2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "../tcg-pool.c.inc"
27 #ifdef CONFIG_DEBUG_TCG
28 static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
29 #if TCG_TARGET_REG_BITS == 64
30 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
32 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
34 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
35 "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
36 #if TCG_TARGET_REG_BITS == 64
37 "%xmm8", "%xmm9", "%xmm10", "%xmm11",
38 "%xmm12", "%xmm13", "%xmm14", "%xmm15",
43 static const int tcg_target_reg_alloc_order[] = {
44 #if TCG_TARGET_REG_BITS == 64
76 /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
77 any of them. Therefore only allow xmm0-xmm5 to be allocated. */
80 #if TCG_TARGET_REG_BITS == 64
93 static const int tcg_target_call_iarg_regs[] = {
94 #if TCG_TARGET_REG_BITS == 64
107 /* 32 bit mode uses stack based calling convention (GCC default). */
111 static const int tcg_target_call_oarg_regs[] = {
113 #if TCG_TARGET_REG_BITS == 32
118 /* Constants we accept. */
119 #define TCG_CT_CONST_S32 0x100
120 #define TCG_CT_CONST_U32 0x200
121 #define TCG_CT_CONST_I32 0x400
122 #define TCG_CT_CONST_WSZ 0x800
124 /* Registers used with L constraint, which are the first argument
125 registers on x86_64, and two random call clobbered registers on
127 #if TCG_TARGET_REG_BITS == 64
128 # define TCG_REG_L0 tcg_target_call_iarg_regs[0]
129 # define TCG_REG_L1 tcg_target_call_iarg_regs[1]
131 # define TCG_REG_L0 TCG_REG_EAX
132 # define TCG_REG_L1 TCG_REG_EDX
135 /* The host compiler should supply <cpuid.h> to enable runtime features
136 detection, as we're not going to go so far as our own inline assembly.
137 If not available, default values will be assumed. */
138 #if defined(CONFIG_CPUID_H)
139 #include "qemu/cpuid.h"
142 /* For 64-bit, we always know that CMOV is available. */
143 #if TCG_TARGET_REG_BITS == 64
145 #elif defined(CONFIG_CPUID_H)
146 static bool have_cmov;
151 /* We need these symbols in tcg-target.h, and we can't properly conditionalize
152 it there. Therefore we always define the variable. */
158 #ifdef CONFIG_CPUID_H
159 static bool have_movbe;
160 static bool have_bmi2;
161 static bool have_lzcnt;
163 # define have_movbe 0
165 # define have_lzcnt 0
168 static tcg_insn_unit *tb_ret_addr;
170 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
171 intptr_t value, intptr_t addend)
176 value -= (uintptr_t)code_ptr;
177 if (value != (int32_t)value) {
182 tcg_patch32(code_ptr, value);
185 value -= (uintptr_t)code_ptr;
186 if (value != (int8_t)value) {
189 tcg_patch8(code_ptr, value);
197 #if TCG_TARGET_REG_BITS == 64
198 #define ALL_GENERAL_REGS 0x0000ffffu
199 #define ALL_VECTOR_REGS 0xffff0000u
201 #define ALL_GENERAL_REGS 0x000000ffu
202 #define ALL_VECTOR_REGS 0x00ff0000u
205 /* parse target specific constraints */
206 static const char *target_parse_constraint(TCGArgConstraint *ct,
207 const char *ct_str, TCGType type)
211 tcg_regset_set_reg(ct->regs, TCG_REG_EAX);
214 tcg_regset_set_reg(ct->regs, TCG_REG_EBX);
217 tcg_regset_set_reg(ct->regs, TCG_REG_ECX);
220 tcg_regset_set_reg(ct->regs, TCG_REG_EDX);
223 tcg_regset_set_reg(ct->regs, TCG_REG_ESI);
226 tcg_regset_set_reg(ct->regs, TCG_REG_EDI);
229 /* A register that can be used as a byte operand. */
230 ct->regs = TCG_TARGET_REG_BITS == 64 ? 0xffff : 0xf;
233 /* A register with an addressable second byte (e.g. %ah). */
237 /* A general register. */
238 ct->regs |= ALL_GENERAL_REGS;
241 /* With TZCNT/LZCNT, we can have operand-size as an input. */
242 ct->ct |= TCG_CT_CONST_WSZ;
245 /* A vector register. */
246 ct->regs |= ALL_VECTOR_REGS;
249 /* qemu_ld/st address constraint */
251 ct->regs = TCG_TARGET_REG_BITS == 64 ? 0xffff : 0xff;
252 tcg_regset_reset_reg(ct->regs, TCG_REG_L0);
253 tcg_regset_reset_reg(ct->regs, TCG_REG_L1);
257 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_S32);
260 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_U32);
263 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_I32);
272 /* test if a constant matches the constraint */
273 static inline int tcg_target_const_match(tcg_target_long val, TCGType type,
274 const TCGArgConstraint *arg_ct)
277 if (ct & TCG_CT_CONST) {
280 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
283 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
286 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
289 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
295 # define LOWREGMASK(x) ((x) & 7)
297 #define P_EXT 0x100 /* 0x0f opcode prefix */
298 #define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */
299 #define P_DATA16 0x400 /* 0x66 opcode prefix */
300 #if TCG_TARGET_REG_BITS == 64
301 # define P_REXW 0x1000 /* Set REX.W = 1 */
302 # define P_REXB_R 0x2000 /* REG field as byte register */
303 # define P_REXB_RM 0x4000 /* R/M field as byte register */
304 # define P_GS 0x8000 /* gs segment override */
311 #define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */
312 #define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */
313 #define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */
314 #define P_VEXL 0x80000 /* Set VEX.L = 1 */
316 #define OPC_ARITH_EvIz (0x81)
317 #define OPC_ARITH_EvIb (0x83)
318 #define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */
319 #define OPC_ANDN (0xf2 | P_EXT38)
320 #define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3))
321 #define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3))
322 #define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16)
323 #define OPC_BSF (0xbc | P_EXT)
324 #define OPC_BSR (0xbd | P_EXT)
325 #define OPC_BSWAP (0xc8 | P_EXT)
326 #define OPC_CALL_Jz (0xe8)
327 #define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */
328 #define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3))
329 #define OPC_DEC_r32 (0x48)
330 #define OPC_IMUL_GvEv (0xaf | P_EXT)
331 #define OPC_IMUL_GvEvIb (0x6b)
332 #define OPC_IMUL_GvEvIz (0x69)
333 #define OPC_INC_r32 (0x40)
334 #define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */
335 #define OPC_JCC_short (0x70) /* ... plus condition code */
336 #define OPC_JMP_long (0xe9)
337 #define OPC_JMP_short (0xeb)
338 #define OPC_LEA (0x8d)
339 #define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3)
340 #define OPC_MOVB_EvGv (0x88) /* stores, more or less */
341 #define OPC_MOVL_EvGv (0x89) /* stores, more or less */
342 #define OPC_MOVL_GvEv (0x8b) /* loads, more or less */
343 #define OPC_MOVB_EvIz (0xc6)
344 #define OPC_MOVL_EvIz (0xc7)
345 #define OPC_MOVL_Iv (0xb8)
346 #define OPC_MOVBE_GyMy (0xf0 | P_EXT38)
347 #define OPC_MOVBE_MyGy (0xf1 | P_EXT38)
348 #define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16)
349 #define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16)
350 #define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2)
351 #define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
352 #define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
353 #define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
354 #define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
355 #define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3)
356 #define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16)
357 #define OPC_MOVSBL (0xbe | P_EXT)
358 #define OPC_MOVSWL (0xbf | P_EXT)
359 #define OPC_MOVSLQ (0x63 | P_REXW)
360 #define OPC_MOVZBL (0xb6 | P_EXT)
361 #define OPC_MOVZWL (0xb7 | P_EXT)
362 #define OPC_PABSB (0x1c | P_EXT38 | P_DATA16)
363 #define OPC_PABSW (0x1d | P_EXT38 | P_DATA16)
364 #define OPC_PABSD (0x1e | P_EXT38 | P_DATA16)
365 #define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16)
366 #define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16)
367 #define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16)
368 #define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16)
369 #define OPC_PADDB (0xfc | P_EXT | P_DATA16)
370 #define OPC_PADDW (0xfd | P_EXT | P_DATA16)
371 #define OPC_PADDD (0xfe | P_EXT | P_DATA16)
372 #define OPC_PADDQ (0xd4 | P_EXT | P_DATA16)
373 #define OPC_PADDSB (0xec | P_EXT | P_DATA16)
374 #define OPC_PADDSW (0xed | P_EXT | P_DATA16)
375 #define OPC_PADDUB (0xdc | P_EXT | P_DATA16)
376 #define OPC_PADDUW (0xdd | P_EXT | P_DATA16)
377 #define OPC_PAND (0xdb | P_EXT | P_DATA16)
378 #define OPC_PANDN (0xdf | P_EXT | P_DATA16)
379 #define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16)
380 #define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16)
381 #define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16)
382 #define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16)
383 #define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16)
384 #define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16)
385 #define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16)
386 #define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16)
387 #define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16)
388 #define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16)
389 #define OPC_PMAXSW (0xee | P_EXT | P_DATA16)
390 #define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16)
391 #define OPC_PMAXUB (0xde | P_EXT | P_DATA16)
392 #define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16)
393 #define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16)
394 #define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16)
395 #define OPC_PMINSW (0xea | P_EXT | P_DATA16)
396 #define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16)
397 #define OPC_PMINUB (0xda | P_EXT | P_DATA16)
398 #define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16)
399 #define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16)
400 #define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16)
401 #define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16)
402 #define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16)
403 #define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16)
404 #define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16)
405 #define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16)
406 #define OPC_PMULLW (0xd5 | P_EXT | P_DATA16)
407 #define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16)
408 #define OPC_POR (0xeb | P_EXT | P_DATA16)
409 #define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16)
410 #define OPC_PSHUFD (0x70 | P_EXT | P_DATA16)
411 #define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2)
412 #define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3)
413 #define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
414 #define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /2 /6 /4 */
415 #define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
416 #define OPC_PSLLW (0xf1 | P_EXT | P_DATA16)
417 #define OPC_PSLLD (0xf2 | P_EXT | P_DATA16)
418 #define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16)
419 #define OPC_PSRAW (0xe1 | P_EXT | P_DATA16)
420 #define OPC_PSRAD (0xe2 | P_EXT | P_DATA16)
421 #define OPC_PSRLW (0xd1 | P_EXT | P_DATA16)
422 #define OPC_PSRLD (0xd2 | P_EXT | P_DATA16)
423 #define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16)
424 #define OPC_PSUBB (0xf8 | P_EXT | P_DATA16)
425 #define OPC_PSUBW (0xf9 | P_EXT | P_DATA16)
426 #define OPC_PSUBD (0xfa | P_EXT | P_DATA16)
427 #define OPC_PSUBQ (0xfb | P_EXT | P_DATA16)
428 #define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16)
429 #define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16)
430 #define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16)
431 #define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16)
432 #define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16)
433 #define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16)
434 #define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16)
435 #define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16)
436 #define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16)
437 #define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16)
438 #define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16)
439 #define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16)
440 #define OPC_PXOR (0xef | P_EXT | P_DATA16)
441 #define OPC_POP_r32 (0x58)
442 #define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3)
443 #define OPC_PUSH_r32 (0x50)
444 #define OPC_PUSH_Iv (0x68)
445 #define OPC_PUSH_Ib (0x6a)
446 #define OPC_RET (0xc3)
447 #define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
448 #define OPC_SHIFT_1 (0xd1)
449 #define OPC_SHIFT_Ib (0xc1)
450 #define OPC_SHIFT_cl (0xd3)
451 #define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3)
452 #define OPC_SHUFPS (0xc6 | P_EXT)
453 #define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16)
454 #define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2)
455 #define OPC_SHRD_Ib (0xac | P_EXT)
456 #define OPC_TESTL (0x85)
457 #define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3)
458 #define OPC_UD2 (0x0b | P_EXT)
459 #define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16)
460 #define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16)
461 #define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16)
462 #define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16)
463 #define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
464 #define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
465 #define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
466 #define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
467 #define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
468 #define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
469 #define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_REXW)
470 #define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
471 #define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16)
472 #define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_REXW)
473 #define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16)
474 #define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16)
475 #define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_REXW)
476 #define OPC_VZEROUPPER (0x77 | P_EXT)
477 #define OPC_XCHG_ax_r32 (0x90)
479 #define OPC_GRP3_Ev (0xf7)
480 #define OPC_GRP5 (0xff)
481 #define OPC_GRP14 (0x73 | P_EXT | P_DATA16)
483 /* Group 1 opcode extensions for 0x80-0x83.
