4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
26 #define SIGNBIT (uint32_t)0x80000000
27 #define SIGNBIT64 ((uint64_t)1 << 63)
29 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
30 uint32_t syndrome
, uint32_t target_el
)
32 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
34 assert(!excp_is_internal(excp
));
35 cs
->exception_index
= excp
;
36 env
->exception
.syndrome
= syndrome
;
37 env
->exception
.target_el
= target_el
;
41 static int exception_target_el(CPUARMState
*env
)
43 int target_el
= MAX(1, arm_current_el(env
));
45 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
46 * to EL3 in this case.
48 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
55 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
56 uint32_t rn
, uint32_t maxindex
)
63 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
65 for (shift
= 0; shift
< 32; shift
+= 8) {
66 index
= (ireg
>> shift
) & 0xff;
67 if (index
< maxindex
) {
68 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
71 val
|= def
& (0xff << shift
);
77 #if !defined(CONFIG_USER_ONLY)
79 static inline uint32_t merge_syn_data_abort(uint32_t template_syn
,
80 unsigned int target_el
,
82 bool s1ptw
, bool is_write
,
87 /* ISV is only set for data aborts routed to EL2 and
88 * never for stage-1 page table walks faulting on stage 2.
90 * Furthermore, ISV is only set for certain kinds of load/stores.
91 * If the template syndrome does not have ISV set, we should leave
94 * See ARMv8 specs, D7-1974:
95 * ISS encoding for an exception from a Data Abort, the
98 if (!(template_syn
& ARM_EL_ISV
) || target_el
!= 2 || s1ptw
) {
99 syn
= syn_data_abort_no_iss(same_el
,
100 0, 0, s1ptw
, is_write
, fsc
);
102 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
103 * syndrome created at translation time.
104 * Now we create the runtime syndrome with the remaining fields.
106 syn
= syn_data_abort_with_iss(same_el
,
108 0, 0, s1ptw
, is_write
, fsc
,
110 /* Merge the runtime syndrome with the template syndrome. */
116 /* try to fill the TLB and return an exception if error. If retaddr is
117 * NULL, it means that the function was called in C code (i.e. not
118 * from generated code or from helper.c)
120 void tlb_fill(CPUState
*cs
, target_ulong addr
, MMUAccessType access_type
,
121 int mmu_idx
, uintptr_t retaddr
)
125 ARMMMUFaultInfo fi
= {};
127 ret
= arm_tlb_fill(cs
, addr
, access_type
, mmu_idx
, &fsr
, &fi
);
129 ARMCPU
*cpu
= ARM_CPU(cs
);
130 CPUARMState
*env
= &cpu
->env
;
132 unsigned int target_el
;
136 /* now we have a real cpu fault */
137 cpu_restore_state(cs
, retaddr
);
140 target_el
= exception_target_el(env
);
143 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
145 same_el
= arm_current_el(env
) == target_el
;
146 /* AArch64 syndrome does not have an LPAE bit */
147 syn
= fsr
& ~(1 << 9);
149 /* For insn and data aborts we assume there is no instruction syndrome
150 * information; this is always true for exceptions reported to EL1.
