x86: acpi: let the firmware handle pending "CPU remove" events in SMM
[qemu/ar7.git] / target / arm / cpu.c
blob07492e9f9a44640dad640d87daed50b5463cfbde
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
73 static bool arm_cpu_has_work(CPUState *cs)
75 ARMCPU *cpu = ARM_CPU(cs);
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
89 entry->hook = hook;
90 entry->opaque = opaque;
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
100 entry->hook = hook;
101 entry->opaque = opaque;
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
126 if (!ri->fieldoffset) {
127 return;
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
158 static void arm_cpu_reset(DeviceState *dev)
160 CPUState *s = CPU(dev);
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
165 acc->parent_reset(dev);
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
177 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
179 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
180 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
183 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
184 /* 64 bit CPUs always start in 64 bit mode */
185 env->aarch64 = 1;
186 #if defined(CONFIG_USER_ONLY)
187 env->pstate = PSTATE_MODE_EL0t;
188 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
189 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
190 /* Enable all PAC keys. */
191 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
192 SCTLR_EnDA | SCTLR_EnDB);
193 /* and to the FP/Neon instructions */
194 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
195 /* and to the SVE instructions */
196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
197 /* with reasonable vector length */
198 if (cpu_isar_feature(aa64_sve, cpu)) {
199 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
202 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
203 * turning on both here will produce smaller code and otherwise
204 * make no difference to the user-level emulation.
206 * In sve_probe_page, we assume that this is set.
207 * Do not modify this without other changes.
209 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211 /* Reset into the highest available EL */
212 if (arm_feature(env, ARM_FEATURE_EL3)) {
213 env->pstate = PSTATE_MODE_EL3h;
214 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215 env->pstate = PSTATE_MODE_EL2h;
216 } else {
217 env->pstate = PSTATE_MODE_EL1h;
219 env->pc = cpu->rvbar;
220 #endif
221 } else {
222 #if defined(CONFIG_USER_ONLY)
223 /* Userspace expects access to cp10 and cp11 for FP/Neon */
224 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
228 #if defined(CONFIG_USER_ONLY)
229 env->uncached_cpsr = ARM_CPU_MODE_USR;
230 /* For user mode we must enable access to coprocessors */
231 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233 env->cp15.c15_cpar = 3;
234 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235 env->cp15.c15_cpar = 1;
237 #else
240 * If the highest available EL is EL2, AArch32 will start in Hyp
241 * mode; otherwise it starts in SVC. Note that if we start in
242 * AArch64 then these values in the uncached_cpsr will be ignored.
244 if (arm_feature(env, ARM_FEATURE_EL2) &&
245 !arm_feature(env, ARM_FEATURE_EL3)) {
246 env->uncached_cpsr = ARM_CPU_MODE_HYP;
247 } else {
248 env->uncached_cpsr = ARM_CPU_MODE_SVC;
250 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 if (arm_feature(env, ARM_FEATURE_M)) {
253 uint32_t initial_msp; /* Loaded from 0x0 */
254 uint32_t initial_pc; /* Loaded from 0x4 */
255 uint8_t *rom;
256 uint32_t vecbase;
258 if (cpu_isar_feature(aa32_lob, cpu)) {
260 * LTPSIZE is constant 4 if MVE not implemented, and resets
261 * to an UNKNOWN value if MVE is implemented. We choose to
262 * always reset to 4.
264 env->v7m.ltpsize = 4;
267 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
268 env->v7m.secure = true;
269 } else {
270 /* This bit resets to 0 if security is supported, but 1 if
271 * it is not. The bit is not present in v7M, but we set it
272 * here so we can avoid having to make checks on it conditional
273 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
275 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
277 * Set NSACR to indicate "NS access permitted to everything";
278 * this avoids having to have all the tests of it being
279 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
280 * v8.1M the guest-visible value of NSACR in a CPU without the
281 * Security Extension is 0xcff.
283 env->v7m.nsacr = 0xcff;
286 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
287 * that it resets to 1, so QEMU always does that rather than making
288 * it dependent on CPU model. In v8M it is RES1.
290 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
291 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
292 if (arm_feature(env, ARM_FEATURE_V8)) {
293 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
294 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
295 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
297 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
298 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
299 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
302 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
303 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
304 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
305 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
307 /* Unlike A/R profile, M profile defines the reset LR value */
308 env->regs[14] = 0xffffffff;
310 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
312 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
313 vecbase = env->v7m.vecbase[env->v7m.secure];
314 rom = rom_ptr(vecbase, 8);
315 if (rom) {
316 /* Address zero is covered by ROM which hasn't yet been
317 * copied into physical memory.
319 initial_msp = ldl_p(rom);
320 initial_pc = ldl_p(rom + 4);
321 } else {
322 /* Address zero not covered by a ROM blob, or the ROM blob
323 * is in non-modifiable memory and this is a second reset after
324 * it got copied into memory. In the latter case, rom_ptr
325 * will return a NULL pointer and we should use ldl_phys instead.
327 initial_msp = ldl_phys(s->as, vecbase);
328 initial_pc = ldl_phys(s->as, vecbase + 4);
331 env->regs[13] = initial_msp & 0xFFFFFFFC;
332 env->regs[15] = initial_pc & ~1;
333 env->thumb = initial_pc & 1;
336 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
337 * executing as AArch32 then check if highvecs are enabled and
338 * adjust the PC accordingly.
340 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
341 env->regs[15] = 0xFFFF0000;
344 /* M profile requires that reset clears the exclusive monitor;
345 * A profile does not, but clearing it makes more sense than having it
346 * set with an exclusive access on address zero.
348 arm_clear_exclusive(env);
350 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
351 #endif
353 if (arm_feature(env, ARM_FEATURE_PMSA)) {
354 if (cpu->pmsav7_dregion > 0) {
355 if (arm_feature(env, ARM_FEATURE_V8)) {
356 memset(env->pmsav8.rbar[M_REG_NS], 0,
357 sizeof(*env->pmsav8.rbar[M_REG_NS])
358 * cpu->pmsav7_dregion);
359 memset(env->pmsav8.rlar[M_REG_NS], 0,
360 sizeof(*env->pmsav8.rlar[M_REG_NS])
361 * cpu->pmsav7_dregion);
362 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
363 memset(env->pmsav8.rbar[M_REG_S], 0,
364 sizeof(*env->pmsav8.rbar[M_REG_S])
365 * cpu->pmsav7_dregion);
366 memset(env->pmsav8.rlar[M_REG_S], 0,
367 sizeof(*env->pmsav8.rlar[M_REG_S])
368 * cpu->pmsav7_dregion);
370 } else if (arm_feature(env, ARM_FEATURE_V7)) {
371 memset(env->pmsav7.drbar, 0,
372 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
373 memset(env->pmsav7.drsr, 0,
374 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
375 memset(env->pmsav7.dracr, 0,
376 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
379 env->pmsav7.rnr[M_REG_NS] = 0;
380 env->pmsav7.rnr[M_REG_S] = 0;
381 env->pmsav8.mair0[M_REG_NS] = 0;
382 env->pmsav8.mair0[M_REG_S] = 0;
383 env->pmsav8.mair1[M_REG_NS] = 0;
384 env->pmsav8.mair1[M_REG_S] = 0;
387 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
388 if (cpu->sau_sregion > 0) {
389 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
390 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
392 env->sau.rnr = 0;
393 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
394 * the Cortex-M33 does.
