2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/sysbus.h"
39 #include "migration/vmstate.h"
40 #include "hw/block/block.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/blockdev.h"
43 #include "sysemu/sysemu.h"
45 #include "qemu/main-loop.h"
46 #include "qemu/module.h"
49 /********************************************************/
50 /* debug Floppy devices */
52 #define DEBUG_FLOPPY 0
54 #define FLOPPY_DPRINTF(fmt, ...) \
57 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
62 /********************************************************/
65 #define TYPE_FLOPPY_BUS "floppy-bus"
66 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
68 typedef struct FDCtrl FDCtrl
;
69 typedef struct FDrive FDrive
;
70 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
);
72 typedef struct FloppyBus
{
77 static const TypeInfo floppy_bus_info
= {
78 .name
= TYPE_FLOPPY_BUS
,
80 .instance_size
= sizeof(FloppyBus
),
83 static void floppy_bus_create(FDCtrl
*fdc
, FloppyBus
*bus
, DeviceState
*dev
)
85 qbus_create_inplace(bus
, sizeof(FloppyBus
), TYPE_FLOPPY_BUS
, dev
, NULL
);
90 /********************************************************/
91 /* Floppy drive emulation */
93 typedef enum FDriveRate
{
94 FDRIVE_RATE_500K
= 0x00, /* 500 Kbps */
95 FDRIVE_RATE_300K
= 0x01, /* 300 Kbps */
96 FDRIVE_RATE_250K
= 0x02, /* 250 Kbps */
97 FDRIVE_RATE_1M
= 0x03, /* 1 Mbps */
100 typedef enum FDriveSize
{
106 typedef struct FDFormat
{
107 FloppyDriveType drive
;
114 /* In many cases, the total sector size of a format is enough to uniquely
115 * identify it. However, there are some total sector collisions between
116 * formats of different physical size, and these are noted below by
117 * highlighting the total sector size for entries with collisions. */
118 static const FDFormat fd_formats
[] = {
119 /* First entry is default format */
120 /* 1.44 MB 3"1/2 floppy disks */
121 { FLOPPY_DRIVE_TYPE_144
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 2880 */
122 { FLOPPY_DRIVE_TYPE_144
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 3200 */
123 { FLOPPY_DRIVE_TYPE_144
, 21, 80, 1, FDRIVE_RATE_500K
, },
124 { FLOPPY_DRIVE_TYPE_144
, 21, 82, 1, FDRIVE_RATE_500K
, },
125 { FLOPPY_DRIVE_TYPE_144
, 21, 83, 1, FDRIVE_RATE_500K
, },
126 { FLOPPY_DRIVE_TYPE_144
, 22, 80, 1, FDRIVE_RATE_500K
, },
127 { FLOPPY_DRIVE_TYPE_144
, 23, 80, 1, FDRIVE_RATE_500K
, },
128 { FLOPPY_DRIVE_TYPE_144
, 24, 80, 1, FDRIVE_RATE_500K
, },
129 /* 2.88 MB 3"1/2 floppy disks */
130 { FLOPPY_DRIVE_TYPE_288
, 36, 80, 1, FDRIVE_RATE_1M
, },
131 { FLOPPY_DRIVE_TYPE_288
, 39, 80, 1, FDRIVE_RATE_1M
, },
132 { FLOPPY_DRIVE_TYPE_288
, 40, 80, 1, FDRIVE_RATE_1M
, },
133 { FLOPPY_DRIVE_TYPE_288
, 44, 80, 1, FDRIVE_RATE_1M
, },
134 { FLOPPY_DRIVE_TYPE_288
, 48, 80, 1, FDRIVE_RATE_1M
, },
135 /* 720 kB 3"1/2 floppy disks */
136 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 3.5" 1440 */
137 { FLOPPY_DRIVE_TYPE_144
, 10, 80, 1, FDRIVE_RATE_250K
, },
138 { FLOPPY_DRIVE_TYPE_144
, 10, 82, 1, FDRIVE_RATE_250K
, },
139 { FLOPPY_DRIVE_TYPE_144
, 10, 83, 1, FDRIVE_RATE_250K
, },
140 { FLOPPY_DRIVE_TYPE_144
, 13, 80, 1, FDRIVE_RATE_250K
, },
141 { FLOPPY_DRIVE_TYPE_144
, 14, 80, 1, FDRIVE_RATE_250K
, },
142 /* 1.2 MB 5"1/4 floppy disks */
143 { FLOPPY_DRIVE_TYPE_120
, 15, 80, 1, FDRIVE_RATE_500K
, },
144 { FLOPPY_DRIVE_TYPE_120
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 2880 */
145 { FLOPPY_DRIVE_TYPE_120
, 18, 82, 1, FDRIVE_RATE_500K
, },
146 { FLOPPY_DRIVE_TYPE_120
, 18, 83, 1, FDRIVE_RATE_500K
, },
147 { FLOPPY_DRIVE_TYPE_120
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 3200 */
148 /* 720 kB 5"1/4 floppy disks */
149 { FLOPPY_DRIVE_TYPE_120
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 5.25" 1440 */
150 { FLOPPY_DRIVE_TYPE_120
, 11, 80, 1, FDRIVE_RATE_250K
, },
151 /* 360 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 1, FDRIVE_RATE_300K
, }, /* 5.25" 720 */
153 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 0, FDRIVE_RATE_300K
, },
154 { FLOPPY_DRIVE_TYPE_120
, 10, 41, 1, FDRIVE_RATE_300K
, },
155 { FLOPPY_DRIVE_TYPE_120
, 10, 42, 1, FDRIVE_RATE_300K
, },
156 /* 320 kB 5"1/4 floppy disks */
157 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 1, FDRIVE_RATE_250K
, },
158 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 0, FDRIVE_RATE_250K
, },
159 /* 360 kB must match 5"1/4 better than 3"1/2... */
160 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 0, FDRIVE_RATE_250K
, }, /* 3.5" 720 */
162 { FLOPPY_DRIVE_TYPE_NONE
, -1, -1, 0, 0, },
165 static FDriveSize
drive_size(FloppyDriveType drive
)
168 case FLOPPY_DRIVE_TYPE_120
:
169 return FDRIVE_SIZE_525
;
170 case FLOPPY_DRIVE_TYPE_144
:
171 case FLOPPY_DRIVE_TYPE_288
:
172 return FDRIVE_SIZE_350
;
174 return FDRIVE_SIZE_UNKNOWN
;
178 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
179 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
181 /* Will always be a fixed parameter for us */
182 #define FD_SECTOR_LEN 512
183 #define FD_SECTOR_SC 2 /* Sector size code */
184 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
186 /* Floppy disk drive emulation */
187 typedef enum FDiskFlags
{
188 FDISK_DBL_SIDES
= 0x01,
196 FloppyDriveType drive
; /* CMOS drive type */
197 uint8_t perpendicular
; /* 2.88 MB access mode */
203 FloppyDriveType disk
; /* Current disk type */
205 uint8_t last_sect
; /* Nb sector per track */
206 uint8_t max_track
; /* Nb of tracks */
207 uint16_t bps
; /* Bytes per sector */
208 uint8_t ro
; /* Is read-only */
209 uint8_t media_changed
; /* Is media changed */
210 uint8_t media_rate
; /* Data rate of medium */
212 bool media_validated
; /* Have we validated the media? */
216 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
);
218 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
219 * currently goes through some pains to keep seeks within the bounds
220 * established by last_sect and max_track. Correcting this is difficult,
221 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
223 * For now: allow empty drives to have large bounds so we can seek around,
224 * with the understanding that when a diskette is inserted, the bounds will
225 * properly tighten to match the geometry of that inserted medium.
227 static void fd_empty_seek_hack(FDrive
*drv
)
229 drv
->last_sect
= 0xFF;
230 drv
->max_track
= 0xFF;
233 static void fd_init(FDrive
*drv
)
236 drv
->perpendicular
= 0;
238 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
242 drv
->media_changed
= 1;
245 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
247 static int fd_sector_calc(uint8_t head
, uint8_t track
, uint8_t sect
,
248 uint8_t last_sect
, uint8_t num_sides
)
250 return (((track
* num_sides
) + head
) * last_sect
) + sect
- 1;
253 /* Returns current position, in sectors, for given drive */
254 static int fd_sector(FDrive
*drv
)
256 return fd_sector_calc(drv
->head
, drv
->track
, drv
->sect
, drv
->last_sect
,
260 /* Returns current position, in bytes, for given drive */
261 static int fd_offset(FDrive
*drv
)
263 g_assert(fd_sector(drv
) < INT_MAX
>> BDRV_SECTOR_BITS
);
264 return fd_sector(drv
) << BDRV_SECTOR_BITS
;
267 /* Seek to a new position:
268 * returns 0 if already on right track
269 * returns 1 if track changed
270 * returns 2 if track is invalid
271 * returns 3 if sector is invalid
272 * returns 4 if seek is disabled
274 static int fd_seek(FDrive
*drv
, uint8_t head
, uint8_t track
, uint8_t sect
,
280 if (track
> drv
->max_track
||
281 (head
!= 0 && (drv
->flags
& FDISK_DBL_SIDES
) == 0)) {
282 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
283 head
, track
, sect
, 1,
284 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
285 drv
->max_track
, drv
->last_sect
);
288 if (sect
> drv
->last_sect
) {
289 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
290 head
, track
, sect
, 1,
291 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
292 drv
->max_track
, drv
->last_sect
);
295 sector
= fd_sector_calc(head
, track
, sect
, drv
->last_sect
, NUM_SIDES(drv
));
297 if (sector
!= fd_sector(drv
)) {
300 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
301 " (max=%d %02x %02x)\n",
302 head
, track
, sect
, 1, drv
->max_track
,
308 if (drv
->track
!= track
) {
309 if (drv
->blk
!= NULL
&& blk_is_inserted(drv
->blk
)) {
310 drv
->media_changed
= 0;
318 if (drv
->blk
== NULL
|| !blk_is_inserted(drv
->blk
)) {
325 /* Set drive back to track 0 */
326 static void fd_recalibrate(FDrive
*drv
)
328 FLOPPY_DPRINTF("recalibrate\n");
329 fd_seek(drv
, 0, 0, 1, 1);
333 * Determine geometry based on inserted diskette.
334 * Will not operate on an empty drive.
336 * @return: 0 on success, -1 if the drive is empty.
338 static int pick_geometry(FDrive
*drv
)
340 BlockBackend
*blk
= drv
->blk
;
341 const FDFormat
*parse
;
342 uint64_t nb_sectors
, size
;
344 int match
, size_match
, type_match
;
345 bool magic
= drv
->drive
== FLOPPY_DRIVE_TYPE_AUTO
;
347 /* We can only pick a geometry if we have a diskette. */
348 if (!drv
->blk
|| !blk_is_inserted(drv
->blk
) ||
349 drv
->drive
== FLOPPY_DRIVE_TYPE_NONE
)
354 /* We need to determine the likely geometry of the inserted medium.
355 * In order of preference, we look for:
356 * (1) The same drive type and number of sectors,
357 * (2) The same diskette size and number of sectors,
358 * (3) The same drive type.
360 * In all cases, matches that occur higher in the drive table will take
361 * precedence over matches that occur later in the table.