152 if (access_type
== MMU_INST_FETCH
) {
153 syn
= syn_insn_abort(same_el
, 0, fi
.s1ptw
, syn
);
154 exc
= EXCP_PREFETCH_ABORT
;
156 syn
= merge_syn_data_abort(env
->exception
.syndrome
, target_el
,
158 access_type
== MMU_DATA_STORE
, syn
);
159 if (access_type
== MMU_DATA_STORE
160 && arm_feature(env
, ARM_FEATURE_V6
)) {
163 exc
= EXCP_DATA_ABORT
;
166 env
->exception
.vaddress
= addr
;
167 env
->exception
.fsr
= fsr
;
168 raise_exception(env
, exc
, syn
, target_el
);
172 /* Raise a data fault alignment exception for the specified virtual address */
173 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
,
174 MMUAccessType access_type
,
175 int mmu_idx
, uintptr_t retaddr
)
177 ARMCPU
*cpu
= ARM_CPU(cs
);
178 CPUARMState
*env
= &cpu
->env
;
184 /* now we have a real cpu fault */
185 cpu_restore_state(cs
, retaddr
);
188 target_el
= exception_target_el(env
);
189 same_el
= (arm_current_el(env
) == target_el
);
191 env
->exception
.vaddress
= vaddr
;
193 /* the DFSR for an alignment fault depends on whether we're using
194 * the LPAE long descriptor format, or the short descriptor format
196 if (arm_s1_regime_using_lpae_format(env
, cpu_mmu_index(env
, false))) {
197 env
->exception
.fsr
= (1 << 9) | 0x21;
199 env
->exception
.fsr
= 0x1;
202 if (access_type
== MMU_DATA_STORE
&& arm_feature(env
, ARM_FEATURE_V6
)) {
203 env
->exception
.fsr
|= (1 << 11);
206 syn
= merge_syn_data_abort(env
->exception
.syndrome
, target_el
,
207 same_el
, 0, access_type
== MMU_DATA_STORE
,
209 raise_exception(env
, EXCP_DATA_ABORT
, syn
, target_el
);
212 #endif /* !defined(CONFIG_USER_ONLY) */
214 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
216 uint32_t res
= a
+ b
;
217 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
222 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
224 uint32_t res
= a
+ b
;
225 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
227 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
232 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
234 uint32_t res
= a
- b
;
235 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
237 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
242 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
245 if (val
>= 0x40000000) {
248 } else if (val
<= (int32_t)0xc0000000) {
257 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
259 uint32_t res
= a
+ b
;
267 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
269 uint32_t res
= a
- b
;
277 /* Signed saturation. */
278 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
284 mask
= (1u << shift
) - 1;
288 } else if (top
< -1) {
295 /* Unsigned saturation. */
296 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
300 max
= (1u << shift
) - 1;
304 } else if (val
> max
) {
311 /* Signed saturate. */
312 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
314 return do_ssat(env
, x
, shift
);
317 /* Dual halfword signed saturate. */
318 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
322 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
323 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
327 /* Unsigned saturate. */
328 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
330 return do_usat(env
, x
, shift
);
333 /* Dual halfword unsigned saturate. */
334 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
338 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
339 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
343 void HELPER(setend
)(CPUARMState
*env
)
345 env
->uncached_cpsr
^= CPSR_E
;
348 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
349 * The function returns the target EL (1-3) if the instruction is to be trapped;
350 * otherwise it returns 0 indicating it is not trapped.
352 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
354 int cur_el
= arm_current_el(env
);
357 /* If we are currently in EL0 then we need to check if SCTLR is set up for
358 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
360 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
363 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
364 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
365 /* Secure EL0 and Secure PL1 is at EL3 */
371 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
376 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
377 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
378 * bits will be zero indicating no trap.
380 if (cur_el
< 2 && !arm_is_secure(env
)) {
381 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
382 if (env
->cp15
.hcr_el2
& mask
) {
387 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
389 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
390 if (env
->cp15
.scr_el3
& mask
) {
398 void HELPER(wfi
)(CPUARMState
*env
)
400 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
401 int target_el
= check_wfx_trap(env
, false);
403 if (cpu_has_work(cs
)) {
404 /* Don't bother to go into our "low power state" if
405 * we would just wake up immediately.
412 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
415 cs
->exception_index
= EXCP_HLT
;
420 void HELPER(wfe
)(CPUARMState
*env
)
422 /* This is a hint instruction that is semantically different
423 * from YIELD even though we currently implement it identically.
424 * Don't actually halt the CPU, just yield back to top
425 * level loop. This is not going into a "low power state"
426 * (ie halting until some event occurs), so we never take
427 * a configurable trap to a different exception level.
432 void HELPER(yield
)(CPUARMState
*env
)
434 ARMCPU
*cpu
= arm_env_get_cpu(env
);
435 CPUState
*cs
= CPU(cpu
);
437 /* This is a non-trappable hint instruction that generally indicates
438 * that the guest is currently busy-looping. Yield control back to the
439 * top level loop so that a more deserving VCPU has a chance to run.
441 cs
->exception_index
= EXCP_YIELD
;
445 /* Raise an internal-to-QEMU exception. This is limited to only
446 * those EXCP values which are special cases for QEMU to interrupt
447 * execution and not to be used for exceptions which are passed to
448 * the guest (those must all have syndrome information and thus should
449 * use exception_with_syndrome).