396 env->sau.ctrl = 0;
399 set_flush_to_zero(1, &env->vfp.standard_fp_status);
400 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
401 set_default_nan_mode(1, &env->vfp.standard_fp_status);
402 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
403 set_float_detect_tininess(float_tininess_before_rounding,
404 &env->vfp.fp_status);
405 set_float_detect_tininess(float_tininess_before_rounding,
406 &env->vfp.standard_fp_status);
407 set_float_detect_tininess(float_tininess_before_rounding,
408 &env->vfp.fp_status_f16);
409 set_float_detect_tininess(float_tininess_before_rounding,
410 &env->vfp.standard_fp_status_f16);
411 #ifndef CONFIG_USER_ONLY
412 if (kvm_enabled()) {
413 kvm_arm_reset_vcpu(cpu);
415 #endif
417 hw_breakpoint_update_all(cpu);
418 hw_watchpoint_update_all(cpu);
419 arm_rebuild_hflags(env);
422 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
423 unsigned int target_el,
424 unsigned int cur_el, bool secure,
425 uint64_t hcr_el2)
427 CPUARMState *env = cs->env_ptr;
428 bool pstate_unmasked;
429 bool unmasked = false;
432 * Don't take exceptions if they target a lower EL.
433 * This check should catch any exceptions that would not be taken
434 * but left pending.
436 if (cur_el > target_el) {
437 return false;
440 switch (excp_idx) {
441 case EXCP_FIQ:
442 pstate_unmasked = !(env->daif & PSTATE_F);
443 break;
445 case EXCP_IRQ:
446 pstate_unmasked = !(env->daif & PSTATE_I);
447 break;
449 case EXCP_VFIQ:
450 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
451 /* VFIQs are only taken when hypervized and non-secure. */
452 return false;
454 return !(env->daif & PSTATE_F);
455 case EXCP_VIRQ:
456 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
457 /* VIRQs are only taken when hypervized and non-secure. */
458 return false;
460 return !(env->daif & PSTATE_I);
461 default:
462 g_assert_not_reached();
466 * Use the target EL, current execution state and SCR/HCR settings to
467 * determine whether the corresponding CPSR bit is used to mask the
468 * interrupt.
470 if ((target_el > cur_el) && (target_el != 1)) {
471 /* Exceptions targeting a higher EL may not be maskable */
472 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
474 * 64-bit masking rules are simple: exceptions to EL3
475 * can't be masked, and exceptions to EL2 can only be
476 * masked from Secure state. The HCR and SCR settings
477 * don't affect the masking logic, only the interrupt routing.
479 if (target_el == 3 || !secure) {
480 unmasked = true;
482 } else {
484 * The old 32-bit-only environment has a more complicated
485 * masking setup. HCR and SCR bits not only affect interrupt
486 * routing but also change the behaviour of masking.
488 bool hcr, scr;
490 switch (excp_idx) {
491 case EXCP_FIQ:
493 * If FIQs are routed to EL3 or EL2 then there are cases where
494 * we override the CPSR.F in determining if the exception is
495 * masked or not. If neither of these are set then we fall back
496 * to the CPSR.F setting otherwise we further assess the state
497 * below.
499 hcr = hcr_el2 & HCR_FMO;
500 scr = (env->cp15.scr_el3 & SCR_FIQ);
503 * When EL3 is 32-bit, the SCR.FW bit controls whether the
504 * CPSR.F bit masks FIQ interrupts when taken in non-secure
505 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
506 * when non-secure but only when FIQs are only routed to EL3.
508 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
509 break;
510 case EXCP_IRQ:
512 * When EL3 execution state is 32-bit, if HCR.IMO is set then
513 * we may override the CPSR.I masking when in non-secure state.
514 * The SCR.IRQ setting has already been taken into consideration
515 * when setting the target EL, so it does not have a further
516 * affect here.
518 hcr = hcr_el2 & HCR_IMO;
519 scr = false;
520 break;
521 default:
522 g_assert_not_reached();
525 if ((scr || hcr) && !secure) {
526 unmasked = true;
532 * The PSTATE bits only mask the interrupt if we have not overriden the
533 * ability above.
535 return unmasked || pstate_unmasked;
538 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
540 CPUClass *cc = CPU_GET_CLASS(cs);
541 CPUARMState *env = cs->env_ptr;
542 uint32_t cur_el = arm_current_el(env);
543 bool secure = arm_is_secure(env);
544 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
545 uint32_t target_el;
546 uint32_t excp_idx;
548 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
550 if (interrupt_request & CPU_INTERRUPT_FIQ) {
551 excp_idx = EXCP_FIQ;
552 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
553 if (arm_excp_unmasked(cs, excp_idx, target_el,
554 cur_el, secure, hcr_el2)) {
555 goto found;
558 if (interrupt_request & CPU_INTERRUPT_HARD) {
559 excp_idx = EXCP_IRQ;
560 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
561 if (arm_excp_unmasked(cs, excp_idx, target_el,
562 cur_el, secure, hcr_el2)) {
563 goto found;
566 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
567 excp_idx = EXCP_VIRQ;
568 target_el = 1;
569 if (arm_excp_unmasked(cs, excp_idx, target_el,
570 cur_el, secure, hcr_el2)) {
571 goto found;
574 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
575 excp_idx = EXCP_VFIQ;
576 target_el = 1;
577 if (arm_excp_unmasked(cs, excp_idx, target_el,
578 cur_el, secure, hcr_el2)) {
579 goto found;
582 return false;
584 found:
585 cs->exception_index = excp_idx;
586 env->exception.target_el = target_el;
587 cc->do_interrupt(cs);
588 return true;
591 void arm_cpu_update_virq(ARMCPU *cpu)
594 * Update the interrupt level for VIRQ, which is the logical OR of
595 * the HCR_EL2.VI bit and the input line level from the GIC.
597 CPUARMState *env = &cpu->env;
598 CPUState *cs = CPU(cpu);
600 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
601 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
603 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
604 if (new_state) {
605 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
606 } else {
607 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
612 void arm_cpu_update_vfiq(ARMCPU *cpu)
615 * Update the interrupt level for VFIQ, which is the logical OR of
616 * the HCR_EL2.VF bit and the input line level from the GIC.
618 CPUARMState *env = &cpu->env;
619 CPUState *cs = CPU(cpu);
621 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
622 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
624 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
625 if (new_state) {
626 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
627 } else {
628 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
633 #ifndef CONFIG_USER_ONLY
634 static void arm_cpu_set_irq(void *opaque, int irq, int level)
636 ARMCPU *cpu = opaque;
637 CPUARMState *env = &cpu->env;
638 CPUState *cs = CPU(cpu);
639 static const int mask[] = {
640 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
641 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
642 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
643 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
646 if (level) {
647 env->irq_line_state |= mask[irq];
648 } else {
649 env->irq_line_state &= ~mask[irq];
652 switch (irq) {
653 case ARM_CPU_VIRQ:
654 assert(arm_feature(env, ARM_FEATURE_EL2));
655 arm_cpu_update_virq(cpu);
656 break;
657 case ARM_CPU_VFIQ:
658 assert(arm_feature(env, ARM_FEATURE_EL2));
659 arm_cpu_update_vfiq(cpu);
660 break;
661 case ARM_CPU_IRQ:
662 case ARM_CPU_FIQ:
663 if (level) {
664 cpu_interrupt(cs, mask[irq]);
665 } else {
666 cpu_reset_interrupt(cs, mask[irq]);
668 break;
669 default:
670 g_assert_not_reached();
674 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
676 #ifdef CONFIG_KVM
677 ARMCPU *cpu = opaque;
678 CPUARMState *env = &cpu->env;
679 CPUState *cs = CPU(cpu);
680 uint32_t linestate_bit;
681 int irq_id;
683 switch (irq) {
684 case ARM_CPU_IRQ:
685 irq_id = KVM_ARM_IRQ_CPU_IRQ;
686 linestate_bit = CPU_INTERRUPT_HARD;
687 break;
688 case ARM_CPU_FIQ:
689 irq_id = KVM_ARM_IRQ_CPU_FIQ;
690 linestate_bit = CPU_INTERRUPT_FIQ;
691 break;
692 default:
693 g_assert_not_reached();
696 if (level) {
697 env->irq_line_state |= linestate_bit;
698 } else {
699 env->irq_line_state &= ~linestate_bit;
701 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
702 #endif
705 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
707 ARMCPU *cpu = ARM_CPU(cs);
708 CPUARMState *env = &cpu->env;
710 cpu_synchronize_state(cs);
711 return arm_cpu_data_is_big_endian(env);
714 #endif
716 static int
717 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
719 return print_insn_arm(pc | 1, info);
722 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
724 ARMCPU *ac = ARM_CPU(cpu);
725 CPUARMState *env = &ac->env;
726 bool sctlr_b;
728 if (is_a64(env)) {
729 /* We might not be compiled with the A64 disassembler
730 * because it needs a C++ compiler. Leave print_insn
731 * unset in this case to use the caller default behaviour.
