meson: Merge trace_events_subdirs array
[qemu/ar7.git] / softmmu / physmem.c
blob96efaef97ab6b296f51b0d103596c5b9d35419f8
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "cpu.h"
28 #ifdef CONFIG_TCG
29 #include "hw/core/tcg-cpu-ops.h"
30 #endif /* CONFIG_TCG */
32 #include "exec/exec-all.h"
33 #include "exec/target_page.h"
34 #include "hw/qdev-core.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/boards.h"
37 #include "hw/xen/xen.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "exec/translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
77 #include "monitor/monitor.h"
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
83 //#define DEBUG_SUBPAGE
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
96 static MemoryRegion io_mem_unassigned;
98 typedef struct PhysPageEntry PhysPageEntry;
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
117 typedef PhysPageEntry Node[P_L2_SIZE];
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
135 PhysPageEntry phys_map;
136 PhysPageMap map;
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
147 #define PHYS_SECTION_UNASSIGNED 0
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
201 return ret;
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
226 ++lp;
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
272 assert(valid_ptr < P_L2_SIZE);
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
352 return section;
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
371 mr = section->mr;
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 return section;
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
458 return *section;
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
482 * This function is called from RCU critical section
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
498 if (!plen_out) {
499 plen_out = &plen;
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
518 return *section;
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
577 return mr;
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
592 if (!notifier->active) {
593 return;
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
647 if (!notifier->active) {
648 notifier->active = true;
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
663 g_array_free(cpu->iommu_notifiers, true);
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 AddressSpaceDispatch *d =
683 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685 for (;;) {
686 section = address_space_translate_internal(d, addr, &addr, plen, false);
688 iommu_mr = memory_region_get_iommu(section->mr);
689 if (!iommu_mr) {
690 break;
693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698 * doesn't short-cut its translation table walk.
700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702 | (addr & iotlb.addr_mask));
703 /* Update the caller's prot bits to remove permissions the IOMMU
704 * is giving us a failure response for. If we get down to no
705 * permissions left at all we can give up now.
707 if (!(iotlb.perm & IOMMU_RO)) {
708 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 if (!(iotlb.perm & IOMMU_WO)) {
711 *prot &= ~PAGE_WRITE;
714 if (!*prot) {
715 goto translate_fail;
718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721 assert(!memory_region_is_iommu(section->mr));
722 *xlat = addr;
723 return section;
725 translate_fail:
726 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
729 void cpu_address_space_init(CPUState *cpu, int asidx,
730 const char *prefix, MemoryRegion *mr)
732 CPUAddressSpace *newas;
733 AddressSpace *as = g_new0(AddressSpace, 1);
734 char *as_name;
736 assert(mr);
737 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
738 address_space_init(as, mr, as_name);
739 g_free(as_name);
741 /* Target code should have set num_ases before calling us */
742 assert(asidx < cpu->num_ases);
744 if (asidx == 0) {
745 /* address space 0 gets the convenience alias */
746 cpu->as = as;
749 /* KVM cannot currently support multiple address spaces. */
750 assert(asidx == 0 || !kvm_enabled());
752 if (!cpu->cpu_ases) {
753 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
756 newas = &cpu->cpu_ases[asidx];
757 newas->cpu = cpu;
758 newas->as = as;
759 if (tcg_enabled()) {
760 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
761 newas->tcg_as_listener.commit = tcg_commit;
762 memory_listener_register(&newas->tcg_as_listener, as);
766 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
768 /* Return the AddressSpace corresponding to the specified index */
769 return cpu->cpu_ases[asidx].as;
772 /* Add a watchpoint. */
773 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
774 int flags, CPUWatchpoint **watchpoint)
776 CPUWatchpoint *wp;
777 vaddr in_page;
779 /* forbid ranges which are empty or run off the end of the address space */
780 if (len == 0 || (addr + len - 1) < addr) {
781 error_report("tried to set invalid watchpoint at %"
782 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
783 return -EINVAL;
785 wp = g_malloc(sizeof(*wp));
787 wp->vaddr = addr;
788 wp->len = len;
789 wp->flags = flags;
791 /* keep all GDB-injected watchpoints in front */
792 if (flags & BP_GDB) {
793 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
794 } else {
795 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
798 in_page = -(addr | TARGET_PAGE_MASK);
799 if (len <= in_page) {
800 tlb_flush_page(cpu, addr);
801 } else {
802 tlb_flush(cpu);
805 if (watchpoint)
806 *watchpoint = wp;
807 return 0;
810 /* Remove a specific watchpoint. */
811 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
812 int flags)
814 CPUWatchpoint *wp;
816 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
817 if (addr == wp->vaddr && len == wp->len
818 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
819 cpu_watchpoint_remove_by_ref(cpu, wp);
820 return 0;
823 return -ENOENT;
826 /* Remove a specific watchpoint by reference. */
827 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
829 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
831 tlb_flush_page(cpu, watchpoint->vaddr);
833 g_free(watchpoint);
836 /* Remove all matching watchpoints. */
837 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
839 CPUWatchpoint *wp, *next;
841 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
842 if (wp->flags & mask) {
843 cpu_watchpoint_remove_by_ref(cpu, wp);
848 #ifdef CONFIG_TCG
849 /* Return true if this watchpoint address matches the specified
850 * access (ie the address range covered by the watchpoint overlaps
851 * partially or completely with the address range covered by the
852 * access).
854 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
855 vaddr addr, vaddr len)
857 /* We know the lengths are non-zero, but a little caution is
858 * required to avoid errors in the case where the range ends
859 * exactly at the top of the address space and so addr + len
860 * wraps round to zero.
862 vaddr wpend = wp->vaddr + wp->len - 1;
863 vaddr addrend = addr + len - 1;
865 return !(addr > wpend || wp->vaddr > addrend);
868 /* Return flags for watchpoints that match addr + prot. */
869 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
871 CPUWatchpoint *wp;
872 int ret = 0;
874 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
875 if (watchpoint_address_matches(wp, addr, len)) {
876 ret |= wp->flags;
879 return ret;
882 /* Generate a debug exception if a watchpoint has been hit. */
883 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
884 MemTxAttrs attrs, int flags, uintptr_t ra)
886 CPUClass *cc = CPU_GET_CLASS(cpu);
887 CPUWatchpoint *wp;
889 assert(tcg_enabled());
890 if (cpu->watchpoint_hit) {
892 * We re-entered the check after replacing the TB.
893 * Now raise the debug interrupt so that it will
894 * trigger after the current instruction.
896 qemu_mutex_lock_iothread();
897 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
898 qemu_mutex_unlock_iothread();
899 return;
902 if (cc->tcg_ops->adjust_watchpoint_address) {
903 /* this is currently used only by ARM BE32 */
904 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
906 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
907 if (watchpoint_address_matches(wp, addr, len)
908 && (wp->flags & flags)) {
909 if (replay_running_debug()) {
911 * Don't process the watchpoints when we are
912 * in a reverse debugging operation.
914 replay_breakpoint();
915 return;
917 if (flags == BP_MEM_READ) {
918 wp->flags |= BP_WATCHPOINT_HIT_READ;
919 } else {
920 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
922 wp->hitaddr = MAX(addr, wp->vaddr);
923 wp->hitattrs = attrs;
924 if (!cpu->watchpoint_hit) {
925 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
926 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
927 wp->flags &= ~BP_WATCHPOINT_HIT;
928 continue;
930 cpu->watchpoint_hit = wp;
932 mmap_lock();
933 tb_check_watchpoint(cpu, ra);
934 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
935 cpu->exception_index = EXCP_DEBUG;
936 mmap_unlock();
937 cpu_loop_exit_restore(cpu, ra);
938 } else {
939 /* Force execution of one insn next time. */
940 cpu->cflags_next_tb = 1 | curr_cflags();
941 mmap_unlock();
942 if (ra) {
943 cpu_restore_state(cpu, ra, true);
945 cpu_loop_exit_noexc(cpu);
948 } else {
949 wp->flags &= ~BP_WATCHPOINT_HIT;
954 #endif /* CONFIG_TCG */
956 /* Called from RCU critical section */
957 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
959 RAMBlock *block;
961 block = qatomic_rcu_read(&ram_list.mru_block);
962 if (block && addr - block->offset < block->max_length) {
963 return block;
965 RAMBLOCK_FOREACH(block) {
966 if (addr - block->offset < block->max_length) {
967 goto found;
971 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
972 abort();
974 found:
975 /* It is safe to write mru_block outside the iothread lock. This
976 * is what happens:
978 * mru_block = xxx
979 * rcu_read_unlock()
980 * xxx removed from list
981 * rcu_read_lock()
982 * read mru_block
983 * mru_block = NULL;
984 * call_rcu(reclaim_ramblock, xxx);
985 * rcu_read_unlock()
987 * qatomic_rcu_set is not needed here. The block was already published
988 * when it was placed into the list. Here we're just making an extra
989 * copy of the pointer.