484 These are also used as modifiers for OPC_ARITH. */
494 /* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */
501 /* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */
509 /* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */
510 #define EXT5_INC_Ev 0
511 #define EXT5_DEC_Ev 1
512 #define EXT5_CALLN_Ev 2
513 #define EXT5_JMPN_Ev 4
515 /* Condition codes to be added to OPC_JCC_{long,short}. */
534 static const uint8_t tcg_cond_to_jcc[] = {
535 [TCG_COND_EQ] = JCC_JE,
536 [TCG_COND_NE] = JCC_JNE,
537 [TCG_COND_LT] = JCC_JL,
538 [TCG_COND_GE] = JCC_JGE,
539 [TCG_COND_LE] = JCC_JLE,
540 [TCG_COND_GT] = JCC_JG,
541 [TCG_COND_LTU] = JCC_JB,
542 [TCG_COND_GEU] = JCC_JAE,
543 [TCG_COND_LEU] = JCC_JBE,
544 [TCG_COND_GTU] = JCC_JA,
547 #if TCG_TARGET_REG_BITS == 64
548 static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
555 if (opc & P_DATA16) {
556 /* We should never be asking for both 16 and 64-bit operation. */
557 tcg_debug_assert((opc & P_REXW) == 0);
560 if (opc & P_SIMDF3) {
562 } else if (opc & P_SIMDF2) {
567 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */
568 rex |= (r & 8) >> 1; /* REX.R */
569 rex |= (x & 8) >> 2; /* REX.X */
570 rex |= (rm & 8) >> 3; /* REX.B */
572 /* P_REXB_{R,RM} indicates that the given register is the low byte.
573 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
574 as otherwise the encoding indicates %[abcd]h. Note that the values
575 that are ORed in merely indicate that the REX byte must be present;
576 those bits get discarded in output. */
577 rex |= opc & (r >= 4 ? P_REXB_R : 0);
578 rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
581 tcg_out8(s, (uint8_t)(rex | 0x40));
584 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
588 } else if (opc & P_EXT3A) {
596 static void tcg_out_opc(TCGContext *s, int opc)
598 if (opc & P_DATA16) {
601 if (opc & P_SIMDF3) {
603 } else if (opc & P_SIMDF2) {
606 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
610 } else if (opc & P_EXT3A) {
616 /* Discard the register arguments to tcg_out_opc early, so as not to penalize
617 the 32-bit compilation paths. This method works with all versions of gcc,
618 whereas relying on optimization may not be able to exclude them. */
619 #define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc)
622 static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
624 tcg_out_opc(s, opc, r, rm, 0);
625 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
628 static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
633 /* Use the two byte form if possible, which cannot encode
634 VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */
635 if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_REXW)) == P_EXT
636 && ((rm | index) & 8) == 0) {
637 /* Two byte VEX prefix. */
640 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */
642 /* Three byte VEX prefix. */
648 } else if (opc & P_EXT38) {
650 } else if (opc & P_EXT) {
653 g_assert_not_reached();
655 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */
656 tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */
657 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */
660 tmp = (opc & P_REXW ? 0x80 : 0); /* VEX.W */
663 tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */
665 if (opc & P_DATA16) {
667 } else if (opc & P_SIMDF3) {
669 } else if (opc & P_SIMDF2) {
672 tmp |= (~v & 15) << 3; /* VEX.vvvv */
677 static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
679 tcg_out_vex_opc(s, opc, r, v, rm, 0);
680 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
683 /* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
684 We handle either RM and INDEX missing with a negative value. In 64-bit
685 mode for absolute addresses, ~RM is the size of the immediate operand
686 that will follow the instruction. */
688 static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
689 int shift, intptr_t offset)
693 if (index < 0 && rm < 0) {
694 if (TCG_TARGET_REG_BITS == 64) {
695 /* Try for a rip-relative addressing mode. This has replaced
696 the 32-bit-mode absolute addressing encoding. */
697 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
698 intptr_t disp = offset - pc;
699 if (disp == (int32_t)disp) {
700 tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
705 /* Try for an absolute address encoding. This requires the
706 use of the MODRM+SIB encoding and is therefore larger than
707 rip-relative addressing. */
708 if (offset == (int32_t)offset) {
709 tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
710 tcg_out8(s, (4 << 3) | 5);
711 tcg_out32(s, offset);
715 /* ??? The memory isn't directly addressable. */
716 g_assert_not_reached();
718 /* Absolute address. */
719 tcg_out8(s, (r << 3) | 5);
720 tcg_out32(s, offset);
725 /* Find the length of the immediate addend. Note that the encoding
726 that would be used for (%ebp) indicates absolute addressing. */
728 mod = 0, len = 4, rm = 5;
729 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
731 } else if (offset == (int8_t)offset) {
737 /* Use a single byte MODRM format if possible. Note that the encoding
738 that would be used for %esp is the escape to the two byte form. */
739 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
740 /* Single byte MODRM format. */
741 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
743 /* Two byte MODRM+SIB format. */
745 /* Note that the encoding that would place %esp into the index
746 field indicates no index register. In 64-bit mode, the REX.X
747 bit counts, so %r12 can be used as the index. */
751 tcg_debug_assert(index != TCG_REG_ESP);
754 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
755 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
760 } else if (len == 4) {
761 tcg_out32(s, offset);
765 static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
766 int index, int shift, intptr_t offset)
768 tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
769 tcg_out_sib_offset(s, r, rm, index, shift, offset);
772 static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
773 int rm, int index, int shift,
776 tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
777 tcg_out_sib_offset(s, r, rm, index, shift, offset);
780 /* A simplification of the above with no index or shift. */
781 static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
782 int rm, intptr_t offset)
784 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
787 static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
788 int v, int rm, intptr_t offset)
790 tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
793 /* Output an opcode with an expected reference to the constant pool. */
794 static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
796 tcg_out_opc(s, opc, r, 0, 0);
797 /* Absolute for 32-bit, pc-relative for 64-bit. */
798 tcg_out8(s, LOWREGMASK(r) << 3 | 5);
802 /* Output an opcode with an expected reference to the constant pool. */
803 static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
805 tcg_out_vex_opc(s, opc, r, 0, 0, 0);
806 /* Absolute for 32-bit, pc-relative for 64-bit. */
807 tcg_out8(s, LOWREGMASK(r) << 3 | 5);
811 /* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */
812 static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
814 /* Propagate an opcode prefix, such as P_REXW. */
815 int ext = subop & ~0x7;
818 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
821 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
835 tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
837 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
841 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
843 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
849 tcg_debug_assert(ret >= 16 && arg >= 16);
850 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
853 tcg_debug_assert(ret >= 16 && arg >= 16);
854 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
857 tcg_debug_assert(ret >= 16 && arg >= 16);
858 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
862 g_assert_not_reached();
867 static const int avx2_dup_insn[4] = {
868 OPC_VPBROADCASTB, OPC_VPBROADCASTW,
869 OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
872 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
876 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
877 tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a);
881 /* ??? With zero in a register, use PSHUFB. */
882 tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
886 tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
890 tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
891 /* imm8 operand: all output lanes selected from input lane 0. */
895 tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
898 g_assert_not_reached();
904 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
905 TCGReg r, TCGReg base, intptr_t offset)
908 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
909 tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
914 tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
917 tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
920 tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
921 tcg_out8(s, 0); /* imm8 */
922 tcg_out_dup_vec(s, type, vece, r, r);
925 tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
926 tcg_out8(s, 0); /* imm8 */
927 tcg_out_dup_vec(s, type, vece, r, r);
930 g_assert_not_reached();
936 static void tcg_out_dupi_vec(TCGContext *s, TCGType type,
937 TCGReg ret, tcg_target_long arg)
939 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
942 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
946 tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
950 if (TCG_TARGET_REG_BITS == 64) {
951 if (type == TCG_TYPE_V64) {
952 tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
953 } else if (have_avx2) {
954 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
956 tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
958 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
961 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
963 tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
965 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
969 static void tcg_out_movi(TCGContext *s, TCGType type,
970 TCGReg ret, tcg_target_long arg)
972 tcg_target_long diff;
976 #if TCG_TARGET_REG_BITS == 64
986 tcg_debug_assert(ret >= 16);
987 tcg_out_dupi_vec(s, type, ret, arg);
990 g_assert_not_reached();
994 tgen_arithr(s, ARITH_XOR, ret, ret);
997 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
998 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1002 if (arg == (int32_t)arg) {
1003 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1008 /* Try a 7 byte pc-relative lea before the 10 byte movq. */
1009 diff = arg - ((uintptr_t)s->code_ptr + 7);
1010 if (diff == (int32_t)diff) {
1011 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1012 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1017 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1021 static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1023 if (val == (int8_t)val) {
1024 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1026 } else if (val == (int32_t)val) {
1027 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1034 static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1036 /* Given the strength of x86 memory ordering, we only need care for
1037 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is
1038 faster than "mfence", so don't bother with the sse insn. */
1039 if (a0 & TCG_MO_ST_LD) {
1041 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1046 static inline void tcg_out_push(TCGContext *s, int reg)
1048 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1051 static inline void tcg_out_pop(TCGContext *s, int reg)
1053 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1056 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1057 TCGReg arg1, intptr_t arg2)
1062 tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1064 tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1069 tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1074 /* There is no instruction that can validate 8-byte alignment. */
1075 tcg_debug_assert(ret >= 16);
1076 tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1080 * The gvec infrastructure is asserts that v128 vector loads
1081 * and stores use a 16-byte aligned offset. Validate that the
1082 * final pointer is aligned by using an insn that will SIGSEGV.
1084 tcg_debug_assert(ret >= 16);
1085 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1089 * The gvec infrastructure only requires 16-byte alignment,
1090 * so here we must use an unaligned load.
1092 tcg_debug_assert(ret >= 16);
1093 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1094 ret, 0, arg1, arg2);
1097 g_assert_not_reached();
1101 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1102 TCGReg arg1, intptr_t arg2)
1107 tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1109 tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1114 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1119 /* There is no instruction that can validate 8-byte alignment. */
1120 tcg_debug_assert(arg >= 16);
1121 tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1125 * The gvec infrastructure is asserts that v128 vector loads
1126 * and stores use a 16-byte aligned offset. Validate that the
1127 * final pointer is aligned by using an insn that will SIGSEGV.
1129 tcg_debug_assert(arg >= 16);
1130 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1134 * The gvec infrastructure only requires 16-byte alignment,
1135 * so here we must use an unaligned store.