451 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
453 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
455 assert(excp_is_internal(excp
));
456 cs
->exception_index
= excp
;
460 /* Raise an exception with the specified syndrome register value */
461 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
462 uint32_t syndrome
, uint32_t target_el
)
464 raise_exception(env
, excp
, syndrome
, target_el
);
467 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
469 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
472 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
474 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
477 /* Write the CPSR for a 32-bit exception return */
478 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
480 cpsr_write(env
, val
, CPSR_ERET_MASK
, CPSRWriteExceptionReturn
);
482 /* Generated code has already stored the new PC value, but
483 * without masking out its low bits, because which bits need
484 * masking depends on whether we're returning to Thumb or ARM
485 * state. Do the masking now.
487 env
->regs
[15] &= (env
->thumb
? ~1 : ~3);
489 arm_call_el_change_hook(arm_env_get_cpu(env
));
492 /* Access to user mode registers from privileged modes. */
493 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
498 val
= env
->banked_r13
[BANK_USRSYS
];
499 } else if (regno
== 14) {
500 val
= env
->banked_r14
[BANK_USRSYS
];
501 } else if (regno
>= 8
502 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
503 val
= env
->usr_regs
[regno
- 8];
505 val
= env
->regs
[regno
];
510 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
513 env
->banked_r13
[BANK_USRSYS
] = val
;
514 } else if (regno
== 14) {
515 env
->banked_r14
[BANK_USRSYS
] = val
;
516 } else if (regno
>= 8
517 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
518 env
->usr_regs
[regno
- 8] = val
;
520 env
->regs
[regno
] = val
;
524 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
526 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
529 env
->banked_r13
[bank_number(mode
)] = val
;
533 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
535 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
536 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
537 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
539 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
540 exception_target_el(env
));
543 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
544 return env
->regs
[13];
546 return env
->banked_r13
[bank_number(mode
)];
550 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
553 /* Raise an exception if the requested access is one of the UNPREDICTABLE
554 * cases; otherwise return. This broadly corresponds to the pseudocode
555 * BankedRegisterAccessValid() and SPSRAccessValid(),
556 * except that we have already handled some cases at translate time.
558 int curmode
= env
->uncached_cpsr
& CPSR_M
;
560 if (curmode
== tgtmode
) {
564 if (tgtmode
== ARM_CPU_MODE_USR
) {
567 if (curmode
!= ARM_CPU_MODE_FIQ
) {
572 if (curmode
== ARM_CPU_MODE_SYS
) {
577 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
586 if (tgtmode
== ARM_CPU_MODE_HYP
) {
588 case 17: /* ELR_Hyp */
589 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
594 if (curmode
!= ARM_CPU_MODE_MON
) {
604 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
605 exception_target_el(env
));
608 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
611 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
615 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
617 case 17: /* ELR_Hyp */
618 env
->elr_el
[2] = value
;
621 env
->banked_r13
[bank_number(tgtmode
)] = value
;
624 env
->banked_r14
[bank_number(tgtmode
)] = value
;
628 case ARM_CPU_MODE_USR
:
629 env
->usr_regs
[regno
- 8] = value
;
631 case ARM_CPU_MODE_FIQ
:
632 env
->fiq_regs
[regno
- 8] = value
;
635 g_assert_not_reached();
639 g_assert_not_reached();
643 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
645 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
649 return env
->banked_spsr
[bank_number(tgtmode
)];
650 case 17: /* ELR_Hyp */
651 return env
->elr_el
[2];
653 return env
->banked_r13
[bank_number(tgtmode
)];
655 return env
->banked_r14
[bank_number(tgtmode
)];
658 case ARM_CPU_MODE_USR
:
659 return env
->usr_regs
[regno
- 8];
660 case ARM_CPU_MODE_FIQ
:
661 return env
->fiq_regs
[regno
- 8];
663 g_assert_not_reached();
666 g_assert_not_reached();
670 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
,
673 const ARMCPRegInfo
*ri
= rip
;
676 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
677 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
678 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
685 switch (ri
->accessfn(env
, ri
, isread
)) {
689 target_el
= exception_target_el(env
);
691 case CP_ACCESS_TRAP_EL2
:
692 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
693 * a bug in the access function.
695 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
698 case CP_ACCESS_TRAP_EL3
:
701 case CP_ACCESS_TRAP_UNCATEGORIZED
:
702 target_el
= exception_target_el(env
);
703 syndrome
= syn_uncategorized();
705 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
707 syndrome
= syn_uncategorized();
709 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
711 syndrome
= syn_uncategorized();
713 case CP_ACCESS_TRAP_FP_EL2
:
715 /* Since we are an implementation that takes exceptions on a trapped
716 * conditional insn only if the insn has passed its condition code
717 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
718 * (which is also the required value for AArch64 traps).
