4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
42 #include "hw/boards.h"
44 /* This check must be after config-host.h is included */
46 #include <sys/eventfd.h>
49 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
50 #define PAGE_SIZE TARGET_PAGE_SIZE
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #define DPRINTF(fmt, ...) \
62 #define KVM_MSI_HASHTAB_SIZE 256
64 typedef struct KVMSlot
67 ram_addr_t memory_size
;
73 typedef struct kvm_dirty_log KVMDirtyLog
;
77 AccelState parent_obj
;
84 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
85 bool coalesced_flush_in_progress
;
86 int broken_set_mem_region
;
88 int robust_singlestep
;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl
;
101 unsigned int sigmask_len
;
103 #ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing
*irq_routes
;
105 int nr_allocated_irq_routes
;
106 uint32_t *used_gsi_bitmap
;
107 unsigned int gsi_count
;
108 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
113 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
115 #define KVM_STATE(obj) \
116 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
119 bool kvm_kernel_irqchip
;
120 bool kvm_async_interrupts_allowed
;
121 bool kvm_halt_in_kernel_allowed
;
122 bool kvm_eventfds_allowed
;
123 bool kvm_irqfds_allowed
;
124 bool kvm_resamplefds_allowed
;
125 bool kvm_msi_via_irqfd_allowed
;
126 bool kvm_gsi_routing_allowed
;
127 bool kvm_gsi_direct_mapping
;
129 bool kvm_readonly_mem_allowed
;
130 bool kvm_vm_attributes_allowed
;
132 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
133 KVM_CAP_INFO(USER_MEMORY
),
134 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
138 static KVMSlot
*kvm_get_free_slot(KVMState
*s
)
142 for (i
= 0; i
< s
->nr_slots
; i
++) {
143 if (s
->slots
[i
].memory_size
== 0) {
151 bool kvm_has_free_slot(MachineState
*ms
)
153 return kvm_get_free_slot(KVM_STATE(ms
->accelerator
));
156 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
158 KVMSlot
*slot
= kvm_get_free_slot(s
);
164 fprintf(stderr
, "%s: no free slot available\n", __func__
);
168 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
174 for (i
= 0; i
< s
->nr_slots
; i
++) {
175 KVMSlot
*mem
= &s
->slots
[i
];
177 if (start_addr
== mem
->start_addr
&&
178 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
187 * Find overlapping slot with lowest start address
189 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
193 KVMSlot
*found
= NULL
;
196 for (i
= 0; i
< s
->nr_slots
; i
++) {
197 KVMSlot
*mem
= &s
->slots
[i
];
199 if (mem
->memory_size
== 0 ||
200 (found
&& found
->start_addr
< mem
->start_addr
)) {
204 if (end_addr
> mem
->start_addr
&&
205 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
213 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
218 for (i
= 0; i
< s
->nr_slots
; i
++) {
219 KVMSlot
*mem
= &s
->slots
[i
];
221 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
222 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
230 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
232 struct kvm_userspace_memory_region mem
;
234 mem
.slot
= slot
->slot
;
235 mem
.guest_phys_addr
= slot
->start_addr
;
236 mem
.userspace_addr
= (unsigned long)slot
->ram
;
237 mem
.flags
= slot
->flags
;
239 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
240 /* Set the slot size to 0 before setting the slot to the desired
241 * value. This is needed based on KVM commit 75d61fbc. */
243 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
245 mem
.memory_size
= slot
->memory_size
;
246 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
249 int kvm_init_vcpu(CPUState
*cpu
)
251 KVMState
*s
= kvm_state
;
255 DPRINTF("kvm_init_vcpu\n");
257 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
259 DPRINTF("kvm_create_vcpu failed\n");
265 cpu
->kvm_vcpu_dirty
= true;
267 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
270 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
274 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
276 if (cpu
->kvm_run
== MAP_FAILED
) {
278 DPRINTF("mmap'ing vcpu state failed\n");
282 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
283 s
->coalesced_mmio_ring
=
284 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
287 ret
= kvm_arch_init_vcpu(cpu
);
293 * dirty pages logging control
296 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
299 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
300 if (readonly
&& kvm_readonly_mem_allowed
) {
301 flags
|= KVM_MEM_READONLY
;
306 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
308 KVMState
*s
= kvm_state
;
309 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
312 old_flags
= mem
->flags
;
314 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
317 /* If nothing changed effectively, no need to issue ioctl */
318 if (flags
== old_flags
) {
322 return kvm_set_user_memory_region(s
, mem
);
325 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
326 ram_addr_t size
, bool log_dirty
)
328 KVMState
*s
= kvm_state
;
329 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
334 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
338 static void kvm_log_start(MemoryListener
*listener
,
339 MemoryRegionSection
*section
,
348 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
349 int128_get64(section
->size
), true);
355 static void kvm_log_stop(MemoryListener
*listener
,
356 MemoryRegionSection
*section
,
365 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
366 int128_get64(section
->size
), false);
372 /* get kvm's dirty pages bitmap and update qemu's */
373 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
374 unsigned long *bitmap
)
376 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
377 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
379 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
383 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
386 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387 * This function updates qemu's dirty bitmap using
388 * memory_region_set_dirty(). This means all bits are set
391 * @start_add: start of logged region.