1137 tcg_debug_assert(arg >= 16);
1138 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1139 arg, 0, arg1, arg2);
1142 g_assert_not_reached();
1146 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1147 TCGReg base, intptr_t ofs)
1150 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1151 if (val != (int32_t)val) {
1155 } else if (type != TCG_TYPE_I32) {
1158 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1163 static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1165 /* Propagate an opcode prefix, such as P_DATA16. */
1166 int ext = subopc & ~0x7;
1170 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1172 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1177 static inline void tcg_out_bswap32(TCGContext *s, int reg)
1179 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1182 static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1184 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1187 static inline void tcg_out_ext8u(TCGContext *s, int dest, int src)
1190 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1191 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1194 static void tcg_out_ext8s(TCGContext *s, int dest, int src, int rexw)
1197 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1198 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1201 static inline void tcg_out_ext16u(TCGContext *s, int dest, int src)
1204 tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1207 static inline void tcg_out_ext16s(TCGContext *s, int dest, int src, int rexw)
1210 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1213 static inline void tcg_out_ext32u(TCGContext *s, int dest, int src)
1215 /* 32-bit mov zero extends. */
1216 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1219 static inline void tcg_out_ext32s(TCGContext *s, int dest, int src)
1221 tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1224 static inline void tcg_out_bswap64(TCGContext *s, int reg)
1226 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1229 static void tgen_arithi(TCGContext *s, int c, int r0,
1230 tcg_target_long val, int cf)
1234 if (TCG_TARGET_REG_BITS == 64) {
1239 /* ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1240 partial flags update stalls on Pentium4 and are not recommended
1241 by current Intel optimization manuals. */
1242 if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) {
1243 int is_inc = (c == ARITH_ADD) ^ (val < 0);
1244 if (TCG_TARGET_REG_BITS == 64) {
1245 /* The single-byte increment encodings are re-tasked as the
1246 REX prefixes. Use the MODRM encoding. */
1247 tcg_out_modrm(s, OPC_GRP5 + rexw,
1248 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1250 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1255 if (c == ARITH_AND) {
1256 if (TCG_TARGET_REG_BITS == 64) {
1257 if (val == 0xffffffffu) {
1258 tcg_out_ext32u(s, r0, r0);
1261 if (val == (uint32_t)val) {
1262 /* AND with no high bits set can use a 32-bit operation. */
1266 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1267 tcg_out_ext8u(s, r0, r0);
1270 if (val == 0xffffu) {
1271 tcg_out_ext16u(s, r0, r0);
1276 if (val == (int8_t)val) {
1277 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1281 if (rexw == 0 || val == (int32_t)val) {
1282 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1290 static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1293 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1297 /* Use SMALL != 0 to force a short forward branch. */
1298 static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, int small)
1303 val = tcg_pcrel_diff(s, l->u.value_ptr);
1305 if ((int8_t)val1 == val1) {
1307 tcg_out8(s, OPC_JMP_short);
1309 tcg_out8(s, OPC_JCC_short + opc);
1317 tcg_out8(s, OPC_JMP_long);
1318 tcg_out32(s, val - 5);
1320 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1321 tcg_out32(s, val - 6);
1326 tcg_out8(s, OPC_JMP_short);
1328 tcg_out8(s, OPC_JCC_short + opc);
1330 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1334 tcg_out8(s, OPC_JMP_long);
1336 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1338 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1343 static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2,
1344 int const_arg2, int rexw)
1349 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1351 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1354 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1358 static void tcg_out_brcond32(TCGContext *s, TCGCond cond,
1359 TCGArg arg1, TCGArg arg2, int const_arg2,
1360 TCGLabel *label, int small)
1362 tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1363 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1366 #if TCG_TARGET_REG_BITS == 64
1367 static void tcg_out_brcond64(TCGContext *s, TCGCond cond,
1368 TCGArg arg1, TCGArg arg2, int const_arg2,
1369 TCGLabel *label, int small)
1371 tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1372 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1375 /* XXX: we implement it at the target level to avoid having to
1376 handle cross basic blocks temporaries */
1377 static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1378 const int *const_args, int small)
1380 TCGLabel *label_next = gen_new_label();
1381 TCGLabel *label_this = arg_label(args[5]);
1385 tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
1387 tcg_out_brcond32(s, TCG_COND_EQ, args[1], args[3], const_args[3],
1391 tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
1393 tcg_out_brcond32(s, TCG_COND_NE, args[1], args[3], const_args[3],
1397 tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
1399 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1400 tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1404 tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
1406 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1407 tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1411 tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1413 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1414 tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1418 tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1420 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1421 tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1425 tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1427 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1428 tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1432 tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1434 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1435 tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1439 tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1441 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1442 tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1446 tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1448 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1449 tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1455 tcg_out_label(s, label_next, s->code_ptr);
1459 static void tcg_out_setcond32(TCGContext *s, TCGCond cond, TCGArg dest,
1460 TCGArg arg1, TCGArg arg2, int const_arg2)
1462 tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1463 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1464 tcg_out_ext8u(s, dest, dest);
1467 #if TCG_TARGET_REG_BITS == 64
1468 static void tcg_out_setcond64(TCGContext *s, TCGCond cond, TCGArg dest,
1469 TCGArg arg1, TCGArg arg2, int const_arg2)
1471 tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1472 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1473 tcg_out_ext8u(s, dest, dest);
1476 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1477 const int *const_args)
1480 TCGLabel *label_true, *label_over;
1482 memcpy(new_args, args+1, 5*sizeof(TCGArg));
1484 if (args[0] == args[1] || args[0] == args[2]
1485 || (!const_args[3] && args[0] == args[3])
1486 || (!const_args[4] && args[0] == args[4])) {
1487 /* When the destination overlaps with one of the argument
1488 registers, don't do anything tricky. */
1489 label_true = gen_new_label();
1490 label_over = gen_new_label();
1492 new_args[5] = label_arg(label_true);
1493 tcg_out_brcond2(s, new_args, const_args+1, 1);
1495 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1496 tcg_out_jxx(s, JCC_JMP, label_over, 1);
1497 tcg_out_label(s, label_true, s->code_ptr);
1499 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1500 tcg_out_label(s, label_over, s->code_ptr);
1502 /* When the destination does not overlap one of the arguments,
1503 clear the destination first, jump if cond false, and emit an
1504 increment in the true case. This results in smaller code. */
1506 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1508 label_over = gen_new_label();
1509 new_args[4] = tcg_invert_cond(new_args[4]);
1510 new_args[5] = label_arg(label_over);
1511 tcg_out_brcond2(s, new_args, const_args+1, 1);
1513 tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1514 tcg_out_label(s, label_over, s->code_ptr);
1519 static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw,
1520 TCGReg dest, TCGReg v1)
1523 tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1);
1525 TCGLabel *over = gen_new_label();
1526 tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1);
1527 tcg_out_mov(s, TCG_TYPE_I32, dest, v1);
1528 tcg_out_label(s, over, s->code_ptr);
1532 static void tcg_out_movcond32(TCGContext *s, TCGCond cond, TCGReg dest,
1533 TCGReg c1, TCGArg c2, int const_c2,
1536 tcg_out_cmp(s, c1, c2, const_c2, 0);
1537 tcg_out_cmov(s, cond, 0, dest, v1);
1540 #if TCG_TARGET_REG_BITS == 64
1541 static void tcg_out_movcond64(TCGContext *s, TCGCond cond, TCGReg dest,
1542 TCGReg c1, TCGArg c2, int const_c2,
1545 tcg_out_cmp(s, c1, c2, const_c2, P_REXW);
1546 tcg_out_cmov(s, cond, P_REXW, dest, v1);
1550 static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1551 TCGArg arg2, bool const_a2)
1554 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
1556 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1558 tcg_debug_assert(dest != arg2);
1559 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1562 tcg_debug_assert(dest != arg2);
1563 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
1564 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1568 static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1569 TCGArg arg2, bool const_a2)
1572 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
1574 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1576 tcg_debug_assert(dest != arg2);
1577 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1580 tcg_debug_assert(!const_a2);
1581 tcg_debug_assert(dest != arg1);
1582 tcg_debug_assert(dest != arg2);
1584 /* Recall that the output of BSR is the index not the count. */
1585 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
1586 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
1588 /* Since we have destroyed the flags from BSR, we have to re-test. */
1589 tcg_out_cmp(s, arg1, 0, 1, rexw);
1590 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1594 static void tcg_out_branch(TCGContext *s, int call, tcg_insn_unit *dest)
1596 intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1598 if (disp == (int32_t)disp) {
1599 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1602 /* rip-relative addressing into the constant pool.
1603 This is 6 + 8 = 14 bytes, as compared to using an
1604 an immediate load 10 + 6 = 16 bytes, plus we may
1605 be able to re-use the pool constant for more calls. */
1606 tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1607 tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1608 new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1613 static inline void tcg_out_call(TCGContext *s, tcg_insn_unit *dest)
1615 tcg_out_branch(s, 1, dest);
1618 static void tcg_out_jmp(TCGContext *s, tcg_insn_unit *dest)
1620 tcg_out_branch(s, 0, dest);
1623 static void tcg_out_nopn(TCGContext *s, int n)
1626 /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1627 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1628 * duplicate prefix, and all of the interesting recent cores can
1629 * decode and discard the duplicates in a single cycle.
1631 tcg_debug_assert(n >= 1);
1632 for (i = 1; i < n; ++i) {
1638 #if defined(CONFIG_SOFTMMU)
1639 #include "../tcg-ldst.c.inc"
1641 /* helper signature: helper_ret_ld_mmu(CPUState *env, target_ulong addr,
1642 * int mmu_idx, uintptr_t ra)
1644 static void * const qemu_ld_helpers[16] = {
1645 [MO_UB] = helper_ret_ldub_mmu,
1646 [MO_LEUW] = helper_le_lduw_mmu,
1647 [MO_LEUL] = helper_le_ldul_mmu,
1648 [MO_LEQ] = helper_le_ldq_mmu,
1649 [MO_BEUW] = helper_be_lduw_mmu,
1650 [MO_BEUL] = helper_be_ldul_mmu,
1651 [MO_BEQ] = helper_be_ldq_mmu,
1654 /* helper signature: helper_ret_st_mmu(CPUState *env, target_ulong addr,
1655 * uintxx_t val, int mmu_idx, uintptr_t ra)
1657 static void * const qemu_st_helpers[16] = {
1658 [MO_UB] = helper_ret_stb_mmu,
1659 [MO_LEUW] = helper_le_stw_mmu,
1660 [MO_LEUL] = helper_le_stl_mmu,
1661 [MO_LEQ] = helper_le_stq_mmu,
1662 [MO_BEUW] = helper_be_stw_mmu,
1663 [MO_BEUL] = helper_be_stl_mmu,
1664 [MO_BEQ] = helper_be_stq_mmu,
1667 /* Perform the TLB load and compare.
1670 ADDRLO and ADDRHI contain the low and high part of the address.
1672 MEM_INDEX and S_BITS are the memory context and log2 size of the load.
1674 WHICH is the offset into the CPUTLBEntry structure of the slot to read.
1675 This should be offsetof addr_read or addr_write.
1678 LABEL_PTRS is filled with 1 (32-bit addresses) or 2 (64-bit addresses)
1679 positions of the displacements of forward jumps to the TLB miss case.
1681 Second argument register is loaded with the low part of the address.
1682 In the TLB hit case, it has been adjusted as indicated by the TLB
1683 and so is a host address. In the TLB miss case, it continues to
1684 hold a guest address.