363 blk_get_geometry(blk
, &nb_sectors
);
364 match
= size_match
= type_match
= -1;
366 parse
= &fd_formats
[i
];
367 if (parse
->drive
== FLOPPY_DRIVE_TYPE_NONE
) {
370 size
= (parse
->max_head
+ 1) * parse
->max_track
* parse
->last_sect
;
371 if (nb_sectors
== size
) {
372 if (magic
|| parse
->drive
== drv
->drive
) {
373 /* (1) perfect match -- nb_sectors and drive type */
375 } else if (drive_size(parse
->drive
) == drive_size(drv
->drive
)) {
376 /* (2) size match -- nb_sectors and physical medium size */
377 match
= (match
== -1) ? i
: match
;
379 /* This is suspicious -- Did the user misconfigure? */
380 size_match
= (size_match
== -1) ? i
: size_match
;
382 } else if (type_match
== -1) {
383 if ((parse
->drive
== drv
->drive
) ||
384 (magic
&& (parse
->drive
== get_fallback_drive_type(drv
)))) {
385 /* (3) type match -- nb_sectors mismatch, but matches the type
386 * specified explicitly by the user, or matches the fallback
387 * default type when using the drive autodetect mechanism */
393 /* No exact match found */
395 if (size_match
!= -1) {
396 parse
= &fd_formats
[size_match
];
397 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
398 "but inserted medium appears to be a "
399 "%"PRId64
" sector '%s' type\n",
400 FloppyDriveType_str(drv
->drive
),
402 FloppyDriveType_str(parse
->drive
));
404 assert(type_match
!= -1 && "misconfigured fd_format");
407 parse
= &(fd_formats
[match
]);
410 if (parse
->max_head
== 0) {
411 drv
->flags
&= ~FDISK_DBL_SIDES
;
413 drv
->flags
|= FDISK_DBL_SIDES
;
415 drv
->max_track
= parse
->max_track
;
416 drv
->last_sect
= parse
->last_sect
;
417 drv
->disk
= parse
->drive
;
418 drv
->media_rate
= parse
->rate
;
422 static void pick_drive_type(FDrive
*drv
)
424 if (drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
) {
428 if (pick_geometry(drv
) == 0) {
429 drv
->drive
= drv
->disk
;
431 drv
->drive
= get_fallback_drive_type(drv
);
434 g_assert(drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
);
437 /* Revalidate a disk drive after a disk change */
438 static void fd_revalidate(FDrive
*drv
)
442 FLOPPY_DPRINTF("revalidate\n");
443 if (drv
->blk
!= NULL
) {
444 drv
->ro
= blk_is_read_only(drv
->blk
);
445 if (!blk_is_inserted(drv
->blk
)) {
446 FLOPPY_DPRINTF("No disk in drive\n");
447 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
448 fd_empty_seek_hack(drv
);
449 } else if (!drv
->media_validated
) {
450 rc
= pick_geometry(drv
);
452 FLOPPY_DPRINTF("Could not validate floppy drive media");
454 drv
->media_validated
= true;
455 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
456 (drv
->flags
& FDISK_DBL_SIDES
) ? 2 : 1,
457 drv
->max_track
, drv
->last_sect
,
458 drv
->ro
? "ro" : "rw");
462 FLOPPY_DPRINTF("No drive connected\n");
465 drv
->flags
&= ~FDISK_DBL_SIDES
;
466 drv
->drive
= FLOPPY_DRIVE_TYPE_NONE
;
467 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
471 static void fd_change_cb(void *opaque
, bool load
, Error
**errp
)
473 FDrive
*drive
= opaque
;
476 blk_set_perm(drive
->blk
, 0, BLK_PERM_ALL
, &error_abort
);
478 if (!blkconf_apply_backend_options(drive
->conf
,
479 blk_is_read_only(drive
->blk
), false,
485 drive
->media_changed
= 1;
486 drive
->media_validated
= false;
487 fd_revalidate(drive
);
490 static const BlockDevOps fd_block_ops
= {
491 .change_media_cb
= fd_change_cb
,
495 #define TYPE_FLOPPY_DRIVE "floppy"
496 #define FLOPPY_DRIVE(obj) \
497 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
499 typedef struct FloppyDrive
{
503 FloppyDriveType type
;
506 static Property floppy_drive_properties
[] = {
507 DEFINE_PROP_UINT32("unit", FloppyDrive
, unit
, -1),
508 DEFINE_BLOCK_PROPERTIES(FloppyDrive
, conf
),
509 DEFINE_PROP_SIGNED("drive-type", FloppyDrive
, type
,
510 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
512 DEFINE_PROP_END_OF_LIST(),
515 static void floppy_drive_realize(DeviceState
*qdev
, Error
**errp
)
517 FloppyDrive
*dev
= FLOPPY_DRIVE(qdev
);
518 FloppyBus
*bus
= FLOPPY_BUS(qdev
->parent_bus
);
523 if (dev
->unit
== -1) {
524 for (dev
->unit
= 0; dev
->unit
< MAX_FD
; dev
->unit
++) {
525 drive
= get_drv(bus
->fdc
, dev
->unit
);
532 if (dev
->unit
>= MAX_FD
) {
533 error_setg(errp
, "Can't create floppy unit %d, bus supports "
534 "only %d units", dev
->unit
, MAX_FD
);
538 drive
= get_drv(bus
->fdc
, dev
->unit
);
540 error_setg(errp
, "Floppy unit %d is in use", dev
->unit
);
544 if (!dev
->conf
.blk
) {
545 /* Anonymous BlockBackend for an empty drive */
546 dev
->conf
.blk
= blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL
);
547 ret
= blk_attach_dev(dev
->conf
.blk
, qdev
);
550 /* Don't take write permissions on an empty drive to allow attaching a
551 * read-only node later */
554 read_only
= !blk_bs(dev
->conf
.blk
) || blk_is_read_only(dev
->conf
.blk
);
557 blkconf_blocksizes(&dev
->conf
);
558 if (dev
->conf
.logical_block_size
!= 512 ||
559 dev
->conf
.physical_block_size
!= 512)
561 error_setg(errp
, "Physical and logical block size must "
562 "be 512 for floppy");
566 /* rerror/werror aren't supported by fdc and therefore not even registered
567 * with qdev. So set the defaults manually before they are used in
568 * blkconf_apply_backend_options(). */
569 dev
->conf
.rerror
= BLOCKDEV_ON_ERROR_AUTO
;
570 dev
->conf
.werror
= BLOCKDEV_ON_ERROR_AUTO
;
572 if (!blkconf_apply_backend_options(&dev
->conf
, read_only
, false, errp
)) {
576 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
577 * for empty drives. */
578 if (blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_ENOSPC
&&
579 blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_REPORT
) {
580 error_setg(errp
, "fdc doesn't support drive option werror");
583 if (blk_get_on_error(dev
->conf
.blk
, 1) != BLOCKDEV_ON_ERROR_REPORT
) {
584 error_setg(errp
, "fdc doesn't support drive option rerror");
588 drive
->conf
= &dev
->conf
;
589 drive
->blk
= dev
->conf
.blk
;
590 drive
->fdctrl
= bus
->fdc
;
593 blk_set_dev_ops(drive
->blk
, &fd_block_ops
, drive
);
595 /* Keep 'type' qdev property and FDrive->drive in sync */
596 drive
->drive
= dev
->type
;
597 pick_drive_type(drive
);
598 dev
->type
= drive
->drive
;
600 fd_revalidate(drive
);
603 static void floppy_drive_class_init(ObjectClass
*klass
, void *data
)
605 DeviceClass
*k
= DEVICE_CLASS(klass
);
606 k
->realize
= floppy_drive_realize
;
607 set_bit(DEVICE_CATEGORY_STORAGE
, k
->categories
);
608 k
->bus_type
= TYPE_FLOPPY_BUS
;
609 k
->props
= floppy_drive_properties
;
610 k
->desc
= "virtual floppy drive";
613 static const TypeInfo floppy_drive_info
= {
614 .name
= TYPE_FLOPPY_DRIVE
,
615 .parent
= TYPE_DEVICE
,
616 .instance_size
= sizeof(FloppyDrive
),
617 .class_init
= floppy_drive_class_init
,
620 /********************************************************/
621 /* Intel 82078 floppy disk controller emulation */
623 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
);
624 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
);
625 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
626 int dma_pos
, int dma_len
);
627 static void fdctrl_raise_irq(FDCtrl
*fdctrl
);
628 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
);
630 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
);
631 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
);
632 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
);
633 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
);
634 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
);
635 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
);
636 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
);
637 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
);
638 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
);
639 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
);
640 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
);
641 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
);
653 FD_STATE_MULTI
= 0x01, /* multi track flag */
654 FD_STATE_FORMAT
= 0x02, /* format flag */
670 FD_CMD_READ_TRACK
= 0x02,
671 FD_CMD_SPECIFY
= 0x03,
672 FD_CMD_SENSE_DRIVE_STATUS
= 0x04,
675 FD_CMD_RECALIBRATE
= 0x07,
676 FD_CMD_SENSE_INTERRUPT_STATUS
= 0x08,
677 FD_CMD_WRITE_DELETED
= 0x09,
678 FD_CMD_READ_ID
= 0x0a,
679 FD_CMD_READ_DELETED
= 0x0c,
680 FD_CMD_FORMAT_TRACK
= 0x0d,
681 FD_CMD_DUMPREG
= 0x0e,
683 FD_CMD_VERSION
= 0x10,
684 FD_CMD_SCAN_EQUAL
= 0x11,
685 FD_CMD_PERPENDICULAR_MODE
= 0x12,
686 FD_CMD_CONFIGURE
= 0x13,
688 FD_CMD_VERIFY
= 0x16,
689 FD_CMD_POWERDOWN_MODE
= 0x17,
690 FD_CMD_PART_ID
= 0x18,
691 FD_CMD_SCAN_LOW_OR_EQUAL
= 0x19,
692 FD_CMD_SCAN_HIGH_OR_EQUAL
= 0x1d,
694 FD_CMD_OPTION
= 0x33,
695 FD_CMD_RESTORE
= 0x4e,
696 FD_CMD_DRIVE_SPECIFICATION_COMMAND
= 0x8e,
697 FD_CMD_RELATIVE_SEEK_OUT
= 0x8f,
698 FD_CMD_FORMAT_AND_WRITE
= 0xcd,
699 FD_CMD_RELATIVE_SEEK_IN
= 0xcf,
703 FD_CONFIG_PRETRK
= 0xff, /* Pre-compensation set to track 0 */
704 FD_CONFIG_FIFOTHR
= 0x0f, /* FIFO threshold set to 1 byte */
705 FD_CONFIG_POLL
= 0x10, /* Poll enabled */
706 FD_CONFIG_EFIFO
= 0x20, /* FIFO disabled */
707 FD_CONFIG_EIS
= 0x40, /* No implied seeks */
716 FD_SR0_ABNTERM
= 0x40,
717 FD_SR0_INVCMD
= 0x80,
718 FD_SR0_RDYCHG
= 0xc0,
722 FD_SR1_MA
= 0x01, /* Missing address mark */
723 FD_SR1_NW
= 0x02, /* Not writable */
724 FD_SR1_EC
= 0x80, /* End of cylinder */
728 FD_SR2_SNS
= 0x04, /* Scan not satisfied */
729 FD_SR2_SEH
= 0x08, /* Scan equal hit */
740 FD_SRA_INTPEND
= 0x80,
754 FD_DOR_SELMASK
= 0x03,
756 FD_DOR_SELMASK
= 0x01,
758 FD_DOR_nRESET
= 0x04,
760 FD_DOR_MOTEN0
= 0x10,
761 FD_DOR_MOTEN1
= 0x20,
762 FD_DOR_MOTEN2
= 0x40,
763 FD_DOR_MOTEN3
= 0x80,
768 FD_TDR_BOOTSEL
= 0x0c,
770 FD_TDR_BOOTSEL
= 0x04,
775 FD_DSR_DRATEMASK
= 0x03,
776 FD_DSR_PWRDOWN
= 0x40,
777 FD_DSR_SWRESET
= 0x80,
781 FD_MSR_DRV0BUSY
= 0x01,
782 FD_MSR_DRV1BUSY
= 0x02,
783 FD_MSR_DRV2BUSY
= 0x04,
784 FD_MSR_DRV3BUSY
= 0x08,
785 FD_MSR_CMDBUSY
= 0x10,
786 FD_MSR_NONDMA
= 0x20,
792 FD_DIR_DSKCHG
= 0x80,
796 * See chapter 5.0 "Controller phases" of the spec:
799 * The host writes a command and its parameters into the FIFO. The command
800 * phase is completed when all parameters for the command have been supplied,
801 * and execution phase is entered.