991 ram_list.mru_block = block;
992 return block;
995 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
997 CPUState *cpu;
998 ram_addr_t start1;
999 RAMBlock *block;
1000 ram_addr_t end;
1002 assert(tcg_enabled());
1003 end = TARGET_PAGE_ALIGN(start + length);
1004 start &= TARGET_PAGE_MASK;
1006 RCU_READ_LOCK_GUARD();
1007 block = qemu_get_ram_block(start);
1008 assert(block == qemu_get_ram_block(end - 1));
1009 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1010 CPU_FOREACH(cpu) {
1011 tlb_reset_dirty(cpu, start1, length);
1015 /* Note: start and end must be within the same ram block. */
1016 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1017 ram_addr_t length,
1018 unsigned client)
1020 DirtyMemoryBlocks *blocks;
1021 unsigned long end, page, start_page;
1022 bool dirty = false;
1023 RAMBlock *ramblock;
1024 uint64_t mr_offset, mr_size;
1026 if (length == 0) {
1027 return false;
1030 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1031 start_page = start >> TARGET_PAGE_BITS;
1032 page = start_page;
1034 WITH_RCU_READ_LOCK_GUARD() {
1035 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1036 ramblock = qemu_get_ram_block(start);
1037 /* Range sanity check on the ramblock */
1038 assert(start >= ramblock->offset &&
1039 start + length <= ramblock->offset + ramblock->used_length);
1041 while (page < end) {
1042 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1043 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1044 unsigned long num = MIN(end - page,
1045 DIRTY_MEMORY_BLOCK_SIZE - offset);
1047 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1048 offset, num);
1049 page += num;
1052 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1053 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1054 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1057 if (dirty && tcg_enabled()) {
1058 tlb_reset_dirty_range_all(start, length);
1061 return dirty;
1064 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1065 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1067 DirtyMemoryBlocks *blocks;
1068 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1069 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1070 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1071 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1072 DirtyBitmapSnapshot *snap;
1073 unsigned long page, end, dest;
1075 snap = g_malloc0(sizeof(*snap) +
1076 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1077 snap->start = first;
1078 snap->end = last;
1080 page = first >> TARGET_PAGE_BITS;
1081 end = last >> TARGET_PAGE_BITS;
1082 dest = 0;
1084 WITH_RCU_READ_LOCK_GUARD() {
1085 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1087 while (page < end) {
1088 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1089 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1090 unsigned long num = MIN(end - page,
1091 DIRTY_MEMORY_BLOCK_SIZE - offset);
1093 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1094 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1095 offset >>= BITS_PER_LEVEL;
1097 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1098 blocks->blocks[idx] + offset,
1099 num);
1100 page += num;
1101 dest += num >> BITS_PER_LEVEL;
1105 if (tcg_enabled()) {
1106 tlb_reset_dirty_range_all(start, length);
1109 memory_region_clear_dirty_bitmap(mr, offset, length);
1111 return snap;
1114 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1115 ram_addr_t start,
1116 ram_addr_t length)
1118 unsigned long page, end;
1120 assert(start >= snap->start);
1121 assert(start + length <= snap->end);
1123 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1124 page = (start - snap->start) >> TARGET_PAGE_BITS;
1126 while (page < end) {
1127 if (test_bit(page, snap->dirty)) {
1128 return true;
1130 page++;
1132 return false;
1135 /* Called from RCU critical section */
1136 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1137 MemoryRegionSection *section)
1139 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1140 return section - d->map.sections;
1143 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1144 uint16_t section);
1145 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1147 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1148 qemu_anon_ram_alloc;
1151 * Set a custom physical guest memory alloator.
1152 * Accelerators with unusual needs may need this. Hopefully, we can
1153 * get rid of it eventually.
1155 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1157 phys_mem_alloc = alloc;
1160 static uint16_t phys_section_add(PhysPageMap *map,
1161 MemoryRegionSection *section)
1163 /* The physical section number is ORed with a page-aligned
1164 * pointer to produce the iotlb entries. Thus it should
1165 * never overflow into the page-aligned value.
1167 assert(map->sections_nb < TARGET_PAGE_SIZE);
1169 if (map->sections_nb == map->sections_nb_alloc) {
1170 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1171 map->sections = g_renew(MemoryRegionSection, map->sections,
1172 map->sections_nb_alloc);
1174 map->sections[map->sections_nb] = *section;
1175 memory_region_ref(section->mr);
1176 return map->sections_nb++;
1179 static void phys_section_destroy(MemoryRegion *mr)
1181 bool have_sub_page = mr->subpage;
1183 memory_region_unref(mr);
1185 if (have_sub_page) {
1186 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1187 object_unref(OBJECT(&subpage->iomem));
1188 g_free(subpage);
1192 static void phys_sections_free(PhysPageMap *map)
1194 while (map->sections_nb > 0) {
1195 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1196 phys_section_destroy(section->mr);
1198 g_free(map->sections);
1199 g_free(map->nodes);
1202 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1204 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1205 subpage_t *subpage;
1206 hwaddr base = section->offset_within_address_space
1207 & TARGET_PAGE_MASK;
1208 MemoryRegionSection *existing = phys_page_find(d, base);
1209 MemoryRegionSection subsection = {
1210 .offset_within_address_space = base,
1211 .size = int128_make64(TARGET_PAGE_SIZE),
1213 hwaddr start, end;
1215 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1217 if (!(existing->mr->subpage)) {
1218 subpage = subpage_init(fv, base);
1219 subsection.fv = fv;
1220 subsection.mr = &subpage->iomem;
1221 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1222 phys_section_add(&d->map, &subsection));
1223 } else {
1224 subpage = container_of(existing->mr, subpage_t, iomem);
1226 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1227 end = start + int128_get64(section->size) - 1;
1228 subpage_register(subpage, start, end,
1229 phys_section_add(&d->map, section));
1233 static void register_multipage(FlatView *fv,
1234 MemoryRegionSection *section)
1236 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1237 hwaddr start_addr = section->offset_within_address_space;
1238 uint16_t section_index = phys_section_add(&d->map, section);
1239 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1240 TARGET_PAGE_BITS));
1242 assert(num_pages);
1243 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1247 * The range in *section* may look like this:
1249 * |s|PPPPPPP|s|
1251 * where s stands for subpage and P for page.
1253 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1255 MemoryRegionSection remain = *section;
1256 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1258 /* register first subpage */
1259 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1260 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1261 - remain.offset_within_address_space;
1263 MemoryRegionSection now = remain;
1264 now.size = int128_min(int128_make64(left), now.size);
1265 register_subpage(fv, &now);
1266 if (int128_eq(remain.size, now.size)) {
1267 return;
1269 remain.size = int128_sub(remain.size, now.size);
1270 remain.offset_within_address_space += int128_get64(now.size);
1271 remain.offset_within_region += int128_get64(now.size);
1274 /* register whole pages */
1275 if (int128_ge(remain.size, page_size)) {
1276 MemoryRegionSection now = remain;
1277 now.size = int128_and(now.size, int128_neg(page_size));
1278 register_multipage(fv, &now);
1279 if (int128_eq(remain.size, now.size)) {
1280 return;
1282 remain.size = int128_sub(remain.size, now.size);
1283 remain.offset_within_address_space += int128_get64(now.size);
1284 remain.offset_within_region += int128_get64(now.size);
1287 /* register last subpage */
1288 register_subpage(fv, &remain);
1291 void qemu_flush_coalesced_mmio_buffer(void)
1293 if (kvm_enabled())
1294 kvm_flush_coalesced_mmio_buffer();
1297 void qemu_mutex_lock_ramlist(void)
1299 qemu_mutex_lock(&ram_list.mutex);
1302 void qemu_mutex_unlock_ramlist(void)
1304 qemu_mutex_unlock(&ram_list.mutex);
1307 void ram_block_dump(Monitor *mon)
1309 RAMBlock *block;
1310 char *psize;
1312 RCU_READ_LOCK_GUARD();
1313 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1314 "Block Name", "PSize", "Offset", "Used", "Total");
1315 RAMBLOCK_FOREACH(block) {
1316 psize = size_to_str(block->page_size);
1317 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1318 " 0x%016" PRIx64 "\n", block->idstr, psize,
1319 (uint64_t)block->offset,
1320 (uint64_t)block->used_length,
1321 (uint64_t)block->max_length);
1322 g_free(psize);
1326 #ifdef __linux__
1328 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1329 * may or may not name the same files / on the same filesystem now as
1330 * when we actually open and map them. Iterate over the file
1331 * descriptors instead, and use qemu_fd_getpagesize().
1333 static int find_min_backend_pagesize(Object *obj, void *opaque)
1335 long *hpsize_min = opaque;
1337 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1338 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1339 long hpsize = host_memory_backend_pagesize(backend);
1341 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1342 *hpsize_min = hpsize;
1346 return 0;
1349 static int find_max_backend_pagesize(Object *obj, void *opaque)
1351 long *hpsize_max = opaque;
1353 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1354 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1355 long hpsize = host_memory_backend_pagesize(backend);
1357 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1358 *hpsize_max = hpsize;
1362 return 0;
1366 * TODO: We assume right now that all mapped host memory backends are
1367 * used as RAM, however some might be used for different purposes.