1686 First argument register is clobbered. */
1688 static inline void tcg_out_tlb_load(TCGContext *s, TCGReg addrlo, TCGReg addrhi,
1689 int mem_index, MemOp opc,
1690 tcg_insn_unit **label_ptr, int which)
1692 const TCGReg r0 = TCG_REG_L0;
1693 const TCGReg r1 = TCG_REG_L1;
1694 TCGType ttype = TCG_TYPE_I32;
1695 TCGType tlbtype = TCG_TYPE_I32;
1696 int trexw = 0, hrexw = 0, tlbrexw = 0;
1697 unsigned a_bits = get_alignment_bits(opc);
1698 unsigned s_bits = opc & MO_SIZE;
1699 unsigned a_mask = (1 << a_bits) - 1;
1700 unsigned s_mask = (1 << s_bits) - 1;
1701 target_ulong tlb_mask;
1703 if (TCG_TARGET_REG_BITS == 64) {
1704 if (TARGET_LONG_BITS == 64) {
1705 ttype = TCG_TYPE_I64;
1708 if (TCG_TYPE_PTR == TCG_TYPE_I64) {
1710 if (TARGET_PAGE_BITS + CPU_TLB_DYN_MAX_BITS > 32) {
1711 tlbtype = TCG_TYPE_I64;
1717 tcg_out_mov(s, tlbtype, r0, addrlo);
1718 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, r0,
1719 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1721 tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, r0, TCG_AREG0,
1722 TLB_MASK_TABLE_OFS(mem_index) +
1723 offsetof(CPUTLBDescFast, mask));
1725 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r0, TCG_AREG0,
1726 TLB_MASK_TABLE_OFS(mem_index) +
1727 offsetof(CPUTLBDescFast, table));
1729 /* If the required alignment is at least as large as the access, simply
1730 copy the address and mask. For lesser alignments, check that we don't
1731 cross pages for the complete access. */
1732 if (a_bits >= s_bits) {
1733 tcg_out_mov(s, ttype, r1, addrlo);
1735 tcg_out_modrm_offset(s, OPC_LEA + trexw, r1, addrlo, s_mask - a_mask);
1737 tlb_mask = (target_ulong)TARGET_PAGE_MASK | a_mask;
1738 tgen_arithi(s, ARITH_AND + trexw, r1, tlb_mask, 0);
1741 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, r1, r0, which);
1743 /* Prepare for both the fast path add of the tlb addend, and the slow
1744 path function argument setup. */
1745 tcg_out_mov(s, ttype, r1, addrlo);
1748 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1749 label_ptr[0] = s->code_ptr;
1752 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1753 /* cmp 4(r0), addrhi */
1754 tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, r0, which + 4);
1757 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1758 label_ptr[1] = s->code_ptr;
1764 /* add addend(r0), r1 */
1765 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r1, r0,
1766 offsetof(CPUTLBEntry, addend));
1770 * Record the context of a call to the out of line helper code for the slow path
1771 * for a load or store, so that we can later generate the correct helper code
1773 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, bool is_64,
1775 TCGReg datalo, TCGReg datahi,
1776 TCGReg addrlo, TCGReg addrhi,
1777 tcg_insn_unit *raddr,
1778 tcg_insn_unit **label_ptr)
1780 TCGLabelQemuLdst *label = new_ldst_label(s);
1782 label->is_ld = is_ld;
1784 label->type = is_64 ? TCG_TYPE_I64 : TCG_TYPE_I32;
1785 label->datalo_reg = datalo;
1786 label->datahi_reg = datahi;
1787 label->addrlo_reg = addrlo;
1788 label->addrhi_reg = addrhi;
1789 label->raddr = raddr;
1790 label->label_ptr[0] = label_ptr[0];
1791 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1792 label->label_ptr[1] = label_ptr[1];
1797 * Generate code for the slow path for a load at the end of block
1799 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1801 TCGMemOpIdx oi = l->oi;
1802 MemOp opc = get_memop(oi);
1804 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1805 int rexw = (l->type == TCG_TYPE_I64 ? P_REXW : 0);
1807 /* resolve label address */
1808 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1809 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1810 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1813 if (TCG_TARGET_REG_BITS == 32) {
1816 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1819 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1822 if (TARGET_LONG_BITS == 64) {
1823 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1827 tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1830 tcg_out_sti(s, TCG_TYPE_PTR, (uintptr_t)l->raddr, TCG_REG_ESP, ofs);
1832 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1833 /* The second argument is already loaded with addrlo. */
1834 tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[2], oi);
1835 tcg_out_movi(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[3],
1836 (uintptr_t)l->raddr);
1839 tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
1841 data_reg = l->datalo_reg;
1842 switch (opc & MO_SSIZE) {
1844 tcg_out_ext8s(s, data_reg, TCG_REG_EAX, rexw);
1847 tcg_out_ext16s(s, data_reg, TCG_REG_EAX, rexw);
1849 #if TCG_TARGET_REG_BITS == 64
1851 tcg_out_ext32s(s, data_reg, TCG_REG_EAX);
1856 /* Note that the helpers have zero-extended to tcg_target_long. */
1858 tcg_out_mov(s, TCG_TYPE_I32, data_reg, TCG_REG_EAX);
1861 if (TCG_TARGET_REG_BITS == 64) {
1862 tcg_out_mov(s, TCG_TYPE_I64, data_reg, TCG_REG_RAX);
1863 } else if (data_reg == TCG_REG_EDX) {
1864 /* xchg %edx, %eax */
1865 tcg_out_opc(s, OPC_XCHG_ax_r32 + TCG_REG_EDX, 0, 0, 0);
1866 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_EAX);
1868 tcg_out_mov(s, TCG_TYPE_I32, data_reg, TCG_REG_EAX);
1869 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_EDX);
1876 /* Jump to the code corresponding to next IR of qemu_st */
1877 tcg_out_jmp(s, l->raddr);
1882 * Generate code for the slow path for a store at the end of block
1884 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1886 TCGMemOpIdx oi = l->oi;
1887 MemOp opc = get_memop(oi);
1888 MemOp s_bits = opc & MO_SIZE;
1889 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1892 /* resolve label address */
1893 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1894 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1895 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1898 if (TCG_TARGET_REG_BITS == 32) {
1901 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1904 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1907 if (TARGET_LONG_BITS == 64) {
1908 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1912 tcg_out_st(s, TCG_TYPE_I32, l->datalo_reg, TCG_REG_ESP, ofs);
1915 if (s_bits == MO_64) {
1916 tcg_out_st(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_ESP, ofs);
1920 tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1923 retaddr = TCG_REG_EAX;
1924 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1925 tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP, ofs);
1927 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1928 /* The second argument is already loaded with addrlo. */
1929 tcg_out_mov(s, (s_bits == MO_64 ? TCG_TYPE_I64 : TCG_TYPE_I32),
1930 tcg_target_call_iarg_regs[2], l->datalo_reg);
1931 tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[3], oi);
1933 if (ARRAY_SIZE(tcg_target_call_iarg_regs) > 4) {
1934 retaddr = tcg_target_call_iarg_regs[4];
1935 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1937 retaddr = TCG_REG_RAX;
1938 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1939 tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP,
1940 TCG_TARGET_CALL_STACK_OFFSET);
1944 /* "Tail call" to the helper, with the return address back inline. */
1945 tcg_out_push(s, retaddr);
1946 tcg_out_jmp(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
1949 #elif TCG_TARGET_REG_BITS == 32
1950 # define x86_guest_base_seg 0
1951 # define x86_guest_base_index -1
1952 # define x86_guest_base_offset guest_base
1954 static int x86_guest_base_seg;
1955 static int x86_guest_base_index = -1;
1956 static int32_t x86_guest_base_offset;
1957 # if defined(__x86_64__) && defined(__linux__)
1958 # include <asm/prctl.h>
1959 # include <sys/prctl.h>
1960 int arch_prctl(int code, unsigned long addr);
1961 static inline int setup_guest_base_seg(void)
1963 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
1968 # elif defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
1969 # include <machine/sysarch.h>
1970 static inline int setup_guest_base_seg(void)
1972 if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
1978 static inline int setup_guest_base_seg(void)
1983 #endif /* SOFTMMU */
1985 static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
1986 TCGReg base, int index, intptr_t ofs,
1987 int seg, bool is64, MemOp memop)
1989 const MemOp real_bswap = memop & MO_BSWAP;
1990 MemOp bswap = real_bswap;
1991 int rexw = is64 * P_REXW;
1992 int movop = OPC_MOVL_GvEv;
1994 if (have_movbe && real_bswap) {
1996 movop = OPC_MOVBE_GyMy;
1999 switch (memop & MO_SSIZE) {
2001 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + seg, datalo,
2002 base, index, 0, ofs);
2005 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + seg, datalo,
2006 base, index, 0, ofs);
2009 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + seg, datalo,
2010 base, index, 0, ofs);
2012 tcg_out_rolw_8(s, datalo);
2018 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
2019 datalo, base, index, 0, ofs);
2021 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + seg, datalo,
2022 base, index, 0, ofs);
2023 tcg_out_rolw_8(s, datalo);
2025 tcg_out_modrm(s, OPC_MOVSWL + rexw, datalo, datalo);
2027 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + seg,
2028 datalo, base, index, 0, ofs);
2032 tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
2034 tcg_out_bswap32(s, datalo);
2037 #if TCG_TARGET_REG_BITS == 64
2040 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2041 base, index, 0, ofs);
2043 tcg_out_bswap32(s, datalo);
2045 tcg_out_ext32s(s, datalo, datalo);
2047 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + seg, datalo,
2048 base, index, 0, ofs);
2053 if (TCG_TARGET_REG_BITS == 64) {
2054 tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
2055 base, index, 0, ofs);
2057 tcg_out_bswap64(s, datalo);
2065 if (base != datalo) {
2066 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2067 base, index, 0, ofs);
2068 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2069 base, index, 0, ofs + 4);
2071 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2072 base, index, 0, ofs + 4);
2073 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2074 base, index, 0, ofs);
2077 tcg_out_bswap32(s, datalo);
2078 tcg_out_bswap32(s, datahi);
2087 /* XXX: qemu_ld and qemu_st could be modified to clobber only EDX and
2088 EAX. It will be useful once fixed registers globals are less
2090 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is64)
2092 TCGReg datalo, datahi, addrlo;
2093 TCGReg addrhi __attribute__((unused));
2096 #if defined(CONFIG_SOFTMMU)
2098 tcg_insn_unit *label_ptr[2];
2102 datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
2104 addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
2106 opc = get_memop(oi);
2108 #if defined(CONFIG_SOFTMMU)
2109 mem_index = get_mmuidx(oi);
2111 tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
2112 label_ptr, offsetof(CPUTLBEntry, addr_read));
2115 tcg_out_qemu_ld_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, is64, opc);
2117 /* Record the current context of a load into ldst label */
2118 add_qemu_ldst_label(s, true, is64, oi, datalo, datahi, addrlo, addrhi,
2119 s->code_ptr, label_ptr);
2121 tcg_out_qemu_ld_direct(s, datalo, datahi, addrlo, x86_guest_base_index,
2122 x86_guest_base_offset, x86_guest_base_seg,
2127 static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2128 TCGReg base, int index, intptr_t ofs,
2129 int seg, MemOp memop)
2131 /* ??? Ideally we wouldn't need a scratch register. For user-only,
2132 we could perform the bswap twice to restore the original value
2133 instead of moving to the scratch. But as it is, the L constraint
2134 means that TCG_REG_L0 is definitely free here. */
2135 const TCGReg scratch = TCG_REG_L0;
2136 const MemOp real_bswap = memop & MO_BSWAP;
2137 MemOp bswap = real_bswap;
2138 int movop = OPC_MOVL_EvGv;
2140 if (have_movbe && real_bswap) {
2142 movop = OPC_MOVBE_MyGy;
2145 switch (memop & MO_SIZE) {
2147 /* In 32-bit mode, 8-bit stores can only happen from [abcd]x.