392 * @end_addr: end of logged region.
394 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
396 KVMState
*s
= kvm_state
;
397 unsigned long size
, allocated_size
= 0;
401 hwaddr start_addr
= section
->offset_within_address_space
;
402 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
404 d
.dirty_bitmap
= NULL
;
405 while (start_addr
< end_addr
) {
406 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
411 /* XXX bad kernel interface alert
412 * For dirty bitmap, kernel allocates array of size aligned to
413 * bits-per-long. But for case when the kernel is 64bits and
414 * the userspace is 32bits, userspace can't align to the same
415 * bits-per-long, since sizeof(long) is different between kernel
416 * and user space. This way, userspace will provide buffer which
417 * may be 4 bytes less than the kernel will use, resulting in
418 * userspace memory corruption (which is not detectable by valgrind
419 * too, in most cases).
420 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421 * a hope that sizeof(long) wont become >8 any time soon.
423 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
424 /*HOST_LONG_BITS*/ 64) / 8;
425 if (!d
.dirty_bitmap
) {
426 d
.dirty_bitmap
= g_malloc(size
);
427 } else if (size
> allocated_size
) {
428 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
430 allocated_size
= size
;
431 memset(d
.dirty_bitmap
, 0, allocated_size
);
435 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
436 DPRINTF("ioctl failed %d\n", errno
);
441 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
442 start_addr
= mem
->start_addr
+ mem
->memory_size
;
444 g_free(d
.dirty_bitmap
);
449 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
450 MemoryRegionSection
*secion
,
451 hwaddr start
, hwaddr size
)
453 KVMState
*s
= kvm_state
;
455 if (s
->coalesced_mmio
) {
456 struct kvm_coalesced_mmio_zone zone
;
462 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
466 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
467 MemoryRegionSection
*secion
,
468 hwaddr start
, hwaddr size
)
470 KVMState
*s
= kvm_state
;
472 if (s
->coalesced_mmio
) {
473 struct kvm_coalesced_mmio_zone zone
;
479 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
483 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
487 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
495 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
499 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
501 /* VM wide version not implemented, use global one instead */
502 ret
= kvm_check_extension(s
, extension
);
508 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
510 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
511 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
512 * endianness, but the memory core hands them in target endianness.
513 * For example, PPC is always treated as big-endian even if running
514 * on KVM and on PPC64LE. Correct here.
528 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
529 bool assign
, uint32_t size
, bool datamatch
)
532 struct kvm_ioeventfd iofd
= {
533 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
540 if (!kvm_enabled()) {
545 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
548 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
551 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
560 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
561 bool assign
, uint32_t size
, bool datamatch
)
563 struct kvm_ioeventfd kick
= {
564 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
566 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
571 if (!kvm_enabled()) {
575 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
578 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
580 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
588 static int kvm_check_many_ioeventfds(void)
590 /* Userspace can use ioeventfd for io notification. This requires a host
591 * that supports eventfd(2) and an I/O thread; since eventfd does not
592 * support SIGIO it cannot interrupt the vcpu.
594 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
595 * can avoid creating too many ioeventfds.