1369 long qemu_minrampagesize(void)
1371 long hpsize = LONG_MAX;
1372 Object *memdev_root = object_resolve_path("/objects", NULL);
1374 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1375 return hpsize;
1378 long qemu_maxrampagesize(void)
1380 long pagesize = 0;
1381 Object *memdev_root = object_resolve_path("/objects", NULL);
1383 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1384 return pagesize;
1386 #else
1387 long qemu_minrampagesize(void)
1389 return qemu_real_host_page_size;
1391 long qemu_maxrampagesize(void)
1393 return qemu_real_host_page_size;
1395 #endif
1397 #ifdef CONFIG_POSIX
1398 static int64_t get_file_size(int fd)
1400 int64_t size;
1401 #if defined(__linux__)
1402 struct stat st;
1404 if (fstat(fd, &st) < 0) {
1405 return -errno;
1408 /* Special handling for devdax character devices */
1409 if (S_ISCHR(st.st_mode)) {
1410 g_autofree char *subsystem_path = NULL;
1411 g_autofree char *subsystem = NULL;
1413 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1414 major(st.st_rdev), minor(st.st_rdev));
1415 subsystem = g_file_read_link(subsystem_path, NULL);
1417 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1418 g_autofree char *size_path = NULL;
1419 g_autofree char *size_str = NULL;
1421 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1422 major(st.st_rdev), minor(st.st_rdev));
1424 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1425 return g_ascii_strtoll(size_str, NULL, 0);
1429 #endif /* defined(__linux__) */
1431 /* st.st_size may be zero for special files yet lseek(2) works */
1432 size = lseek(fd, 0, SEEK_END);
1433 if (size < 0) {
1434 return -errno;
1436 return size;
1439 static int64_t get_file_align(int fd)
1441 int64_t align = -1;
1442 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1443 struct stat st;
1445 if (fstat(fd, &st) < 0) {
1446 return -errno;
1449 /* Special handling for devdax character devices */
1450 if (S_ISCHR(st.st_mode)) {
1451 g_autofree char *path = NULL;
1452 g_autofree char *rpath = NULL;
1453 struct daxctl_ctx *ctx;
1454 struct daxctl_region *region;
1455 int rc = 0;
1457 path = g_strdup_printf("/sys/dev/char/%d:%d",
1458 major(st.st_rdev), minor(st.st_rdev));
1459 rpath = realpath(path, NULL);
1461 rc = daxctl_new(&ctx);
1462 if (rc) {
1463 return -1;
1466 daxctl_region_foreach(ctx, region) {
1467 if (strstr(rpath, daxctl_region_get_path(region))) {
1468 align = daxctl_region_get_align(region);
1469 break;
1472 daxctl_unref(ctx);
1474 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1476 return align;
1479 static int file_ram_open(const char *path,
1480 const char *region_name,
1481 bool readonly,
1482 bool *created,
1483 Error **errp)
1485 char *filename;
1486 char *sanitized_name;
1487 char *c;
1488 int fd = -1;
1490 *created = false;
1491 for (;;) {
1492 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1493 if (fd >= 0) {
1494 /* @path names an existing file, use it */
1495 break;
1497 if (errno == ENOENT) {
1498 /* @path names a file that doesn't exist, create it */
1499 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1500 if (fd >= 0) {
1501 *created = true;
1502 break;
1504 } else if (errno == EISDIR) {
1505 /* @path names a directory, create a file there */
1506 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1507 sanitized_name = g_strdup(region_name);
1508 for (c = sanitized_name; *c != '\0'; c++) {
1509 if (*c == '/') {
1510 *c = '_';
1514 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1515 sanitized_name);
1516 g_free(sanitized_name);
1518 fd = mkstemp(filename);
1519 if (fd >= 0) {
1520 unlink(filename);
1521 g_free(filename);
1522 break;
1524 g_free(filename);
1526 if (errno != EEXIST && errno != EINTR) {
1527 error_setg_errno(errp, errno,
1528 "can't open backing store %s for guest RAM",
1529 path);
1530 return -1;
1533 * Try again on EINTR and EEXIST. The latter happens when
1534 * something else creates the file between our two open().
1538 return fd;
1541 static void *file_ram_alloc(RAMBlock *block,
1542 ram_addr_t memory,
1543 int fd,
1544 bool readonly,
1545 bool truncate,
1546 Error **errp)
1548 void *area;
1550 block->page_size = qemu_fd_getpagesize(fd);
1551 if (block->mr->align % block->page_size) {
1552 error_setg(errp, "alignment 0x%" PRIx64
1553 " must be multiples of page size 0x%zx",
1554 block->mr->align, block->page_size);
1555 return NULL;
1556 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1557 error_setg(errp, "alignment 0x%" PRIx64
1558 " must be a power of two", block->mr->align);
1559 return NULL;
1561 block->mr->align = MAX(block->page_size, block->mr->align);
1562 #if defined(__s390x__)
1563 if (kvm_enabled()) {
1564 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1566 #endif
1568 if (memory < block->page_size) {
1569 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1570 "or larger than page size 0x%zx",
1571 memory, block->page_size);
1572 return NULL;
1575 memory = ROUND_UP(memory, block->page_size);
1578 * ftruncate is not supported by hugetlbfs in older
1579 * hosts, so don't bother bailing out on errors.
1580 * If anything goes wrong with it under other filesystems,
1581 * mmap will fail.
1583 * Do not truncate the non-empty backend file to avoid corrupting
1584 * the existing data in the file. Disabling shrinking is not
1585 * enough. For example, the current vNVDIMM implementation stores
1586 * the guest NVDIMM labels at the end of the backend file. If the
1587 * backend file is later extended, QEMU will not be able to find
1588 * those labels. Therefore, extending the non-empty backend file
1589 * is disabled as well.
1591 if (truncate && ftruncate(fd, memory)) {
1592 perror("ftruncate");
1595 area = qemu_ram_mmap(fd, memory, block->mr->align, readonly,
1596 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1597 if (area == MAP_FAILED) {
1598 error_setg_errno(errp, errno,
1599 "unable to map backing store for guest RAM");
1600 return NULL;
1603 block->fd = fd;
1604 return area;
1606 #endif
1608 /* Allocate space within the ram_addr_t space that governs the
1609 * dirty bitmaps.
1610 * Called with the ramlist lock held.
1612 static ram_addr_t find_ram_offset(ram_addr_t size)
1614 RAMBlock *block, *next_block;
1615 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1617 assert(size != 0); /* it would hand out same offset multiple times */
1619 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1620 return 0;
1623 RAMBLOCK_FOREACH(block) {
1624 ram_addr_t candidate, next = RAM_ADDR_MAX;
1626 /* Align blocks to start on a 'long' in the bitmap
1627 * which makes the bitmap sync'ing take the fast path.
1629 candidate = block->offset + block->max_length;
1630 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1632 /* Search for the closest following block
1633 * and find the gap.
1635 RAMBLOCK_FOREACH(next_block) {
1636 if (next_block->offset >= candidate) {
1637 next = MIN(next, next_block->offset);
1641 /* If it fits remember our place and remember the size
1642 * of gap, but keep going so that we might find a smaller
1643 * gap to fill so avoiding fragmentation.
1645 if (next - candidate >= size && next - candidate < mingap) {
1646 offset = candidate;
1647 mingap = next - candidate;
1650 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1653 if (offset == RAM_ADDR_MAX) {
1654 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1655 (uint64_t)size);
1656 abort();
1659 trace_find_ram_offset(size, offset);
1661 return offset;
1664 static unsigned long last_ram_page(void)
1666 RAMBlock *block;
1667 ram_addr_t last = 0;
1669 RCU_READ_LOCK_GUARD();
1670 RAMBLOCK_FOREACH(block) {
1671 last = MAX(last, block->offset + block->max_length);
1673 return last >> TARGET_PAGE_BITS;
1676 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1678 int ret;
1680 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1681 if (!machine_dump_guest_core(current_machine)) {
1682 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1683 if (ret) {
1684 perror("qemu_madvise");
1685 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1686 "but dump_guest_core=off specified\n");
1691 const char *qemu_ram_get_idstr(RAMBlock *rb)
1693 return rb->idstr;
1696 void *qemu_ram_get_host_addr(RAMBlock *rb)
1698 return rb->host;
1701 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1703 return rb->offset;
1706 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1708 return rb->used_length;
1711 bool qemu_ram_is_shared(RAMBlock *rb)
1713 return rb->flags & RAM_SHARED;
1716 /* Note: Only set at the start of postcopy */
1717 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1719 return rb->flags & RAM_UF_ZEROPAGE;
1722 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1724 rb->flags |= RAM_UF_ZEROPAGE;
1727 bool qemu_ram_is_migratable(RAMBlock *rb)
1729 return rb->flags & RAM_MIGRATABLE;
1732 void qemu_ram_set_migratable(RAMBlock *rb)
1734 rb->flags |= RAM_MIGRATABLE;
1737 void qemu_ram_unset_migratable(RAMBlock *rb)
1739 rb->flags &= ~RAM_MIGRATABLE;
1742 /* Called with iothread lock held. */
1743 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1745 RAMBlock *block;
1747 assert(new_block);
1748 assert(!new_block->idstr[0]);
1750 if (dev) {
1751 char *id = qdev_get_dev_path(dev);
1752 if (id) {
1753 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1754 g_free(id);
1757 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1759 RCU_READ_LOCK_GUARD();
1760 RAMBLOCK_FOREACH(block) {
1761 if (block != new_block &&
1762 !strcmp(block->idstr, new_block->idstr)) {
1763 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1764 new_block->idstr);
1765 abort();
1770 /* Called with iothread lock held. */
1771 void qemu_ram_unset_idstr(RAMBlock *block)
1773 /* FIXME: arch_init.c assumes that this is not called throughout
1774 * migration. Ignore the problem since hot-unplug during migration
1775 * does not work anyway.
1777 if (block) {
1778 memset(block->idstr, 0, sizeof(block->idstr));
1782 size_t qemu_ram_pagesize(RAMBlock *rb)
1784 return rb->page_size;
1787 /* Returns the largest size of page in use */
1788 size_t qemu_ram_pagesize_largest(void)
1790 RAMBlock *block;
1791 size_t largest = 0;
1793 RAMBLOCK_FOREACH(block) {
1794 largest = MAX(largest, qemu_ram_pagesize(block));
1797 return largest;
1800 static int memory_try_enable_merging(void *addr, size_t len)
1802 if (!machine_mem_merge(current_machine)) {
1803 /* disabled by the user */
1804 return 0;
1807 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1810 /* Only legal before guest might have detected the memory size: e.g. on
1811 * incoming migration, or right after reset.
1813 * As memory core doesn't know how is memory accessed, it is up to
1814 * resize callback to update device state and/or add assertions to detect
1815 * misuse, if necessary.
1817 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1819 const ram_addr_t unaligned_size = newsize;
1821 assert(block);
1823 newsize = HOST_PAGE_ALIGN(newsize);
1825 if (block->used_length == newsize) {
1827 * We don't have to resize the ram block (which only knows aligned
1828 * sizes), however, we have to notify if the unaligned size changed.
