605 OMAP_BAD_REG(addr);
3606 return;
3610 static const MemoryRegionOps omap_lpg_ops = {
3611 .read = omap_lpg_read,
3612 .write = omap_lpg_write,
3613 .endianness = DEVICE_NATIVE_ENDIAN,
3616 static void omap_lpg_clk_update(void *opaque, int line, int on)
3618 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3620 s->clk = on;
3621 omap_lpg_update(s);
3624 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3625 hwaddr base, omap_clk clk)
3627 struct omap_lpg_s *s = (struct omap_lpg_s *)
3628 g_malloc0(sizeof(struct omap_lpg_s));
3630 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3632 omap_lpg_reset(s);
3634 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3635 memory_region_add_subregion(system_memory, base, &s->iomem);
3637 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3639 return s;
3642 /* MPUI Peripheral Bridge configuration */
3643 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3644 unsigned size)
3646 if (size != 2) {
3647 return omap_badwidth_read16(opaque, addr);
3650 if (addr == OMAP_MPUI_BASE) /* CMR */
3651 return 0xfe4d;
3653 OMAP_BAD_REG(addr);
3654 return 0;
3657 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3658 uint64_t value, unsigned size)
3660 /* FIXME: infinite loop */
3661 omap_badwidth_write16(opaque, addr, value);
3664 static const MemoryRegionOps omap_mpui_io_ops = {
3665 .read = omap_mpui_io_read,
3666 .write = omap_mpui_io_write,
3667 .endianness = DEVICE_NATIVE_ENDIAN,
3670 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3671 struct omap_mpu_state_s *mpu)
3673 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3674 "omap-mpui-io", 0x7fff);
3675 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3676 &mpu->mpui_io_iomem);
3679 /* General chip reset */
3680 static void omap1_mpu_reset(void *opaque)
3682 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3684 omap_dma_reset(mpu->dma);
3685 omap_mpu_timer_reset(mpu->timer[0]);
3686 omap_mpu_timer_reset(mpu->timer[1]);
3687 omap_mpu_timer_reset(mpu->timer[2]);
3688 omap_wd_timer_reset(mpu->wdt);
3689 omap_os_timer_reset(mpu->os_timer);
3690 omap_lcdc_reset(mpu->lcd);
3691 omap_ulpd_pm_reset(mpu);
3692 omap_pin_cfg_reset(mpu);
3693 omap_mpui_reset(mpu);
3694 omap_tipb_bridge_reset(mpu->private_tipb);
3695 omap_tipb_bridge_reset(mpu->public_tipb);
3696 omap_dpll_reset(mpu->dpll[0]);
3697 omap_dpll_reset(mpu->dpll[1]);
3698 omap_dpll_reset(mpu->dpll[2]);
3699 omap_uart_reset(mpu->uart[0]);
3700 omap_uart_reset(mpu->uart[1]);
3701 omap_uart_reset(mpu->uart[2]);
3702 omap_mmc_reset(mpu->mmc);
3703 omap_mpuio_reset(mpu->mpuio);
3704 omap_uwire_reset(mpu->microwire);
3705 omap_pwl_reset(mpu->pwl);
3706 omap_pwt_reset(mpu->pwt);
3707 omap_rtc_reset(mpu->rtc);
3708 omap_mcbsp_reset(mpu->mcbsp1);
3709 omap_mcbsp_reset(mpu->mcbsp2);
3710 omap_mcbsp_reset(mpu->mcbsp3);
3711 omap_lpg_reset(mpu->led[0]);
3712 omap_lpg_reset(mpu->led[1]);
3713 omap_clkm_reset(mpu);
3714 cpu_reset(CPU(mpu->cpu));
3717 static const struct omap_map_s {
3718 hwaddr phys_dsp;
3719 hwaddr phys_mpu;
3720 uint32_t size;
3721 const char *name;
3722 } omap15xx_dsp_mm[] = {
3723 /* Strobe 0 */
3724 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3725 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3726 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3727 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3728 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3729 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3730 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3731 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3732 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3733 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3734 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3735 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3736 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3737 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3738 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3739 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3740 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3741 /* Strobe 1 */
3742 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3744 { 0 }
3747 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3748 const struct omap_map_s *map)
3750 MemoryRegion *io;
3752 for (; map->phys_dsp; map ++) {
3753 io = g_new(MemoryRegion, 1);
3754 memory_region_init_alias(io, NULL, map->name,
3755 system_memory, map->phys_mpu, map->size);
3756 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3760 void omap_mpu_wakeup(void *opaque, int irq, int req)
3762 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3763 CPUState *cpu = CPU(mpu->cpu);
3765 if (cpu->halted) {
3766 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3770 static const struct dma_irq_map omap1_dma_irq_map[] = {
3771 { 0, OMAP_INT_DMA_CH0_6 },
3772 { 0, OMAP_INT_DMA_CH1_7 },
3773 { 0, OMAP_INT_DMA_CH2_8 },
3774 { 0, OMAP_INT_DMA_CH3 },
3775 { 0, OMAP_INT_DMA_CH4 },
3776 { 0, OMAP_INT_DMA_CH5 },
3777 { 1, OMAP_INT_1610_DMA_CH6 },
3778 { 1, OMAP_INT_1610_DMA_CH7 },
3779 { 1, OMAP_INT_1610_DMA_CH8 },
3780 { 1, OMAP_INT_1610_DMA_CH9 },