804 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
805 * contains the payload now, otherwise it's unused. When all bytes of the
806 * required data have been transferred, the state is switched to either result
807 * phase (if the command produces status bytes) or directly back into the
808 * command phase for the next command.
811 * The host reads out the FIFO, which contains one or more result bytes now.
814 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
815 FD_PHASE_RECONSTRUCT
= 0,
817 FD_PHASE_COMMAND
= 1,
818 FD_PHASE_EXECUTION
= 2,
822 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
823 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
828 /* Controller state */
829 QEMUTimer
*result_timer
;
833 /* Controller's identification */
839 uint8_t dor_vmstate
; /* only used as temp during vmstate */
854 uint8_t eot
; /* last wanted sector */
855 /* States kept only to be returned back */
856 /* precompensation */
860 /* Power down config (also with status regB access mode */
864 uint8_t num_floppies
;
865 FDrive drives
[MAX_FD
];
868 FloppyDriveType type
;
869 } qdev_for_drives
[MAX_FD
];
871 uint32_t check_media_rate
;
872 FloppyDriveType fallback
; /* type=auto failure fallback */
876 PortioList portio_list
;
879 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
)
881 return drv
->fdctrl
->fallback
;
884 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
885 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
887 typedef struct FDCtrlSysBus
{
889 SysBusDevice parent_obj
;
895 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
897 typedef struct FDCtrlISABus
{
898 ISADevice parent_obj
;
908 static uint32_t fdctrl_read (void *opaque
, uint32_t reg
)
910 FDCtrl
*fdctrl
= opaque
;
916 retval
= fdctrl_read_statusA(fdctrl
);
919 retval
= fdctrl_read_statusB(fdctrl
);
922 retval
= fdctrl_read_dor(fdctrl
);
925 retval
= fdctrl_read_tape(fdctrl
);
928 retval
= fdctrl_read_main_status(fdctrl
);
931 retval
= fdctrl_read_data(fdctrl
);
934 retval
= fdctrl_read_dir(fdctrl
);
937 retval
= (uint32_t)(-1);
940 trace_fdc_ioport_read(reg
, retval
);
945 static void fdctrl_write (void *opaque
, uint32_t reg
, uint32_t value
)
947 FDCtrl
*fdctrl
= opaque
;
950 trace_fdc_ioport_write(reg
, value
);
953 fdctrl_write_dor(fdctrl
, value
);
956 fdctrl_write_tape(fdctrl
, value
);
959 fdctrl_write_rate(fdctrl
, value
);
962 fdctrl_write_data(fdctrl
, value
);
965 fdctrl_write_ccr(fdctrl
, value
);
972 static uint64_t fdctrl_read_mem (void *opaque
, hwaddr reg
,
975 return fdctrl_read(opaque
, (uint32_t)reg
);
978 static void fdctrl_write_mem (void *opaque
, hwaddr reg
,
979 uint64_t value
, unsigned size
)
981 fdctrl_write(opaque
, (uint32_t)reg
, value
);
984 static const MemoryRegionOps fdctrl_mem_ops
= {
985 .read
= fdctrl_read_mem
,
986 .write
= fdctrl_write_mem
,
987 .endianness
= DEVICE_NATIVE_ENDIAN
,
990 static const MemoryRegionOps fdctrl_mem_strict_ops
= {
991 .read
= fdctrl_read_mem
,
992 .write
= fdctrl_write_mem
,
993 .endianness
= DEVICE_NATIVE_ENDIAN
,
995 .min_access_size
= 1,
996 .max_access_size
= 1,
1000 static bool fdrive_media_changed_needed(void *opaque
)
1002 FDrive
*drive
= opaque
;
1004 return (drive
->blk
!= NULL
&& drive
->media_changed
!= 1);
1007 static const VMStateDescription vmstate_fdrive_media_changed
= {
1008 .name
= "fdrive/media_changed",
1010 .minimum_version_id
= 1,
1011 .needed
= fdrive_media_changed_needed
,
1012 .fields
= (VMStateField
[]) {
1013 VMSTATE_UINT8(media_changed
, FDrive
),
1014 VMSTATE_END_OF_LIST()
1018 static bool fdrive_media_rate_needed(void *opaque
)
1020 FDrive
*drive
= opaque
;
1022 return drive
->fdctrl
->check_media_rate
;
1025 static const VMStateDescription vmstate_fdrive_media_rate
= {
1026 .name
= "fdrive/media_rate",
1028 .minimum_version_id
= 1,
1029 .needed
= fdrive_media_rate_needed
,
1030 .fields
= (VMStateField
[]) {
1031 VMSTATE_UINT8(media_rate
, FDrive
),
1032 VMSTATE_END_OF_LIST()
1036 static bool fdrive_perpendicular_needed(void *opaque
)
1038 FDrive
*drive
= opaque
;
1040 return drive
->perpendicular
!= 0;
1043 static const VMStateDescription vmstate_fdrive_perpendicular
= {
1044 .name
= "fdrive/perpendicular",
1046 .minimum_version_id
= 1,
1047 .needed
= fdrive_perpendicular_needed
,
1048 .fields
= (VMStateField
[]) {
1049 VMSTATE_UINT8(perpendicular
, FDrive
),
1050 VMSTATE_END_OF_LIST()
1054 static int fdrive_post_load(void *opaque
, int version_id
)
1056 fd_revalidate(opaque
);
1060 static const VMStateDescription vmstate_fdrive
= {
1063 .minimum_version_id
= 1,
1064 .post_load
= fdrive_post_load
,
1065 .fields
= (VMStateField
[]) {
1066 VMSTATE_UINT8(head
, FDrive
),
1067 VMSTATE_UINT8(track
, FDrive
),
1068 VMSTATE_UINT8(sect
, FDrive
),
1069 VMSTATE_END_OF_LIST()
1071 .subsections
= (const VMStateDescription
*[]) {
1072 &vmstate_fdrive_media_changed
,
1073 &vmstate_fdrive_media_rate
,
1074 &vmstate_fdrive_perpendicular
,
1080 * Reconstructs the phase from register values according to the logic that was
1081 * implemented in qemu 2.3. This is the default value that is used if the phase
1082 * subsection is not present on migration.
1084 * Don't change this function to reflect newer qemu versions, it is part of
1085 * the migration ABI.
1087 static int reconstruct_phase(FDCtrl
*fdctrl
)
1089 if (fdctrl
->msr
& FD_MSR_NONDMA
) {
1090 return FD_PHASE_EXECUTION
;
1091 } else if ((fdctrl
->msr
& FD_MSR_RQM
) == 0) {
1092 /* qemu 2.3 disabled RQM only during DMA transfers */
1093 return FD_PHASE_EXECUTION
;
1094 } else if (fdctrl
->msr
& FD_MSR_DIO
) {
1095 return FD_PHASE_RESULT
;
1097 return FD_PHASE_COMMAND
;
1101 static int fdc_pre_save(void *opaque
)
1105 s
->dor_vmstate
= s
->dor
| GET_CUR_DRV(s
);
1110 static int fdc_pre_load(void *opaque
)
1113 s
->phase
= FD_PHASE_RECONSTRUCT
;
1117 static int fdc_post_load(void *opaque
, int version_id
)
1121 SET_CUR_DRV(s
, s
->dor_vmstate
& FD_DOR_SELMASK
);
1122 s
->dor
= s
->dor_vmstate
& ~FD_DOR_SELMASK
;
1124 if (s
->phase
== FD_PHASE_RECONSTRUCT
) {
1125 s
->phase
= reconstruct_phase(s
);
1131 static bool fdc_reset_sensei_needed(void *opaque
)
1135 return s
->reset_sensei
!= 0;
1138 static const VMStateDescription vmstate_fdc_reset_sensei
= {
1139 .name
= "fdc/reset_sensei",
1141 .minimum_version_id
= 1,
1142 .needed
= fdc_reset_sensei_needed
,
1143 .fields
= (VMStateField
[]) {
1144 VMSTATE_INT32(reset_sensei
, FDCtrl
),
1145 VMSTATE_END_OF_LIST()
1149 static bool fdc_result_timer_needed(void *opaque
)
1153 return timer_pending(s
->result_timer
);
1156 static const VMStateDescription vmstate_fdc_result_timer
= {
1157 .name
= "fdc/result_timer",
1159 .minimum_version_id
= 1,
1160 .needed
= fdc_result_timer_needed
,
1161 .fields
= (VMStateField
[]) {
1162 VMSTATE_TIMER_PTR(result_timer
, FDCtrl
),
1163 VMSTATE_END_OF_LIST()
1167 static bool fdc_phase_needed(void *opaque
)
1169 FDCtrl
*fdctrl
= opaque
;
1171 return reconstruct_phase(fdctrl
) != fdctrl
->phase
;
1174 static const VMStateDescription vmstate_fdc_phase
= {
1175 .name
= "fdc/phase",
1177 .minimum_version_id
= 1,
1178 .needed
= fdc_phase_needed
,
1179 .fields
= (VMStateField
[]) {
1180 VMSTATE_UINT8(phase
, FDCtrl
),
1181 VMSTATE_END_OF_LIST()
1185 static const VMStateDescription vmstate_fdc
= {
1188 .minimum_version_id
= 2,
1189 .pre_save
= fdc_pre_save
,
1190 .pre_load
= fdc_pre_load
,
1191 .post_load
= fdc_post_load
,
1192 .fields
= (VMStateField
[]) {
1193 /* Controller State */
1194 VMSTATE_UINT8(sra
, FDCtrl
),
1195 VMSTATE_UINT8(srb
, FDCtrl
),
1196 VMSTATE_UINT8(dor_vmstate
, FDCtrl
),
1197 VMSTATE_UINT8(tdr
, FDCtrl
),
1198 VMSTATE_UINT8(dsr
, FDCtrl
),
1199 VMSTATE_UINT8(msr
, FDCtrl
),
1200 VMSTATE_UINT8(status0
, FDCtrl
),
1201 VMSTATE_UINT8(status1
, FDCtrl
),
1202 VMSTATE_UINT8(status2
, FDCtrl
),
1204 VMSTATE_VARRAY_INT32(fifo
, FDCtrl
, fifo_size
, 0, vmstate_info_uint8
,
1206 VMSTATE_UINT32(data_pos
, FDCtrl
),