597 #if defined(CONFIG_EVENTFD)
600 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
601 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
602 if (ioeventfds
[i
] < 0) {
605 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
607 close(ioeventfds
[i
]);
612 /* Decide whether many devices are supported or not */
613 ret
= i
== ARRAY_SIZE(ioeventfds
);
616 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
617 close(ioeventfds
[i
]);
625 static const KVMCapabilityInfo
*
626 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
629 if (!kvm_check_extension(s
, list
->value
)) {
637 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
639 KVMState
*s
= kvm_state
;
642 MemoryRegion
*mr
= section
->mr
;
643 bool log_dirty
= memory_region_get_dirty_log_mask(mr
) != 0;
644 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
645 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
646 hwaddr start_addr
= section
->offset_within_address_space
;
647 ram_addr_t size
= int128_get64(section
->size
);
651 /* kvm works in page size chunks, but the function may be called
652 with sub-page size and unaligned start address. Pad the start
653 address to next and truncate size to previous page boundary. */
654 delta
= (TARGET_PAGE_SIZE
- (start_addr
& ~TARGET_PAGE_MASK
));
655 delta
&= ~TARGET_PAGE_MASK
;
661 size
&= TARGET_PAGE_MASK
;
662 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
666 if (!memory_region_is_ram(mr
)) {
667 if (writeable
|| !kvm_readonly_mem_allowed
) {
669 } else if (!mr
->romd_mode
) {
670 /* If the memory device is not in romd_mode, then we actually want
671 * to remove the kvm memory slot so all accesses will trap. */
676 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
679 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
684 if (add
&& start_addr
>= mem
->start_addr
&&
685 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
686 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
687 /* The new slot fits into the existing one and comes with
688 * identical parameters - update flags and done. */
689 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
695 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
696 kvm_physical_sync_dirty_bitmap(section
);
699 /* unregister the overlapping slot */
700 mem
->memory_size
= 0;
701 err
= kvm_set_user_memory_region(s
, mem
);
703 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
704 __func__
, strerror(-err
));
708 /* Workaround for older KVM versions: we can't join slots, even not by
709 * unregistering the previous ones and then registering the larger
710 * slot. We have to maintain the existing fragmentation. Sigh.
712 * This workaround assumes that the new slot starts at the same
713 * address as the first existing one. If not or if some overlapping
714 * slot comes around later, we will fail (not seen in practice so far)
715 * - and actually require a recent KVM version. */
716 if (s
->broken_set_mem_region
&&
717 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
718 mem
= kvm_alloc_slot(s
);
719 mem
->memory_size
= old
.memory_size
;
720 mem
->start_addr
= old
.start_addr
;
722 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
724 err
= kvm_set_user_memory_region(s
, mem
);
726 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
731 start_addr
+= old
.memory_size
;
732 ram
+= old
.memory_size
;
733 size
-= old
.memory_size
;
737 /* register prefix slot */
738 if (old
.start_addr
< start_addr
) {
739 mem
= kvm_alloc_slot(s
);
740 mem
->memory_size
= start_addr
- old
.start_addr
;
741 mem
->start_addr
= old
.start_addr
;
743 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
745 err
= kvm_set_user_memory_region(s
, mem
);
747 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
748 __func__
, strerror(-err
));
750 fprintf(stderr
, "%s: This is probably because your kernel's " \
751 "PAGE_SIZE is too big. Please try to use 4k " \
752 "PAGE_SIZE!\n", __func__
);
758 /* register suffix slot */
759 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
760 ram_addr_t size_delta
;
762 mem
= kvm_alloc_slot(s
);
763 mem
->start_addr
= start_addr
+ size
;
764 size_delta
= mem
->start_addr
- old
.start_addr
;
765 mem
->memory_size
= old
.memory_size
- size_delta
;
766 mem
->ram
= old
.ram
+ size_delta
;
767 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
769 err
= kvm_set_user_memory_region(s
, mem
);
771 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
772 __func__
, strerror(-err
));
778 /* in case the KVM bug workaround already "consumed" the new slot */
785 mem
= kvm_alloc_slot(s
);
786 mem
->memory_size
= size
;
787 mem
->start_addr
= start_addr
;
789 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
791 err
= kvm_set_user_memory_region(s
, mem
);
793 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
799 static void kvm_region_add(MemoryListener
*listener
,
800 MemoryRegionSection
*section
)
802 memory_region_ref(section
->mr
);
803 kvm_set_phys_mem(section
, true);
806 static void kvm_region_del(MemoryListener
*listener
,
807 MemoryRegionSection
*section
)
809 kvm_set_phys_mem(section
, false);
810 memory_region_unref(section
->mr
);
813 static void kvm_log_sync(MemoryListener
*listener
,
814 MemoryRegionSection
*section
)
818 r
= kvm_physical_sync_dirty_bitmap(section
);
824 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
825 MemoryRegionSection
*section
,
826 bool match_data
, uint64_t data
,
829 int fd
= event_notifier_get_fd(e
);
832 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
833 data
, true, int128_get64(section
->size
),
836 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