1830 if (unaligned_size != memory_region_size(block->mr)) {
1831 memory_region_set_size(block->mr, unaligned_size);
1832 if (block->resized) {
1833 block->resized(block->idstr, unaligned_size, block->host);
1836 return 0;
1839 if (!(block->flags & RAM_RESIZEABLE)) {
1840 error_setg_errno(errp, EINVAL,
1841 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1842 " != 0x" RAM_ADDR_FMT, block->idstr,
1843 newsize, block->used_length);
1844 return -EINVAL;
1847 if (block->max_length < newsize) {
1848 error_setg_errno(errp, EINVAL,
1849 "Size too large: %s: 0x" RAM_ADDR_FMT
1850 " > 0x" RAM_ADDR_FMT, block->idstr,
1851 newsize, block->max_length);
1852 return -EINVAL;
1855 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1856 block->used_length = newsize;
1857 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1858 DIRTY_CLIENTS_ALL);
1859 memory_region_set_size(block->mr, unaligned_size);
1860 if (block->resized) {
1861 block->resized(block->idstr, unaligned_size, block->host);
1863 return 0;
1867 * Trigger sync on the given ram block for range [start, start + length]
1868 * with the backing store if one is available.
1869 * Otherwise no-op.
1870 * @Note: this is supposed to be a synchronous op.
1872 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1874 /* The requested range should fit in within the block range */
1875 g_assert((start + length) <= block->used_length);
1877 #ifdef CONFIG_LIBPMEM
1878 /* The lack of support for pmem should not block the sync */
1879 if (ramblock_is_pmem(block)) {
1880 void *addr = ramblock_ptr(block, start);
1881 pmem_persist(addr, length);
1882 return;
1884 #endif
1885 if (block->fd >= 0) {
1887 * Case there is no support for PMEM or the memory has not been
1888 * specified as persistent (or is not one) - use the msync.
1889 * Less optimal but still achieves the same goal
1891 void *addr = ramblock_ptr(block, start);
1892 if (qemu_msync(addr, length, block->fd)) {
1893 warn_report("%s: failed to sync memory range: start: "
1894 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1895 __func__, start, length);
1900 /* Called with ram_list.mutex held */
1901 static void dirty_memory_extend(ram_addr_t old_ram_size,
1902 ram_addr_t new_ram_size)
1904 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1905 DIRTY_MEMORY_BLOCK_SIZE);
1906 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1907 DIRTY_MEMORY_BLOCK_SIZE);
1908 int i;
1910 /* Only need to extend if block count increased */
1911 if (new_num_blocks <= old_num_blocks) {
1912 return;
1915 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1916 DirtyMemoryBlocks *old_blocks;
1917 DirtyMemoryBlocks *new_blocks;
1918 int j;
1920 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1921 new_blocks = g_malloc(sizeof(*new_blocks) +
1922 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1924 if (old_num_blocks) {
1925 memcpy(new_blocks->blocks, old_blocks->blocks,
1926 old_num_blocks * sizeof(old_blocks->blocks[0]));
1929 for (j = old_num_blocks; j < new_num_blocks; j++) {
1930 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1933 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1935 if (old_blocks) {
1936 g_free_rcu(old_blocks, rcu);
1941 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1943 RAMBlock *block;
1944 RAMBlock *last_block = NULL;
1945 ram_addr_t old_ram_size, new_ram_size;
1946 Error *err = NULL;
1948 old_ram_size = last_ram_page();
1950 qemu_mutex_lock_ramlist();
1951 new_block->offset = find_ram_offset(new_block->max_length);
1953 if (!new_block->host) {
1954 if (xen_enabled()) {
1955 xen_ram_alloc(new_block->offset, new_block->max_length,
1956 new_block->mr, &err);
1957 if (err) {
1958 error_propagate(errp, err);
1959 qemu_mutex_unlock_ramlist();
1960 return;
1962 } else {
1963 new_block->host = phys_mem_alloc(new_block->max_length,
1964 &new_block->mr->align, shared);
1965 if (!new_block->host) {
1966 error_setg_errno(errp, errno,
1967 "cannot set up guest memory '%s'",
1968 memory_region_name(new_block->mr));
1969 qemu_mutex_unlock_ramlist();
1970 return;
1972 memory_try_enable_merging(new_block->host, new_block->max_length);
1976 new_ram_size = MAX(old_ram_size,
1977 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1978 if (new_ram_size > old_ram_size) {
1979 dirty_memory_extend(old_ram_size, new_ram_size);
1981 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1982 * QLIST (which has an RCU-friendly variant) does not have insertion at
1983 * tail, so save the last element in last_block.
1985 RAMBLOCK_FOREACH(block) {
1986 last_block = block;
1987 if (block->max_length < new_block->max_length) {
1988 break;
1991 if (block) {
1992 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1993 } else if (last_block) {
1994 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1995 } else { /* list is empty */
1996 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1998 ram_list.mru_block = NULL;
2000 /* Write list before version */
2001 smp_wmb();
2002 ram_list.version++;
2003 qemu_mutex_unlock_ramlist();
2005 cpu_physical_memory_set_dirty_range(new_block->offset,
2006 new_block->used_length,
2007 DIRTY_CLIENTS_ALL);
2009 if (new_block->host) {
2010 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2011 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2013 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2014 * Configure it unless the machine is a qtest server, in which case
2015 * KVM is not used and it may be forked (eg for fuzzing purposes).
2017 if (!qtest_enabled()) {
2018 qemu_madvise(new_block->host, new_block->max_length,
2019 QEMU_MADV_DONTFORK);
2021 ram_block_notify_add(new_block->host, new_block->max_length);
2025 #ifdef CONFIG_POSIX
2026 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2027 uint32_t ram_flags, int fd, bool readonly,
2028 Error **errp)
2030 RAMBlock *new_block;
2031 Error *local_err = NULL;
2032 int64_t file_size, file_align;
2034 /* Just support these ram flags by now. */
2035 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2037 if (xen_enabled()) {
2038 error_setg(errp, "-mem-path not supported with Xen");
2039 return NULL;
2042 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2043 error_setg(errp,
2044 "host lacks kvm mmu notifiers, -mem-path unsupported");
2045 return NULL;
2048 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2050 * file_ram_alloc() needs to allocate just like
2051 * phys_mem_alloc, but we haven't bothered to provide
2052 * a hook there.
2054 error_setg(errp,
2055 "-mem-path not supported with this accelerator");
2056 return NULL;
2059 size = HOST_PAGE_ALIGN(size);
2060 file_size = get_file_size(fd);
2061 if (file_size > 0 && file_size < size) {
2062 error_setg(errp, "backing store size 0x%" PRIx64
2063 " does not match 'size' option 0x" RAM_ADDR_FMT,
2064 file_size, size);
2065 return NULL;
2068 file_align = get_file_align(fd);
2069 if (file_align > 0 && mr && file_align > mr->align) {
2070 error_setg(errp, "backing store align 0x%" PRIx64
2071 " is larger than 'align' option 0x%" PRIx64,
2072 file_align, mr->align);
2073 return NULL;
2076 new_block = g_malloc0(sizeof(*new_block));
2077 new_block->mr = mr;
2078 new_block->used_length = size;
2079 new_block->max_length = size;
2080 new_block->flags = ram_flags;
2081 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2082 !file_size, errp);
2083 if (!new_block->host) {
2084 g_free(new_block);
2085 return NULL;
2088 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2089 if (local_err) {
2090 g_free(new_block);
2091 error_propagate(errp, local_err);
2092 return NULL;
2094 return new_block;
2099 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2100 uint32_t ram_flags, const char *mem_path,
2101 bool readonly, Error **errp)
2103 int fd;
2104 bool created;
2105 RAMBlock *block;
2107 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2108 errp);
2109 if (fd < 0) {
2110 return NULL;
2113 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, readonly, errp);
2114 if (!block) {
2115 if (created) {
2116 unlink(mem_path);
2118 close(fd);
2119 return NULL;
2122 return block;
2124 #endif
2126 static
2127 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2128 void (*resized)(const char*,
2129 uint64_t length,
2130 void *host),
2131 void *host, bool resizeable, bool share,
2132 MemoryRegion *mr, Error **errp)
2134 RAMBlock *new_block;
2135 Error *local_err = NULL;
2137 size = HOST_PAGE_ALIGN(size);
2138 max_size = HOST_PAGE_ALIGN(max_size);
2139 new_block = g_malloc0(sizeof(*new_block));
2140 new_block->mr = mr;
2141 new_block->resized = resized;
2142 new_block->used_length = size;
2143 new_block->max_length = max_size;
2144 assert(max_size >= size);
2145 new_block->fd = -1;
2146 new_block->page_size = qemu_real_host_page_size;
2147 new_block->host = host;
2148 if (host) {
2149 new_block->flags |= RAM_PREALLOC;
2151 if (resizeable) {
2152 new_block->flags |= RAM_RESIZEABLE;
2154 ram_block_add(new_block, &local_err, share);
2155 if (local_err) {
2156 g_free(new_block);
2157 error_propagate(errp, local_err);
2158 return NULL;
2160 return new_block;
2163 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2164 MemoryRegion *mr, Error **errp)
2166 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2167 false, mr, errp);
2170 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2171 MemoryRegion *mr, Error **errp)
2173 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2174 share, mr, errp);
2177 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2178 void (*resized)(const char*,
2179 uint64_t length,
2180 void *host),
2181 MemoryRegion *mr, Error **errp)
2183 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2184 false, mr, errp);
2187 static void reclaim_ramblock(RAMBlock *block)
2189 if (block->flags & RAM_PREALLOC) {
2191 } else if (xen_enabled()) {
2192 xen_invalidate_map_cache_entry(block->host);
2193 #ifndef _WIN32
2194 } else if (block->fd >= 0) {
2195 qemu_ram_munmap(block->fd, block->host, block->max_length);
2196 close(block->fd);
2197 #endif
2198 } else {
2199 qemu_anon_ram_free(block->host, block->max_length);
2201 g_free(block);
2204 void qemu_ram_free(RAMBlock *block)
2206 if (!block) {
2207 return;
2210 if (block->host) {
2211 ram_block_notify_remove(block->host, block->max_length);
2214 qemu_mutex_lock_ramlist();
2215 QLIST_REMOVE_RCU(block, next);
2216 ram_list.mru_block = NULL;
2217 /* Write list before version */
2218 smp_wmb();
2219 ram_list.version++;
2220 call_rcu(block, reclaim_ramblock, rcu);
2221 qemu_mutex_unlock_ramlist();
2224 #ifndef _WIN32
2225 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2227 RAMBlock *block;
2228 ram_addr_t offset;
2229 int flags;
2230 void *area, *vaddr;
2232 RAMBLOCK_FOREACH(block) {
2233 offset = addr - block->offset;
2234 if (offset < block->max_length) {
2235 vaddr = ramblock_ptr(block, offset);
2236 if (block->flags & RAM_PREALLOC) {
2238 } else if (xen_enabled()) {
2239 abort();
2240 } else {
2241 flags = MAP_FIXED;
2242 if (block->fd >= 0) {
2243 flags |= (block->flags & RAM_SHARED ?