1207 VMSTATE_UINT32(data_len
, FDCtrl
),
1208 VMSTATE_UINT8(data_state
, FDCtrl
),
1209 VMSTATE_UINT8(data_dir
, FDCtrl
),
1210 VMSTATE_UINT8(eot
, FDCtrl
),
1211 /* States kept only to be returned back */
1212 VMSTATE_UINT8(timer0
, FDCtrl
),
1213 VMSTATE_UINT8(timer1
, FDCtrl
),
1214 VMSTATE_UINT8(precomp_trk
, FDCtrl
),
1215 VMSTATE_UINT8(config
, FDCtrl
),
1216 VMSTATE_UINT8(lock
, FDCtrl
),
1217 VMSTATE_UINT8(pwrd
, FDCtrl
),
1218 VMSTATE_UINT8_EQUAL(num_floppies
, FDCtrl
, NULL
),
1219 VMSTATE_STRUCT_ARRAY(drives
, FDCtrl
, MAX_FD
, 1,
1220 vmstate_fdrive
, FDrive
),
1221 VMSTATE_END_OF_LIST()
1223 .subsections
= (const VMStateDescription
*[]) {
1224 &vmstate_fdc_reset_sensei
,
1225 &vmstate_fdc_result_timer
,
1231 static void fdctrl_external_reset_sysbus(DeviceState
*d
)
1233 FDCtrlSysBus
*sys
= SYSBUS_FDC(d
);
1234 FDCtrl
*s
= &sys
->state
;
1239 static void fdctrl_external_reset_isa(DeviceState
*d
)
1241 FDCtrlISABus
*isa
= ISA_FDC(d
);
1242 FDCtrl
*s
= &isa
->state
;
1247 static void fdctrl_handle_tc(void *opaque
, int irq
, int level
)
1249 //FDCtrl *s = opaque;
1253 FLOPPY_DPRINTF("TC pulsed\n");
1257 /* Change IRQ state */
1258 static void fdctrl_reset_irq(FDCtrl
*fdctrl
)
1260 fdctrl
->status0
= 0;
1261 if (!(fdctrl
->sra
& FD_SRA_INTPEND
))
1263 FLOPPY_DPRINTF("Reset interrupt\n");
1264 qemu_set_irq(fdctrl
->irq
, 0);
1265 fdctrl
->sra
&= ~FD_SRA_INTPEND
;
1268 static void fdctrl_raise_irq(FDCtrl
*fdctrl
)
1270 if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
1271 qemu_set_irq(fdctrl
->irq
, 1);
1272 fdctrl
->sra
|= FD_SRA_INTPEND
;
1275 fdctrl
->reset_sensei
= 0;
1276 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl
->status0
);
1279 /* Reset controller */
1280 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
)
1284 FLOPPY_DPRINTF("reset controller\n");
1285 fdctrl_reset_irq(fdctrl
);
1286 /* Initialise controller */
1289 if (!fdctrl
->drives
[1].blk
) {
1290 fdctrl
->sra
|= FD_SRA_nDRV2
;
1292 fdctrl
->cur_drv
= 0;
1293 fdctrl
->dor
= FD_DOR_nRESET
;
1294 fdctrl
->dor
|= (fdctrl
->dma_chann
!= -1) ? FD_DOR_DMAEN
: 0;
1295 fdctrl
->msr
= FD_MSR_RQM
;
1296 fdctrl
->reset_sensei
= 0;
1297 timer_del(fdctrl
->result_timer
);
1299 fdctrl
->data_pos
= 0;
1300 fdctrl
->data_len
= 0;
1301 fdctrl
->data_state
= 0;
1302 fdctrl
->data_dir
= FD_DIR_WRITE
;
1303 for (i
= 0; i
< MAX_FD
; i
++)
1304 fd_recalibrate(&fdctrl
->drives
[i
]);
1305 fdctrl_to_command_phase(fdctrl
);
1307 fdctrl
->status0
|= FD_SR0_RDYCHG
;
1308 fdctrl_raise_irq(fdctrl
);
1309 fdctrl
->reset_sensei
= FD_RESET_SENSEI_COUNT
;
1313 static inline FDrive
*drv0(FDCtrl
*fdctrl
)
1315 return &fdctrl
->drives
[(fdctrl
->tdr
& FD_TDR_BOOTSEL
) >> 2];
1318 static inline FDrive
*drv1(FDCtrl
*fdctrl
)
1320 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (1 << 2))
1321 return &fdctrl
->drives
[1];
1323 return &fdctrl
->drives
[0];
1327 static inline FDrive
*drv2(FDCtrl
*fdctrl
)
1329 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (2 << 2))
1330 return &fdctrl
->drives
[2];
1332 return &fdctrl
->drives
[1];
1335 static inline FDrive
*drv3(FDCtrl
*fdctrl
)
1337 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (3 << 2))
1338 return &fdctrl
->drives
[3];
1340 return &fdctrl
->drives
[2];
1344 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
)
1347 case 0: return drv0(fdctrl
);
1348 case 1: return drv1(fdctrl
);
1350 case 2: return drv2(fdctrl
);
1351 case 3: return drv3(fdctrl
);
1353 default: return NULL
;
1357 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
)
1359 return get_drv(fdctrl
, fdctrl
->cur_drv
);
1362 /* Status A register : 0x00 (read-only) */
1363 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
)
1365 uint32_t retval
= fdctrl
->sra
;
1367 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval
);
1372 /* Status B register : 0x01 (read-only) */
1373 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
)
1375 uint32_t retval
= fdctrl
->srb
;
1377 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval
);
1382 /* Digital output register : 0x02 */
1383 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
)
1385 uint32_t retval
= fdctrl
->dor
;
1387 /* Selected drive */
1388 retval
|= fdctrl
->cur_drv
;
1389 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval
);
1394 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
)
1396 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value
);
1399 if (value
& FD_DOR_MOTEN0
)
1400 fdctrl
->srb
|= FD_SRB_MTR0
;
1402 fdctrl
->srb
&= ~FD_SRB_MTR0
;
1403 if (value
& FD_DOR_MOTEN1
)
1404 fdctrl
->srb
|= FD_SRB_MTR1
;
1406 fdctrl
->srb
&= ~FD_SRB_MTR1
;
1410 fdctrl
->srb
|= FD_SRB_DR0
;
1412 fdctrl
->srb
&= ~FD_SRB_DR0
;
1415 if (!(value
& FD_DOR_nRESET
)) {
1416 if (fdctrl
->dor
& FD_DOR_nRESET
) {
1417 FLOPPY_DPRINTF("controller enter RESET state\n");
1420 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1421 FLOPPY_DPRINTF("controller out of RESET state\n");
1422 fdctrl_reset(fdctrl
, 1);
1423 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1426 /* Selected drive */
1427 fdctrl
->cur_drv
= value
& FD_DOR_SELMASK
;
1429 fdctrl
->dor
= value
;
1432 /* Tape drive register : 0x03 */
1433 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
)
1435 uint32_t retval
= fdctrl
->tdr
;
1437 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval
);
1442 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
)
1445 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1446 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1449 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value
);
1450 /* Disk boot selection indicator */
1451 fdctrl
->tdr
= value
& FD_TDR_BOOTSEL
;
1452 /* Tape indicators: never allow */
1455 /* Main status register : 0x04 (read) */
1456 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
)
1458 uint32_t retval
= fdctrl
->msr
;
1460 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1461 fdctrl
->dor
|= FD_DOR_nRESET
;
1463 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval
);
1468 /* Data select rate register : 0x04 (write) */
1469 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
)
1472 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1473 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1476 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value
);
1477 /* Reset: autoclear */
1478 if (value
& FD_DSR_SWRESET
) {
1479 fdctrl
->dor
&= ~FD_DOR_nRESET
;
1480 fdctrl_reset(fdctrl
, 1);
1481 fdctrl
->dor
|= FD_DOR_nRESET
;
1483 if (value
& FD_DSR_PWRDOWN
) {
1484 fdctrl_reset(fdctrl
, 1);
1486 fdctrl
->dsr
= value
;
1489 /* Configuration control register: 0x07 (write) */
1490 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
)
1493 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1494 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1497 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value
);
1499 /* Only the rate selection bits used in AT mode, and we
1500 * store those in the DSR.
1502 fdctrl
->dsr
= (fdctrl
->dsr
& ~FD_DSR_DRATEMASK
) |
1503 (value
& FD_DSR_DRATEMASK
);
1506 static int fdctrl_media_changed(FDrive
*drv
)
1508 return drv
->media_changed
;
1511 /* Digital input register : 0x07 (read-only) */
1512 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
)
1514 uint32_t retval
= 0;
1516 if (fdctrl_media_changed(get_cur_drv(fdctrl
))) {
1517 retval
|= FD_DIR_DSKCHG
;
1520 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval
);
1526 /* Clear the FIFO and update the state for receiving the next command */
1527 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
)
1529 fdctrl
->phase
= FD_PHASE_COMMAND
;
1530 fdctrl
->data_dir
= FD_DIR_WRITE
;
1531 fdctrl
->data_pos
= 0;
1532 fdctrl
->data_len
= 1; /* Accept command byte, adjust for params later */
1533 fdctrl
->msr
&= ~(FD_MSR_CMDBUSY
| FD_MSR_DIO
);
1534 fdctrl
->msr
|= FD_MSR_RQM
;
1537 /* Update the state to allow the guest to read out the command status.