3781 { 1, OMAP_INT_1610_DMA_CH10 },
3782 { 1, OMAP_INT_1610_DMA_CH11 },
3783 { 1, OMAP_INT_1610_DMA_CH12 },
3784 { 1, OMAP_INT_1610_DMA_CH13 },
3785 { 1, OMAP_INT_1610_DMA_CH14 },
3786 { 1, OMAP_INT_1610_DMA_CH15 }
3789 /* DMA ports for OMAP1 */
3790 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3791 hwaddr addr)
3793 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3796 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3797 hwaddr addr)
3799 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3800 addr);
3803 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3804 hwaddr addr)
3806 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3809 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3810 hwaddr addr)
3812 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3815 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3816 hwaddr addr)
3818 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3821 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3822 hwaddr addr)
3824 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3827 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3828 unsigned long sdram_size,
3829 const char *core)
3831 int i;
3832 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3833 g_malloc0(sizeof(struct omap_mpu_state_s));
3834 qemu_irq dma_irqs[6];
3835 DriveInfo *dinfo;
3836 SysBusDevice *busdev;
3838 if (!core)
3839 core = "ti925t";
3841 /* Core */
3842 s->mpu_model = omap310;
3843 s->cpu = cpu_arm_init(core);
3844 if (s->cpu == NULL) {
3845 fprintf(stderr, "Unable to find CPU definition\n");
3846 exit(1);
3848 s->sdram_size = sdram_size;
3849 s->sram_size = OMAP15XX_SRAM_SIZE;
3851 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3853 /* Clocks */
3854 omap_clk_init(s);
3856 /* Memory-mapped stuff */
3857 memory_region_init_ram(&s->emiff_ram, NULL, "omap1.dram", s->sdram_size);
3858 vmstate_register_ram_global(&s->emiff_ram);
3859 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3860 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size);
3861 vmstate_register_ram_global(&s->imif_ram);
3862 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3864 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3866 s->ih[0] = qdev_create(NULL, "omap-intc");
3867 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3868 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3869 qdev_init_nofail(s->ih[0]);
3870 busdev = SYS_BUS_DEVICE(s->ih[0]);
3871 sysbus_connect_irq(busdev, 0,
3872 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3873 sysbus_connect_irq(busdev, 1,
3874 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3875 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3876 s->ih[1] = qdev_create(NULL, "omap-intc");
3877 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3878 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3879 qdev_init_nofail(s->ih[1]);
3880 busdev = SYS_BUS_DEVICE(s->ih[1]);
3881 sysbus_connect_irq(busdev, 0,
3882 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3883 /* The second interrupt controller's FIQ output is not wired up */
3884 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3886 for (i = 0; i < 6; i++) {
3887 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3888 omap1_dma_irq_map[i].intr);
3890 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3891 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3892 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3894 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3895 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3896 s->port[imif ].addr_valid = omap_validate_imif_addr;
3897 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3898 s->port[local ].addr_valid = omap_validate_local_addr;
3899 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3901 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3902 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3903 OMAP_EMIFF_BASE, s->sdram_size);
3904 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3905 OMAP_IMIF_BASE, s->sram_size);
3907 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3908 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3909 omap_findclk(s, "mputim_ck"));
3910 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3911 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3912 omap_findclk(s, "mputim_ck"));
3913 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3914 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3915 omap_findclk(s, "mputim_ck"));
3917 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3918 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3919 omap_findclk(s, "armwdt_ck"));
3921 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3922 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3923 omap_findclk(s, "clk32-kHz"));
3925 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3926 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3927 omap_dma_get_lcdch(s->dma),
3928 omap_findclk(s, "lcd_ck"));
3930 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3931 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3932 omap_id_init(system_memory, s);
3934 omap_mpui_init(system_memory, 0xfffec900, s);