2244 MAP_SHARED : MAP_PRIVATE);
2245 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2246 flags, block->fd, offset);
2247 } else {
2249 * Remap needs to match alloc. Accelerators that
2250 * set phys_mem_alloc never remap. If they did,
2251 * we'd need a remap hook here.
2253 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2255 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2256 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2257 flags, -1, 0);
2259 if (area != vaddr) {
2260 error_report("Could not remap addr: "
2261 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2262 length, addr);
2263 exit(1);
2265 memory_try_enable_merging(vaddr, length);
2266 qemu_ram_setup_dump(vaddr, length);
2271 #endif /* !_WIN32 */
2273 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2274 * This should not be used for general purpose DMA. Use address_space_map
2275 * or address_space_rw instead. For local memory (e.g. video ram) that the
2276 * device owns, use memory_region_get_ram_ptr.
2278 * Called within RCU critical section.
2280 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2282 RAMBlock *block = ram_block;
2284 if (block == NULL) {
2285 block = qemu_get_ram_block(addr);
2286 addr -= block->offset;
2289 if (xen_enabled() && block->host == NULL) {
2290 /* We need to check if the requested address is in the RAM
2291 * because we don't want to map the entire memory in QEMU.
2292 * In that case just map until the end of the page.
2294 if (block->offset == 0) {
2295 return xen_map_cache(addr, 0, 0, false);
2298 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2300 return ramblock_ptr(block, addr);
2303 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2304 * but takes a size argument.
2306 * Called within RCU critical section.
2308 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2309 hwaddr *size, bool lock)
2311 RAMBlock *block = ram_block;
2312 if (*size == 0) {
2313 return NULL;
2316 if (block == NULL) {
2317 block = qemu_get_ram_block(addr);
2318 addr -= block->offset;
2320 *size = MIN(*size, block->max_length - addr);
2322 if (xen_enabled() && block->host == NULL) {
2323 /* We need to check if the requested address is in the RAM
2324 * because we don't want to map the entire memory in QEMU.
2325 * In that case just map the requested area.
2327 if (block->offset == 0) {
2328 return xen_map_cache(addr, *size, lock, lock);
2331 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2334 return ramblock_ptr(block, addr);
2337 /* Return the offset of a hostpointer within a ramblock */
2338 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2340 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2341 assert((uintptr_t)host >= (uintptr_t)rb->host);
2342 assert(res < rb->max_length);
2344 return res;
2348 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2349 * in that RAMBlock.
2351 * ptr: Host pointer to look up
2352 * round_offset: If true round the result offset down to a page boundary
2353 * *ram_addr: set to result ram_addr
2354 * *offset: set to result offset within the RAMBlock
2356 * Returns: RAMBlock (or NULL if not found)
2358 * By the time this function returns, the returned pointer is not protected
2359 * by RCU anymore. If the caller is not within an RCU critical section and
2360 * does not hold the iothread lock, it must have other means of protecting the
2361 * pointer, such as a reference to the region that includes the incoming
2362 * ram_addr_t.
2364 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2365 ram_addr_t *offset)
2367 RAMBlock *block;
2368 uint8_t *host = ptr;
2370 if (xen_enabled()) {
2371 ram_addr_t ram_addr;
2372 RCU_READ_LOCK_GUARD();
2373 ram_addr = xen_ram_addr_from_mapcache(ptr);
2374 block = qemu_get_ram_block(ram_addr);
2375 if (block) {
2376 *offset = ram_addr - block->offset;
2378 return block;
2381 RCU_READ_LOCK_GUARD();
2382 block = qatomic_rcu_read(&ram_list.mru_block);
2383 if (block && block->host && host - block->host < block->max_length) {
2384 goto found;
2387 RAMBLOCK_FOREACH(block) {
2388 /* This case append when the block is not mapped. */
2389 if (block->host == NULL) {
2390 continue;
2392 if (host - block->host < block->max_length) {
2393 goto found;
2397 return NULL;
2399 found:
2400 *offset = (host - block->host);
2401 if (round_offset) {
2402 *offset &= TARGET_PAGE_MASK;
2404 return block;
2408 * Finds the named RAMBlock
2410 * name: The name of RAMBlock to find
2412 * Returns: RAMBlock (or NULL if not found)
2414 RAMBlock *qemu_ram_block_by_name(const char *name)
2416 RAMBlock *block;
2418 RAMBLOCK_FOREACH(block) {
2419 if (!strcmp(name, block->idstr)) {
2420 return block;
2424 return NULL;
2427 /* Some of the softmmu routines need to translate from a host pointer
2428 (typically a TLB entry) back to a ram offset. */
2429 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2431 RAMBlock *block;
2432 ram_addr_t offset;
2434 block = qemu_ram_block_from_host(ptr, false, &offset);
2435 if (!block) {
2436 return RAM_ADDR_INVALID;
2439 return block->offset + offset;
2442 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2443 MemTxAttrs attrs, void *buf, hwaddr len);
2444 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2445 const void *buf, hwaddr len);
2446 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2447 bool is_write, MemTxAttrs attrs);
2449 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2450 unsigned len, MemTxAttrs attrs)
2452 subpage_t *subpage = opaque;
2453 uint8_t buf[8];
2454 MemTxResult res;
2456 #if defined(DEBUG_SUBPAGE)
2457 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2458 subpage, len, addr);
2459 #endif
2460 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2461 if (res) {
2462 return res;
2464 *data = ldn_p(buf, len);
2465 return MEMTX_OK;
2468 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2469 uint64_t value, unsigned len, MemTxAttrs attrs)
2471 subpage_t *subpage = opaque;
2472 uint8_t buf[8];
2474 #if defined(DEBUG_SUBPAGE)
2475 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2476 " value %"PRIx64"\n",
2477 __func__, subpage, len, addr, value);
2478 #endif
2479 stn_p(buf, len, value);
2480 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2483 static bool subpage_accepts(void *opaque, hwaddr addr,
2484 unsigned len, bool is_write,
2485 MemTxAttrs attrs)
2487 subpage_t *subpage = opaque;
2488 #if defined(DEBUG_SUBPAGE)
2489 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2490 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2491 #endif
2493 return flatview_access_valid(subpage->fv, addr + subpage->base,
2494 len, is_write, attrs);
2497 static const MemoryRegionOps subpage_ops = {
2498 .read_with_attrs = subpage_read,
2499 .write_with_attrs = subpage_write,
2500 .impl.min_access_size = 1,
2501 .impl.max_access_size = 8,
2502 .valid.min_access_size = 1,
2503 .valid.max_access_size = 8,
2504 .valid.accepts = subpage_accepts,
2505 .endianness = DEVICE_NATIVE_ENDIAN,
2508 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2509 uint16_t section)
2511 int idx, eidx;
2513 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2514 return -1;
2515 idx = SUBPAGE_IDX(start);
2516 eidx = SUBPAGE_IDX(end);
2517 #if defined(DEBUG_SUBPAGE)
2518 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2519 __func__, mmio, start, end, idx, eidx, section);
2520 #endif
2521 for (; idx <= eidx; idx++) {
2522 mmio->sub_section[idx] = section;
2525 return 0;
2528 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2530 subpage_t *mmio;
2532 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2533 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2534 mmio->fv = fv;
2535 mmio->base = base;
2536 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2537 NULL, TARGET_PAGE_SIZE);
2538 mmio->iomem.subpage = true;
2539 #if defined(DEBUG_SUBPAGE)
2540 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2541 mmio, base, TARGET_PAGE_SIZE);
2542 #endif
2544 return mmio;
2547 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2549 assert(fv);
2550 MemoryRegionSection section = {
2551 .fv = fv,
2552 .mr = mr,
2553 .offset_within_address_space = 0,
2554 .offset_within_region = 0,
2555 .size = int128_2_64(),
2558 return phys_section_add(map, &section);
2561 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2562 hwaddr index, MemTxAttrs attrs)
2564 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2565 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2566 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2567 MemoryRegionSection *sections = d->map.sections;
2569 return &sections[index & ~TARGET_PAGE_MASK];
2572 static void io_mem_init(void)
2574 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2575 NULL, UINT64_MAX);
2578 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2580 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2581 uint16_t n;
2583 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2584 assert(n == PHYS_SECTION_UNASSIGNED);
2586 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2588 return d;
2591 void address_space_dispatch_free(AddressSpaceDispatch *d)
2593 phys_sections_free(&d->map);
2594 g_free(d);
2597 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2601 static void tcg_log_global_after_sync(MemoryListener *listener)
2603 CPUAddressSpace *cpuas;
2605 /* Wait for the CPU to end the current TB. This avoids the following
2606 * incorrect race:
2608 * vCPU migration
2609 * ---------------------- -------------------------
2610 * TLB check -> slow path
2611 * notdirty_mem_write
2612 * write to RAM
2613 * mark dirty
2614 * clear dirty flag
2615 * TLB check -> fast path
2616 * read memory
2617 * write to RAM
2619 * by pushing the migration thread's memory read after the vCPU thread has
2620 * written the memory.