837 __func__
, strerror(-r
));
842 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
843 MemoryRegionSection
*section
,
844 bool match_data
, uint64_t data
,
847 int fd
= event_notifier_get_fd(e
);
850 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
851 data
, false, int128_get64(section
->size
),
858 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
859 MemoryRegionSection
*section
,
860 bool match_data
, uint64_t data
,
863 int fd
= event_notifier_get_fd(e
);
866 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
867 data
, true, int128_get64(section
->size
),
870 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
871 __func__
, strerror(-r
));
876 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
877 MemoryRegionSection
*section
,
878 bool match_data
, uint64_t data
,
882 int fd
= event_notifier_get_fd(e
);
885 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
886 data
, false, int128_get64(section
->size
),
893 static MemoryListener kvm_memory_listener
= {
894 .region_add
= kvm_region_add
,
895 .region_del
= kvm_region_del
,
896 .log_start
= kvm_log_start
,
897 .log_stop
= kvm_log_stop
,
898 .log_sync
= kvm_log_sync
,
899 .eventfd_add
= kvm_mem_ioeventfd_add
,
900 .eventfd_del
= kvm_mem_ioeventfd_del
,
901 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
902 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
906 static MemoryListener kvm_io_listener
= {
907 .eventfd_add
= kvm_io_ioeventfd_add
,
908 .eventfd_del
= kvm_io_ioeventfd_del
,
912 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
914 cpu
->interrupt_request
|= mask
;
916 if (!qemu_cpu_is_self(cpu
)) {
921 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
923 struct kvm_irq_level event
;
926 assert(kvm_async_interrupts_enabled());
930 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
932 perror("kvm_set_irq");
936 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
939 #ifdef KVM_CAP_IRQ_ROUTING
940 typedef struct KVMMSIRoute
{
941 struct kvm_irq_routing_entry kroute
;
942 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
945 static void set_gsi(KVMState
*s
, unsigned int gsi
)
947 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
950 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
952 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
955 void kvm_init_irq_routing(KVMState
*s
)
959 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
961 unsigned int gsi_bits
, i
;
963 /* Round up so we can search ints using ffs */
964 gsi_bits
= ALIGN(gsi_count
, 32);
965 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
966 s
->gsi_count
= gsi_count
;
968 /* Mark any over-allocated bits as already in use */
969 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
974 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
975 s
->nr_allocated_irq_routes
= 0;
977 if (!s
->direct_msi
) {
978 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
979 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
983 kvm_arch_init_irq_routing(s
);
986 void kvm_irqchip_commit_routes(KVMState
*s
)
990 s
->irq_routes
->flags
= 0;
991 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
995 static void kvm_add_routing_entry(KVMState
*s
,
996 struct kvm_irq_routing_entry
*entry
)
998 struct kvm_irq_routing_entry
*new;
1001 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1002 n
= s
->nr_allocated_irq_routes
* 2;
1006 size
= sizeof(struct kvm_irq_routing
);
1007 size
+= n
* sizeof(*new);
1008 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1009 s
->nr_allocated_irq_routes
= n
;
1011 n
= s
->irq_routes
->nr
++;
1012 new = &s
->irq_routes
->entries
[n
];
1016 set_gsi(s
, entry
->gsi
);
1019 static int kvm_update_routing_entry(KVMState
*s
,
1020 struct kvm_irq_routing_entry
*new_entry
)
1022 struct kvm_irq_routing_entry
*entry
;
1025 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1026 entry
= &s
->irq_routes
->entries
[n
];
1027 if (entry
->gsi
!= new_entry
->gsi
) {
1031 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1035 *entry
= *new_entry
;
1037 kvm_irqchip_commit_routes(s
);
1045 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1047 struct kvm_irq_routing_entry e
= {};
1049 assert(pin
< s
->gsi_count
);
1052 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1054 e
.u
.irqchip
.irqchip
= irqchip
;
1055 e
.u
.irqchip
.pin
= pin
;
1056 kvm_add_routing_entry(s
, &e
);
1059 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1061 struct kvm_irq_routing_entry
*e
;
1064 if (kvm_gsi_direct_mapping()) {
1068 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1069 e
= &s
->irq_routes
->entries
[i
];
1070 if (e
->gsi
== virq
) {
1071 s
->irq_routes
->nr
--;
1072 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1078 static unsigned int kvm_hash_msi(uint32_t data
)
1080 /* This is optimized for IA32 MSI layout. However, no other arch shall
1081 * repeat the mistake of not providing a direct MSI injection API. */
1085 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1087 KVMMSIRoute
*route
, *next
;
1090 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1091 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1092 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1093 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1099 static int kvm_irqchip_get_virq(KVMState
*s
)
1101 uint32_t *word
= s
->used_gsi_bitmap
;
1102 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1106 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1107 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1108 * number can succeed even though a new route entry cannot be added.