3936 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3937 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3938 omap_findclk(s, "tipb_ck"));
3939 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3940 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3941 omap_findclk(s, "tipb_ck"));
3943 omap_tcmi_init(system_memory, 0xfffecc00, s);
3945 s->uart[0] = omap_uart_init(0xfffb0000,
3946 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3947 omap_findclk(s, "uart1_ck"),
3948 omap_findclk(s, "uart1_ck"),
3949 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3950 "uart1",
3951 serial_hds[0]);
3952 s->uart[1] = omap_uart_init(0xfffb0800,
3953 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3954 omap_findclk(s, "uart2_ck"),
3955 omap_findclk(s, "uart2_ck"),
3956 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3957 "uart2",
3958 serial_hds[0] ? serial_hds[1] : NULL);
3959 s->uart[2] = omap_uart_init(0xfffb9800,
3960 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3961 omap_findclk(s, "uart3_ck"),
3962 omap_findclk(s, "uart3_ck"),
3963 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3964 "uart3",
3965 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3967 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3968 omap_findclk(s, "dpll1"));
3969 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3970 omap_findclk(s, "dpll2"));
3971 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3972 omap_findclk(s, "dpll3"));
3974 dinfo = drive_get(IF_SD, 0, 0);
3975 if (!dinfo) {
3976 fprintf(stderr, "qemu: missing SecureDigital device\n");
3977 exit(1);
3979 s->mmc = omap_mmc_init(0xfffb7800, system_memory, dinfo->bdrv,
3980 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3981 &s->drq[OMAP_DMA_MMC_TX],
3982 omap_findclk(s, "mmc_ck"));
3984 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3985 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3986 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3987 s->wakeup, omap_findclk(s, "clk32-kHz"));
3989 s->gpio = qdev_create(NULL, "omap-gpio");
3990 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3991 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
3992 qdev_init_nofail(s->gpio);
3993 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
3994 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3995 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
3997 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
3998 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
3999 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4000 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4002 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4003 omap_findclk(s, "armxor_ck"));
4004 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4005 omap_findclk(s, "armxor_ck"));
4007 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4008 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4009 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4010 qdev_init_nofail(s->i2c[0]);
4011 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4012 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4013 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4014 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4015 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4017 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4018 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4019 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4020 omap_findclk(s, "clk32-kHz"));
4022 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4023 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4024 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4025 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4026 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4027 qdev_get_gpio_in(s->ih[0],
4028 OMAP_INT_310_McBSP2_TX),
4029 qdev_get_gpio_in(s->ih[0],
4030 OMAP_INT_310_McBSP2_RX),
4031 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4032 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4033 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4034 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4035 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4037 s->led[0] = omap_lpg_init(system_memory,
4038 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4039 s->led[1] = omap_lpg_init(system_memory,
4040 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4042 /* Register mappings not currenlty implemented:
4043 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4044 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4045 * USB W2FC fffb4000 - fffb47ff
4046 * Camera Interface fffb6800 - fffb6fff
4047 * USB Host fffba000 - fffba7ff
4048 * FAC fffba800 - fffbafff
4049 * HDQ/1-Wire fffbc000 - fffbc7ff
4050 * TIPB switches fffbc800 - fffbcfff
4051 * Mailbox fffcf000 - fffcf7ff
4052 * Local bus IF fffec100 - fffec1ff
4053 * Local bus MMU fffec200 - fffec2ff
4054 * DSP MMU fffed200 - fffed2ff
4057 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4058 omap_setup_mpui_io(system_memory, s);
4060 qemu_register_reset(omap1_mpu_reset, s);
4062 return s;