733 #if defined(CONFIG_ARM_A64_DIS)
734 info->print_insn = print_insn_arm_a64;
735 #endif
736 info->cap_arch = CS_ARCH_ARM64;
737 info->cap_insn_unit = 4;
738 info->cap_insn_split = 4;
739 } else {
740 int cap_mode;
741 if (env->thumb) {
742 info->print_insn = print_insn_thumb1;
743 info->cap_insn_unit = 2;
744 info->cap_insn_split = 4;
745 cap_mode = CS_MODE_THUMB;
746 } else {
747 info->print_insn = print_insn_arm;
748 info->cap_insn_unit = 4;
749 info->cap_insn_split = 4;
750 cap_mode = CS_MODE_ARM;
752 if (arm_feature(env, ARM_FEATURE_V8)) {
753 cap_mode |= CS_MODE_V8;
755 if (arm_feature(env, ARM_FEATURE_M)) {
756 cap_mode |= CS_MODE_MCLASS;
758 info->cap_arch = CS_ARCH_ARM;
759 info->cap_mode = cap_mode;
762 sctlr_b = arm_sctlr_b(env);
763 if (bswap_code(sctlr_b)) {
764 #ifdef TARGET_WORDS_BIGENDIAN
765 info->endian = BFD_ENDIAN_LITTLE;
766 #else
767 info->endian = BFD_ENDIAN_BIG;
768 #endif
770 info->flags &= ~INSN_ARM_BE32;
771 #ifndef CONFIG_USER_ONLY
772 if (sctlr_b) {
773 info->flags |= INSN_ARM_BE32;
775 #endif
778 #ifdef TARGET_AARCH64
780 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
782 ARMCPU *cpu = ARM_CPU(cs);
783 CPUARMState *env = &cpu->env;
784 uint32_t psr = pstate_read(env);
785 int i;
786 int el = arm_current_el(env);
787 const char *ns_status;
789 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
790 for (i = 0; i < 32; i++) {
791 if (i == 31) {
792 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
793 } else {
794 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
795 (i + 2) % 3 ? " " : "\n");
799 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
800 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
801 } else {
802 ns_status = "";
804 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
805 psr,
806 psr & PSTATE_N ? 'N' : '-',
807 psr & PSTATE_Z ? 'Z' : '-',
808 psr & PSTATE_C ? 'C' : '-',
809 psr & PSTATE_V ? 'V' : '-',
810 ns_status,
812 psr & PSTATE_SP ? 'h' : 't');
814 if (cpu_isar_feature(aa64_bti, cpu)) {
815 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
817 if (!(flags & CPU_DUMP_FPU)) {
818 qemu_fprintf(f, "\n");
819 return;
821 if (fp_exception_el(env, el) != 0) {
822 qemu_fprintf(f, " FPU disabled\n");
823 return;
825 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
826 vfp_get_fpcr(env), vfp_get_fpsr(env));
828 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
829 int j, zcr_len = sve_zcr_len_for_el(env, el);
831 for (i = 0; i <= FFR_PRED_NUM; i++) {
832 bool eol;
833 if (i == FFR_PRED_NUM) {
834 qemu_fprintf(f, "FFR=");
835 /* It's last, so end the line. */
836 eol = true;
837 } else {
838 qemu_fprintf(f, "P%02d=", i);
839 switch (zcr_len) {
840 case 0:
841 eol = i % 8 == 7;
842 break;
843 case 1:
844 eol = i % 6 == 5;
845 break;
846 case 2:
847 case 3:
848 eol = i % 3 == 2;
849 break;
850 default:
851 /* More than one quadword per predicate. */
852 eol = true;
853 break;
856 for (j = zcr_len / 4; j >= 0; j--) {
857 int digits;
858 if (j * 4 + 4 <= zcr_len + 1) {
859 digits = 16;
860 } else {
861 digits = (zcr_len % 4 + 1) * 4;
863 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
864 env->vfp.pregs[i].p[j],
865 j ? ":" : eol ? "\n" : " ");
869 for (i = 0; i < 32; i++) {
870 if (zcr_len == 0) {
871 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
872 i, env->vfp.zregs[i].d[1],
873 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
874 } else if (zcr_len == 1) {
875 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
876 ":%016" PRIx64 ":%016" PRIx64 "\n",
877 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
878 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
879 } else {
880 for (j = zcr_len; j >= 0; j--) {
881 bool odd = (zcr_len - j) % 2 != 0;
882 if (j == zcr_len) {
883 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
884 } else if (!odd) {
885 if (j > 0) {
886 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
887 } else {
888 qemu_fprintf(f, " [%x]=", j);
891 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
892 env->vfp.zregs[i].d[j * 2 + 1],
893 env->vfp.zregs[i].d[j * 2],
894 odd || j == 0 ? "\n" : ":");
898 } else {
899 for (i = 0; i < 32; i++) {
900 uint64_t *q = aa64_vfp_qreg(env, i);
901 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
902 i, q[1], q[0], (i & 1 ? "\n" : " "));
907 #else
909 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
911 g_assert_not_reached();
914 #endif
916 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
918 ARMCPU *cpu = ARM_CPU(cs);
919 CPUARMState *env = &cpu->env;
920 int i;
922 if (is_a64(env)) {
923 aarch64_cpu_dump_state(cs, f, flags);
924 return;
927 for (i = 0; i < 16; i++) {
928 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
929 if ((i % 4) == 3) {
930 qemu_fprintf(f, "\n");
931 } else {
932 qemu_fprintf(f, " ");
936 if (arm_feature(env, ARM_FEATURE_M)) {
937 uint32_t xpsr = xpsr_read(env);
938 const char *mode;
939 const char *ns_status = "";
941 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
942 ns_status = env->v7m.secure ? "S " : "NS ";
945 if (xpsr & XPSR_EXCP) {
946 mode = "handler";
947 } else {
948 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
949 mode = "unpriv-thread";
950 } else {
951 mode = "priv-thread";
955 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
956 xpsr,
957 xpsr & XPSR_N ? 'N' : '-',
958 xpsr & XPSR_Z ? 'Z' : '-',
959 xpsr & XPSR_C ? 'C' : '-',
960 xpsr & XPSR_V ? 'V' : '-',
961 xpsr & XPSR_T ? 'T' : 'A',
962 ns_status,
963 mode);
964 } else {
965 uint32_t psr = cpsr_read(env);
966 const char *ns_status = "";
968 if (arm_feature(env, ARM_FEATURE_EL3) &&
969 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
970 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
973 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
974 psr,
975 psr & CPSR_N ? 'N' : '-',
976 psr & CPSR_Z ? 'Z' : '-',
977 psr & CPSR_C ? 'C' : '-',
978 psr & CPSR_V ? 'V' : '-',
979 psr & CPSR_T ? 'T' : 'A',
980 ns_status,
981 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
984 if (flags & CPU_DUMP_FPU) {
985 int numvfpregs = 0;
986 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
987 numvfpregs = 32;
988 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
989 numvfpregs = 16;
991 for (i = 0; i < numvfpregs; i++) {
992 uint64_t v = *aa32_vfp_dreg(env, i);
993 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
994 i * 2, (uint32_t)v,
995 i * 2 + 1, (uint32_t)(v >> 32),
996 i, v);
998 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1002 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1004 uint32_t Aff1 = idx / clustersz;
1005 uint32_t Aff0 = idx % clustersz;
1006 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1009 static void cpreg_hashtable_data_destroy(gpointer data)
1012 * Destroy function for cpu->cp_regs hashtable data entries.