2622 if (replay_mode == REPLAY_MODE_NONE) {
2624 * VGA can make calls to this function while updating the screen.
2625 * In record/replay mode this causes a deadlock, because
2626 * run_on_cpu waits for rr mutex. Therefore no races are possible
2627 * in this case and no need for making run_on_cpu when
2628 * record/replay is not enabled.
2630 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2631 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2635 static void tcg_commit(MemoryListener *listener)
2637 CPUAddressSpace *cpuas;
2638 AddressSpaceDispatch *d;
2640 assert(tcg_enabled());
2641 /* since each CPU stores ram addresses in its TLB cache, we must
2642 reset the modified entries */
2643 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2644 cpu_reloading_memory_map();
2645 /* The CPU and TLB are protected by the iothread lock.
2646 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2647 * may have split the RCU critical section.
2649 d = address_space_to_dispatch(cpuas->as);
2650 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2651 tlb_flush(cpuas->cpu);
2654 static void memory_map_init(void)
2656 system_memory = g_malloc(sizeof(*system_memory));
2658 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2659 address_space_init(&address_space_memory, system_memory, "memory");
2661 system_io = g_malloc(sizeof(*system_io));
2662 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2663 65536);
2664 address_space_init(&address_space_io, system_io, "I/O");
2667 MemoryRegion *get_system_memory(void)
2669 return system_memory;
2672 MemoryRegion *get_system_io(void)
2674 return system_io;
2677 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2678 hwaddr length)
2680 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2681 addr += memory_region_get_ram_addr(mr);
2683 /* No early return if dirty_log_mask is or becomes 0, because
2684 * cpu_physical_memory_set_dirty_range will still call
2685 * xen_modified_memory.
2687 if (dirty_log_mask) {
2688 dirty_log_mask =
2689 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2691 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2692 assert(tcg_enabled());
2693 tb_invalidate_phys_range(addr, addr + length);
2694 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2696 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2699 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2702 * In principle this function would work on other memory region types too,
2703 * but the ROM device use case is the only one where this operation is
2704 * necessary. Other memory regions should use the
2705 * address_space_read/write() APIs.
2707 assert(memory_region_is_romd(mr));
2709 invalidate_and_set_dirty(mr, addr, size);
2712 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2714 unsigned access_size_max = mr->ops->valid.max_access_size;
2716 /* Regions are assumed to support 1-4 byte accesses unless
2717 otherwise specified. */
2718 if (access_size_max == 0) {
2719 access_size_max = 4;
2722 /* Bound the maximum access by the alignment of the address. */
2723 if (!mr->ops->impl.unaligned) {
2724 unsigned align_size_max = addr & -addr;
2725 if (align_size_max != 0 && align_size_max < access_size_max) {
2726 access_size_max = align_size_max;
2730 /* Don't attempt accesses larger than the maximum. */
2731 if (l > access_size_max) {
2732 l = access_size_max;
2734 l = pow2floor(l);
2736 return l;
2739 static bool prepare_mmio_access(MemoryRegion *mr)
2741 bool release_lock = false;
2743 if (!qemu_mutex_iothread_locked()) {
2744 qemu_mutex_lock_iothread();
2745 release_lock = true;
2747 if (mr->flush_coalesced_mmio) {
2748 qemu_flush_coalesced_mmio_buffer();
2751 return release_lock;
2754 /* Called within RCU critical section. */
2755 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2756 MemTxAttrs attrs,
2757 const void *ptr,
2758 hwaddr len, hwaddr addr1,
2759 hwaddr l, MemoryRegion *mr)
2761 uint8_t *ram_ptr;
2762 uint64_t val;
2763 MemTxResult result = MEMTX_OK;
2764 bool release_lock = false;
2765 const uint8_t *buf = ptr;
2767 for (;;) {
2768 if (!memory_access_is_direct(mr, true)) {
2769 release_lock |= prepare_mmio_access(mr);
2770 l = memory_access_size(mr, l, addr1);
2771 /* XXX: could force current_cpu to NULL to avoid
2772 potential bugs */
2773 val = ldn_he_p(buf, l);
2774 result |= memory_region_dispatch_write(mr, addr1, val,
2775 size_memop(l), attrs);
2776 } else {
2777 /* RAM case */
2778 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2779 memcpy(ram_ptr, buf, l);
2780 invalidate_and_set_dirty(mr, addr1, l);
2783 if (release_lock) {
2784 qemu_mutex_unlock_iothread();
2785 release_lock = false;
2788 len -= l;
2789 buf += l;
2790 addr += l;
2792 if (!len) {
2793 break;
2796 l = len;
2797 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2800 return result;
2803 /* Called from RCU critical section. */
2804 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2805 const void *buf, hwaddr len)
2807 hwaddr l;
2808 hwaddr addr1;
2809 MemoryRegion *mr;
2810 MemTxResult result = MEMTX_OK;
2812 l = len;
2813 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2814 result = flatview_write_continue(fv, addr, attrs, buf, len,
2815 addr1, l, mr);
2817 return result;
2820 /* Called within RCU critical section. */
2821 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2822 MemTxAttrs attrs, void *ptr,
2823 hwaddr len, hwaddr addr1, hwaddr l,
2824 MemoryRegion *mr)
2826 uint8_t *ram_ptr;
2827 uint64_t val;
2828 MemTxResult result = MEMTX_OK;
2829 bool release_lock = false;
2830 uint8_t *buf = ptr;
2832 for (;;) {
2833 if (!memory_access_is_direct(mr, false)) {
2834 /* I/O case */
2835 release_lock |= prepare_mmio_access(mr);
2836 l = memory_access_size(mr, l, addr1);
2837 result |= memory_region_dispatch_read(mr, addr1, &val,
2838 size_memop(l), attrs);
2839 stn_he_p(buf, l, val);
2840 } else {
2841 /* RAM case */
2842 fuzz_dma_read_cb(addr, len, mr);
2843 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2844 memcpy(buf, ram_ptr, l);
2847 if (release_lock) {
2848 qemu_mutex_unlock_iothread();
2849 release_lock = false;
2852 len -= l;
2853 buf += l;
2854 addr += l;
2856 if (!len) {
2857 break;
2860 l = len;
2861 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2864 return result;
2867 /* Called from RCU critical section. */
2868 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2869 MemTxAttrs attrs, void *buf, hwaddr len)
2871 hwaddr l;
2872 hwaddr addr1;
2873 MemoryRegion *mr;
2875 l = len;
2876 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2877 return flatview_read_continue(fv, addr, attrs, buf, len,
2878 addr1, l, mr);
2881 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2882 MemTxAttrs attrs, void *buf, hwaddr len)
2884 MemTxResult result = MEMTX_OK;
2885 FlatView *fv;
2887 if (len > 0) {
2888 RCU_READ_LOCK_GUARD();
2889 fv = address_space_to_flatview(as);
2890 result = flatview_read(fv, addr, attrs, buf, len);
2893 return result;
2896 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2897 MemTxAttrs attrs,
2898 const void *buf, hwaddr len)
2900 MemTxResult result = MEMTX_OK;
2901 FlatView *fv;
2903 if (len > 0) {
2904 RCU_READ_LOCK_GUARD();
2905 fv = address_space_to_flatview(as);
2906 result = flatview_write(fv, addr, attrs, buf, len);
2909 return result;
2912 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2913 void *buf, hwaddr len, bool is_write)
2915 if (is_write) {
2916 return address_space_write(as, addr, attrs, buf, len);
2917 } else {
2918 return address_space_read_full(as, addr, attrs, buf, len);
2922 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2923 hwaddr len, bool is_write)
2925 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2926 buf, len, is_write);
2929 enum write_rom_type {
2930 WRITE_DATA,
2931 FLUSH_CACHE,
2934 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2935 hwaddr addr,
2936 MemTxAttrs attrs,
2937 const void *ptr,
2938 hwaddr len,
2939 enum write_rom_type type)
2941 hwaddr l;
2942 uint8_t *ram_ptr;
2943 hwaddr addr1;
2944 MemoryRegion *mr;
2945 const uint8_t *buf = ptr;
2947 RCU_READ_LOCK_GUARD();
2948 while (len > 0) {
2949 l = len;
2950 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2952 if (!(memory_region_is_ram(mr) ||
2953 memory_region_is_romd(mr))) {
2954 l = memory_access_size(mr, l, addr1);
2955 } else {
2956 /* ROM/RAM case */
2957 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2958 switch (type) {
2959 case WRITE_DATA:
2960 memcpy(ram_ptr, buf, l);
2961 invalidate_and_set_dirty(mr, addr1, l);
2962 break;
2963 case FLUSH_CACHE:
2964 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2965 break;
2968 len -= l;
2969 buf += l;
2970 addr += l;
2972 return MEMTX_OK;
2975 /* used for ROM loading : can write in RAM and ROM */
2976 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2977 MemTxAttrs attrs,
2978 const void *buf, hwaddr len)
2980 return address_space_write_rom_internal(as, addr, attrs,
2981 buf, len, WRITE_DATA);
2984 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2987 * This function should do the same thing as an icache flush that was
2988 * triggered from within the guest. For TCG we are always cache coherent,
2989 * so there is no need to flush anything. For KVM / Xen we need to flush
2990 * the host's instruction cache at least.