1109 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1111 if (!s
->direct_msi
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1112 kvm_flush_dynamic_msi_routes(s
);
1115 /* Return the lowest unused GSI in the bitmap */
1116 for (i
= 0; i
< max_words
; i
++) {
1117 zeroes
= ctz32(~word
[i
]);
1122 return zeroes
+ i
* 32;
1128 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1130 unsigned int hash
= kvm_hash_msi(msg
.data
);
1133 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1134 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1135 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1136 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1143 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1148 if (s
->direct_msi
) {
1149 msi
.address_lo
= (uint32_t)msg
.address
;
1150 msi
.address_hi
= msg
.address
>> 32;
1151 msi
.data
= le32_to_cpu(msg
.data
);
1153 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1155 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1158 route
= kvm_lookup_msi_route(s
, msg
);
1162 virq
= kvm_irqchip_get_virq(s
);
1167 route
= g_malloc0(sizeof(KVMMSIRoute
));
1168 route
->kroute
.gsi
= virq
;
1169 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1170 route
->kroute
.flags
= 0;
1171 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1172 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1173 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1175 kvm_add_routing_entry(s
, &route
->kroute
);
1176 kvm_irqchip_commit_routes(s
);
1178 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1182 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1184 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1187 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1189 struct kvm_irq_routing_entry kroute
= {};
1192 if (kvm_gsi_direct_mapping()) {
1193 return kvm_arch_msi_data_to_gsi(msg
.data
);
1196 if (!kvm_gsi_routing_enabled()) {
1200 virq
= kvm_irqchip_get_virq(s
);
1206 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1208 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1209 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1210 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1211 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1212 kvm_irqchip_release_virq(s
, virq
);
1216 kvm_add_routing_entry(s
, &kroute
);
1217 kvm_irqchip_commit_routes(s
);
1222 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1224 struct kvm_irq_routing_entry kroute
= {};
1226 if (kvm_gsi_direct_mapping()) {
1230 if (!kvm_irqchip_in_kernel()) {
1235 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1237 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1238 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1239 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1240 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1244 return kvm_update_routing_entry(s
, &kroute
);
1247 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1250 struct kvm_irqfd irqfd
= {
1253 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1257 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1258 irqfd
.resamplefd
= rfd
;
1261 if (!kvm_irqfds_enabled()) {
1265 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1268 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1270 struct kvm_irq_routing_entry kroute
= {};
1273 if (!kvm_gsi_routing_enabled()) {
1277 virq
= kvm_irqchip_get_virq(s
);
1283 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1285 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1286 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1287 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1288 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1289 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1291 kvm_add_routing_entry(s
, &kroute
);
1292 kvm_irqchip_commit_routes(s
);
1297 #else /* !KVM_CAP_IRQ_ROUTING */
1299 void kvm_init_irq_routing(KVMState
*s
)
1303 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1307 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1312 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1317 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1322 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1327 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1331 #endif /* !KVM_CAP_IRQ_ROUTING */
1333 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1334 EventNotifier
*rn
, int virq
)
1336 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1337 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1340 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1343 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1347 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1348 EventNotifier
*rn
, qemu_irq irq
)
1351 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1356 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1359 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1363 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1368 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1371 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1373 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1376 static int kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1380 if (!machine_kernel_irqchip_allowed(machine
) ||
1381 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1382 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1386 /* First probe and see if there's a arch-specific hook to create the
1387 * in-kernel irqchip for us */
1388 ret
= kvm_arch_irqchip_create(s
);
1391 } else if (ret
== 0) {
1392 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1394 fprintf(stderr
, "Create kernel irqchip failed\n");
1399 kvm_kernel_irqchip
= true;
1400 /* If we have an in-kernel IRQ chip then we must have asynchronous
1401 * interrupt delivery (though the reverse is not necessarily true)
1403 kvm_async_interrupts_allowed
= true;
1404 kvm_halt_in_kernel_allowed
= true;
1406 kvm_init_irq_routing(s
);
1408 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1413 /* Find number of supported CPUs using the recommended
1414 * procedure from the kernel API documentation to cope with
1415 * older kernels that may be missing capabilities.
1417 static int kvm_recommended_vcpus(KVMState
*s
)
1419 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1420 return (ret
) ? ret
: 4;
1423 static int kvm_max_vcpus(KVMState
*s
)
1425 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1426 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1429 static int kvm_init(MachineState
*ms
)
1431 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1432 static const char upgrade_note
[] =
1433 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1434 "(see http://sourceforge.net/projects/kvm).\n";
1439 { "SMP", smp_cpus
},
1440 { "hotpluggable", max_cpus
},
1443 int soft_vcpus_limit
, hard_vcpus_limit
;
1445 const KVMCapabilityInfo
*missing_cap
;
1448 const char *kvm_type
;
1450 s
= KVM_STATE(ms
->accelerator
);
1453 * On systems where the kernel can support different base page
1454 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1455 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1456 * page size for the system though.