1013 * We must free the name string because it was g_strdup()ed in
1014 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1015 * from r->name because we know we definitely allocated it.
1017 ARMCPRegInfo *r = data;
1019 g_free((void *)r->name);
1020 g_free(r);
1023 static void arm_cpu_initfn(Object *obj)
1025 ARMCPU *cpu = ARM_CPU(obj);
1027 cpu_set_cpustate_pointers(cpu);
1028 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1029 g_free, cpreg_hashtable_data_destroy);
1031 QLIST_INIT(&cpu->pre_el_change_hooks);
1032 QLIST_INIT(&cpu->el_change_hooks);
1034 #ifndef CONFIG_USER_ONLY
1035 /* Our inbound IRQ and FIQ lines */
1036 if (kvm_enabled()) {
1037 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1038 * the same interface as non-KVM CPUs.
1040 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1041 } else {
1042 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1045 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1046 ARRAY_SIZE(cpu->gt_timer_outputs));
1048 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1049 "gicv3-maintenance-interrupt", 1);
1050 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1051 "pmu-interrupt", 1);
1052 #endif
1054 /* DTB consumers generally don't in fact care what the 'compatible'
1055 * string is, so always provide some string and trust that a hypothetical
1056 * picky DTB consumer will also provide a helpful error message.
1058 cpu->dtb_compatible = "qemu,unknown";
1059 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1060 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1062 if (tcg_enabled()) {
1063 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1067 static Property arm_cpu_gt_cntfrq_property =
1068 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1069 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1071 static Property arm_cpu_reset_cbar_property =
1072 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1074 static Property arm_cpu_reset_hivecs_property =
1075 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1077 static Property arm_cpu_rvbar_property =
1078 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1080 #ifndef CONFIG_USER_ONLY
1081 static Property arm_cpu_has_el2_property =
1082 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1084 static Property arm_cpu_has_el3_property =
1085 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1086 #endif
1088 static Property arm_cpu_cfgend_property =
1089 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1091 static Property arm_cpu_has_vfp_property =
1092 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1094 static Property arm_cpu_has_neon_property =
1095 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1097 static Property arm_cpu_has_dsp_property =
1098 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1100 static Property arm_cpu_has_mpu_property =
1101 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1103 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1104 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1105 * the right value for that particular CPU type, and we don't want
1106 * to override that with an incorrect constant value.
1108 static Property arm_cpu_pmsav7_dregion_property =
1109 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1110 pmsav7_dregion,
1111 qdev_prop_uint32, uint32_t);
1113 static bool arm_get_pmu(Object *obj, Error **errp)
1115 ARMCPU *cpu = ARM_CPU(obj);
1117 return cpu->has_pmu;
1120 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1122 ARMCPU *cpu = ARM_CPU(obj);
1124 if (value) {
1125 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1126 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1127 return;
1129 set_feature(&cpu->env, ARM_FEATURE_PMU);
1130 } else {
1131 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1133 cpu->has_pmu = value;
1136 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1139 * The exact approach to calculating guest ticks is:
1141 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1142 * NANOSECONDS_PER_SECOND);
1144 * We don't do that. Rather we intentionally use integer division
1145 * truncation below and in the caller for the conversion of host monotonic
1146 * time to guest ticks to provide the exact inverse for the semantics of
1147 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1148 * it loses precision when representing frequencies where
1149 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1150 * provide an exact inverse leads to scheduling timers with negative
1151 * periods, which in turn leads to sticky behaviour in the guest.
1153 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1154 * cannot become zero.
1156 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1157 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1160 void arm_cpu_post_init(Object *obj)
1162 ARMCPU *cpu = ARM_CPU(obj);
1164 /* M profile implies PMSA. We have to do this here rather than
1165 * in realize with the other feature-implication checks because
1166 * we look at the PMSA bit to see if we should add some properties.
1168 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1169 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1172 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1173 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1174 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1177 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1178 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1181 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1182 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1185 #ifndef CONFIG_USER_ONLY
1186 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1187 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1188 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1190 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1192 object_property_add_link(obj, "secure-memory",
1193 TYPE_MEMORY_REGION,
1194 (Object **)&cpu->secure_memory,
1195 qdev_prop_allow_set_link_before_realize,
1196 OBJ_PROP_LINK_STRONG);
1199 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1200 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1202 #endif
1204 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1205 cpu->has_pmu = true;
1206 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1210 * Allow user to turn off VFP and Neon support, but only for TCG --
1211 * KVM does not currently allow us to lie to the guest about its
1212 * ID/feature registers, so the guest always sees what the host has.
1214 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1215 ? cpu_isar_feature(aa64_fp_simd, cpu)
1216 : cpu_isar_feature(aa32_vfp, cpu)) {
1217 cpu->has_vfp = true;
1218 if (!kvm_enabled()) {
1219 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1223 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1224 cpu->has_neon = true;
1225 if (!kvm_enabled()) {
1226 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1230 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1231 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1232 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1235 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1236 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1237 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1238 qdev_property_add_static(DEVICE(obj),
1239 &arm_cpu_pmsav7_dregion_property);
1243 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1244 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1245 qdev_prop_allow_set_link_before_realize,
1246 OBJ_PROP_LINK_STRONG);
1248 * M profile: initial value of the Secure VTOR. We can't just use
1249 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1250 * the property to be set after realize.
1252 object_property_add_uint32_ptr(obj, "init-svtor",
1253 &cpu->init_svtor,
1254 OBJ_PROP_FLAG_READWRITE);
1257 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1259 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1260 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1263 if (kvm_enabled()) {
1264 kvm_arm_add_vcpu_properties(obj);
1267 #ifndef CONFIG_USER_ONLY
1268 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1269 cpu_isar_feature(aa64_mte, cpu)) {
1270 object_property_add_link(obj, "tag-memory",
1271 TYPE_MEMORY_REGION,
1272 (Object **)&cpu->tag_memory,
1273 qdev_prop_allow_set_link_before_realize,
1274 OBJ_PROP_LINK_STRONG);
1276 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1277 object_property_add_link(obj, "secure-tag-memory",
1278 TYPE_MEMORY_REGION,
1279 (Object **)&cpu->secure_tag_memory,
1280 qdev_prop_allow_set_link_before_realize,
1281 OBJ_PROP_LINK_STRONG);
1284 #endif
1287 static void arm_cpu_finalizefn(Object *obj)
1289 ARMCPU *cpu = ARM_CPU(obj);
1290 ARMELChangeHook *hook, *next;
1292 g_hash_table_destroy(cpu->cp_regs);
1294 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1295 QLIST_REMOVE(hook, node);
1296 g_free(hook);
1298 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1299 QLIST_REMOVE(hook, node);
1300 g_free(hook);
1302 #ifndef CONFIG_USER_ONLY
1303 if (cpu->pmu_timer) {
1304 timer_del(cpu->pmu_timer);
1305 timer_deinit(cpu->pmu_timer);
1306 timer_free(cpu->pmu_timer);
1308 #endif
1311 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1313 Error *local_err = NULL;
1315 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1316 arm_cpu_sve_finalize(cpu, &local_err);
1317 if (local_err != NULL) {
1318 error_propagate(errp, local_err);
1319 return;
1323 if (kvm_enabled()) {
1324 kvm_arm_steal_time_finalize(cpu, &local_err);
1325 if (local_err != NULL) {
1326 error_propagate(errp, local_err);
1327 return;
1332 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1334 CPUState *cs = CPU(dev);
1335 ARMCPU *cpu = ARM_CPU(dev);
1336 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1337 CPUARMState *env = &cpu->env;
1338 int pagebits;
1339 Error *local_err = NULL;
1340 bool no_aa32 = false;
1342 /* If we needed to query the host kernel for the CPU features
1343 * then it's possible that might have failed in the initfn, but
1344 * this is the first point where we can report it.