1538 * @fifo_len is the number of result bytes to be read out. */
1539 static void fdctrl_to_result_phase(FDCtrl
*fdctrl
, int fifo_len
)
1541 fdctrl
->phase
= FD_PHASE_RESULT
;
1542 fdctrl
->data_dir
= FD_DIR_READ
;
1543 fdctrl
->data_len
= fifo_len
;
1544 fdctrl
->data_pos
= 0;
1545 fdctrl
->msr
|= FD_MSR_CMDBUSY
| FD_MSR_RQM
| FD_MSR_DIO
;
1548 /* Set an error: unimplemented/unknown command */
1549 static void fdctrl_unimplemented(FDCtrl
*fdctrl
, int direction
)
1551 qemu_log_mask(LOG_UNIMP
, "fdc: unimplemented command 0x%02x\n",
1553 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
1554 fdctrl_to_result_phase(fdctrl
, 1);
1557 /* Seek to next sector
1558 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1559 * otherwise returns 1
1561 static int fdctrl_seek_to_next_sect(FDCtrl
*fdctrl
, FDrive
*cur_drv
)
1563 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1564 cur_drv
->head
, cur_drv
->track
, cur_drv
->sect
,
1565 fd_sector(cur_drv
));
1566 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1568 uint8_t new_head
= cur_drv
->head
;
1569 uint8_t new_track
= cur_drv
->track
;
1570 uint8_t new_sect
= cur_drv
->sect
;
1574 if (new_sect
>= cur_drv
->last_sect
||
1575 new_sect
== fdctrl
->eot
) {
1577 if (FD_MULTI_TRACK(fdctrl
->data_state
)) {
1578 if (new_head
== 0 &&
1579 (cur_drv
->flags
& FDISK_DBL_SIDES
) != 0) {
1584 fdctrl
->status0
|= FD_SR0_SEEK
;
1585 if ((cur_drv
->flags
& FDISK_DBL_SIDES
) == 0) {
1590 fdctrl
->status0
|= FD_SR0_SEEK
;
1595 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1596 new_head
, new_track
, new_sect
, fd_sector(cur_drv
));
1601 fd_seek(cur_drv
, new_head
, new_track
, new_sect
, 1);
1605 /* Callback for transfer end (stop or abort) */
1606 static void fdctrl_stop_transfer(FDCtrl
*fdctrl
, uint8_t status0
,
1607 uint8_t status1
, uint8_t status2
)
1610 cur_drv
= get_cur_drv(fdctrl
);
1612 fdctrl
->status0
&= ~(FD_SR0_DS0
| FD_SR0_DS1
| FD_SR0_HEAD
);
1613 fdctrl
->status0
|= GET_CUR_DRV(fdctrl
);
1614 if (cur_drv
->head
) {
1615 fdctrl
->status0
|= FD_SR0_HEAD
;
1617 fdctrl
->status0
|= status0
;
1619 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1620 status0
, status1
, status2
, fdctrl
->status0
);
1621 fdctrl
->fifo
[0] = fdctrl
->status0
;
1622 fdctrl
->fifo
[1] = status1
;
1623 fdctrl
->fifo
[2] = status2
;
1624 fdctrl
->fifo
[3] = cur_drv
->track
;
1625 fdctrl
->fifo
[4] = cur_drv
->head
;
1626 fdctrl
->fifo
[5] = cur_drv
->sect
;
1627 fdctrl
->fifo
[6] = FD_SECTOR_SC
;
1628 fdctrl
->data_dir
= FD_DIR_READ
;
1629 if (fdctrl
->dma_chann
!= -1 && !(fdctrl
->msr
& FD_MSR_NONDMA
)) {
1630 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1631 k
->release_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1633 fdctrl
->msr
|= FD_MSR_RQM
| FD_MSR_DIO
;
1634 fdctrl
->msr
&= ~FD_MSR_NONDMA
;
1636 fdctrl_to_result_phase(fdctrl
, 7);
1637 fdctrl_raise_irq(fdctrl
);
1640 /* Prepare a data transfer (either DMA or FIFO) */
1641 static void fdctrl_start_transfer(FDCtrl
*fdctrl
, int direction
)
1646 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1647 cur_drv
= get_cur_drv(fdctrl
);
1648 kt
= fdctrl
->fifo
[2];
1649 kh
= fdctrl
->fifo
[3];
1650 ks
= fdctrl
->fifo
[4];
1651 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1652 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1653 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1654 NUM_SIDES(cur_drv
)));
1655 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1658 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1659 fdctrl
->fifo
[3] = kt
;
1660 fdctrl
->fifo
[4] = kh
;
1661 fdctrl
->fifo
[5] = ks
;
1665 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1666 fdctrl
->fifo
[3] = kt
;
1667 fdctrl
->fifo
[4] = kh
;
1668 fdctrl
->fifo
[5] = ks
;
1671 /* No seek enabled */
1672 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1673 fdctrl
->fifo
[3] = kt
;
1674 fdctrl
->fifo
[4] = kh
;
1675 fdctrl
->fifo
[5] = ks
;
1678 fdctrl
->status0
|= FD_SR0_SEEK
;
1684 /* Check the data rate. If the programmed data rate does not match
1685 * the currently inserted medium, the operation has to fail. */
1686 if (fdctrl
->check_media_rate
&&
1687 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
1688 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1689 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
1690 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
1691 fdctrl
->fifo
[3] = kt
;
1692 fdctrl
->fifo
[4] = kh
;
1693 fdctrl
->fifo
[5] = ks
;
1697 /* Set the FIFO state */
1698 fdctrl
->data_dir
= direction
;
1699 fdctrl
->data_pos
= 0;
1700 assert(fdctrl
->msr
& FD_MSR_CMDBUSY
);
1701 if (fdctrl
->fifo
[0] & 0x80)
1702 fdctrl
->data_state
|= FD_STATE_MULTI
;
1704 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1705 if (fdctrl
->fifo
[5] == 0) {
1706 fdctrl
->data_len
= fdctrl
->fifo
[8];
1709 fdctrl
->data_len
= 128 << (fdctrl
->fifo
[5] > 7 ? 7 : fdctrl
->fifo
[5]);
1710 tmp
= (fdctrl
->fifo
[6] - ks
+ 1);
1711 if (fdctrl
->fifo
[0] & 0x80)
1712 tmp
+= fdctrl
->fifo
[6];
1713 fdctrl
->data_len
*= tmp
;
1715 fdctrl
->eot
= fdctrl
->fifo
[6];
1716 if (fdctrl
->dor
& FD_DOR_DMAEN
) {
1717 IsaDmaTransferMode dma_mode
;
1718 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1720 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1721 dma_mode
= k
->get_transfer_mode(fdctrl
->dma
, fdctrl
->dma_chann
);
1722 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1723 dma_mode
, direction
,
1724 (128 << fdctrl
->fifo
[5]) *
1725 (cur_drv
->last_sect
- ks
+ 1), fdctrl
->data_len
);
1726 switch (direction
) {
1730 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_VERIFY
);
1733 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_WRITE
);
1736 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_READ
);
1742 dma_mode_ok
= false;
1746 /* No access is allowed until DMA transfer has completed */
1747 fdctrl
->msr
&= ~FD_MSR_RQM
;
1748 if (direction
!= FD_DIR_VERIFY
) {
1749 /* Now, we just have to wait for the DMA controller to
1752 k
->hold_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1753 k
->schedule(fdctrl
->dma
);
1755 /* Start transfer */
1756 fdctrl_transfer_handler(fdctrl
, fdctrl
->dma_chann
, 0,
1761 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode
,
1765 FLOPPY_DPRINTF("start non-DMA transfer\n");
1766 fdctrl
->msr
|= FD_MSR_NONDMA
| FD_MSR_RQM
;
1767 if (direction
!= FD_DIR_WRITE
)
1768 fdctrl
->msr
|= FD_MSR_DIO
;
1769 /* IO based transfer: calculate len */
1770 fdctrl_raise_irq(fdctrl
);
1773 /* Prepare a transfer of deleted data */
1774 static void fdctrl_start_transfer_del(FDCtrl
*fdctrl
, int direction
)
1776 qemu_log_mask(LOG_UNIMP
, "fdctrl_start_transfer_del() unimplemented\n");
1778 /* We don't handle deleted data,
1779 * so we don't return *ANYTHING*
1781 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1784 /* handlers for DMA transfers */
1785 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
1786 int dma_pos
, int dma_len
)
1790 int len
, start_pos
, rel_pos
;
1791 uint8_t status0
= 0x00, status1
= 0x00, status2
= 0x00;
1795 if (fdctrl
->msr
& FD_MSR_RQM
) {
1796 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1799 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1800 cur_drv
= get_cur_drv(fdctrl
);
1801 if (fdctrl
->data_dir
== FD_DIR_SCANE
|| fdctrl
->data_dir
== FD_DIR_SCANL
||
1802 fdctrl
->data_dir
== FD_DIR_SCANH
)
1803 status2
= FD_SR2_SNS
;
1804 if (dma_len
> fdctrl
->data_len
)
1805 dma_len
= fdctrl
->data_len
;
1806 if (cur_drv
->blk
== NULL
) {
1807 if (fdctrl
->data_dir
== FD_DIR_WRITE
)
1808 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1810 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1812 goto transfer_error
;
1814 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1815 for (start_pos
= fdctrl
->data_pos
; fdctrl
->data_pos
< dma_len
;) {
1816 len
= dma_len
- fdctrl
->data_pos
;
1817 if (len
+ rel_pos
> FD_SECTOR_LEN
)
1818 len
= FD_SECTOR_LEN
- rel_pos
;
1819 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1820 "(%d-0x%08x 0x%08x)\n", len
, dma_len
, fdctrl
->data_pos
,
1821 fdctrl
->data_len
, GET_CUR_DRV(fdctrl
), cur_drv
->head
,
1822 cur_drv
->track
, cur_drv
->sect
, fd_sector(cur_drv
),
1823 fd_sector(cur_drv
) * FD_SECTOR_LEN
);
1824 if (fdctrl
->data_dir
!= FD_DIR_WRITE
||
1825 len
< FD_SECTOR_LEN
|| rel_pos
!= 0) {
1826 /* READ & SCAN commands and realign to a sector for WRITE */
1827 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
),
1828 fdctrl
->fifo
, BDRV_SECTOR_SIZE
) < 0) {
1829 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1830 fd_sector(cur_drv
));
1831 /* Sure, image size is too small... */
1832 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1835 switch (fdctrl
->data_dir
) {
1838 k
->write_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1839 fdctrl
->data_pos
, len
);
1842 /* WRITE commands */
1844 /* Handle readonly medium early, no need to do DMA, touch the
1845 * LED or attempt any writes. A real floppy doesn't attempt
1846 * to write to readonly media either. */
1847 fdctrl_stop_transfer(fdctrl
,
1848 FD_SR0_ABNTERM
| FD_SR0_SEEK
, FD_SR1_NW
,
1850 goto transfer_error
;
1853 k
->read_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1854 fdctrl
->data_pos
, len
);
1855 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
),
1856 fdctrl
->fifo
, BDRV_SECTOR_SIZE
, 0) < 0) {
1857 FLOPPY_DPRINTF("error writing sector %d\n",
1858 fd_sector(cur_drv
));
1859 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1860 goto transfer_error
;
1864 /* VERIFY commands */
1869 uint8_t tmpbuf
[FD_SECTOR_LEN
];
1871 k
->read_memory(fdctrl
->dma
, nchan
, tmpbuf
, fdctrl
->data_pos
,
1873 ret
= memcmp(tmpbuf
, fdctrl
->fifo
+ rel_pos
, len
);
1875 status2
= FD_SR2_SEH
;
1878 if ((ret
< 0 && fdctrl
->data_dir
== FD_DIR_SCANL
) ||
1879 (ret
> 0 && fdctrl
->data_dir
== FD_DIR_SCANH
)) {
1886 fdctrl
->data_pos
+= len
;
1887 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1889 /* Seek to next sector */
1890 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