2148 Use the scratch register if necessary. */
2149 if (TCG_TARGET_REG_BITS == 32 && datalo >= 4) {
2150 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
2153 tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + seg,
2154 datalo, base, index, 0, ofs);
2158 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
2159 tcg_out_rolw_8(s, scratch);
2162 tcg_out_modrm_sib_offset(s, movop + P_DATA16 + seg, datalo,
2163 base, index, 0, ofs);
2167 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
2168 tcg_out_bswap32(s, scratch);
2171 tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
2174 if (TCG_TARGET_REG_BITS == 64) {
2176 tcg_out_mov(s, TCG_TYPE_I64, scratch, datalo);
2177 tcg_out_bswap64(s, scratch);
2180 tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
2181 base, index, 0, ofs);
2183 tcg_out_mov(s, TCG_TYPE_I32, scratch, datahi);
2184 tcg_out_bswap32(s, scratch);
2185 tcg_out_modrm_sib_offset(s, OPC_MOVL_EvGv + seg, scratch,
2186 base, index, 0, ofs);
2187 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
2188 tcg_out_bswap32(s, scratch);
2189 tcg_out_modrm_sib_offset(s, OPC_MOVL_EvGv + seg, scratch,
2190 base, index, 0, ofs + 4);
2197 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2198 base, index, 0, ofs);
2199 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2200 base, index, 0, ofs + 4);
2208 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is64)
2210 TCGReg datalo, datahi, addrlo;
2211 TCGReg addrhi __attribute__((unused));
2214 #if defined(CONFIG_SOFTMMU)
2216 tcg_insn_unit *label_ptr[2];
2220 datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
2222 addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
2224 opc = get_memop(oi);
2226 #if defined(CONFIG_SOFTMMU)
2227 mem_index = get_mmuidx(oi);
2229 tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
2230 label_ptr, offsetof(CPUTLBEntry, addr_write));
2233 tcg_out_qemu_st_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, opc);
2235 /* Record the current context of a store into ldst label */
2236 add_qemu_ldst_label(s, false, is64, oi, datalo, datahi, addrlo, addrhi,
2237 s->code_ptr, label_ptr);
2239 tcg_out_qemu_st_direct(s, datalo, datahi, addrlo, x86_guest_base_index,
2240 x86_guest_base_offset, x86_guest_base_seg, opc);
2244 static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
2245 const TCGArg *args, const int *const_args)
2248 int c, const_a2, vexop, rexw = 0;
2250 #if TCG_TARGET_REG_BITS == 64
2251 # define OP_32_64(x) \
2252 case glue(glue(INDEX_op_, x), _i64): \
2253 rexw = P_REXW; /* FALLTHRU */ \
2254 case glue(glue(INDEX_op_, x), _i32)
2256 # define OP_32_64(x) \
2257 case glue(glue(INDEX_op_, x), _i32)
2260 /* Hoist the loads of the most common arguments. */
2264 const_a2 = const_args[2];
2267 case INDEX_op_exit_tb:
2268 /* Reuse the zeroing that exists for goto_ptr. */
2270 tcg_out_jmp(s, s->code_gen_epilogue);
2272 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2273 tcg_out_jmp(s, tb_ret_addr);
2276 case INDEX_op_goto_tb:
2277 if (s->tb_jmp_insn_offset) {
2278 /* direct jump method */
2280 /* jump displacement must be aligned for atomic patching;
2281 * see if we need to add extra nops before jump
2283 gap = tcg_pcrel_diff(s, QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4));
2285 tcg_out_nopn(s, gap - 1);
2287 tcg_out8(s, OPC_JMP_long); /* jmp im */
2288 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
2291 /* indirect jump method */
2292 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, -1,
2293 (intptr_t)(s->tb_jmp_target_addr + a0));
2295 set_jmp_reset_offset(s, a0);
2297 case INDEX_op_goto_ptr:
2298 /* jmp to the given host address (could be epilogue) */
2299 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
2302 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
2305 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
2306 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
2309 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
2312 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
2313 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
2316 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
2318 #if TCG_TARGET_REG_BITS == 64
2319 case INDEX_op_ld32u_i64:
2321 case INDEX_op_ld_i32:
2322 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
2326 if (const_args[0]) {
2327 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
2330 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
2334 if (const_args[0]) {
2335 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
2338 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
2341 #if TCG_TARGET_REG_BITS == 64
2342 case INDEX_op_st32_i64:
2344 case INDEX_op_st_i32:
2345 if (const_args[0]) {
2346 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
2349 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
2354 /* For 3-operand addition, use LEA. */
2359 } else if (a0 == a2) {
2360 /* Watch out for dest = src + dest, since we've removed
2361 the matching constraint on the add. */
2362 tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2366 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3);
2385 tgen_arithi(s, c + rexw, a0, a2, 0);
2387 tgen_arithr(s, c + rexw, a0, a2);
2393 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2394 tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0);
2396 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2404 if (val == (int8_t)val) {
2405 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2408 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2412 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2417 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
2420 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
2424 /* For small constant 3-operand shift, use LEA. */
2425 if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
2427 /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2428 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2430 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2431 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2437 goto gen_shift_maybe_vex;
2441 goto gen_shift_maybe_vex;
2445 goto gen_shift_maybe_vex;
2452 gen_shift_maybe_vex:
2455 tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
2458 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2463 tcg_out_shifti(s, c + rexw, a0, a2);
2465 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
2470 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
2473 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
2476 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2479 case INDEX_op_brcond_i32:
2480 tcg_out_brcond32(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2482 case INDEX_op_setcond_i32:
2483 tcg_out_setcond32(s, args[3], a0, a1, a2, const_a2);
2485 case INDEX_op_movcond_i32:
2486 tcg_out_movcond32(s, args[5], a0, a1, a2, const_a2, args[3]);
2490 tcg_out_rolw_8(s, a0);
2493 tcg_out_bswap32(s, a0);
2497 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2500 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2504 tcg_out_ext8s(s, a0, a1, rexw);
2507 tcg_out_ext16s(s, a0, a1, rexw);
2510 tcg_out_ext8u(s, a0, a1);
2513 tcg_out_ext16u(s, a0, a1);
2516 case INDEX_op_qemu_ld_i32:
2517 tcg_out_qemu_ld(s, args, 0);
2519 case INDEX_op_qemu_ld_i64:
2520 tcg_out_qemu_ld(s, args, 1);
2522 case INDEX_op_qemu_st_i32:
2523 tcg_out_qemu_st(s, args, 0);
2525 case INDEX_op_qemu_st_i64:
2526 tcg_out_qemu_st(s, args, 1);
2530 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
2533 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
2536 if (const_args[4]) {
2537 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
2539 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
2541 if (const_args[5]) {
2542 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
2544 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
2548 if (const_args[4]) {
2549 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
2551 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
2553 if (const_args[5]) {
2554 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
2556 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
2560 #if TCG_TARGET_REG_BITS == 32
2561 case INDEX_op_brcond2_i32:
2562 tcg_out_brcond2(s, args, const_args, 0);
2564 case INDEX_op_setcond2_i32:
2565 tcg_out_setcond2(s, args, const_args);
2567 #else /* TCG_TARGET_REG_BITS == 64 */
2568 case INDEX_op_ld32s_i64:
2569 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
2571 case INDEX_op_ld_i64:
2572 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
2574 case INDEX_op_st_i64:
2575 if (const_args[0]) {
2576 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
2579 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
2583 case INDEX_op_brcond_i64:
2584 tcg_out_brcond64(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2586 case INDEX_op_setcond_i64:
2587 tcg_out_setcond64(s, args[3], a0, a1, a2, const_a2);
2589 case INDEX_op_movcond_i64:
2590 tcg_out_movcond64(s, args[5], a0, a1, a2, const_a2, args[3]);
2593 case INDEX_op_bswap64_i64:
2594 tcg_out_bswap64(s, a0);
2596 case INDEX_op_extu_i32_i64:
2597 case INDEX_op_ext32u_i64:
2598 case INDEX_op_extrl_i64_i32:
2599 tcg_out_ext32u(s, a0, a1);
2601 case INDEX_op_ext_i32_i64:
2602 case INDEX_op_ext32s_i64:
2603 tcg_out_ext32s(s, a0, a1);
2605 case INDEX_op_extrh_i64_i32:
2606 tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
2611 if (args[3] == 0 && args[4] == 8) {
2612 /* load bits 0..7 */
2613 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
2614 } else if (args[3] == 8 && args[4] == 8) {
2615 /* load bits 8..15 */
2616 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
2617 } else if (args[3] == 0 && args[4] == 16) {
2618 /* load bits 0..15 */
2619 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
2625 case INDEX_op_extract_i64:
2626 if (a2 + args[3] == 32) {
2627 /* This is a 32-bit zero-extending right shift. */
2628 tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
2629 tcg_out_shifti(s, SHIFT_SHR, a0, a2);
2633 case INDEX_op_extract_i32:
2634 /* On the off-chance that we can use the high-byte registers.
2635 Otherwise we emit the same ext16 + shift pattern that we
2636 would have gotten from the normal tcg-op.c expansion. */
2637 tcg_debug_assert(a2 == 8 && args[3] == 8);
2638 if (a1 < 4 && a0 < 8) {
2639 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
2641 tcg_out_ext16u(s, a0, a1);
2642 tcg_out_shifti(s, SHIFT_SHR, a0, 8);
2646 case INDEX_op_sextract_i32:
2647 /* We don't implement sextract_i64, as we cannot sign-extend to
2648 64-bits without using the REX prefix that explicitly excludes
2649 access to the high-byte registers. */
2650 tcg_debug_assert(a2 == 8 && args[3] == 8);
2651 if (a1 < 4 && a0 < 8) {
2652 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