1346 if (cpu->host_cpu_probe_failed) {
1347 if (!kvm_enabled()) {
1348 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1349 } else {
1350 error_setg(errp, "Failed to retrieve host CPU features");
1352 return;
1355 #ifndef CONFIG_USER_ONLY
1356 /* The NVIC and M-profile CPU are two halves of a single piece of
1357 * hardware; trying to use one without the other is a command line
1358 * error and will result in segfaults if not caught here.
1360 if (arm_feature(env, ARM_FEATURE_M)) {
1361 if (!env->nvic) {
1362 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1363 return;
1365 } else {
1366 if (env->nvic) {
1367 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1368 return;
1373 uint64_t scale;
1375 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1376 if (!cpu->gt_cntfrq_hz) {
1377 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1378 cpu->gt_cntfrq_hz);
1379 return;
1381 scale = gt_cntfrq_period_ns(cpu);
1382 } else {
1383 scale = GTIMER_SCALE;
1386 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1387 arm_gt_ptimer_cb, cpu);
1388 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1389 arm_gt_vtimer_cb, cpu);
1390 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1391 arm_gt_htimer_cb, cpu);
1392 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1393 arm_gt_stimer_cb, cpu);
1394 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1395 arm_gt_hvtimer_cb, cpu);
1397 #endif
1399 cpu_exec_realizefn(cs, &local_err);
1400 if (local_err != NULL) {
1401 error_propagate(errp, local_err);
1402 return;
1405 arm_cpu_finalize_features(cpu, &local_err);
1406 if (local_err != NULL) {
1407 error_propagate(errp, local_err);
1408 return;
1411 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1412 cpu->has_vfp != cpu->has_neon) {
1414 * This is an architectural requirement for AArch64; AArch32 is
1415 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1417 error_setg(errp,
1418 "AArch64 CPUs must have both VFP and Neon or neither");
1419 return;
1422 if (!cpu->has_vfp) {
1423 uint64_t t;
1424 uint32_t u;
1426 t = cpu->isar.id_aa64isar1;
1427 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1428 cpu->isar.id_aa64isar1 = t;
1430 t = cpu->isar.id_aa64pfr0;
1431 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1432 cpu->isar.id_aa64pfr0 = t;
1434 u = cpu->isar.id_isar6;
1435 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1436 cpu->isar.id_isar6 = u;
1438 u = cpu->isar.mvfr0;
1439 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1440 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1441 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1442 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1443 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1444 if (!arm_feature(env, ARM_FEATURE_M)) {
1445 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1446 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1448 cpu->isar.mvfr0 = u;
1450 u = cpu->isar.mvfr1;
1451 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1452 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1453 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1454 if (arm_feature(env, ARM_FEATURE_M)) {
1455 u = FIELD_DP32(u, MVFR1, FP16, 0);
1457 cpu->isar.mvfr1 = u;
1459 u = cpu->isar.mvfr2;
1460 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1461 cpu->isar.mvfr2 = u;
1464 if (!cpu->has_neon) {
1465 uint64_t t;
1466 uint32_t u;
1468 unset_feature(env, ARM_FEATURE_NEON);
1470 t = cpu->isar.id_aa64isar0;
1471 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1472 cpu->isar.id_aa64isar0 = t;
1474 t = cpu->isar.id_aa64isar1;
1475 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1476 cpu->isar.id_aa64isar1 = t;
1478 t = cpu->isar.id_aa64pfr0;
1479 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1480 cpu->isar.id_aa64pfr0 = t;
1482 u = cpu->isar.id_isar5;
1483 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1484 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1485 cpu->isar.id_isar5 = u;
1487 u = cpu->isar.id_isar6;
1488 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1489 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1490 cpu->isar.id_isar6 = u;
1492 if (!arm_feature(env, ARM_FEATURE_M)) {
1493 u = cpu->isar.mvfr1;
1494 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1495 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1496 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1497 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1498 cpu->isar.mvfr1 = u;
1500 u = cpu->isar.mvfr2;
1501 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1502 cpu->isar.mvfr2 = u;
1506 if (!cpu->has_neon && !cpu->has_vfp) {
1507 uint64_t t;
1508 uint32_t u;
1510 t = cpu->isar.id_aa64isar0;
1511 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1512 cpu->isar.id_aa64isar0 = t;
1514 t = cpu->isar.id_aa64isar1;
1515 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1516 cpu->isar.id_aa64isar1 = t;
1518 u = cpu->isar.mvfr0;
1519 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1520 cpu->isar.mvfr0 = u;
1522 /* Despite the name, this field covers both VFP and Neon */
1523 u = cpu->isar.mvfr1;
1524 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1525 cpu->isar.mvfr1 = u;
1528 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1529 uint32_t u;
1531 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1533 u = cpu->isar.id_isar1;
1534 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1535 cpu->isar.id_isar1 = u;
1537 u = cpu->isar.id_isar2;
1538 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1539 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1540 cpu->isar.id_isar2 = u;
1542 u = cpu->isar.id_isar3;
1543 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1544 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1545 cpu->isar.id_isar3 = u;
1548 /* Some features automatically imply others: */
1549 if (arm_feature(env, ARM_FEATURE_V8)) {
1550 if (arm_feature(env, ARM_FEATURE_M)) {
1551 set_feature(env, ARM_FEATURE_V7);
1552 } else {
1553 set_feature(env, ARM_FEATURE_V7VE);
1558 * There exist AArch64 cpus without AArch32 support. When KVM
1559 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1560 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1561 * As a general principle, we also do not make ID register
1562 * consistency checks anywhere unless using TCG, because only
1563 * for TCG would a consistency-check failure be a QEMU bug.
1565 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1566 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1569 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1570 /* v7 Virtualization Extensions. In real hardware this implies
1571 * EL2 and also the presence of the Security Extensions.
1572 * For QEMU, for backwards-compatibility we implement some
1573 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1574 * include the various other features that V7VE implies.
1575 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1576 * Security Extensions is ARM_FEATURE_EL3.
1578 assert(!tcg_enabled() || no_aa32 ||
1579 cpu_isar_feature(aa32_arm_div, cpu));
1580 set_feature(env, ARM_FEATURE_LPAE);
1581 set_feature(env, ARM_FEATURE_V7);
1583 if (arm_feature(env, ARM_FEATURE_V7)) {
1584 set_feature(env, ARM_FEATURE_VAPA);
1585 set_feature(env, ARM_FEATURE_THUMB2);
1586 set_feature(env, ARM_FEATURE_MPIDR);
1587 if (!arm_feature(env, ARM_FEATURE_M)) {
1588 set_feature(env, ARM_FEATURE_V6K);
1589 } else {
1590 set_feature(env, ARM_FEATURE_V6);
1593 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1594 * non-EL3 configs. This is needed by some legacy boards.