2992 if (tcg_enabled()) {
2993 return;
2996 address_space_write_rom_internal(&address_space_memory,
2997 start, MEMTXATTRS_UNSPECIFIED,
2998 NULL, len, FLUSH_CACHE);
3001 typedef struct {
3002 MemoryRegion *mr;
3003 void *buffer;
3004 hwaddr addr;
3005 hwaddr len;
3006 bool in_use;
3007 } BounceBuffer;
3009 static BounceBuffer bounce;
3011 typedef struct MapClient {
3012 QEMUBH *bh;
3013 QLIST_ENTRY(MapClient) link;
3014 } MapClient;
3016 QemuMutex map_client_list_lock;
3017 static QLIST_HEAD(, MapClient) map_client_list
3018 = QLIST_HEAD_INITIALIZER(map_client_list);
3020 static void cpu_unregister_map_client_do(MapClient *client)
3022 QLIST_REMOVE(client, link);
3023 g_free(client);
3026 static void cpu_notify_map_clients_locked(void)
3028 MapClient *client;
3030 while (!QLIST_EMPTY(&map_client_list)) {
3031 client = QLIST_FIRST(&map_client_list);
3032 qemu_bh_schedule(client->bh);
3033 cpu_unregister_map_client_do(client);
3037 void cpu_register_map_client(QEMUBH *bh)
3039 MapClient *client = g_malloc(sizeof(*client));
3041 qemu_mutex_lock(&map_client_list_lock);
3042 client->bh = bh;
3043 QLIST_INSERT_HEAD(&map_client_list, client, link);
3044 if (!qatomic_read(&bounce.in_use)) {
3045 cpu_notify_map_clients_locked();
3047 qemu_mutex_unlock(&map_client_list_lock);
3050 void cpu_exec_init_all(void)
3052 qemu_mutex_init(&ram_list.mutex);
3053 /* The data structures we set up here depend on knowing the page size,
3054 * so no more changes can be made after this point.
3055 * In an ideal world, nothing we did before we had finished the
3056 * machine setup would care about the target page size, and we could
3057 * do this much later, rather than requiring board models to state
3058 * up front what their requirements are.
3060 finalize_target_page_bits();
3061 io_mem_init();
3062 memory_map_init();
3063 qemu_mutex_init(&map_client_list_lock);
3066 void cpu_unregister_map_client(QEMUBH *bh)
3068 MapClient *client;
3070 qemu_mutex_lock(&map_client_list_lock);
3071 QLIST_FOREACH(client, &map_client_list, link) {
3072 if (client->bh == bh) {
3073 cpu_unregister_map_client_do(client);
3074 break;
3077 qemu_mutex_unlock(&map_client_list_lock);
3080 static void cpu_notify_map_clients(void)
3082 qemu_mutex_lock(&map_client_list_lock);
3083 cpu_notify_map_clients_locked();
3084 qemu_mutex_unlock(&map_client_list_lock);
3087 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3088 bool is_write, MemTxAttrs attrs)
3090 MemoryRegion *mr;
3091 hwaddr l, xlat;
3093 while (len > 0) {
3094 l = len;
3095 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3096 if (!memory_access_is_direct(mr, is_write)) {
3097 l = memory_access_size(mr, l, addr);
3098 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3099 return false;
3103 len -= l;
3104 addr += l;
3106 return true;
3109 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3110 hwaddr len, bool is_write,
3111 MemTxAttrs attrs)
3113 FlatView *fv;
3114 bool result;
3116 RCU_READ_LOCK_GUARD();
3117 fv = address_space_to_flatview(as);
3118 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3119 return result;
3122 static hwaddr
3123 flatview_extend_translation(FlatView *fv, hwaddr addr,
3124 hwaddr target_len,
3125 MemoryRegion *mr, hwaddr base, hwaddr len,
3126 bool is_write, MemTxAttrs attrs)
3128 hwaddr done = 0;
3129 hwaddr xlat;
3130 MemoryRegion *this_mr;
3132 for (;;) {
3133 target_len -= len;
3134 addr += len;
3135 done += len;
3136 if (target_len == 0) {
3137 return done;
3140 len = target_len;
3141 this_mr = flatview_translate(fv, addr, &xlat,
3142 &len, is_write, attrs);
3143 if (this_mr != mr || xlat != base + done) {
3144 return done;
3149 /* Map a physical memory region into a host virtual address.
3150 * May map a subset of the requested range, given by and returned in *plen.
3151 * May return NULL if resources needed to perform the mapping are exhausted.
3152 * Use only for reads OR writes - not for read-modify-write operations.
3153 * Use cpu_register_map_client() to know when retrying the map operation is
3154 * likely to succeed.
3156 void *address_space_map(AddressSpace *as,
3157 hwaddr addr,
3158 hwaddr *plen,
3159 bool is_write,
3160 MemTxAttrs attrs)
3162 hwaddr len = *plen;
3163 hwaddr l, xlat;
3164 MemoryRegion *mr;
3165 void *ptr;
3166 FlatView *fv;
3168 if (len == 0) {
3169 return NULL;
3172 l = len;
3173 RCU_READ_LOCK_GUARD();
3174 fv = address_space_to_flatview(as);
3175 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3177 if (!memory_access_is_direct(mr, is_write)) {
3178 if (qatomic_xchg(&bounce.in_use, true)) {
3179 *plen = 0;
3180 return NULL;
3182 /* Avoid unbounded allocations */
3183 l = MIN(l, TARGET_PAGE_SIZE);
3184 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3185 bounce.addr = addr;
3186 bounce.len = l;
3188 memory_region_ref(mr);
3189 bounce.mr = mr;
3190 if (!is_write) {
3191 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3192 bounce.buffer, l);
3195 *plen = l;
3196 return bounce.buffer;
3200 memory_region_ref(mr);
3201 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3202 l, is_write, attrs);
3203 fuzz_dma_read_cb(addr, *plen, mr);
3204 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3206 return ptr;
3209 /* Unmaps a memory region previously mapped by address_space_map().
3210 * Will also mark the memory as dirty if is_write is true. access_len gives
3211 * the amount of memory that was actually read or written by the caller.
3213 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3214 bool is_write, hwaddr access_len)
3216 if (buffer != bounce.buffer) {
3217 MemoryRegion *mr;
3218 ram_addr_t addr1;
3220 mr = memory_region_from_host(buffer, &addr1);
3221 assert(mr != NULL);
3222 if (is_write) {
3223 invalidate_and_set_dirty(mr, addr1, access_len);
3225 if (xen_enabled()) {
3226 xen_invalidate_map_cache_entry(buffer);
3228 memory_region_unref(mr);
3229 return;
3231 if (is_write) {
3232 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3233 bounce.buffer, access_len);
3235 qemu_vfree(bounce.buffer);
3236 bounce.buffer = NULL;
3237 memory_region_unref(bounce.mr);
3238 qatomic_mb_set(&bounce.in_use, false);
3239 cpu_notify_map_clients();
3242 void *cpu_physical_memory_map(hwaddr addr,
3243 hwaddr *plen,
3244 bool is_write)
3246 return address_space_map(&address_space_memory, addr, plen, is_write,
3247 MEMTXATTRS_UNSPECIFIED);
3250 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3251 bool is_write, hwaddr access_len)
3253 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3256 #define ARG1_DECL AddressSpace *as
3257 #define ARG1 as
3258 #define SUFFIX
3259 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3260 #define RCU_READ_LOCK(...) rcu_read_lock()
3261 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3262 #include "memory_ldst.c.inc"
3264 int64_t address_space_cache_init(MemoryRegionCache *cache,
3265 AddressSpace *as,
3266 hwaddr addr,
3267 hwaddr len,
3268 bool is_write)
3270 AddressSpaceDispatch *d;
3271 hwaddr l;
3272 MemoryRegion *mr;
3273 Int128 diff;
3275 assert(len > 0);
3277 l = len;
3278 cache->fv = address_space_get_flatview(as);
3279 d = flatview_to_dispatch(cache->fv);
3280 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3283 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3284 * Take that into account to compute how many bytes are there between
3285 * cache->xlat and the end of the section.
3287 diff = int128_sub(cache->mrs.size,
3288 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3289 l = int128_get64(int128_min(diff, int128_make64(l)));
3291 mr = cache->mrs.mr;
3292 memory_region_ref(mr);
3293 if (memory_access_is_direct(mr, is_write)) {
3294 /* We don't care about the memory attributes here as we're only
3295 * doing this if we found actual RAM, which behaves the same
3296 * regardless of attributes; so UNSPECIFIED is fine.
3298 l = flatview_extend_translation(cache->fv, addr, len, mr,
3299 cache->xlat, l, is_write,
3300 MEMTXATTRS_UNSPECIFIED);
3301 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3302 } else {
3303 cache->ptr = NULL;
3306 cache->len = l;
3307 cache->is_write = is_write;
3308 return l;
3311 void address_space_cache_invalidate(MemoryRegionCache *cache,
3312 hwaddr addr,
3313 hwaddr access_len)
3315 assert(cache->is_write);
3316 if (likely(cache->ptr)) {
3317 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3321 void address_space_cache_destroy(MemoryRegionCache *cache)
3323 if (!cache->mrs.mr) {
3324 return;
3327 if (xen_enabled()) {
3328 xen_invalidate_map_cache_entry(cache->ptr);
3330 memory_region_unref(cache->mrs.mr);
3331 flatview_unref(cache->fv);
3332 cache->mrs.mr = NULL;
3333 cache->fv = NULL;
3336 /* Called from RCU critical section. This function has the same
3337 * semantics as address_space_translate, but it only works on a
3338 * predefined range of a MemoryRegion that was mapped with
3339 * address_space_cache_init.
3341 static inline MemoryRegion *address_space_translate_cached(
3342 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3343 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3345 MemoryRegionSection section;
3346 MemoryRegion *mr;
3347 IOMMUMemoryRegion *iommu_mr;
3348 AddressSpace *target_as;
3350 assert(!cache->ptr);
3351 *xlat = addr + cache->xlat;
3353 mr = cache->mrs.mr;
3354 iommu_mr = memory_region_get_iommu(mr);
3355 if (!iommu_mr) {
3356 /* MMIO region. */
3357 return mr;
3360 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3361 NULL, is_write, true,
3362 &target_as, attrs);
3363 return section.mr;
3366 /* Called from RCU critical section. address_space_read_cached uses this
3367 * out of line function when the target is an MMIO or IOMMU region.