2654 tcg_out_ext16s(s, a0, a1, 0);
2655 tcg_out_shifti(s, SHIFT_SAR, a0, 8);
2660 /* Note that SHRD outputs to the r/m operand. */
2661 tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
2662 tcg_out8(s, args[3]);
2668 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
2669 case INDEX_op_mov_i64:
2670 case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
2671 case INDEX_op_movi_i64:
2672 case INDEX_op_call: /* Always emitted via tcg_out_call. */
2680 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
2681 unsigned vecl, unsigned vece,
2682 const TCGArg *args, const int *const_args)
2684 static int const add_insn[4] = {
2685 OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
2687 static int const ssadd_insn[4] = {
2688 OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
2690 static int const usadd_insn[4] = {
2691 OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
2693 static int const sub_insn[4] = {
2694 OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
2696 static int const sssub_insn[4] = {
2697 OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
2699 static int const ussub_insn[4] = {
2700 OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
2702 static int const mul_insn[4] = {
2703 OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_UD2
2705 static int const shift_imm_insn[4] = {
2706 OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
2708 static int const cmpeq_insn[4] = {
2709 OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
2711 static int const cmpgt_insn[4] = {
2712 OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
2714 static int const punpckl_insn[4] = {
2715 OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
2717 static int const punpckh_insn[4] = {
2718 OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
2720 static int const packss_insn[4] = {
2721 OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
2723 static int const packus_insn[4] = {
2724 OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
2726 static int const smin_insn[4] = {
2727 OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_UD2
2729 static int const smax_insn[4] = {
2730 OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_UD2
2732 static int const umin_insn[4] = {
2733 OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_UD2
2735 static int const umax_insn[4] = {
2736 OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_UD2
2738 static int const shlv_insn[4] = {
2739 /* TODO: AVX512 adds support for MO_16. */
2740 OPC_UD2, OPC_UD2, OPC_VPSLLVD, OPC_VPSLLVQ
2742 static int const shrv_insn[4] = {
2743 /* TODO: AVX512 adds support for MO_16. */
2744 OPC_UD2, OPC_UD2, OPC_VPSRLVD, OPC_VPSRLVQ
2746 static int const sarv_insn[4] = {
2747 /* TODO: AVX512 adds support for MO_16, MO_64. */
2748 OPC_UD2, OPC_UD2, OPC_VPSRAVD, OPC_UD2
2750 static int const shls_insn[4] = {
2751 OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
2753 static int const shrs_insn[4] = {
2754 OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
2756 static int const sars_insn[4] = {
2757 OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_UD2
2759 static int const abs_insn[4] = {
2760 /* TODO: AVX512 adds support for MO_64. */
2761 OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_UD2
2764 TCGType type = vecl + TCG_TYPE_V64;
2773 case INDEX_op_add_vec:
2774 insn = add_insn[vece];
2776 case INDEX_op_ssadd_vec:
2777 insn = ssadd_insn[vece];
2779 case INDEX_op_usadd_vec:
2780 insn = usadd_insn[vece];
2782 case INDEX_op_sub_vec:
2783 insn = sub_insn[vece];
2785 case INDEX_op_sssub_vec:
2786 insn = sssub_insn[vece];
2788 case INDEX_op_ussub_vec:
2789 insn = ussub_insn[vece];
2791 case INDEX_op_mul_vec:
2792 insn = mul_insn[vece];
2794 case INDEX_op_and_vec:
2797 case INDEX_op_or_vec:
2800 case INDEX_op_xor_vec:
2803 case INDEX_op_smin_vec:
2804 insn = smin_insn[vece];
2806 case INDEX_op_umin_vec:
2807 insn = umin_insn[vece];
2809 case INDEX_op_smax_vec:
2810 insn = smax_insn[vece];
2812 case INDEX_op_umax_vec:
2813 insn = umax_insn[vece];
2815 case INDEX_op_shlv_vec:
2816 insn = shlv_insn[vece];
2818 case INDEX_op_shrv_vec:
2819 insn = shrv_insn[vece];
2821 case INDEX_op_sarv_vec:
2822 insn = sarv_insn[vece];
2824 case INDEX_op_shls_vec:
2825 insn = shls_insn[vece];
2827 case INDEX_op_shrs_vec:
2828 insn = shrs_insn[vece];
2830 case INDEX_op_sars_vec:
2831 insn = sars_insn[vece];
2833 case INDEX_op_x86_punpckl_vec:
2834 insn = punpckl_insn[vece];
2836 case INDEX_op_x86_punpckh_vec:
2837 insn = punpckh_insn[vece];
2839 case INDEX_op_x86_packss_vec:
2840 insn = packss_insn[vece];
2842 case INDEX_op_x86_packus_vec:
2843 insn = packus_insn[vece];
2845 #if TCG_TARGET_REG_BITS == 32
2846 case INDEX_op_dup2_vec:
2847 /* First merge the two 32-bit inputs to a single 64-bit element. */
2848 tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
2849 /* Then replicate the 64-bit elements across the rest of the vector. */
2850 if (type != TCG_TYPE_V64) {
2851 tcg_out_dup_vec(s, type, MO_64, a0, a0);
2855 case INDEX_op_abs_vec:
2856 insn = abs_insn[vece];
2861 tcg_debug_assert(insn != OPC_UD2);
2862 if (type == TCG_TYPE_V256) {
2865 tcg_out_vex_modrm(s, insn, a0, a1, a2);
2868 case INDEX_op_cmp_vec:
2870 if (sub == TCG_COND_EQ) {
2871 insn = cmpeq_insn[vece];
2872 } else if (sub == TCG_COND_GT) {
2873 insn = cmpgt_insn[vece];
2875 g_assert_not_reached();
2879 case INDEX_op_andc_vec:
2881 if (type == TCG_TYPE_V256) {
2884 tcg_out_vex_modrm(s, insn, a0, a2, a1);
2887 case INDEX_op_shli_vec:
2890 case INDEX_op_shri_vec:
2893 case INDEX_op_sari_vec:
2894 tcg_debug_assert(vece != MO_64);
2897 tcg_debug_assert(vece != MO_8);
2898 insn = shift_imm_insn[vece];
2899 if (type == TCG_TYPE_V256) {
2902 tcg_out_vex_modrm(s, insn, sub, a0, a1);
2906 case INDEX_op_ld_vec:
2907 tcg_out_ld(s, type, a0, a1, a2);
2909 case INDEX_op_st_vec:
2910 tcg_out_st(s, type, a0, a1, a2);
2912 case INDEX_op_dupm_vec:
2913 tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
2916 case INDEX_op_x86_shufps_vec:
2920 case INDEX_op_x86_blend_vec:
2921 if (vece == MO_16) {
2923 } else if (vece == MO_32) {
2924 insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
2926 g_assert_not_reached();
2930 case INDEX_op_x86_vperm2i128_vec:
2931 insn = OPC_VPERM2I128;
2935 if (type == TCG_TYPE_V256) {
2938 tcg_out_vex_modrm(s, insn, a0, a1, a2);
2942 case INDEX_op_x86_vpblendvb_vec:
2943 insn = OPC_VPBLENDVB;
2944 if (type == TCG_TYPE_V256) {
2947 tcg_out_vex_modrm(s, insn, a0, a1, a2);
2948 tcg_out8(s, args[3] << 4);
2951 case INDEX_op_x86_psrldq_vec:
2952 tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
2956 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
2957 case INDEX_op_dupi_vec: /* Always emitted via tcg_out_movi. */
2958 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
2960 g_assert_not_reached();
2964 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode op)
2966 static const TCGTargetOpDef r = { .args_ct_str = { "r" } };
2967 static const TCGTargetOpDef ri_r = { .args_ct_str = { "ri", "r" } };
2968 static const TCGTargetOpDef re_r = { .args_ct_str = { "re", "r" } };
2969 static const TCGTargetOpDef qi_r = { .args_ct_str = { "qi", "r" } };
2970 static const TCGTargetOpDef r_r = { .args_ct_str = { "r", "r" } };
2971 static const TCGTargetOpDef r_q = { .args_ct_str = { "r", "q" } };
2972 static const TCGTargetOpDef r_re = { .args_ct_str = { "r", "re" } };
2973 static const TCGTargetOpDef r_0 = { .args_ct_str = { "r", "0" } };
2974 static const TCGTargetOpDef r_r_ri = { .args_ct_str = { "r", "r", "ri" } };
2975 static const TCGTargetOpDef r_r_re = { .args_ct_str = { "r", "r", "re" } };
2976 static const TCGTargetOpDef r_0_r = { .args_ct_str = { "r", "0", "r" } };
2977 static const TCGTargetOpDef r_0_re = { .args_ct_str = { "r", "0", "re" } };
2978 static const TCGTargetOpDef r_0_ci = { .args_ct_str = { "r", "0", "ci" } };
2979 static const TCGTargetOpDef r_L = { .args_ct_str = { "r", "L" } };
2980 static const TCGTargetOpDef L_L = { .args_ct_str = { "L", "L" } };
2981 static const TCGTargetOpDef r_L_L = { .args_ct_str = { "r", "L", "L" } };
2982 static const TCGTargetOpDef r_r_L = { .args_ct_str = { "r", "r", "L" } };
2983 static const TCGTargetOpDef L_L_L = { .args_ct_str = { "L", "L", "L" } };
2984 static const TCGTargetOpDef r_r_L_L
2985 = { .args_ct_str = { "r", "r", "L", "L" } };
2986 static const TCGTargetOpDef L_L_L_L
2987 = { .args_ct_str = { "L", "L", "L", "L" } };
2988 static const TCGTargetOpDef x_x = { .args_ct_str = { "x", "x" } };
2989 static const TCGTargetOpDef x_x_x = { .args_ct_str = { "x", "x", "x" } };
2990 static const TCGTargetOpDef x_x_x_x
2991 = { .args_ct_str = { "x", "x", "x", "x" } };
2992 static const TCGTargetOpDef x_r = { .args_ct_str = { "x", "r" } };
2995 case INDEX_op_goto_ptr:
2998 case INDEX_op_ld8u_i32:
2999 case INDEX_op_ld8u_i64:
3000 case INDEX_op_ld8s_i32:
3001 case INDEX_op_ld8s_i64:
3002 case INDEX_op_ld16u_i32:
3003 case INDEX_op_ld16u_i64:
3004 case INDEX_op_ld16s_i32:
3005 case INDEX_op_ld16s_i64:
3006 case INDEX_op_ld_i32:
3007 case INDEX_op_ld32u_i64:
3008 case INDEX_op_ld32s_i64:
3009 case INDEX_op_ld_i64:
3012 case INDEX_op_st8_i32:
3013 case INDEX_op_st8_i64:
3015 case INDEX_op_st16_i32:
3016 case INDEX_op_st16_i64:
3017 case INDEX_op_st_i32:
3018 case INDEX_op_st32_i64:
3020 case INDEX_op_st_i64:
3023 case INDEX_op_add_i32:
3024 case INDEX_op_add_i64:
3026 case INDEX_op_sub_i32:
3027 case INDEX_op_sub_i64:
3028 case INDEX_op_mul_i32:
3029 case INDEX_op_mul_i64:
3030 case INDEX_op_or_i32:
3031 case INDEX_op_or_i64:
3032 case INDEX_op_xor_i32:
3033 case INDEX_op_xor_i64:
3036 case INDEX_op_and_i32:
3037 case INDEX_op_and_i64:
3039 static const TCGTargetOpDef and
3040 = { .args_ct_str = { "r", "0", "reZ" } };
3044 case INDEX_op_andc_i32:
3045 case INDEX_op_andc_i64:
3047 static const TCGTargetOpDef andc
3048 = { .args_ct_str = { "r", "r", "rI" } };
3053 case INDEX_op_shl_i32:
3054 case INDEX_op_shl_i64:
3055 case INDEX_op_shr_i32:
3056 case INDEX_op_shr_i64:
3057 case INDEX_op_sar_i32:
3058 case INDEX_op_sar_i64:
3059 return have_bmi2 ? &r_r_ri : &r_0_ci;
3060 case INDEX_op_rotl_i32:
3061 case INDEX_op_rotl_i64:
3062 case INDEX_op_rotr_i32:
3063 case INDEX_op_rotr_i64:
3066 case INDEX_op_brcond_i32:
3067 case INDEX_op_brcond_i64:
3070 case INDEX_op_bswap16_i32:
3071 case INDEX_op_bswap16_i64:
3072 case INDEX_op_bswap32_i32:
3073 case INDEX_op_bswap32_i64:
3074 case INDEX_op_bswap64_i64:
3075 case INDEX_op_neg_i32:
3076 case INDEX_op_neg_i64:
3077 case INDEX_op_not_i32:
3078 case INDEX_op_not_i64:
3079 case INDEX_op_extrh_i64_i32:
3082 case INDEX_op_ext8s_i32:
3083 case INDEX_op_ext8s_i64:
3084 case INDEX_op_ext8u_i32:
3085 case INDEX_op_ext8u_i64:
3087 case INDEX_op_ext16s_i32:
3088 case INDEX_op_ext16s_i64:
3089 case INDEX_op_ext16u_i32:
3090 case INDEX_op_ext16u_i64:
3091 case INDEX_op_ext32s_i64:
3092 case INDEX_op_ext32u_i64:
3093 case INDEX_op_ext_i32_i64:
3094 case INDEX_op_extu_i32_i64:
3095 case INDEX_op_extrl_i64_i32:
3096 case INDEX_op_extract_i32:
3097 case INDEX_op_extract_i64:
3098 case INDEX_op_sextract_i32:
3099 case INDEX_op_ctpop_i32:
3100 case INDEX_op_ctpop_i64:
3102 case INDEX_op_extract2_i32:
3103 case INDEX_op_extract2_i64:
3106 case INDEX_op_deposit_i32:
3107 case INDEX_op_deposit_i64:
3109 static const TCGTargetOpDef dep
3110 = { .args_ct_str = { "Q", "0", "Q" } };
3113 case INDEX_op_setcond_i32:
3114 case INDEX_op_setcond_i64:
3116 static const TCGTargetOpDef setc
3117 = { .args_ct_str = { "q", "r", "re" } };
3120 case INDEX_op_movcond_i32:
3121 case INDEX_op_movcond_i64:
3123 static const TCGTargetOpDef movc
3124 = { .args_ct_str = { "r", "r", "re", "r", "0" } };
3127 case INDEX_op_div2_i32:
3128 case INDEX_op_div2_i64:
3129 case INDEX_op_divu2_i32:
3130 case INDEX_op_divu2_i64:
3132 static const TCGTargetOpDef div2
3133 = { .args_ct_str = { "a", "d", "0", "1", "r" } };
3136 case INDEX_op_mulu2_i32:
3137 case INDEX_op_mulu2_i64:
3138 case INDEX_op_muls2_i32:
3139 case INDEX_op_muls2_i64:
3141 static const TCGTargetOpDef mul2
3142 = { .args_ct_str = { "a", "d", "a", "r" } };
3145 case INDEX_op_add2_i32:
3146 case INDEX_op_add2_i64:
3147 case INDEX_op_sub2_i32:
3148 case INDEX_op_sub2_i64:
3150 static const TCGTargetOpDef arith2
3151 = { .args_ct_str = { "r", "r", "0", "1", "re", "re" } };
3154 case INDEX_op_ctz_i32:
3155 case INDEX_op_ctz_i64:
3157 static const TCGTargetOpDef ctz[2] = {
3158 { .args_ct_str = { "&r", "r", "r" } },
3159 { .args_ct_str = { "&r", "r", "rW" } },
3161 return &ctz[have_bmi1];
3163 case INDEX_op_clz_i32:
3164 case INDEX_op_clz_i64:
3166 static const TCGTargetOpDef clz[2] = {
3167 { .args_ct_str = { "&r", "r", "r" } },
3168 { .args_ct_str = { "&r", "r", "rW" } },
3170 return &clz[have_lzcnt];
3173 case INDEX_op_qemu_ld_i32:
3174 return TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &r_L : &r_L_L;
3175 case INDEX_op_qemu_st_i32:
3176 return TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &L_L : &L_L_L;
3177 case INDEX_op_qemu_ld_i64:
3178 return (TCG_TARGET_REG_BITS == 64 ? &r_L
3179 : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &r_r_L
3181 case INDEX_op_qemu_st_i64:
3182 return (TCG_TARGET_REG_BITS == 64 ? &L_L
3183 : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &L_L_L
3186 case INDEX_op_brcond2_i32:
3188 static const TCGTargetOpDef b2
3189 = { .args_ct_str = { "r", "r", "ri", "ri" } };
3192 case INDEX_op_setcond2_i32:
3194 static const TCGTargetOpDef s2
3195 = { .args_ct_str = { "r", "r", "r", "ri", "ri" } };
3199 case INDEX_op_ld_vec:
3200 case INDEX_op_st_vec:
3201 case INDEX_op_dupm_vec:
3204 case INDEX_op_add_vec:
3205 case INDEX_op_sub_vec:
3206 case INDEX_op_mul_vec:
3207 case INDEX_op_and_vec:
3208 case INDEX_op_or_vec:
3209 case INDEX_op_xor_vec:
3210 case INDEX_op_andc_vec:
3211 case INDEX_op_ssadd_vec:
3212 case INDEX_op_usadd_vec:
3213 case INDEX_op_sssub_vec:
3214 case INDEX_op_ussub_vec:
3215 case INDEX_op_smin_vec:
3216 case INDEX_op_umin_vec:
3217 case INDEX_op_smax_vec:
3218 case INDEX_op_umax_vec:
3219 case INDEX_op_shlv_vec:
3220 case INDEX_op_shrv_vec:
3221 case INDEX_op_sarv_vec:
3222 case INDEX_op_shls_vec:
3223 case INDEX_op_shrs_vec:
3224 case INDEX_op_sars_vec:
3225 case INDEX_op_rotls_vec:
3226 case INDEX_op_cmp_vec:
3227 case INDEX_op_x86_shufps_vec:
3228 case INDEX_op_x86_blend_vec:
3229 case INDEX_op_x86_packss_vec:
3230 case INDEX_op_x86_packus_vec:
3231 case INDEX_op_x86_vperm2i128_vec:
3232 case INDEX_op_x86_punpckl_vec:
3233 case INDEX_op_x86_punpckh_vec:
3234 #if TCG_TARGET_REG_BITS == 32
3235 case INDEX_op_dup2_vec:
3238 case INDEX_op_abs_vec:
3239 case INDEX_op_dup_vec:
3240 case INDEX_op_shli_vec:
3241 case INDEX_op_shri_vec:
3242 case INDEX_op_sari_vec:
3243 case INDEX_op_x86_psrldq_vec:
3245 case INDEX_op_x86_vpblendvb_vec:
3254 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3257 case INDEX_op_add_vec:
3258 case INDEX_op_sub_vec:
3259 case INDEX_op_and_vec:
3260 case INDEX_op_or_vec:
3261 case INDEX_op_xor_vec:
3262 case INDEX_op_andc_vec:
3264 case INDEX_op_rotli_vec:
3265 case INDEX_op_cmp_vec:
3266 case INDEX_op_cmpsel_vec:
3269 case INDEX_op_shli_vec:
3270 case INDEX_op_shri_vec:
3271 /* We must expand the operation for MO_8. */
3272 return vece == MO_8 ? -1 : 1;
3274 case INDEX_op_sari_vec:
3275 /* We must expand the operation for MO_8. */
3279 /* We can emulate this for MO_64, but it does not pay off
3280 unless we're producing at least 4 values. */
3281 if (vece == MO_64) {
3282 return type >= TCG_TYPE_V256 ? -1 : 0;
3286 case INDEX_op_shls_vec:
3287 case INDEX_op_shrs_vec:
3288 return vece >= MO_16;
3289 case INDEX_op_sars_vec:
3290 return vece >= MO_16 && vece <= MO_32;
3291 case INDEX_op_rotls_vec:
3292 return vece >= MO_16 ? -1 : 0;
3294 case INDEX_op_shlv_vec:
3295 case INDEX_op_shrv_vec:
3296 return have_avx2 && vece >= MO_32;
3297 case INDEX_op_sarv_vec:
3298 return have_avx2 && vece == MO_32;
3299 case INDEX_op_rotlv_vec:
3300 case INDEX_op_rotrv_vec:
3301 return have_avx2 && vece >= MO_32 ? -1 : 0;
3303 case INDEX_op_mul_vec:
3305 /* We can expand the operation for MO_8. */
3308 if (vece == MO_64) {
3313 case INDEX_op_ssadd_vec:
3314 case INDEX_op_usadd_vec:
3315 case INDEX_op_sssub_vec:
3316 case INDEX_op_ussub_vec:
3317 return vece <= MO_16;
3318 case INDEX_op_smin_vec:
3319 case INDEX_op_smax_vec:
3320 case INDEX_op_umin_vec:
3321 case INDEX_op_umax_vec:
3322 case INDEX_op_abs_vec:
3323 return vece <= MO_32;
3330 static void expand_vec_shi(TCGType type, unsigned vece, TCGOpcode opc,
3331 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3335 tcg_debug_assert(vece == MO_8);
3337 t1 = tcg_temp_new_vec(type);
3338 t2 = tcg_temp_new_vec(type);
3341 * Unpack to W, shift, and repack. Tricky bits:
3342 * (1) Use punpck*bw x,x to produce DDCCBBAA,
3343 * i.e. duplicate in other half of the 16-bit lane.
3344 * (2) For right-shift, add 8 so that the high half of the lane
3345 * becomes zero. For left-shift, and left-rotate, we must
3346 * shift up and down again.
3347 * (3) Step 2 leaves high half zero such that PACKUSWB
3348 * (pack with unsigned saturation) does not modify
3351 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3352 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3353 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3354 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3356 if (opc != INDEX_op_rotli_vec) {
3359 if (opc == INDEX_op_shri_vec) {
3360 tcg_gen_shri_vec(MO_16, t1, t1, imm);
3361 tcg_gen_shri_vec(MO_16, t2, t2, imm);
3363 tcg_gen_shli_vec(MO_16, t1, t1, imm);
3364 tcg_gen_shli_vec(MO_16, t2, t2, imm);
3365 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3366 tcg_gen_shri_vec(MO_16, t2, t2, 8);
3369 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3370 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3371 tcg_temp_free_vec(t1);
3372 tcg_temp_free_vec(t2);
3375 static void expand_vec_sari(TCGType type, unsigned vece,
3376 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3382 /* Unpack to W, shift, and repack, as in expand_vec_shi. */
3383 t1 = tcg_temp_new_vec(type);
3384 t2 = tcg_temp_new_vec(type);
3385 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3386 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3387 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3388 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3389 tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
3390 tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
3391 vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
3392 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3393 tcg_temp_free_vec(t1);
3394 tcg_temp_free_vec(t2);
3400 * We can emulate a small sign extend by performing an arithmetic
3401 * 32-bit shift and overwriting the high half of a 64-bit logical
3402 * shift. Note that the ISA says shift of 32 is valid, but TCG
3403 * does not, so we have to bound the smaller shift -- we get the
3404 * same result in the high half either way.
3406 t1 = tcg_temp_new_vec(type);
3407 tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
3408 tcg_gen_shri_vec(MO_64, v0, v1, imm);
3409 vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
3410 tcgv_vec_arg(v0), tcgv_vec_arg(v0),
3411 tcgv_vec_arg(t1), 0xaa);
3412 tcg_temp_free_vec(t1);
3414 /* Otherwise we will need to use a compare vs 0 to produce
3415 * the sign-extend, shift and merge.
3417 t1 = tcg_const_zeros_vec(type);
3418 tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1, t1, v1);
3419 tcg_gen_shri_vec(MO_64, v0, v1, imm);
3420 tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
3421 tcg_gen_or_vec(MO_64, v0, v0, t1);
3422 tcg_temp_free_vec(t1);
3427 g_assert_not_reached();
3431 static void expand_vec_rotli(TCGType type, unsigned vece,
3432 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3437 expand_vec_shi(type, vece, INDEX_op_rotli_vec, v0, v1, imm);
3441 t = tcg_temp_new_vec(type);
3442 tcg_gen_shli_vec(vece, t, v1, imm);
3443 tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
3444 tcg_gen_or_vec(vece, v0, v0, t);
3445 tcg_temp_free_vec(t);
3448 static void expand_vec_rotls(TCGType type, unsigned vece,
3449 TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
3454 tcg_debug_assert(vece != MO_8);
3456 t = tcg_temp_new_vec(type);
3457 rsh = tcg_temp_new_i32();
3459 tcg_gen_neg_i32(rsh, lsh);
3460 tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
3461 tcg_gen_shls_vec(vece, t, v1, lsh);
3462 tcg_gen_shrs_vec(vece, v0, v1, rsh);
3463 tcg_gen_or_vec(vece, v0, v0, t);
3464 tcg_temp_free_vec(t);
3465 tcg_temp_free_i32(rsh);
3468 static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
3469 TCGv_vec v1, TCGv_vec sh, bool right)
3471 TCGv_vec t = tcg_temp_new_vec(type);
3473 tcg_gen_dupi_vec(vece, t, 8 << vece);
3474 tcg_gen_sub_vec(vece, t, t, sh);
3476 tcg_gen_shlv_vec(vece, t, v1, t);
3477 tcg_gen_shrv_vec(vece, v0, v1, sh);
3479 tcg_gen_shrv_vec(vece, t, v1, t);
3480 tcg_gen_shlv_vec(vece, v0, v1, sh);
3482 tcg_gen_or_vec(vece, v0, v0, t);
3483 tcg_temp_free_vec(t);
3486 static void expand_vec_mul(TCGType type, unsigned vece,
3487 TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
3489 TCGv_vec t1, t2, t3, t4;
3491 tcg_debug_assert(vece == MO_8);
3494 * Unpack v1 bytes to words, 0 | x.
3495 * Unpack v2 bytes to words, y | 0.
3496 * This leaves the 8-bit result, x * y, with 8 bits of right padding.
3497 * Shift logical right by 8 bits to clear the high 8 bytes before
3498 * using an unsigned saturated pack.
3500 * The difference between the V64, V128 and V256 cases is merely how
3501 * we distribute the expansion between temporaries.