1596 set_feature(env, ARM_FEATURE_VBAR);
1598 if (arm_feature(env, ARM_FEATURE_V6K)) {
1599 set_feature(env, ARM_FEATURE_V6);
1600 set_feature(env, ARM_FEATURE_MVFR);
1602 if (arm_feature(env, ARM_FEATURE_V6)) {
1603 set_feature(env, ARM_FEATURE_V5);
1604 if (!arm_feature(env, ARM_FEATURE_M)) {
1605 assert(!tcg_enabled() || no_aa32 ||
1606 cpu_isar_feature(aa32_jazelle, cpu));
1607 set_feature(env, ARM_FEATURE_AUXCR);
1610 if (arm_feature(env, ARM_FEATURE_V5)) {
1611 set_feature(env, ARM_FEATURE_V4T);
1613 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1614 set_feature(env, ARM_FEATURE_V7MP);
1616 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1617 set_feature(env, ARM_FEATURE_CBAR);
1619 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1620 !arm_feature(env, ARM_FEATURE_M)) {
1621 set_feature(env, ARM_FEATURE_THUMB_DSP);
1625 * We rely on no XScale CPU having VFP so we can use the same bits in the
1626 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1628 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1629 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1630 !arm_feature(env, ARM_FEATURE_XSCALE));
1632 if (arm_feature(env, ARM_FEATURE_V7) &&
1633 !arm_feature(env, ARM_FEATURE_M) &&
1634 !arm_feature(env, ARM_FEATURE_PMSA)) {
1635 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1636 * can use 4K pages.
1638 pagebits = 12;
1639 } else {
1640 /* For CPUs which might have tiny 1K pages, or which have an
1641 * MPU and might have small region sizes, stick with 1K pages.
1643 pagebits = 10;
1645 if (!set_preferred_target_page_bits(pagebits)) {
1646 /* This can only ever happen for hotplugging a CPU, or if
1647 * the board code incorrectly creates a CPU which it has
1648 * promised via minimum_page_size that it will not.
1650 error_setg(errp, "This CPU requires a smaller page size than the "
1651 "system is using");
1652 return;
1655 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1656 * We don't support setting cluster ID ([16..23]) (known as Aff2
1657 * in later ARM ARM versions), or any of the higher affinity level fields,
1658 * so these bits always RAZ.
1660 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1661 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1662 ARM_DEFAULT_CPUS_PER_CLUSTER);
1665 if (cpu->reset_hivecs) {
1666 cpu->reset_sctlr |= (1 << 13);
1669 if (cpu->cfgend) {
1670 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1671 cpu->reset_sctlr |= SCTLR_EE;
1672 } else {
1673 cpu->reset_sctlr |= SCTLR_B;
1677 if (!cpu->has_el3) {
1678 /* If the has_el3 CPU property is disabled then we need to disable the
1679 * feature.
1681 unset_feature(env, ARM_FEATURE_EL3);
1683 /* Disable the security extension feature bits in the processor feature
1684 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1686 cpu->isar.id_pfr1 &= ~0xf0;
1687 cpu->isar.id_aa64pfr0 &= ~0xf000;
1690 if (!cpu->has_el2) {
1691 unset_feature(env, ARM_FEATURE_EL2);
1694 if (!cpu->has_pmu) {
1695 unset_feature(env, ARM_FEATURE_PMU);
1697 if (arm_feature(env, ARM_FEATURE_PMU)) {
1698 pmu_init(cpu);
1700 if (!kvm_enabled()) {
1701 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1702 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1705 #ifndef CONFIG_USER_ONLY
1706 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1707 cpu);
1708 #endif
1709 } else {
1710 cpu->isar.id_aa64dfr0 =
1711 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1712 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1713 cpu->pmceid0 = 0;
1714 cpu->pmceid1 = 0;
1717 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1718 /* Disable the hypervisor feature bits in the processor feature
1719 * registers if we don't have EL2. These are id_pfr1[15:12] and
1720 * id_aa64pfr0_el1[11:8].
1722 cpu->isar.id_aa64pfr0 &= ~0xf00;
1723 cpu->isar.id_pfr1 &= ~0xf000;
1726 #ifndef CONFIG_USER_ONLY
1727 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1729 * Disable the MTE feature bits if we do not have tag-memory
1730 * provided by the machine.
1732 cpu->isar.id_aa64pfr1 =
1733 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1735 #endif
1737 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1738 * to false or by setting pmsav7-dregion to 0.
1740 if (!cpu->has_mpu) {
1741 cpu->pmsav7_dregion = 0;
1743 if (cpu->pmsav7_dregion == 0) {
1744 cpu->has_mpu = false;
1747 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1748 arm_feature(env, ARM_FEATURE_V7)) {
1749 uint32_t nr = cpu->pmsav7_dregion;
1751 if (nr > 0xff) {
1752 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1753 return;
1756 if (nr) {
1757 if (arm_feature(env, ARM_FEATURE_V8)) {
1758 /* PMSAv8 */
1759 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1760 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1761 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1762 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1763 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1765 } else {
1766 env->pmsav7.drbar = g_new0(uint32_t, nr);
1767 env->pmsav7.drsr = g_new0(uint32_t, nr);
1768 env->pmsav7.dracr = g_new0(uint32_t, nr);
1773 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1774 uint32_t nr = cpu->sau_sregion;
1776 if (nr > 0xff) {
1777 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1778 return;
1781 if (nr) {
1782 env->sau.rbar = g_new0(uint32_t, nr);
1783 env->sau.rlar = g_new0(uint32_t, nr);
1787 if (arm_feature(env, ARM_FEATURE_EL3)) {
1788 set_feature(env, ARM_FEATURE_VBAR);
1791 register_cp_regs_for_features(cpu);
1792 arm_cpu_register_gdb_regs_for_features(cpu);
1794 init_cpreg_list(cpu);
1796 #ifndef CONFIG_USER_ONLY
1797 MachineState *ms = MACHINE(qdev_get_machine());
1798 unsigned int smp_cpus = ms->smp.cpus;
1799 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1802 * We must set cs->num_ases to the final value before
1803 * the first call to cpu_address_space_init.
1805 if (cpu->tag_memory != NULL) {
1806 cs->num_ases = 3 + has_secure;
1807 } else {
1808 cs->num_ases = 1 + has_secure;
1811 if (has_secure) {
1812 if (!cpu->secure_memory) {
1813 cpu->secure_memory = cs->memory;
1815 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1816 cpu->secure_memory);
1819 if (cpu->tag_memory != NULL) {
1820 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1821 cpu->tag_memory);
1822 if (has_secure) {
1823 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1824 cpu->secure_tag_memory);
1828 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1830 /* No core_count specified, default to smp_cpus. */
1831 if (cpu->core_count == -1) {
1832 cpu->core_count = smp_cpus;
1834 #endif
1836 if (tcg_enabled()) {
1837 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1840 * We only support DCZ blocklen that fits on one page.
1842 * Architectually this is always true. However TARGET_PAGE_SIZE
1843 * is variable and, for compatibility with -machine virt-2.7,
1844 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1845 * But even then, while the largest architectural DCZ blocklen
1846 * is 2KiB, no cpu actually uses such a large blocklen.
1848 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1851 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1852 * both nibbles of each byte storing tag data may be written at once.
1853 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1855 if (cpu_isar_feature(aa64_mte, cpu)) {
1856 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1860 qemu_init_vcpu(cs);
1861 cpu_reset(cs);
1863 acc->parent_realize(dev, errp);
1866 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1868 ObjectClass *oc;
1869 char *typename;
1870 char **cpuname;
1871 const char *cpunamestr;
1873 cpuname = g_strsplit(cpu_model, ",", 1);
1874 cpunamestr = cpuname[0];
1875 #ifdef CONFIG_USER_ONLY
1876 /* For backwards compatibility usermode emulation allows "-cpu any",
1877 * which has the same semantics as "-cpu max".