1458 assert(TARGET_PAGE_SIZE
<= getpagesize());
1463 #ifdef KVM_CAP_SET_GUEST_DEBUG
1464 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1467 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1469 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1474 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1475 if (ret
< KVM_API_VERSION
) {
1479 fprintf(stderr
, "kvm version too old\n");
1483 if (ret
> KVM_API_VERSION
) {
1485 fprintf(stderr
, "kvm version not supported\n");
1489 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1491 /* If unspecified, use the default value */
1496 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1498 for (i
= 0; i
< s
->nr_slots
; i
++) {
1499 s
->slots
[i
].slot
= i
;
1502 /* check the vcpu limits */
1503 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1504 hard_vcpus_limit
= kvm_max_vcpus(s
);
1507 if (nc
->num
> soft_vcpus_limit
) {
1509 "Warning: Number of %s cpus requested (%d) exceeds "
1510 "the recommended cpus supported by KVM (%d)\n",
1511 nc
->name
, nc
->num
, soft_vcpus_limit
);
1513 if (nc
->num
> hard_vcpus_limit
) {
1514 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1515 "the maximum cpus supported by KVM (%d)\n",
1516 nc
->name
, nc
->num
, hard_vcpus_limit
);
1523 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1525 type
= mc
->kvm_type(kvm_type
);
1526 } else if (kvm_type
) {
1528 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1533 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1534 } while (ret
== -EINTR
);
1537 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1541 if (ret
== -EINVAL
) {
1543 "Host kernel setup problem detected. Please verify:\n");
1544 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1545 " user_mode parameters, whether\n");
1547 " user space is running in primary address space\n");
1549 "- for kernels supporting the vm.allocate_pgste sysctl, "
1550 "whether it is enabled\n");
1557 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1560 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1564 fprintf(stderr
, "kvm does not support %s\n%s",
1565 missing_cap
->name
, upgrade_note
);
1569 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1571 s
->broken_set_mem_region
= 1;
1572 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1574 s
->broken_set_mem_region
= 0;
1577 #ifdef KVM_CAP_VCPU_EVENTS
1578 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1581 s
->robust_singlestep
=
1582 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1584 #ifdef KVM_CAP_DEBUGREGS
1585 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1588 #ifdef KVM_CAP_XSAVE
1589 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1593 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1596 #ifdef KVM_CAP_PIT_STATE2
1597 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1600 #ifdef KVM_CAP_IRQ_ROUTING
1601 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1604 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1606 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1607 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1608 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1611 #ifdef KVM_CAP_READONLY_MEM
1612 kvm_readonly_mem_allowed
=
1613 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1616 kvm_eventfds_allowed
=
1617 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1619 kvm_irqfds_allowed
=
1620 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1622 kvm_resamplefds_allowed
=
1623 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1625 kvm_vm_attributes_allowed
=
1626 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1628 ret
= kvm_arch_init(ms
, s
);
1633 ret
= kvm_irqchip_create(ms
, s
);
1639 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1640 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1642 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1644 cpu_interrupt_handler
= kvm_handle_interrupt
;
1661 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1663 s
->sigmask_len
= sigmask_len
;
1666 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1667 int size
, uint32_t count
)
1670 uint8_t *ptr
= data
;
1672 for (i
= 0; i
< count
; i
++) {
1673 address_space_rw(&address_space_io
, port
, attrs
,
1675 direction
== KVM_EXIT_IO_OUT
);
1680 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1682 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1683 run
->internal
.suberror
);
1685 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1688 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1689 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1690 i
, (uint64_t)run
->internal
.data
[i
]);
1693 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1694 fprintf(stderr
, "emulation failure\n");
1695 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1696 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1697 return EXCP_INTERRUPT
;
1700 /* FIXME: Should trigger a qmp message to let management know
1701 * something went wrong.