3369 MemTxResult
3370 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3371 void *buf, hwaddr len)
3373 hwaddr addr1, l;
3374 MemoryRegion *mr;
3376 l = len;
3377 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3378 MEMTXATTRS_UNSPECIFIED);
3379 return flatview_read_continue(cache->fv,
3380 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3381 addr1, l, mr);
3384 /* Called from RCU critical section. address_space_write_cached uses this
3385 * out of line function when the target is an MMIO or IOMMU region.
3387 MemTxResult
3388 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3389 const void *buf, hwaddr len)
3391 hwaddr addr1, l;
3392 MemoryRegion *mr;
3394 l = len;
3395 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3396 MEMTXATTRS_UNSPECIFIED);
3397 return flatview_write_continue(cache->fv,
3398 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3399 addr1, l, mr);
3402 #define ARG1_DECL MemoryRegionCache *cache
3403 #define ARG1 cache
3404 #define SUFFIX _cached_slow
3405 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3406 #define RCU_READ_LOCK() ((void)0)
3407 #define RCU_READ_UNLOCK() ((void)0)
3408 #include "memory_ldst.c.inc"
3410 /* virtual memory access for debug (includes writing to ROM) */
3411 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3412 void *ptr, target_ulong len, bool is_write)
3414 hwaddr phys_addr;
3415 target_ulong l, page;
3416 uint8_t *buf = ptr;
3418 cpu_synchronize_state(cpu);
3419 while (len > 0) {
3420 int asidx;
3421 MemTxAttrs attrs;
3422 MemTxResult res;
3424 page = addr & TARGET_PAGE_MASK;
3425 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3426 asidx = cpu_asidx_from_attrs(cpu, attrs);
3427 /* if no physical page mapped, return an error */
3428 if (phys_addr == -1)
3429 return -1;
3430 l = (page + TARGET_PAGE_SIZE) - addr;
3431 if (l > len)
3432 l = len;
3433 phys_addr += (addr & ~TARGET_PAGE_MASK);
3434 if (is_write) {
3435 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3436 attrs, buf, l);
3437 } else {
3438 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3439 attrs, buf, l);
3441 if (res != MEMTX_OK) {
3442 return -1;
3444 len -= l;
3445 buf += l;
3446 addr += l;
3448 return 0;
3452 * Allows code that needs to deal with migration bitmaps etc to still be built
3453 * target independent.
3455 size_t qemu_target_page_size(void)
3457 return TARGET_PAGE_SIZE;
3460 int qemu_target_page_bits(void)
3462 return TARGET_PAGE_BITS;
3465 int qemu_target_page_bits_min(void)
3467 return TARGET_PAGE_BITS_MIN;
3470 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3472 MemoryRegion*mr;
3473 hwaddr l = 1;
3474 bool res;
3476 RCU_READ_LOCK_GUARD();
3477 mr = address_space_translate(&address_space_memory,
3478 phys_addr, &phys_addr, &l, false,
3479 MEMTXATTRS_UNSPECIFIED);
3481 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3482 return res;
3485 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3487 RAMBlock *block;
3488 int ret = 0;
3490 RCU_READ_LOCK_GUARD();
3491 RAMBLOCK_FOREACH(block) {
3492 ret = func(block, opaque);
3493 if (ret) {
3494 break;
3497 return ret;
3501 * Unmap pages of memory from start to start+length such that
3502 * they a) read as 0, b) Trigger whatever fault mechanism
3503 * the OS provides for postcopy.
3504 * The pages must be unmapped by the end of the function.
3505 * Returns: 0 on success, none-0 on failure
3508 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3510 int ret = -1;
3512 uint8_t *host_startaddr = rb->host + start;
3514 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3515 error_report("ram_block_discard_range: Unaligned start address: %p",
3516 host_startaddr);
3517 goto err;
3520 if ((start + length) <= rb->used_length) {
3521 bool need_madvise, need_fallocate;
3522 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3523 error_report("ram_block_discard_range: Unaligned length: %zx",
3524 length);
3525 goto err;
3528 errno = ENOTSUP; /* If we are missing MADVISE etc */
3530 /* The logic here is messy;
3531 * madvise DONTNEED fails for hugepages
3532 * fallocate works on hugepages and shmem
3534 need_madvise = (rb->page_size == qemu_host_page_size);
3535 need_fallocate = rb->fd != -1;
3536 if (need_fallocate) {
3537 /* For a file, this causes the area of the file to be zero'd
3538 * if read, and for hugetlbfs also causes it to be unmapped
3539 * so a userfault will trigger.
3541 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3542 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3543 start, length);
3544 if (ret) {
3545 ret = -errno;
3546 error_report("ram_block_discard_range: Failed to fallocate "
3547 "%s:%" PRIx64 " +%zx (%d)",
3548 rb->idstr, start, length, ret);
3549 goto err;
3551 #else
3552 ret = -ENOSYS;
3553 error_report("ram_block_discard_range: fallocate not available/file"
3554 "%s:%" PRIx64 " +%zx (%d)",
3555 rb->idstr, start, length, ret);
3556 goto err;
3557 #endif
3559 if (need_madvise) {
3560 /* For normal RAM this causes it to be unmapped,
3561 * for shared memory it causes the local mapping to disappear
3562 * and to fall back on the file contents (which we just
3563 * fallocate'd away).
3565 #if defined(CONFIG_MADVISE)
3566 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3567 if (ret) {
3568 ret = -errno;
3569 error_report("ram_block_discard_range: Failed to discard range "
3570 "%s:%" PRIx64 " +%zx (%d)",
3571 rb->idstr, start, length, ret);
3572 goto err;
3574 #else
3575 ret = -ENOSYS;
3576 error_report("ram_block_discard_range: MADVISE not available"
3577 "%s:%" PRIx64 " +%zx (%d)",
3578 rb->idstr, start, length, ret);
3579 goto err;
3580 #endif
3582 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3583 need_madvise, need_fallocate, ret);
3584 } else {
3585 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3586 "/%zx/" RAM_ADDR_FMT")",
3587 rb->idstr, start, length, rb->used_length);
3590 err:
3591 return ret;
3594 bool ramblock_is_pmem(RAMBlock *rb)
3596 return rb->flags & RAM_PMEM;
3599 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3601 if (start == end - 1) {
3602 qemu_printf("\t%3d ", start);
3603 } else {
3604 qemu_printf("\t%3d..%-3d ", start, end - 1);
3606 qemu_printf(" skip=%d ", skip);
3607 if (ptr == PHYS_MAP_NODE_NIL) {
3608 qemu_printf(" ptr=NIL");
3609 } else if (!skip) {
3610 qemu_printf(" ptr=#%d", ptr);
3611 } else {
3612 qemu_printf(" ptr=[%d]", ptr);
3614 qemu_printf("\n");
3617 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3618 int128_sub((size), int128_one())) : 0)
3620 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3622 int i;
3624 qemu_printf(" Dispatch\n");
3625 qemu_printf(" Physical sections\n");
3627 for (i = 0; i < d->map.sections_nb; ++i) {
3628 MemoryRegionSection *s = d->map.sections + i;
3629 const char *names[] = { " [unassigned]", " [not dirty]",
3630 " [ROM]", " [watch]" };
3632 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3633 " %s%s%s%s%s",
3635 s->offset_within_address_space,
3636 s->offset_within_address_space + MR_SIZE(s->mr->size),
3637 s->mr->name ? s->mr->name : "(noname)",
3638 i < ARRAY_SIZE(names) ? names[i] : "",
3639 s->mr == root ? " [ROOT]" : "",
3640 s == d->mru_section ? " [MRU]" : "",
3641 s->mr->is_iommu ? " [iommu]" : "");
3643 if (s->mr->alias) {
3644 qemu_printf(" alias=%s", s->mr->alias->name ?
3645 s->mr->alias->name : "noname");
3647 qemu_printf("\n");
3650 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3651 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3652 for (i = 0; i < d->map.nodes_nb; ++i) {
3653 int j, jprev;
3654 PhysPageEntry prev;
3655 Node *n = d->map.nodes + i;
3657 qemu_printf(" [%d]\n", i);
3659 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3660 PhysPageEntry *pe = *n + j;
3662 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3663 continue;
3666 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3668 jprev = j;
3669 prev = *pe;
3672 if (jprev != ARRAY_SIZE(*n)) {
3673 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3679 * If positive, discarding RAM is disabled. If negative, discarding RAM is
3680 * required to work and cannot be disabled.
3682 static int ram_block_discard_disabled;
3684 int ram_block_discard_disable(bool state)
3686 int old;
3688 if (!state) {
3689 qatomic_dec(&ram_block_discard_disabled);
3690 return 0;
3693 do {
3694 old = qatomic_read(&ram_block_discard_disabled);
3695 if (old < 0) {
3696 return -EBUSY;
3698 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3699 old, old + 1) != old);
3700 return 0;
3703 int ram_block_discard_require(bool state)
3705 int old;
3707 if (!state) {
3708 qatomic_inc(&ram_block_discard_disabled);
3709 return 0;
3712 do {
3713 old = qatomic_read(&ram_block_discard_disabled);
3714 if (old > 0) {
3715 return -EBUSY;
3717 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3718 old, old - 1) != old);
3719 return 0;
3722 bool ram_block_discard_is_disabled(void)
3724 return qatomic_read(&ram_block_discard_disabled) > 0;
3727 bool ram_block_discard_is_required(void)
3729 return qatomic_read(&ram_block_discard_disabled) < 0;