1879 if (!strcmp(cpunamestr, "any")) {
1880 cpunamestr = "max";
1882 #endif
1883 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1884 oc = object_class_by_name(typename);
1885 g_strfreev(cpuname);
1886 g_free(typename);
1887 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1888 object_class_is_abstract(oc)) {
1889 return NULL;
1891 return oc;
1894 /* CPU models. These are not needed for the AArch64 linux-user build. */
1895 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1897 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1898 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1899 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1900 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1901 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1902 REGINFO_SENTINEL
1905 static void cortex_a8_initfn(Object *obj)
1907 ARMCPU *cpu = ARM_CPU(obj);
1909 cpu->dtb_compatible = "arm,cortex-a8";
1910 set_feature(&cpu->env, ARM_FEATURE_V7);
1911 set_feature(&cpu->env, ARM_FEATURE_NEON);
1912 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1913 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1914 set_feature(&cpu->env, ARM_FEATURE_EL3);
1915 cpu->midr = 0x410fc080;
1916 cpu->reset_fpsid = 0x410330c0;
1917 cpu->isar.mvfr0 = 0x11110222;
1918 cpu->isar.mvfr1 = 0x00011111;
1919 cpu->ctr = 0x82048004;
1920 cpu->reset_sctlr = 0x00c50078;
1921 cpu->isar.id_pfr0 = 0x1031;
1922 cpu->isar.id_pfr1 = 0x11;
1923 cpu->isar.id_dfr0 = 0x400;
1924 cpu->id_afr0 = 0;
1925 cpu->isar.id_mmfr0 = 0x31100003;
1926 cpu->isar.id_mmfr1 = 0x20000000;
1927 cpu->isar.id_mmfr2 = 0x01202000;
1928 cpu->isar.id_mmfr3 = 0x11;
1929 cpu->isar.id_isar0 = 0x00101111;
1930 cpu->isar.id_isar1 = 0x12112111;
1931 cpu->isar.id_isar2 = 0x21232031;
1932 cpu->isar.id_isar3 = 0x11112131;
1933 cpu->isar.id_isar4 = 0x00111142;
1934 cpu->isar.dbgdidr = 0x15141000;
1935 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1936 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1937 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1938 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1939 cpu->reset_auxcr = 2;
1940 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1943 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1944 /* power_control should be set to maximum latency. Again,
1945 * default to 0 and set by private hook
1947 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1948 .access = PL1_RW, .resetvalue = 0,
1949 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1950 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1951 .access = PL1_RW, .resetvalue = 0,
1952 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1953 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1954 .access = PL1_RW, .resetvalue = 0,
1955 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1956 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1957 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1958 /* TLB lockdown control */
1959 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1960 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1961 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1962 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1963 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1964 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1965 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1966 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1967 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1968 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1969 REGINFO_SENTINEL
1972 static void cortex_a9_initfn(Object *obj)
1974 ARMCPU *cpu = ARM_CPU(obj);
1976 cpu->dtb_compatible = "arm,cortex-a9";
1977 set_feature(&cpu->env, ARM_FEATURE_V7);
1978 set_feature(&cpu->env, ARM_FEATURE_NEON);
1979 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1980 set_feature(&cpu->env, ARM_FEATURE_EL3);
1981 /* Note that A9 supports the MP extensions even for
1982 * A9UP and single-core A9MP (which are both different
1983 * and valid configurations; we don't model A9UP).
1985 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1986 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1987 cpu->midr = 0x410fc090;
1988 cpu->reset_fpsid = 0x41033090;
1989 cpu->isar.mvfr0 = 0x11110222;
1990 cpu->isar.mvfr1 = 0x01111111;
1991 cpu->ctr = 0x80038003;
1992 cpu->reset_sctlr = 0x00c50078;
1993 cpu->isar.id_pfr0 = 0x1031;
1994 cpu->isar.id_pfr1 = 0x11;
1995 cpu->isar.id_dfr0 = 0x000;
1996 cpu->id_afr0 = 0;
1997 cpu->isar.id_mmfr0 = 0x00100103;
1998 cpu->isar.id_mmfr1 = 0x20000000;
1999 cpu->isar.id_mmfr2 = 0x01230000;
2000 cpu->isar.id_mmfr3 = 0x00002111;
2001 cpu->isar.id_isar0 = 0x00101111;
2002 cpu->isar.id_isar1 = 0x13112111;
2003 cpu->isar.id_isar2 = 0x21232041;
2004 cpu->isar.id_isar3 = 0x11112131;
2005 cpu->isar.id_isar4 = 0x00111142;
2006 cpu->isar.dbgdidr = 0x35141000;
2007 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2008 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2009 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2010 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2013 #ifndef CONFIG_USER_ONLY
2014 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2016 MachineState *ms = MACHINE(qdev_get_machine());
2018 /* Linux wants the number of processors from here.
2019 * Might as well set the interrupt-controller bit too.
2021 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2023 #endif
2025 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2026 #ifndef CONFIG_USER_ONLY
2027 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2028 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2029 .writefn = arm_cp_write_ignore, },
2030 #endif
2031 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2032 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2033 REGINFO_SENTINEL
2036 static void cortex_a7_initfn(Object *obj)
2038 ARMCPU *cpu = ARM_CPU(obj);
2040 cpu->dtb_compatible = "arm,cortex-a7";
2041 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2042 set_feature(&cpu->env, ARM_FEATURE_NEON);
2043 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2044 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2045 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2046 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2047 set_feature(&cpu->env, ARM_FEATURE_EL2);
2048 set_feature(&cpu->env, ARM_FEATURE_EL3);
2049 set_feature(&cpu->env, ARM_FEATURE_PMU);
2050 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2051 cpu->midr = 0x410fc075;
2052 cpu->reset_fpsid = 0x41023075;
2053 cpu->isar.mvfr0 = 0x10110222;
2054 cpu->isar.mvfr1 = 0x11111111;
2055 cpu->ctr = 0x84448003;
2056 cpu->reset_sctlr = 0x00c50078;
2057 cpu->isar.id_pfr0 = 0x00001131;
2058 cpu->isar.id_pfr1 = 0x00011011;
2059 cpu->isar.id_dfr0 = 0x02010555;
2060 cpu->id_afr0 = 0x00000000;
2061 cpu->isar.id_mmfr0 = 0x10101105;
2062 cpu->isar.id_mmfr1 = 0x40000000;
2063 cpu->isar.id_mmfr2 = 0x01240000;
2064 cpu->isar.id_mmfr3 = 0x02102211;
2065 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2066 * table 4-41 gives 0x02101110, which includes the arm div insns.
2068 cpu->isar.id_isar0 = 0x02101110;
2069 cpu->isar.id_isar1 = 0x13112111;
2070 cpu->isar.id_isar2 = 0x21232041;
2071 cpu->isar.id_isar3 = 0x11112131;
2072 cpu->isar.id_isar4 = 0x10011142;
2073 cpu->isar.dbgdidr = 0x3515f005;
2074 cpu->clidr = 0x0a200023;
2075 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2076 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2077 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2078 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2081 static void cortex_a15_initfn(Object *obj)
2083 ARMCPU *cpu = ARM_CPU(obj);
2085 cpu->dtb_compatible = "arm,cortex-a15";
2086 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2087 set_feature(&cpu->env, ARM_FEATURE_NEON);
2088 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2089 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2090 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2091 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2092 set_feature(&cpu->env, ARM_FEATURE_EL2);
2093 set_feature(&cpu->env, ARM_FEATURE_EL3);
2094 set_feature(&cpu->env, ARM_FEATURE_PMU);
2095 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2096 cpu->midr = 0x412fc0f1;
2097 cpu->reset_fpsid = 0x410430f0;
2098 cpu->isar.mvfr0 = 0x10110222;
2099 cpu->isar.mvfr1 = 0x11111111;
2100 cpu->ctr = 0x8444c004;
2101 cpu->reset_sctlr = 0x00c50078;
2102 cpu->isar.id_pfr0 = 0x00001131;
2103 cpu->isar.id_pfr1 = 0x00011011;
2104 cpu->isar.id_dfr0 = 0x02010555;
2105 cpu->id_afr0 = 0x00000000;
2106 cpu->isar.id_mmfr0 = 0x10201105;
2107 cpu->isar.id_mmfr1 = 0x20000000;
2108 cpu->isar.id_mmfr2 = 0x01240000;
2109 cpu->isar.id_mmfr3 = 0x02102211;
2110 cpu->isar.id_isar0 = 0x02101110;
2111 cpu->isar.id_isar1 = 0x13112111;
2112 cpu->isar.id_isar2 = 0x21232041;
2113 cpu->isar.id_isar3 = 0x11112131;
2114 cpu->isar.id_isar4 = 0x10011142;
2115 cpu->isar.dbgdidr = 0x3515f021;
2116 cpu->clidr = 0x0a200023;
2117 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2118 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2119 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2120 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2123 #ifndef TARGET_AARCH64
2125 * -cpu max: a CPU with as many features enabled as our emulation supports.