))
1895 len
= fdctrl
->data_pos
- start_pos
;
1896 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1897 fdctrl
->data_pos
, len
, fdctrl
->data_len
);
1898 if (fdctrl
->data_dir
== FD_DIR_SCANE
||
1899 fdctrl
->data_dir
== FD_DIR_SCANL
||
1900 fdctrl
->data_dir
== FD_DIR_SCANH
)
1901 status2
= FD_SR2_SEH
;
1902 fdctrl
->data_len
-= len
;
1903 fdctrl_stop_transfer(fdctrl
, status0
, status1
, status2
);
1909 /* Data register : 0x05 */
1910 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
)
1913 uint32_t retval
= 0;
1916 cur_drv
= get_cur_drv(fdctrl
);
1917 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1918 if (!(fdctrl
->msr
& FD_MSR_RQM
) || !(fdctrl
->msr
& FD_MSR_DIO
)) {
1919 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1923 /* If data_len spans multiple sectors, the current position in the FIFO
1924 * wraps around while fdctrl->data_pos is the real position in the whole
1926 pos
= fdctrl
->data_pos
;
1927 pos
%= FD_SECTOR_LEN
;
1929 switch (fdctrl
->phase
) {
1930 case FD_PHASE_EXECUTION
:
1931 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
1933 if (fdctrl
->data_pos
!= 0)
1934 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
1935 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1936 fd_sector(cur_drv
));
1939 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
1942 FLOPPY_DPRINTF("error getting sector %d\n",
1943 fd_sector(cur_drv
));
1944 /* Sure, image size is too small... */
1945 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1949 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1950 fdctrl
->msr
&= ~FD_MSR_RQM
;
1951 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1955 case FD_PHASE_RESULT
:
1956 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
1957 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1958 fdctrl
->msr
&= ~FD_MSR_RQM
;
1959 fdctrl_to_command_phase(fdctrl
);
1960 fdctrl_reset_irq(fdctrl
);
1964 case FD_PHASE_COMMAND
:
1969 retval
= fdctrl
->fifo
[pos
];
1970 FLOPPY_DPRINTF("data register: 0x%02x\n", retval
);
1975 static void fdctrl_format_sector(FDCtrl
*fdctrl
)
1980 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1981 cur_drv
= get_cur_drv(fdctrl
);
1982 kt
= fdctrl
->fifo
[6];
1983 kh
= fdctrl
->fifo
[7];
1984 ks
= fdctrl
->fifo
[8];
1985 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1986 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1987 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1988 NUM_SIDES(cur_drv
)));
1989 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1992 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1993 fdctrl
->fifo
[3] = kt
;
1994 fdctrl
->fifo
[4] = kh
;
1995 fdctrl
->fifo
[5] = ks
;
1999 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
2000 fdctrl
->fifo
[3] = kt
;
2001 fdctrl
->fifo
[4] = kh
;
2002 fdctrl
->fifo
[5] = ks
;
2005 /* No seek enabled */
2006 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
2007 fdctrl
->fifo
[3] = kt
;
2008 fdctrl
->fifo
[4] = kh
;
2009 fdctrl
->fifo
[5] = ks
;
2012 fdctrl
->status0
|= FD_SR0_SEEK
;
2017 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
2018 if (cur_drv
->blk
== NULL
||
2019 blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2020 BDRV_SECTOR_SIZE
, 0) < 0) {
2021 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv
));
2022 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
2024 if (cur_drv
->sect
== cur_drv
->last_sect
) {
2025 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2026 /* Last sector done */
2027 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2030 fdctrl
->data_pos
= 0;
2031 fdctrl
->data_len
= 4;
2036 static void fdctrl_handle_lock(FDCtrl
*fdctrl
, int direction
)
2038 fdctrl
->lock
= (fdctrl
->fifo
[0] & 0x80) ? 1 : 0;
2039 fdctrl
->fifo
[0] = fdctrl
->lock
<< 4;
2040 fdctrl_to_result_phase(fdctrl
, 1);
2043 static void fdctrl_handle_dumpreg(FDCtrl
*fdctrl
, int direction
)
2045 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2047 /* Drives position */
2048 fdctrl
->fifo
[0] = drv0(fdctrl
)->track
;
2049 fdctrl
->fifo
[1] = drv1(fdctrl
)->track
;
2051 fdctrl
->fifo
[2] = drv2(fdctrl
)->track
;
2052 fdctrl
->fifo
[3] = drv3(fdctrl
)->track
;
2054 fdctrl
->fifo
[2] = 0;
2055 fdctrl
->fifo
[3] = 0;
2058 fdctrl
->fifo
[4] = fdctrl
->timer0
;
2059 fdctrl
->fifo
[5] = (fdctrl
->timer1
<< 1) | (fdctrl
->dor
& FD_DOR_DMAEN
? 1 : 0);
2060 fdctrl
->fifo
[6] = cur_drv
->last_sect
;
2061 fdctrl
->fifo
[7] = (fdctrl
->lock
<< 7) |
2062 (cur_drv
->perpendicular
<< 2);
2063 fdctrl
->fifo
[8] = fdctrl
->config
;
2064 fdctrl
->fifo
[9] = fdctrl
->precomp_trk
;
2065 fdctrl_to_result_phase(fdctrl
, 10);
2068 static void fdctrl_handle_version(FDCtrl
*fdctrl
, int direction
)
2070 /* Controller's version */
2071 fdctrl
->fifo
[0] = fdctrl
->version
;
2072 fdctrl_to_result_phase(fdctrl
, 1);
2075 static void fdctrl_handle_partid(FDCtrl
*fdctrl
, int direction
)
2077 fdctrl
->fifo
[0] = 0x41; /* Stepping 1 */
2078 fdctrl_to_result_phase(fdctrl
, 1);
2081 static void fdctrl_handle_restore(FDCtrl
*fdctrl
, int direction
)
2083 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2085 /* Drives position */
2086 drv0(fdctrl
)->track
= fdctrl
->fifo
[3];
2087 drv1(fdctrl
)->track
= fdctrl
->fifo
[4];
2089 drv2(fdctrl
)->track
= fdctrl
->fifo
[5];
2090 drv3(fdctrl
)->track
= fdctrl
->fifo
[6];
2093 fdctrl
->timer0
= fdctrl
->fifo
[7];
2094 fdctrl
->timer1
= fdctrl
->fifo
[8];
2095 cur_drv
->last_sect
= fdctrl
->fifo
[9];
2096 fdctrl
->lock
= fdctrl
->fifo
[10] >> 7;
2097 cur_drv
->perpendicular
= (fdctrl
->fifo
[10] >> 2) & 0xF;
2098 fdctrl
->config
= fdctrl
->fifo
[11];
2099 fdctrl
->precomp_trk
= fdctrl
->fifo
[12];
2100 fdctrl
->pwrd
= fdctrl
->fifo
[13];
2101 fdctrl_to_command_phase(fdctrl
);
2104 static void fdctrl_handle_save(FDCtrl
*fdctrl
, int direction
)
2106 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2108 fdctrl
->fifo
[0] = 0;
2109 fdctrl
->fifo
[1] = 0;
2110 /* Drives position */
2111 fdctrl
->fifo
[2] = drv0(fdctrl
)->track
;
2112 fdctrl
->fifo
[3] = drv1(fdctrl
)->track
;
2114 fdctrl
->fifo
[4] = drv2(fdctrl
)->track
;
2115 fdctrl
->fifo
[5] = drv3(fdctrl
)->track
;
2117 fdctrl
->fifo
[4] = 0;
2118 fdctrl
->fifo
[5] = 0;
2121 fdctrl
->fifo
[6] = fdctrl
->timer0
;
2122 fdctrl
->fifo
[7] = fdctrl
->timer1
;
2123 fdctrl
->fifo
[8] = cur_drv
->last_sect
;
2124 fdctrl
->fifo
[9] = (fdctrl
->lock
<< 7) |
2125 (cur_drv
->perpendicular
<< 2);
2126 fdctrl
->fifo
[10] = fdctrl
->config
;
2127 fdctrl
->fifo
[11] = fdctrl
->precomp_trk
;
2128 fdctrl
->fifo
[12] = fdctrl
->pwrd
;
2129 fdctrl
->fifo
[13] = 0;
2130 fdctrl
->fifo
[14] = 0;
2131 fdctrl_to_result_phase(fdctrl
, 15);
2134 static void fdctrl_handle_readid(FDCtrl
*fdctrl
, int direction
)
2136 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2138 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2139 timer_mod(fdctrl
->result_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
2140 (NANOSECONDS_PER_SECOND
/ 50));
2143 static void fdctrl_handle_format_track(FDCtrl
*fdctrl
, int direction
)
2147 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2148 cur_drv
= get_cur_drv(fdctrl
);
2149 fdctrl
->data_state
|= FD_STATE_FORMAT
;
2150 if (fdctrl
->fifo
[0] & 0x80)
2151 fdctrl
->data_state
|= FD_STATE_MULTI
;
2153 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
2155 fdctrl
->fifo
[2] > 7 ? 16384 : 128 << fdctrl
->fifo
[2];
2157 cur_drv
->last_sect
=
2158 cur_drv
->flags
& FDISK_DBL_SIDES
? fdctrl
->fifo
[3] :
2159 fdctrl
->fifo
[3] / 2;
2161 cur_drv
->last_sect
= fdctrl
->fifo
[3];
2163 /* TODO: implement format using DMA expected by the Bochs BIOS
2164 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2165 * the sector with the specified fill byte
2167 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2168 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2171 static void fdctrl_handle_specify(FDCtrl
*fdctrl
, int direction
)
2173 fdctrl
->timer0
= (fdctrl
->fifo
[1] >> 4) & 0xF;
2174 fdctrl
->timer1
= fdctrl
->fifo
[2] >> 1;
2175 if (fdctrl
->fifo
[2] & 1)
2176 fdctrl
->dor
&= ~FD_DOR_DMAEN
;
2178 fdctrl
->dor
|= FD_DOR_DMAEN
;
2179 /* No result back */
2180 fdctrl_to_command_phase(fdctrl
);
2183 static void fdctrl_handle_sense_drive_status(FDCtrl
*fdctrl
, int direction
)
2187 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2188 cur_drv
= get_cur_drv(fdctrl
);
2189 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2190 /* 1 Byte status back */
2191 fdctrl
->fifo
[0] = (cur_drv
->ro
<< 6) |
2192 (cur_drv
->track
== 0 ? 0x10 : 0x00) |
2193 (cur_drv
->head
<< 2) |
2194 GET_CUR_DRV(fdctrl
) |
2196 fdctrl_to_result_phase(fdctrl
, 1);
2199 static void fdctrl_handle_recalibrate(FDCtrl
*fdctrl
, int direction
)
2203 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2204 cur_drv
= get_cur_drv(fdctrl
);
2205 fd_recalibrate(cur_drv
);
2206 fdctrl_to_command_phase(fdctrl
);
2207 /* Raise Interrupt */
2208 fdctrl
->status0
|= FD_SR0_SEEK
;
2209 fdctrl_raise_irq(fdctrl
);
2212 static void fdctrl_handle_sense_interrupt_status(FDCtrl
*fdctrl
, int direction
)
2214 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2216 if (fdctrl
->reset_sensei
> 0) {
2218 FD_SR0_RDYCHG
+ FD_RESET_SENSEI_COUNT
- fdctrl
->reset_sensei
;
2219 fdctrl
->reset_sensei
--;
2220 } else if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
2221 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
2222 fdctrl_to_result_phase(fdctrl
, 1);
2226 (fdctrl
->status0
& ~(FD_SR0_HEAD
| FD_SR0_DS1
| FD_SR0_DS0
))
2227 | GET_CUR_DRV(fdctrl
);
2230 fdctrl
->fifo
[1] = cur_drv
->track
;
2231 fdctrl_to_result_phase(fdctrl
, 2);
2232 fdctrl_reset_irq(fdctrl
);
2233 fdctrl
->status0
= FD_SR0_RDYCHG
;
2236 static void fdctrl_handle_seek(FDCtrl
*fdctrl
, int direction
)
2240 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2241 cur_drv
= get_cur_drv(fdctrl
);
2242 fdctrl_to_command_phase(fdctrl
);
2243 /* The seek command just sends step pulses to the drive and doesn't care if
2244 * there is a medium inserted of if it's banging the head against the drive.