3505 t1 = tcg_temp_new_vec(TCG_TYPE_V128);
3506 t2 = tcg_temp_new_vec(TCG_TYPE_V128);
3507 tcg_gen_dup16i_vec(t2, 0);
3508 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3509 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(t2));
3510 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3511 tcgv_vec_arg(t2), tcgv_vec_arg(t2), tcgv_vec_arg(v2));
3512 tcg_gen_mul_vec(MO_16, t1, t1, t2);
3513 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3514 vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
3515 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
3516 tcg_temp_free_vec(t1);
3517 tcg_temp_free_vec(t2);
3522 t1 = tcg_temp_new_vec(type);
3523 t2 = tcg_temp_new_vec(type);
3524 t3 = tcg_temp_new_vec(type);
3525 t4 = tcg_temp_new_vec(type);
3526 tcg_gen_dup16i_vec(t4, 0);
3527 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3528 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(t4));
3529 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3530 tcgv_vec_arg(t2), tcgv_vec_arg(t4), tcgv_vec_arg(v2));
3531 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3532 tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(t4));
3533 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3534 tcgv_vec_arg(t4), tcgv_vec_arg(t4), tcgv_vec_arg(v2));
3535 tcg_gen_mul_vec(MO_16, t1, t1, t2);
3536 tcg_gen_mul_vec(MO_16, t3, t3, t4);
3537 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3538 tcg_gen_shri_vec(MO_16, t3, t3, 8);
3539 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3540 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
3541 tcg_temp_free_vec(t1);
3542 tcg_temp_free_vec(t2);
3543 tcg_temp_free_vec(t3);
3544 tcg_temp_free_vec(t4);
3548 g_assert_not_reached();
3552 static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0,
3553 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3578 fixup = NEED_SWAP | NEED_INV;
3581 if (vece <= MO_32) {
3584 fixup = NEED_BIAS | NEED_INV;
3588 if (vece <= MO_32) {
3589 fixup = NEED_UMIN | NEED_INV;
3595 if (vece <= MO_32) {
3598 fixup = NEED_BIAS | NEED_SWAP | NEED_INV;
3602 if (vece <= MO_32) {
3603 fixup = NEED_UMAX | NEED_INV;
3605 fixup = NEED_BIAS | NEED_SWAP;
3609 g_assert_not_reached();
3612 if (fixup & NEED_INV) {
3613 cond = tcg_invert_cond(cond);
3615 if (fixup & NEED_SWAP) {
3616 t1 = v1, v1 = v2, v2 = t1;
3617 cond = tcg_swap_cond(cond);
3621 if (fixup & (NEED_UMIN | NEED_UMAX)) {
3622 t1 = tcg_temp_new_vec(type);
3623 if (fixup & NEED_UMIN) {
3624 tcg_gen_umin_vec(vece, t1, v1, v2);
3626 tcg_gen_umax_vec(vece, t1, v1, v2);
3630 } else if (fixup & NEED_BIAS) {
3631 t1 = tcg_temp_new_vec(type);
3632 t2 = tcg_temp_new_vec(type);
3633 tcg_gen_dupi_vec(vece, t2, 1ull << ((8 << vece) - 1));
3634 tcg_gen_sub_vec(vece, t1, v1, t2);
3635 tcg_gen_sub_vec(vece, t2, v2, t2);
3638 cond = tcg_signed_cond(cond);
3641 tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT);
3642 /* Expand directly; do not recurse. */
3643 vec_gen_4(INDEX_op_cmp_vec, type, vece,
3644 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3647 tcg_temp_free_vec(t1);
3649 tcg_temp_free_vec(t2);
3652 return fixup & NEED_INV;
3655 static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3656 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3658 if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) {
3659 tcg_gen_not_vec(vece, v0, v0);
3663 static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0,
3664 TCGv_vec c1, TCGv_vec c2,
3665 TCGv_vec v3, TCGv_vec v4, TCGCond cond)
3667 TCGv_vec t = tcg_temp_new_vec(type);
3669 if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) {
3670 /* Invert the sense of the compare by swapping arguments. */
3672 x = v3, v3 = v4, v4 = x;
3674 vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece,
3675 tcgv_vec_arg(v0), tcgv_vec_arg(v4),
3676 tcgv_vec_arg(v3), tcgv_vec_arg(t));
3677 tcg_temp_free_vec(t);
3680 void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3685 TCGv_vec v0, v1, v2, v3, v4;
3688 v0 = temp_tcgv_vec(arg_temp(a0));
3689 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3690 a2 = va_arg(va, TCGArg);
3693 case INDEX_op_shli_vec:
3694 case INDEX_op_shri_vec:
3695 expand_vec_shi(type, vece, opc, v0, v1, a2);
3698 case INDEX_op_sari_vec:
3699 expand_vec_sari(type, vece, v0, v1, a2);
3702 case INDEX_op_rotli_vec:
3703 expand_vec_rotli(type, vece, v0, v1, a2);
3706 case INDEX_op_rotls_vec:
3707 expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
3710 case INDEX_op_rotlv_vec:
3711 v2 = temp_tcgv_vec(arg_temp(a2));
3712 expand_vec_rotv(type, vece, v0, v1, v2, false);
3714 case INDEX_op_rotrv_vec:
3715 v2 = temp_tcgv_vec(arg_temp(a2));
3716 expand_vec_rotv(type, vece, v0, v1, v2, true);
3719 case INDEX_op_mul_vec:
3720 v2 = temp_tcgv_vec(arg_temp(a2));
3721 expand_vec_mul(type, vece, v0, v1, v2);
3724 case INDEX_op_cmp_vec:
3725 v2 = temp_tcgv_vec(arg_temp(a2));
3726 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
3729 case INDEX_op_cmpsel_vec:
3730 v2 = temp_tcgv_vec(arg_temp(a2));
3731 v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3732 v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3733 expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg));
3743 static const int tcg_target_callee_save_regs[] = {
3744 #if TCG_TARGET_REG_BITS == 64
3753 TCG_REG_R14, /* Currently used for the global env. */
3756 TCG_REG_EBP, /* Currently used for the global env. */
3763 /* Compute frame size via macros, to share between tcg_target_qemu_prologue
3764 and tcg_register_jit. */
3767 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
3768 * (TCG_TARGET_REG_BITS / 8))
3770 #define FRAME_SIZE \
3772 + TCG_STATIC_CALL_ARGS_SIZE \
3773 + CPU_TEMP_BUF_NLONGS * sizeof(long) \
3774 + TCG_TARGET_STACK_ALIGN - 1) \
3775 & ~(TCG_TARGET_STACK_ALIGN - 1))
3777 /* Generate global QEMU prologue and epilogue code */
3778 static void tcg_target_qemu_prologue(TCGContext *s)
3780 int i, stack_addend;
3784 /* Reserve some stack space, also for TCG temps. */
3785 stack_addend = FRAME_SIZE - PUSH_SIZE;
3786 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
3787 CPU_TEMP_BUF_NLONGS * sizeof(long));
3789 /* Save all callee saved registers. */
3790 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
3791 tcg_out_push(s, tcg_target_callee_save_regs[i]);
3794 #if TCG_TARGET_REG_BITS == 32
3795 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
3796 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
3797 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
3799 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
3800 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
3803 # if !defined(CONFIG_SOFTMMU) && TCG_TARGET_REG_BITS == 64
3805 int seg = setup_guest_base_seg();
3807 x86_guest_base_seg = seg;
3808 } else if (guest_base == (int32_t)guest_base) {
3809 x86_guest_base_offset = guest_base;
3811 /* Choose R12 because, as a base, it requires a SIB byte. */
3812 x86_guest_base_index = TCG_REG_R12;
3813 tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base_index, guest_base);
3814 tcg_regset_set_reg(s->reserved_regs, x86_guest_base_index);
3818 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
3819 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
3821 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
3825 * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
3826 * and fall through to the rest of the epilogue.
3828 s->code_gen_epilogue = s->code_ptr;
3829 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
3832 tb_ret_addr = s->code_ptr;
3834 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
3837 tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
3839 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
3840 tcg_out_pop(s, tcg_target_callee_save_regs[i]);
3842 tcg_out_opc(s, OPC_RET, 0, 0, 0);
3845 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
3847 memset(p, 0x90, count);
3850 static void tcg_target_init(TCGContext *s)
3852 #ifdef CONFIG_CPUID_H
3853 unsigned a, b, c, d, b7 = 0;
3854 int max = __get_cpuid_max(0, 0);
3857 /* BMI1 is available on AMD Piledriver and Intel Haswell CPUs. */
3858 __cpuid_count(7, 0, a, b7, c, d);
3859 have_bmi1 = (b7 & bit_BMI) != 0;
3860 have_bmi2 = (b7 & bit_BMI2) != 0;
3864 __cpuid(1, a, b, c, d);
3866 /* For 32-bit, 99% certainty that we're running on hardware that
3867 supports cmov, but we still need to check. In case cmov is not
3868 available, we'll use a small forward branch. */
3869 have_cmov = (d & bit_CMOV) != 0;
3872 /* MOVBE is only available on Intel Atom and Haswell CPUs, so we
3873 need to probe for it. */
3874 have_movbe = (c & bit_MOVBE) != 0;
3875 have_popcnt = (c & bit_POPCNT) != 0;
3877 /* There are a number of things we must check before we can be
3878 sure of not hitting invalid opcode. */
3879 if (c & bit_OSXSAVE) {
3880 unsigned xcrl, xcrh;
3881 /* The xgetbv instruction is not available to older versions of
3882 * the assembler, so we encode the instruction manually.
3884 asm(".byte 0x0f, 0x01, 0xd0" : "=a" (xcrl), "=d" (xcrh) : "c" (0));
3885 if ((xcrl & 6) == 6) {
3886 have_avx1 = (c & bit_AVX) != 0;
3887 have_avx2 = (b7 & bit_AVX2) != 0;
3892 max = __get_cpuid_max(0x8000000, 0);
3894 __cpuid(0x80000001, a, b, c, d);
3895 /* LZCNT was introduced with AMD Barcelona and Intel Haswell CPUs. */
3896 have_lzcnt = (c & bit_LZCNT) != 0;
3898 #endif /* CONFIG_CPUID_H */
3900 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
3901 if (TCG_TARGET_REG_BITS == 64) {
3902 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
3905 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
3906 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
3909 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
3912 tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
3913 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
3914 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
3915 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
3916 if (TCG_TARGET_REG_BITS == 64) {
3917 #if !defined(_WIN64)
3918 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
3919 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
3921 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
3922 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
3923 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
3924 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
3927 s->reserved_regs = 0;
3928 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
3933 uint8_t fde_def_cfa[4];
3934 uint8_t fde_reg_ofs[14];
3937 /* We're expecting a 2 byte uleb128 encoded value. */
3938 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
3940 #if !defined(__ELF__)
3941 /* Host machine without ELF. */
3942 #elif TCG_TARGET_REG_BITS == 64
3943 #define ELF_HOST_MACHINE EM_X86_64
3944 static const DebugFrame debug_frame = {
3945 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
3948 .h.cie.code_align = 1,
3949 .h.cie.data_align = 0x78, /* sleb128 -8 */
3950 .h.cie.return_column = 16,
3952 /* Total FDE size does not include the "len" member. */
3953 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
3956 12, 7, /* DW_CFA_def_cfa %rsp, ... */
3957 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
3961 0x90, 1, /* DW_CFA_offset, %rip, -8 */
3962 /* The following ordering must match tcg_target_callee_save_regs. */
3963 0x86, 2, /* DW_CFA_offset, %rbp, -16 */
3964 0x83, 3, /* DW_CFA_offset, %rbx, -24 */
3965 0x8c, 4, /* DW_CFA_offset, %r12, -32 */
3966 0x8d, 5, /* DW_CFA_offset, %r13, -40 */
3967 0x8e, 6, /* DW_CFA_offset, %r14, -48 */
3968 0x8f, 7, /* DW_CFA_offset, %r15, -56 */
3972 #define ELF_HOST_MACHINE EM_386
3973 static const DebugFrame debug_frame = {
3974 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
3977 .h.cie.code_align = 1,
3978 .h.cie.data_align = 0x7c, /* sleb128 -4 */
3979 .h.cie.return_column = 8,
3981 /* Total FDE size does not include the "len" member. */
3982 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
3985 12, 4, /* DW_CFA_def_cfa %esp, ... */
3986 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
3990 0x88, 1, /* DW_CFA_offset, %eip, -4 */
3991 /* The following ordering must match tcg_target_callee_save_regs. */
3992 0x85, 2, /* DW_CFA_offset, %ebp, -8 */
3993 0x83, 3, /* DW_CFA_offset, %ebx, -12 */
3994 0x86, 4, /* DW_CFA_offset, %esi, -16 */
3995 0x87, 5, /* DW_CFA_offset, %edi, -20 */
4000 #if defined(ELF_HOST_MACHINE)
4001 void tcg_register_jit(void *buf, size_t buf_size)
4003 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));