2126 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2127 * this only needs to handle 32 bits, and need not care about KVM.
2129 static void arm_max_initfn(Object *obj)
2131 ARMCPU *cpu = ARM_CPU(obj);
2133 cortex_a15_initfn(obj);
2135 /* old-style VFP short-vector support */
2136 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2138 #ifdef CONFIG_USER_ONLY
2140 * We don't set these in system emulation mode for the moment,
2141 * since we don't correctly set (all of) the ID registers to
2142 * advertise them.
2144 set_feature(&cpu->env, ARM_FEATURE_V8);
2146 uint32_t t;
2148 t = cpu->isar.id_isar5;
2149 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2150 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2151 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2152 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2153 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2154 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2155 cpu->isar.id_isar5 = t;
2157 t = cpu->isar.id_isar6;
2158 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2159 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2160 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2161 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2162 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2163 cpu->isar.id_isar6 = t;
2165 t = cpu->isar.mvfr1;
2166 t = FIELD_DP32(t, MVFR1, FPHP, 3); /* v8.2-FP16 */
2167 t = FIELD_DP32(t, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
2168 cpu->isar.mvfr1 = t;
2170 t = cpu->isar.mvfr2;
2171 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2172 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2173 cpu->isar.mvfr2 = t;
2175 t = cpu->isar.id_mmfr3;
2176 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2177 cpu->isar.id_mmfr3 = t;
2179 t = cpu->isar.id_mmfr4;
2180 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2181 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2182 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2183 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2184 cpu->isar.id_mmfr4 = t;
2186 #endif
2188 #endif
2190 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2192 static const ARMCPUInfo arm_cpus[] = {
2193 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2194 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2195 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2196 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2197 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2198 #ifndef TARGET_AARCH64
2199 { .name = "max", .initfn = arm_max_initfn },
2200 #endif
2201 #ifdef CONFIG_USER_ONLY
2202 { .name = "any", .initfn = arm_max_initfn },
2203 #endif
2204 #endif
2207 static Property arm_cpu_properties[] = {
2208 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2209 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2210 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2211 mp_affinity, ARM64_AFFINITY_INVALID),
2212 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2213 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2214 DEFINE_PROP_END_OF_LIST()
2217 static gchar *arm_gdb_arch_name(CPUState *cs)
2219 ARMCPU *cpu = ARM_CPU(cs);
2220 CPUARMState *env = &cpu->env;
2222 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2223 return g_strdup("iwmmxt");
2225 return g_strdup("arm");
2228 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2230 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2231 CPUClass *cc = CPU_CLASS(acc);
2232 DeviceClass *dc = DEVICE_CLASS(oc);
2234 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2235 &acc->parent_realize);
2237 device_class_set_props(dc, arm_cpu_properties);
2238 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2240 cc->class_by_name = arm_cpu_class_by_name;
2241 cc->has_work = arm_cpu_has_work;
2242 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2243 cc->dump_state = arm_cpu_dump_state;
2244 cc->set_pc = arm_cpu_set_pc;
2245 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2246 cc->gdb_read_register = arm_cpu_gdb_read_register;
2247 cc->gdb_write_register = arm_cpu_gdb_write_register;
2248 #ifndef CONFIG_USER_ONLY
2249 cc->do_interrupt = arm_cpu_do_interrupt;
2250 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2251 cc->asidx_from_attrs = arm_asidx_from_attrs;
2252 cc->vmsd = &vmstate_arm_cpu;
2253 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2254 cc->write_elf64_note = arm_cpu_write_elf64_note;
2255 cc->write_elf32_note = arm_cpu_write_elf32_note;
2256 #endif
2257 cc->gdb_num_core_regs = 26;
2258 cc->gdb_core_xml_file = "arm-core.xml";
2259 cc->gdb_arch_name = arm_gdb_arch_name;
2260 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2261 cc->gdb_stop_before_watchpoint = true;
2262 cc->disas_set_info = arm_disas_set_info;
2263 #ifdef CONFIG_TCG
2264 cc->tcg_initialize = arm_translate_init;
2265 cc->tlb_fill = arm_cpu_tlb_fill;
2266 cc->debug_excp_handler = arm_debug_excp_handler;
2267 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2268 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2269 #if !defined(CONFIG_USER_ONLY)
2270 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2271 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2272 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2273 #endif
2276 #ifdef CONFIG_KVM
2277 static void arm_host_initfn(Object *obj)
2279 ARMCPU *cpu = ARM_CPU(obj);
2281 kvm_arm_set_cpu_features_from_host(cpu);
2282 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2283 aarch64_add_sve_properties(obj);
2285 arm_cpu_post_init(obj);
2288 static const TypeInfo host_arm_cpu_type_info = {
2289 .name = TYPE_ARM_HOST_CPU,
2290 .parent = TYPE_AARCH64_CPU,
2291 .instance_init = arm_host_initfn,
2294 #endif
2296 static void arm_cpu_instance_init(Object *obj)
2298 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2300 acc->info->initfn(obj);
2301 arm_cpu_post_init(obj);
2304 static void cpu_register_class_init(ObjectClass *oc, void *data)
2306 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2308 acc->info = data;
2311 void arm_cpu_register(const ARMCPUInfo *info)
2313 TypeInfo type_info = {
2314 .parent = TYPE_ARM_CPU,
2315 .instance_size = sizeof(ARMCPU),
2316 .instance_align = __alignof__(ARMCPU),
2317 .instance_init = arm_cpu_instance_init,
2318 .class_size = sizeof(ARMCPUClass),
2319 .class_init = info->class_init ?: cpu_register_class_init,
2320 .class_data = (void *)info,
2323 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2324 type_register(&type_info);
2325 g_free((void *)type_info.name);
2328 static const TypeInfo arm_cpu_type_info = {
2329 .name = TYPE_ARM_CPU,
2330 .parent = TYPE_CPU,
2331 .instance_size = sizeof(ARMCPU),
2332 .instance_align = __alignof__(ARMCPU),
2333 .instance_init = arm_cpu_initfn,
2334 .instance_finalize = arm_cpu_finalizefn,
2335 .abstract = true,
2336 .class_size = sizeof(ARMCPUClass),
2337 .class_init = arm_cpu_class_init,
2340 static const TypeInfo idau_interface_type_info = {
2341 .name = TYPE_IDAU_INTERFACE,
2342 .parent = TYPE_INTERFACE,
2343 .class_size = sizeof(IDAUInterfaceClass),
2346 static void arm_cpu_register_types(void)
2348 const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2350 type_register_static(&arm_cpu_type_info);
2352 #ifdef CONFIG_KVM
2353 type_register_static(&host_arm_cpu_type_info);
2354 #endif
2356 if (cpu_count) {
2357 size_t i;
2359 type_register_static(&idau_interface_type_info);
2360 for (i = 0; i < cpu_count; ++i) {
2361 arm_cpu_register(&arm_cpus[i]);
2366 type_init(arm_cpu_register_types)