2246 fd_seek(cur_drv
, cur_drv
->head
, fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2247 /* Raise Interrupt */
2248 fdctrl
->status0
|= FD_SR0_SEEK
;
2249 fdctrl_raise_irq(fdctrl
);
2252 static void fdctrl_handle_perpendicular_mode(FDCtrl
*fdctrl
, int direction
)
2254 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2256 if (fdctrl
->fifo
[1] & 0x80)
2257 cur_drv
->perpendicular
= fdctrl
->fifo
[1] & 0x7;
2258 /* No result back */
2259 fdctrl_to_command_phase(fdctrl
);
2262 static void fdctrl_handle_configure(FDCtrl
*fdctrl
, int direction
)
2264 fdctrl
->config
= fdctrl
->fifo
[2];
2265 fdctrl
->precomp_trk
= fdctrl
->fifo
[3];
2266 /* No result back */
2267 fdctrl_to_command_phase(fdctrl
);
2270 static void fdctrl_handle_powerdown_mode(FDCtrl
*fdctrl
, int direction
)
2272 fdctrl
->pwrd
= fdctrl
->fifo
[1];
2273 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2274 fdctrl_to_result_phase(fdctrl
, 1);
2277 static void fdctrl_handle_option(FDCtrl
*fdctrl
, int direction
)
2279 /* No result back */
2280 fdctrl_to_command_phase(fdctrl
);
2283 static void fdctrl_handle_drive_specification_command(FDCtrl
*fdctrl
, int direction
)
2285 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2288 pos
= fdctrl
->data_pos
- 1;
2289 pos
%= FD_SECTOR_LEN
;
2290 if (fdctrl
->fifo
[pos
] & 0x80) {
2291 /* Command parameters done */
2292 if (fdctrl
->fifo
[pos
] & 0x40) {
2293 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2294 fdctrl
->fifo
[2] = 0;
2295 fdctrl
->fifo
[3] = 0;
2296 fdctrl_to_result_phase(fdctrl
, 4);
2298 fdctrl_to_command_phase(fdctrl
);
2300 } else if (fdctrl
->data_len
> 7) {
2302 fdctrl
->fifo
[0] = 0x80 |
2303 (cur_drv
->head
<< 2) | GET_CUR_DRV(fdctrl
);
2304 fdctrl_to_result_phase(fdctrl
, 1);
2308 static void fdctrl_handle_relative_seek_in(FDCtrl
*fdctrl
, int direction
)
2312 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2313 cur_drv
= get_cur_drv(fdctrl
);
2314 if (fdctrl
->fifo
[2] + cur_drv
->track
>= cur_drv
->max_track
) {
2315 fd_seek(cur_drv
, cur_drv
->head
, cur_drv
->max_track
- 1,
2318 fd_seek(cur_drv
, cur_drv
->head
,
2319 cur_drv
->track
+ fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2321 fdctrl_to_command_phase(fdctrl
);
2322 /* Raise Interrupt */
2323 fdctrl
->status0
|= FD_SR0_SEEK
;
2324 fdctrl_raise_irq(fdctrl
);
2327 static void fdctrl_handle_relative_seek_out(FDCtrl
*fdctrl
, int direction
)
2331 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2332 cur_drv
= get_cur_drv(fdctrl
);
2333 if (fdctrl
->fifo
[2] > cur_drv
->track
) {
2334 fd_seek(cur_drv
, cur_drv
->head
, 0, cur_drv
->sect
, 1);
2336 fd_seek(cur_drv
, cur_drv
->head
,
2337 cur_drv
->track
- fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2339 fdctrl_to_command_phase(fdctrl
);
2340 /* Raise Interrupt */
2341 fdctrl
->status0
|= FD_SR0_SEEK
;
2342 fdctrl_raise_irq(fdctrl
);
2346 * Handlers for the execution phase of each command
2348 typedef struct FDCtrlCommand
{
2353 void (*handler
)(FDCtrl
*fdctrl
, int direction
);
2357 static const FDCtrlCommand handlers
[] = {
2358 { FD_CMD_READ
, 0x1f, "READ", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2359 { FD_CMD_WRITE
, 0x3f, "WRITE", 8, fdctrl_start_transfer
, FD_DIR_WRITE
},
2360 { FD_CMD_SEEK
, 0xff, "SEEK", 2, fdctrl_handle_seek
},
2361 { FD_CMD_SENSE_INTERRUPT_STATUS
, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status
},
2362 { FD_CMD_RECALIBRATE
, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate
},
2363 { FD_CMD_FORMAT_TRACK
, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track
},
2364 { FD_CMD_READ_TRACK
, 0xbf, "READ TRACK", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2365 { FD_CMD_RESTORE
, 0xff, "RESTORE", 17, fdctrl_handle_restore
}, /* part of READ DELETED DATA */
2366 { FD_CMD_SAVE
, 0xff, "SAVE", 0, fdctrl_handle_save
}, /* part of READ DELETED DATA */
2367 { FD_CMD_READ_DELETED
, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_READ
},
2368 { FD_CMD_SCAN_EQUAL
, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANE
},
2369 { FD_CMD_VERIFY
, 0x1f, "VERIFY", 8, fdctrl_start_transfer
, FD_DIR_VERIFY
},
2370 { FD_CMD_SCAN_LOW_OR_EQUAL
, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANL
},
2371 { FD_CMD_SCAN_HIGH_OR_EQUAL
, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANH
},
2372 { FD_CMD_WRITE_DELETED
, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_WRITE
},
2373 { FD_CMD_READ_ID
, 0xbf, "READ ID", 1, fdctrl_handle_readid
},
2374 { FD_CMD_SPECIFY
, 0xff, "SPECIFY", 2, fdctrl_handle_specify
},
2375 { FD_CMD_SENSE_DRIVE_STATUS
, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status
},
2376 { FD_CMD_PERPENDICULAR_MODE
, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode
},
2377 { FD_CMD_CONFIGURE
, 0xff, "CONFIGURE", 3, fdctrl_handle_configure
},
2378 { FD_CMD_POWERDOWN_MODE
, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode
},
2379 { FD_CMD_OPTION
, 0xff, "OPTION", 1, fdctrl_handle_option
},
2380 { FD_CMD_DRIVE_SPECIFICATION_COMMAND
, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command
},
2381 { FD_CMD_RELATIVE_SEEK_OUT
, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out
},
2382 { FD_CMD_FORMAT_AND_WRITE
, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented
},
2383 { FD_CMD_RELATIVE_SEEK_IN
, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in
},
2384 { FD_CMD_LOCK
, 0x7f, "LOCK", 0, fdctrl_handle_lock
},
2385 { FD_CMD_DUMPREG
, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg
},
2386 { FD_CMD_VERSION
, 0xff, "VERSION", 0, fdctrl_handle_version
},
2387 { FD_CMD_PART_ID
, 0xff, "PART ID", 0, fdctrl_handle_partid
},
2388 { FD_CMD_WRITE
, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer
, FD_DIR_WRITE
}, /* not in specification ; BeOS 4.5 bug */
2389 { 0, 0, "unknown", 0, fdctrl_unimplemented
}, /* default handler */
2391 /* Associate command to an index in the 'handlers' array */
2392 static uint8_t command_to_handler
[256];
2394 static const FDCtrlCommand
*get_command(uint8_t cmd
)
2398 idx
= command_to_handler
[cmd
];
2399 FLOPPY_DPRINTF("%s command\n", handlers
[idx
].name
);
2400 return &handlers
[idx
];
2403 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
)
2406 const FDCtrlCommand
*cmd
;
2410 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
2411 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2414 if (!(fdctrl
->msr
& FD_MSR_RQM
) || (fdctrl
->msr
& FD_MSR_DIO
)) {
2415 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2418 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
2420 FLOPPY_DPRINTF("%s: %02x\n", __func__
, value
);
2422 /* If data_len spans multiple sectors, the current position in the FIFO
2423 * wraps around while fdctrl->data_pos is the real position in the whole
2425 pos
= fdctrl
->data_pos
++;
2426 pos
%= FD_SECTOR_LEN
;
2427 fdctrl
->fifo
[pos
] = value
;
2429 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2430 fdctrl
->msr
&= ~FD_MSR_RQM
;
2433 switch (fdctrl
->phase
) {
2434 case FD_PHASE_EXECUTION
:
2435 /* For DMA requests, RQM should be cleared during execution phase, so
2436 * we would have errored out above. */
2437 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
2439 /* FIFO data write */
2440 if (pos
== FD_SECTOR_LEN
- 1 ||
2441 fdctrl
->data_pos
== fdctrl
->data_len
) {
2442 cur_drv
= get_cur_drv(fdctrl
);
2443 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2444 BDRV_SECTOR_SIZE
, 0) < 0) {
2445 FLOPPY_DPRINTF("error writing sector %d\n",
2446 fd_sector(cur_drv
));
2449 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
2450 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2451 fd_sector(cur_drv
));
2456 /* Switch to result phase when done with the transfer */
2457 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2458 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2462 case FD_PHASE_COMMAND
:
2463 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
2464 assert(fdctrl
->data_pos
< FD_SECTOR_LEN
);
2467 /* The first byte specifies the command. Now we start reading
2468 * as many parameters as this command requires. */
2469 cmd
= get_command(value
);
2470 fdctrl
->data_len
= cmd
->parameters
+ 1;
2471 if (cmd
->parameters
) {
2472 fdctrl
->msr
|= FD_MSR_RQM
;
2474 fdctrl
->msr
|= FD_MSR_CMDBUSY
;
2477 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2478 /* We have all parameters now, execute the command */
2479 fdctrl
->phase
= FD_PHASE_EXECUTION
;
2481 if (fdctrl
->data_state
& FD_STATE_FORMAT
) {
2482 fdctrl_format_sector(fdctrl
);
2486 cmd
= get_command(fdctrl
->fifo
[0]);
2487 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd
->name
);
2488 cmd
->handler(fdctrl
, cmd
->direction
);
2492 case FD_PHASE_RESULT
:
2498 static void fdctrl_result_timer(void *opaque
)
2500 FDCtrl
*fdctrl
= opaque
;
2501 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2503 /* Pretend we are spinning.
2504 * This is needed for Coherent, which uses READ ID to check for
2505 * sector interleaving.