1706 void kvm_flush_coalesced_mmio_buffer(void)
1708 KVMState
*s
= kvm_state
;
1710 if (s
->coalesced_flush_in_progress
) {
1714 s
->coalesced_flush_in_progress
= true;
1716 if (s
->coalesced_mmio_ring
) {
1717 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1718 while (ring
->first
!= ring
->last
) {
1719 struct kvm_coalesced_mmio
*ent
;
1721 ent
= &ring
->coalesced_mmio
[ring
->first
];
1723 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1725 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1729 s
->coalesced_flush_in_progress
= false;
1732 static void do_kvm_cpu_synchronize_state(void *arg
)
1734 CPUState
*cpu
= arg
;
1736 if (!cpu
->kvm_vcpu_dirty
) {
1737 kvm_arch_get_registers(cpu
);
1738 cpu
->kvm_vcpu_dirty
= true;
1742 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1744 if (!cpu
->kvm_vcpu_dirty
) {
1745 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1749 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1751 CPUState
*cpu
= arg
;
1753 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1754 cpu
->kvm_vcpu_dirty
= false;
1757 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1759 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1762 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1764 CPUState
*cpu
= arg
;
1766 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1767 cpu
->kvm_vcpu_dirty
= false;
1770 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1772 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1775 void kvm_cpu_clean_state(CPUState
*cpu
)
1777 cpu
->kvm_vcpu_dirty
= false;
1780 int kvm_cpu_exec(CPUState
*cpu
)
1782 struct kvm_run
*run
= cpu
->kvm_run
;
1785 DPRINTF("kvm_cpu_exec()\n");
1787 if (kvm_arch_process_async_events(cpu
)) {
1788 cpu
->exit_request
= 0;
1792 qemu_mutex_unlock_iothread();
1797 if (cpu
->kvm_vcpu_dirty
) {
1798 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1799 cpu
->kvm_vcpu_dirty
= false;
1802 kvm_arch_pre_run(cpu
, run
);
1803 if (cpu
->exit_request
) {
1804 DPRINTF("interrupt exit requested\n");
1806 * KVM requires us to reenter the kernel after IO exits to complete
1807 * instruction emulation. This self-signal will ensure that we
1810 qemu_cpu_kick_self();
1813 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1815 attrs
= kvm_arch_post_run(cpu
, run
);
1818 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1819 DPRINTF("io window exit\n");
1820 ret
= EXCP_INTERRUPT
;
1823 fprintf(stderr
, "error: kvm run failed %s\n",
1824 strerror(-run_ret
));
1826 if (run_ret
== -EBUSY
) {
1828 "This is probably because your SMT is enabled.\n"
1829 "VCPU can only run on primary threads with all "
1830 "secondary threads offline.\n");
1837 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1838 switch (run
->exit_reason
) {
1840 DPRINTF("handle_io\n");
1841 /* Called outside BQL */
1842 kvm_handle_io(run
->io
.port
, attrs
,
1843 (uint8_t *)run
+ run
->io
.data_offset
,
1850 DPRINTF("handle_mmio\n");
1851 /* Called outside BQL */
1852 address_space_rw(&address_space_memory
,
1853 run
->mmio
.phys_addr
, attrs
,
1856 run
->mmio
.is_write
);
1859 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1860 DPRINTF("irq_window_open\n");
1861 ret
= EXCP_INTERRUPT
;
1863 case KVM_EXIT_SHUTDOWN
:
1864 DPRINTF("shutdown\n");
1865 qemu_system_reset_request();
1866 ret
= EXCP_INTERRUPT
;
1868 case KVM_EXIT_UNKNOWN
:
1869 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1870 (uint64_t)run
->hw
.hardware_exit_reason
);
1873 case KVM_EXIT_INTERNAL_ERROR
:
1874 ret
= kvm_handle_internal_error(cpu
, run
);
1876 case KVM_EXIT_SYSTEM_EVENT
:
1877 switch (run
->system_event
.type
) {
1878 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1879 qemu_system_shutdown_request();
1880 ret
= EXCP_INTERRUPT
;
1882 case KVM_SYSTEM_EVENT_RESET
:
1883 qemu_system_reset_request();
1884 ret
= EXCP_INTERRUPT
;
1887 DPRINTF("kvm_arch_handle_exit\n");
1888 ret
= kvm_arch_handle_exit(cpu
, run
);
1893 DPRINTF("kvm_arch_handle_exit\n");
1894 ret
= kvm_arch_handle_exit(cpu
, run
);
1899 qemu_mutex_lock_iothread();
1902 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1903 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1906 cpu
->exit_request
= 0;
1910 int kvm_ioctl(KVMState
*s
, int type
, ...)
1917 arg
= va_arg(ap
, void *);
1920 trace_kvm_ioctl(type
, arg
);
1921 ret
= ioctl(s
->fd
, type
, arg
);
1928 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1935 arg
= va_arg(ap
, void *);
1938 trace_kvm_vm_ioctl(type
, arg
);
1939 ret
= ioctl(s
->vmfd
, type
, arg
);
1946 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1953 arg
= va_arg(ap
, void *);
1956 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1957 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1964 int kvm_device_ioctl(int fd
, int type
, ...)