720 syndrome
= syn_fp_access_trap(1, 0xe, false);
722 case CP_ACCESS_TRAP_FP_EL3
:
724 syndrome
= syn_fp_access_trap(1, 0xe, false);
727 g_assert_not_reached();
730 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
733 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
735 const ARMCPRegInfo
*ri
= rip
;
737 ri
->writefn(env
, ri
, value
);
740 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
742 const ARMCPRegInfo
*ri
= rip
;
744 return ri
->readfn(env
, ri
);
747 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
749 const ARMCPRegInfo
*ri
= rip
;
751 ri
->writefn(env
, ri
, value
);
754 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
756 const ARMCPRegInfo
*ri
= rip
;
758 return ri
->readfn(env
, ri
);
761 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
763 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
764 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
765 * to catch that case at translate time.
767 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
768 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
769 extract32(op
, 3, 3), 4,
771 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
775 case 0x05: /* SPSel */
776 update_spsel(env
, imm
);
778 case 0x1e: /* DAIFSet */
779 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
781 case 0x1f: /* DAIFClear */
782 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
785 g_assert_not_reached();
789 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
791 env
->pstate
&= ~PSTATE_SS
;
794 void HELPER(pre_hvc
)(CPUARMState
*env
)
796 ARMCPU
*cpu
= arm_env_get_cpu(env
);
797 int cur_el
= arm_current_el(env
);
798 /* FIXME: Use actual secure state. */
802 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
803 /* If PSCI is enabled and this looks like a valid PSCI call then
804 * that overrides the architecturally mandated HVC behaviour.
809 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
810 /* If EL2 doesn't exist, HVC always UNDEFs */
812 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
813 /* EL3.HCE has priority over EL2.HCD. */
814 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
816 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
819 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
820 * For ARMv8/AArch64, HVC is allowed in EL3.
821 * Note that we've already trapped HVC from EL0 at translation
824 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
829 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
830 exception_target_el(env
));
834 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
836 ARMCPU
*cpu
= arm_env_get_cpu(env
);
837 int cur_el
= arm_current_el(env
);
838 bool secure
= arm_is_secure(env
);
839 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
840 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
841 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
842 * extensions, SMD only applies to NS state.
843 * On ARMv7 without the Virtualization extensions, the SMD bit
844 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
845 * so we need not special case this here.
847 bool undef
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd
: smd
&& !secure
;
849 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
850 /* If PSCI is enabled and this looks like a valid PSCI call then
851 * that overrides the architecturally mandated SMC behaviour.
856 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
857 /* If we have no EL3 then SMC always UNDEFs */
859 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
860 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
861 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
865 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
866 exception_target_el(env
));
870 static int el_from_spsr(uint32_t spsr
)
872 /* Return the exception level that this SPSR is requesting a return to,
873 * or -1 if it is invalid (an illegal return)
875 if (spsr
& PSTATE_nRW
) {
876 switch (spsr
& CPSR_M
) {
877 case ARM_CPU_MODE_USR
:
879 case ARM_CPU_MODE_HYP
:
881 case ARM_CPU_MODE_FIQ
:
882 case ARM_CPU_MODE_IRQ
:
883 case ARM_CPU_MODE_SVC
:
884 case ARM_CPU_MODE_ABT
:
885 case ARM_CPU_MODE_UND
:
886 case ARM_CPU_MODE_SYS
:
888 case ARM_CPU_MODE_MON
:
889 /* Returning to Mon from AArch64 is never possible,
890 * so this is an illegal return.
896 if (extract32(spsr
, 1, 1)) {
897 /* Return with reserved M[1] bit set */
900 if (extract32(spsr
, 0, 4) == 1) {
901 /* return to EL0 with M[0] bit set */
904 return extract32(spsr
, 2, 2);
908 void HELPER(exception_return
)(CPUARMState
*env
)
910 int cur_el
= arm_current_el(env
);
911 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
912 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
914 bool return_to_aa64
= (spsr
& PSTATE_nRW
) == 0;
916 aarch64_save_sp(env
, cur_el
);
918 env
->exclusive_addr
= -1;
920 /* We must squash the PSTATE.SS bit to zero unless both of the
922 * 1. debug exceptions are currently disabled
923 * 2. singlestep will be active in the EL we return to
924 * We check 1 here and 2 after we've done the pstate/cpsr write() to
925 * transition to the EL we're going to.