2507 if (cur_drv
->last_sect
!= 0) {
2508 cur_drv
->sect
= (cur_drv
->sect
% cur_drv
->last_sect
) + 1;
2510 /* READ_ID can't automatically succeed! */
2511 if (fdctrl
->check_media_rate
&&
2512 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
2513 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2514 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
2515 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
2517 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2521 /* Init functions */
2522 static void fdctrl_connect_drives(FDCtrl
*fdctrl
, DeviceState
*fdc_dev
,
2529 Error
*local_err
= NULL
;
2531 for (i
= 0; i
< MAX_FD
; i
++) {
2532 drive
= &fdctrl
->drives
[i
];
2533 drive
->fdctrl
= fdctrl
;
2535 /* If the drive is not present, we skip creating the qdev device, but
2536 * still have to initialise the controller. */
2537 blk
= fdctrl
->qdev_for_drives
[i
].blk
;
2540 fd_revalidate(drive
);
2544 dev
= qdev_create(&fdctrl
->bus
.bus
, "floppy");
2545 qdev_prop_set_uint32(dev
, "unit", i
);
2546 qdev_prop_set_enum(dev
, "drive-type", fdctrl
->qdev_for_drives
[i
].type
);
2549 blk_detach_dev(blk
, fdc_dev
);
2550 fdctrl
->qdev_for_drives
[i
].blk
= NULL
;
2551 qdev_prop_set_drive(dev
, "drive", blk
, &local_err
);
2555 error_propagate(errp
, local_err
);
2559 object_property_set_bool(OBJECT(dev
), true, "realized", &local_err
);
2561 error_propagate(errp
, local_err
);
2567 ISADevice
*fdctrl_init_isa(ISABus
*bus
, DriveInfo
**fds
)
2572 isadev
= isa_try_create(bus
, TYPE_ISA_FDC
);
2576 dev
= DEVICE(isadev
);
2579 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2583 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2586 qdev_init_nofail(dev
);
2591 void fdctrl_init_sysbus(qemu_irq irq
, int dma_chann
,
2592 hwaddr mmio_base
, DriveInfo
**fds
)
2599 dev
= qdev_create(NULL
, "sysbus-fdc");
2600 sys
= SYSBUS_FDC(dev
);
2601 fdctrl
= &sys
->state
;
2602 fdctrl
->dma_chann
= dma_chann
; /* FIXME */
2604 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2608 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2611 qdev_init_nofail(dev
);
2612 sbd
= SYS_BUS_DEVICE(dev
);
2613 sysbus_connect_irq(sbd
, 0, irq
);
2614 sysbus_mmio_map(sbd
, 0, mmio_base
);
2617 void sun4m_fdctrl_init(qemu_irq irq
, hwaddr io_base
,
2618 DriveInfo
**fds
, qemu_irq
*fdc_tc
)
2623 dev
= qdev_create(NULL
, "SUNW,fdtwo");
2625 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(fds
[0]),
2628 qdev_init_nofail(dev
);
2629 sys
= SYSBUS_FDC(dev
);
2630 sysbus_connect_irq(SYS_BUS_DEVICE(sys
), 0, irq
);
2631 sysbus_mmio_map(SYS_BUS_DEVICE(sys
), 0, io_base
);
2632 *fdc_tc
= qdev_get_gpio_in(dev
, 0);
2635 static void fdctrl_realize_common(DeviceState
*dev
, FDCtrl
*fdctrl
,
2639 static int command_tables_inited
= 0;
2641 if (fdctrl
->fallback
== FLOPPY_DRIVE_TYPE_AUTO
) {
2642 error_setg(errp
, "Cannot choose a fallback FDrive type of 'auto'");
2645 /* Fill 'command_to_handler' lookup table */
2646 if (!command_tables_inited
) {
2647 command_tables_inited
= 1;
2648 for (i
= ARRAY_SIZE(handlers
) - 1; i
>= 0; i
--) {
2649 for (j
= 0; j
< sizeof(command_to_handler
); j
++) {
2650 if ((j
& handlers
[i
].mask
) == handlers
[i
].value
) {
2651 command_to_handler
[j
] = i
;
2657 FLOPPY_DPRINTF("init controller\n");
2658 fdctrl
->fifo
= qemu_memalign(512, FD_SECTOR_LEN
);
2659 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
2660 fdctrl
->fifo_size
= 512;
2661 fdctrl
->result_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
2662 fdctrl_result_timer
, fdctrl
);
2664 fdctrl
->version
= 0x90; /* Intel 82078 controller */
2665 fdctrl
->config
= FD_CONFIG_EIS
| FD_CONFIG_EFIFO
; /* Implicit seek, polling & FIFO enabled */
2666 fdctrl
->num_floppies
= MAX_FD
;
2668 if (fdctrl
->dma_chann
!= -1) {
2670 assert(fdctrl
->dma
);
2671 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
2672 k
->register_channel(fdctrl
->dma
, fdctrl
->dma_chann
,
2673 &fdctrl_transfer_handler
, fdctrl
);
2676 floppy_bus_create(fdctrl
, &fdctrl
->bus
, dev
);
2677 fdctrl_connect_drives(fdctrl
, dev
, errp
);
2680 static const MemoryRegionPortio fdc_portio_list
[] = {
2681 { 1, 5, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2682 { 7, 1, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2683 PORTIO_END_OF_LIST(),
2686 static void isabus_fdc_realize(DeviceState
*dev
, Error
**errp
)
2688 ISADevice
*isadev
= ISA_DEVICE(dev
);
2689 FDCtrlISABus
*isa
= ISA_FDC(dev
);
2690 FDCtrl
*fdctrl
= &isa
->state
;
2693 isa_register_portio_list(isadev
, &fdctrl
->portio_list
,
2694 isa
->iobase
, fdc_portio_list
, fdctrl
,
2697 isa_init_irq(isadev
, &fdctrl
->irq
, isa
->irq
);
2698 fdctrl
->dma_chann
= isa
->dma
;
2699 if (fdctrl
->dma_chann
!= -1) {
2700 fdctrl
->dma
= isa_get_dma(isa_bus_from_device(isadev
), isa
->dma
);
2702 error_setg(errp
, "ISA controller does not support DMA");
2707 qdev_set_legacy_instance_id(dev
, isa
->iobase
, 2);
2708 fdctrl_realize_common(dev
, fdctrl
, &err
);
2710 error_propagate(errp
, err
);
2715 static void sysbus_fdc_initfn(Object
*obj
)
2717 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2718 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2719 FDCtrl
*fdctrl
= &sys
->state
;
2721 fdctrl
->dma_chann
= -1;
2723 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_ops
, fdctrl
,
2725 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2728 static void sun4m_fdc_initfn(Object
*obj
)
2730 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2731 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2732 FDCtrl
*fdctrl
= &sys
->state
;
2734 fdctrl
->dma_chann
= -1;
2736 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_strict_ops
,
2737 fdctrl
, "fdctrl", 0x08);
2738 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2741 static void sysbus_fdc_common_initfn(Object
*obj
)
2743 DeviceState
*dev
= DEVICE(obj
);
2744 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
2745 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2746 FDCtrl
*fdctrl
= &sys
->state
;
2748 qdev_set_legacy_instance_id(dev
, 0 /* io */, 2); /* FIXME */
2750 sysbus_init_irq(sbd
, &fdctrl
->irq
);
2751 qdev_init_gpio_in(dev
, fdctrl_handle_tc
, 1);
2754 static void sysbus_fdc_common_realize(DeviceState
*dev
, Error
**errp
)
2756 FDCtrlSysBus
*sys
= SYSBUS_FDC(dev
);
2757 FDCtrl
*fdctrl
= &sys
->state
;
2759 fdctrl_realize_common(dev
, fdctrl
, errp
);
2762 FloppyDriveType
isa_fdc_get_drive_type(ISADevice
*fdc
, int i
)
2764 FDCtrlISABus
*isa
= ISA_FDC(fdc
);
2766 return isa
->state
.drives
[i
].drive
;
2769 void isa_fdc_get_drive_max_chs(FloppyDriveType type
,
2770 uint8_t *maxc
, uint8_t *maxh
, uint8_t *maxs
)
2772 const FDFormat
*fdf
;
2774 *maxc
= *maxh
= *maxs
= 0;
2775 for (fdf
= fd_formats
; fdf
->drive
!= FLOPPY_DRIVE_TYPE_NONE
; fdf
++) {
2776 if (fdf
->drive
!= type
) {
2779 if (*maxc
< fdf
->max_track
) {
2780 *maxc
= fdf
->max_track
;
2782 if (*maxh
< fdf
->max_head
) {
2783 *maxh
= fdf
->max_head
;
2785 if (*maxs
< fdf
->last_sect
) {
2786 *maxs
= fdf
->last_sect
;
2792 static const VMStateDescription vmstate_isa_fdc
={
2795 .minimum_version_id
= 2,
2796 .fields
= (VMStateField
[]) {
2797 VMSTATE_STRUCT(state
, FDCtrlISABus
, 0, vmstate_fdc
, FDCtrl
),
2798 VMSTATE_END_OF_LIST()
2802 static Property isa_fdc_properties
[] = {
2803 DEFINE_PROP_UINT32("iobase", FDCtrlISABus
, iobase
, 0x3f0),
2804 DEFINE_PROP_UINT32("irq", FDCtrlISABus
, irq
, 6),
2805 DEFINE_PROP_UINT32("dma", FDCtrlISABus
, dma
, 2),
2806 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus
, state
.qdev_for_drives
[0].blk
),
2807 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus
, state
.qdev_for_drives
[1].blk
),
2808 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus
, state
.check_media_rate
,
2810 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus
, state
.qdev_for_drives
[0].type
,
2811 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2813 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus
, state
.qdev_for_drives
[1].type
,
2814 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2816 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2817 FLOPPY_DRIVE_TYPE_288
, qdev_prop_fdc_drive_type
,
2819 DEFINE_PROP_END_OF_LIST(),
2822 static void isabus_fdc_class_init(ObjectClass
*klass
, void *data
)
2824 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2826 dc
->realize
= isabus_fdc_realize
;
2827 dc
->fw_name
= "fdc";
2828 dc
->reset
= fdctrl_external_reset_isa
;
2829 dc
->vmsd
= &vmstate_isa_fdc
;
2830 dc
->props
= isa_fdc_properties
;
2831 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2834 static void isabus_fdc_instance_init(Object
*obj
)
2836 FDCtrlISABus
*isa
= ISA_FDC(obj
);
2838 device_add_bootindex_property(obj
, &isa
->bootindexA
,
2839 "bootindexA", "/floppy@0",
2841 device_add_bootindex_property(obj
, &isa
->bootindexB
,
2842 "bootindexB", "/floppy@1",
2846 static const TypeInfo isa_fdc_info
= {
2847 .name
= TYPE_ISA_FDC
,
2848 .parent
= TYPE_ISA_DEVICE
,
2849 .instance_size
= sizeof(FDCtrlISABus
),
2850 .class_init
= isabus_fdc_class_init
,
2851 .instance_init
= isabus_fdc_instance_init
,
2854 static const VMStateDescription vmstate_sysbus_fdc
={
2857 .minimum_version_id
= 2,
2858 .fields
= (VMStateField
[]) {
2859 VMSTATE_STRUCT(state
, FDCtrlSysBus
, 0, vmstate_fdc
, FDCtrl
),
2860 VMSTATE_END_OF_LIST()
2864 static Property sysbus_fdc_properties
[] = {
2865 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2866 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus
, state
.qdev_for_drives
[1].blk
),
2867 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2868 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2870 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus
, state
.qdev_for_drives
[1].type
,
2871 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2873 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2874 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2876 DEFINE_PROP_END_OF_LIST(),
2879 static void sysbus_fdc_class_init(ObjectClass
*klass
, void *data
)
2881 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2883 dc
->props
= sysbus_fdc_properties
;
2884 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2887 static const TypeInfo sysbus_fdc_info
= {
2888 .name
= "sysbus-fdc",
2889 .parent
= TYPE_SYSBUS_FDC
,
2890 .instance_init
= sysbus_fdc_initfn
,
2891 .class_init
= sysbus_fdc_class_init
,
2894 static Property sun4m_fdc_properties
[] = {
2895 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2896 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2897 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2899 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2900 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2902 DEFINE_PROP_END_OF_LIST(),
2905 static void sun4m_fdc_class_init(ObjectClass
*klass
, void *data
)
2907 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2909 dc
->props
= sun4m_fdc_properties
;
2910 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2913 static const TypeInfo sun4m_fdc_info
= {
2914 .name
= "SUNW,fdtwo",
2915 .parent
= TYPE_SYSBUS_FDC
,
2916 .instance_init
= sun4m_fdc_initfn
,
2917 .class_init
= sun4m_fdc_class_init
,
2920 static void sysbus_fdc_common_class_init(ObjectClass
*klass
, void *data
)
2922 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2924 dc
->realize
= sysbus_fdc_common_realize
;
2925 dc
->reset
= fdctrl_external_reset_sysbus
;
2926 dc
->vmsd
= &vmstate_sysbus_fdc
;
2929 static const TypeInfo sysbus_fdc_type_info
= {
2930 .name
= TYPE_SYSBUS_FDC
,
2931 .parent
= TYPE_SYS_BUS_DEVICE
,
2932 .instance_size
= sizeof(FDCtrlSysBus
),
2933 .instance_init
= sysbus_fdc_common_initfn
,
2935 .class_init
= sysbus_fdc_common_class_init
,
2938 static void fdc_register_types(void)
2940 type_register_static(&isa_fdc_info
);
2941 type_register_static(&sysbus_fdc_type_info
);
2942 type_register_static(&sysbus_fdc_info
);
2943 type_register_static(&sun4m_fdc_info
);
2944 type_register_static(&floppy_bus_info
);
2945 type_register_static(&floppy_drive_info
);
2948 type_init(fdc_register_types
)