1971 arg
= va_arg(ap
, void *);
1974 trace_kvm_device_ioctl(fd
, type
, arg
);
1975 ret
= ioctl(fd
, type
, arg
);
1982 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
1985 struct kvm_device_attr attribute
= {
1990 if (!kvm_vm_attributes_allowed
) {
1994 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
1995 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1999 int kvm_has_sync_mmu(void)
2001 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2004 int kvm_has_vcpu_events(void)
2006 return kvm_state
->vcpu_events
;
2009 int kvm_has_robust_singlestep(void)
2011 return kvm_state
->robust_singlestep
;
2014 int kvm_has_debugregs(void)
2016 return kvm_state
->debugregs
;
2019 int kvm_has_xsave(void)
2021 return kvm_state
->xsave
;
2024 int kvm_has_xcrs(void)
2026 return kvm_state
->xcrs
;
2029 int kvm_has_pit_state2(void)
2031 return kvm_state
->pit_state2
;
2034 int kvm_has_many_ioeventfds(void)
2036 if (!kvm_enabled()) {
2039 return kvm_state
->many_ioeventfds
;
2042 int kvm_has_gsi_routing(void)
2044 #ifdef KVM_CAP_IRQ_ROUTING
2045 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2051 int kvm_has_intx_set_mask(void)
2053 return kvm_state
->intx_set_mask
;
2056 void kvm_setup_guest_memory(void *start
, size_t size
)
2058 if (!kvm_has_sync_mmu()) {
2059 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2062 perror("qemu_madvise");
2064 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2070 #ifdef KVM_CAP_SET_GUEST_DEBUG
2071 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2074 struct kvm_sw_breakpoint
*bp
;
2076 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2084 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2086 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2089 struct kvm_set_guest_debug_data
{
2090 struct kvm_guest_debug dbg
;
2095 static void kvm_invoke_set_guest_debug(void *data
)
2097 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2099 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2103 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2105 struct kvm_set_guest_debug_data data
;
2107 data
.dbg
.control
= reinject_trap
;
2109 if (cpu
->singlestep_enabled
) {
2110 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2112 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2115 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2119 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2120 target_ulong len
, int type
)
2122 struct kvm_sw_breakpoint
*bp
;
2125 if (type
== GDB_BREAKPOINT_SW
) {
2126 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2132 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2135 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2141 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2143 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2150 err
= kvm_update_guest_debug(cpu
, 0);
2158 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2159 target_ulong len
, int type
)
2161 struct kvm_sw_breakpoint
*bp
;
2164 if (type
== GDB_BREAKPOINT_SW
) {
2165 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2170 if (bp
->use_count
> 1) {
2175 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2180 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2183 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2190 err
= kvm_update_guest_debug(cpu
, 0);
2198 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2200 struct kvm_sw_breakpoint
*bp
, *next
;
2201 KVMState
*s
= cpu
->kvm_state
;
2204 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2205 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2206 /* Try harder to find a CPU that currently sees the breakpoint. */
2207 CPU_FOREACH(tmpcpu
) {
2208 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2213 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2216 kvm_arch_remove_all_hw_breakpoints();
2219 kvm_update_guest_debug(cpu
, 0);
2223 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2225 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2230 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2231 target_ulong len
, int type
)
2236 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2237 target_ulong len
, int type
)
2242 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2245 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2247 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2249 KVMState
*s
= kvm_state
;
2250 struct kvm_signal_mask
*sigmask
;
2254 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2257 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2259 sigmask
->len
= s
->sigmask_len
;
2260 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2261 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2266 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2268 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2271 int kvm_on_sigbus(int code
, void *addr
)
2273 return kvm_arch_on_sigbus(code
, addr
);
2276 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2279 struct kvm_create_device create_dev
;
2281 create_dev
.type
= type
;
2283 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2285 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2289 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2294 return test
? 0 : create_dev
.fd
;
2297 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2299 struct kvm_one_reg reg
;
2303 reg
.addr
= (uintptr_t) source
;
2304 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2306 trace_kvm_failed_reg_set(id
, strerror(r
));
2311 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2313 struct kvm_one_reg reg
;
2317 reg
.addr
= (uintptr_t) target
;
2318 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2320 trace_kvm_failed_reg_get(id
, strerror(r
));
2325 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2327 AccelClass
*ac
= ACCEL_CLASS(oc
);
2329 ac
->init_machine
= kvm_init
;
2330 ac
->allowed
= &kvm_allowed
;
2333 static const TypeInfo kvm_accel_type
= {
2334 .name
= TYPE_KVM_ACCEL
,
2335 .parent
= TYPE_ACCEL
,
2336 .class_init
= kvm_accel_class_init
,
2337 .instance_size
= sizeof(KVMState
),
2340 static void kvm_type_init(void)
2342 type_register_static(&kvm_accel_type
);
2345 type_init(kvm_type_init
);