927 if (arm_generate_debug_exceptions(env
)) {
931 new_el
= el_from_spsr(spsr
);
936 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
937 /* Disallow return to an EL which is unimplemented or higher
938 * than the current one.
943 if (new_el
!= 0 && arm_el_is_aa64(env
, new_el
) != return_to_aa64
) {
944 /* Return to an EL which is configured for a different register width */
948 if (new_el
== 2 && arm_is_secure_below_el3(env
)) {
949 /* Return to the non-existent secure-EL2 */
953 if (new_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TGE
)
954 && !arm_is_secure_below_el3(env
)) {
958 if (!return_to_aa64
) {
960 /* We do a raw CPSR write because aarch64_sync_64_to_32()
961 * will sort the register banks out for us, and we've already
962 * caught all the bad-mode cases in el_from_spsr().
964 cpsr_write(env
, spsr
, ~0, CPSRWriteRaw
);
965 if (!arm_singlestep_active(env
)) {
966 env
->uncached_cpsr
&= ~PSTATE_SS
;
968 aarch64_sync_64_to_32(env
);
971 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x1;
973 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x3;
977 pstate_write(env
, spsr
);
978 if (!arm_singlestep_active(env
)) {
979 env
->pstate
&= ~PSTATE_SS
;
981 aarch64_restore_sp(env
, new_el
);
982 env
->pc
= env
->elr_el
[cur_el
];
985 arm_call_el_change_hook(arm_env_get_cpu(env
));
990 /* Illegal return events of various kinds have architecturally
991 * mandated behaviour:
992 * restore NZCV and DAIF from SPSR_ELx
994 * restore PC from ELR_ELx
995 * no change to exception level, execution state or stack pointer
997 env
->pstate
|= PSTATE_IL
;
998 env
->pc
= env
->elr_el
[cur_el
];
999 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
1000 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
1001 pstate_write(env
, spsr
);
1002 if (!arm_singlestep_active(env
)) {
1003 env
->pstate
&= ~PSTATE_SS
;
1007 /* Return true if the linked breakpoint entry lbn passes its checks */
1008 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
1010 CPUARMState
*env
= &cpu
->env
;
1011 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
1012 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
1013 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
1015 uint32_t contextidr
;
1017 /* Links to unimplemented or non-context aware breakpoints are
1018 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1019 * as if linked to an UNKNOWN context-aware breakpoint (in which
1020 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1021 * We choose the former.
1023 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
1027 bcr
= env
->cp15
.dbgbcr
[lbn
];
1029 if (extract64(bcr
, 0, 1) == 0) {
1030 /* Linked breakpoint disabled : generate no events */
1034 bt
= extract64(bcr
, 20, 4);
1036 /* We match the whole register even if this is AArch32 using the
1037 * short descriptor format (in which case it holds both PROCID and ASID),
1038 * since we don't implement the optional v7 context ID masking.
1040 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
1043 case 3: /* linked context ID match */
1044 if (arm_current_el(env
) > 1) {
1045 /* Context matches never fire in EL2 or (AArch64) EL3 */
1048 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
1049 case 5: /* linked address mismatch (reserved in AArch64) */
1050 case 9: /* linked VMID match (reserved if no EL2) */
1051 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1053 /* Links to Unlinked context breakpoints must generate no
1054 * events; we choose to do the same for reserved values too.
1062 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
1064 CPUARMState
*env
= &cpu
->env
;
1066 int pac
, hmc
, ssc
, wt
, lbn
;
1067 /* Note that for watchpoints the check is against the CPU security
1068 * state, not the S/NS attribute on the offending data access.
1070 bool is_secure
= arm_is_secure(env
);
1071 int access_el
= arm_current_el(env
);
1074 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
1076 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
1079 cr
= env
->cp15
.dbgwcr
[n
];
1080 if (wp
->hitattrs
.user
) {
1081 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1082 * match watchpoints as if they were accesses done at EL0, even if
1083 * the CPU is at EL1 or higher.
1088 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1090 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
1093 cr
= env
->cp15
.dbgbcr
[n
];
1095 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1096 * enabled and that the address and access type match; for breakpoints
1097 * we know the address matched; check the remaining fields, including
1098 * linked breakpoints. We rely on WCR and BCR having the same layout
1099 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1100 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1101 * must act either like some valid combination or as if the watchpoint
1102 * were disabled. We choose the former, and use this together with
1103 * the fact that EL3 must always be Secure and EL2 must always be
1104 * Non-Secure to simplify the code slightly compared to the full
1105 * table in the ARM ARM.
1107 pac
= extract64(cr
, 1, 2);
1108 hmc
= extract64(cr
, 13, 1);
1109 ssc
= extract64(cr
, 14, 2);
1127 switch (access_el
) {
1135 if (extract32(pac
, 0, 1) == 0) {
1140 if (extract32(pac
, 1, 1) == 0) {
1145 g_assert_not_reached();
1148 wt
= extract64(cr
, 20, 1);
1149 lbn
= extract64(cr
, 16, 4);
1151 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
1158 static bool check_watchpoints(ARMCPU
*cpu
)
1160 CPUARMState
*env
= &cpu
->env
;
1163 /* If watchpoints are disabled globally or we can't take debug
1164 * exceptions here then watchpoint firings are ignored.
1166 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1167 || !arm_generate_debug_exceptions(env
)) {
1171 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
1172 if (bp_wp_matches(cpu
, n
, true)) {
1179 static bool check_breakpoints(ARMCPU
*cpu
)
1181 CPUARMState
*env
= &cpu
->env
;
1184 /* If breakpoints are disabled globally or we can't take debug
1185 * exceptions here then breakpoint firings are ignored.
1187 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1188 || !arm_generate_debug_exceptions(env
)) {
1192 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
1193 if (bp_wp_matches(cpu
, n
, false)) {
1200 void HELPER(check_breakpoints
)(CPUARMState
*env
)
1202 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1204 if (check_breakpoints(cpu
)) {
1205 HELPER(exception_internal(env
, EXCP_DEBUG
));
1209 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
)
1211 /* Called by core code when a CPU watchpoint fires; need to check if this
1212 * is also an architectural watchpoint match.
1214 ARMCPU
*cpu
= ARM_CPU(cs
);
1216 return check_watchpoints(cpu
);
1219 void arm_debug_excp_handler(CPUState
*cs
)
1221 /* Called by core code when a watchpoint or breakpoint fires;
1222 * need to check which one and raise the appropriate exception.
1224 ARMCPU
*cpu
= ARM_CPU(cs
);
1225 CPUARMState
*env
= &cpu
->env
;
1226 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
1229 if (wp_hit
->flags
& BP_CPU
) {
1230 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
1231 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
1233 cs
->watchpoint_hit
= NULL
;
1235 if (extended_addresses_enabled(env
)) {
1236 env
->exception
.fsr
= (1 << 9) | 0x22;
1238 env
->exception
.fsr
= 0x2;
1240 env
->exception
.vaddress
= wp_hit
->hitaddr
;
1241 raise_exception(env
, EXCP_DATA_ABORT
,
1242 syn_watchpoint(same_el
, 0, wnr
),
1243 arm_debug_target_el(env
));
1246 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1247 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
1249 /* (1) GDB breakpoints should be handled first.
1250 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1251 * since singlestep is also done by generating a debug internal
1254 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
1255 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
1259 if (extended_addresses_enabled(env
)) {
1260 env
->exception
.fsr
= (1 << 9) | 0x22;
1262 env
->exception
.fsr
= 0x2;
1264 /* FAR is UNKNOWN, so doesn't need setting */
1265 raise_exception(env
, EXCP_PREFETCH_ABORT
,
1266 syn_breakpoint(same_el
),
1267 arm_debug_target_el(env
));
1271 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1272 The only way to do that in TCG is a conditional branch, which clobbers
1273 all our temporaries. For now implement these as helper functions. */
1275 /* Similarly for variable shift instructions. */
1277 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1279 int shift
= i
& 0xff;
1286 } else if (shift
!= 0) {
1287 env
->CF
= (x
>> (32 - shift
)) & 1;
1293 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1295 int shift
= i
& 0xff;
1298 env
->CF
= (x
>> 31) & 1;
1302 } else if (shift
!= 0) {
1303 env
->CF
= (x
>> (shift
- 1)) & 1;
1309 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1311 int shift
= i
& 0xff;
1313 env
->CF
= (x
>> 31) & 1;
1314 return (int32_t)x
>> 31;
1315 } else if (shift
!= 0) {
1316 env
->CF
= (x
>> (shift
- 1)) & 1;
1317 return (int32_t)x
>> shift
;
1322 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1326 shift
= shift1
& 0x1f;
1329 env
->CF
= (x
>> 31) & 1;
1332 env
->CF
= (x
>> (shift
- 1)) & 1;
1333 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));