pci bridge dev: change msi property type
[qemu/ar7.git] / hw / char / serial.c
blob3442f47d36844a73c3c3d6a1834616d1f51fdff0
1 /*
2 * QEMU 16550A UART emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "sysemu/char.h"
29 #include "qapi/error.h"
30 #include "qemu/timer.h"
31 #include "exec/address-spaces.h"
32 #include "qemu/error-report.h"
34 //#define DEBUG_SERIAL
36 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
38 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
39 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
40 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
41 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
43 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
44 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
46 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
47 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
48 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
49 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
50 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
52 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
53 #define UART_IIR_FE 0xC0 /* Fifo enabled */
56 * These are the definitions for the Modem Control Register
58 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
59 #define UART_MCR_OUT2 0x08 /* Out2 complement */
60 #define UART_MCR_OUT1 0x04 /* Out1 complement */
61 #define UART_MCR_RTS 0x02 /* RTS complement */
62 #define UART_MCR_DTR 0x01 /* DTR complement */
65 * These are the definitions for the Modem Status Register
67 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
68 #define UART_MSR_RI 0x40 /* Ring Indicator */
69 #define UART_MSR_DSR 0x20 /* Data Set Ready */
70 #define UART_MSR_CTS 0x10 /* Clear to Send */
71 #define UART_MSR_DDCD 0x08 /* Delta DCD */
72 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
73 #define UART_MSR_DDSR 0x02 /* Delta DSR */
74 #define UART_MSR_DCTS 0x01 /* Delta CTS */
75 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
77 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
78 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
79 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
80 #define UART_LSR_FE 0x08 /* Frame error indicator */
81 #define UART_LSR_PE 0x04 /* Parity error indicator */
82 #define UART_LSR_OE 0x02 /* Overrun error indicator */
83 #define UART_LSR_DR 0x01 /* Receiver data ready */
84 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
86 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
88 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
89 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
90 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
91 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
93 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
94 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
95 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
96 #define UART_FCR_FE 0x01 /* FIFO Enable */
98 #define MAX_XMIT_RETRY 4
100 #ifdef DEBUG_SERIAL
101 #define DPRINTF(fmt, ...) \
102 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
103 #else
104 #define DPRINTF(fmt, ...) \
105 do {} while (0)
106 #endif
108 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
109 static void serial_xmit(SerialState *s);
111 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
113 /* Receive overruns do not overwrite FIFO contents. */
114 if (!fifo8_is_full(&s->recv_fifo)) {
115 fifo8_push(&s->recv_fifo, chr);
116 } else {
117 s->lsr |= UART_LSR_OE;
121 static void serial_update_irq(SerialState *s)
123 uint8_t tmp_iir = UART_IIR_NO_INT;
125 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
126 tmp_iir = UART_IIR_RLSI;
127 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
128 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
129 * this is not in the specification but is observed on existing
130 * hardware. */
131 tmp_iir = UART_IIR_CTI;
132 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
133 (!(s->fcr & UART_FCR_FE) ||
134 s->recv_fifo.num >= s->recv_fifo_itl)) {
135 tmp_iir = UART_IIR_RDI;
136 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
137 tmp_iir = UART_IIR_THRI;
138 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
139 tmp_iir = UART_IIR_MSI;
142 s->iir = tmp_iir | (s->iir & 0xF0);
144 if (tmp_iir != UART_IIR_NO_INT) {
145 qemu_irq_raise(s->irq);
146 } else {
147 qemu_irq_lower(s->irq);
151 static void serial_update_parameters(SerialState *s)
153 int speed, parity, data_bits, stop_bits, frame_size;
154 QEMUSerialSetParams ssp;
156 if (s->divider == 0)
157 return;
159 /* Start bit. */
160 frame_size = 1;
161 if (s->lcr & 0x08) {
162 /* Parity bit. */
163 frame_size++;
164 if (s->lcr & 0x10)
165 parity = 'E';
166 else
167 parity = 'O';
168 } else {
169 parity = 'N';
171 if (s->lcr & 0x04)
172 stop_bits = 2;
173 else
174 stop_bits = 1;
176 data_bits = (s->lcr & 0x03) + 5;
177 frame_size += data_bits + stop_bits;
178 speed = s->baudbase / s->divider;
179 ssp.speed = speed;
180 ssp.parity = parity;
181 ssp.data_bits = data_bits;
182 ssp.stop_bits = stop_bits;
183 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
184 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
186 DPRINTF("speed=%d parity=%c data=%d stop=%d\n",
187 speed, parity, data_bits, stop_bits);
190 static void serial_update_msl(SerialState *s)
192 uint8_t omsr;
193 int flags;
195 timer_del(s->modem_status_poll);
197 if (qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) {
198 s->poll_msl = -1;
199 return;
202 omsr = s->msr;
204 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
205 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
206 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
207 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
209 if (s->msr != omsr) {
210 /* Set delta bits */
211 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
212 /* UART_MSR_TERI only if change was from 1 -> 0 */
213 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
214 s->msr &= ~UART_MSR_TERI;
215 serial_update_irq(s);
218 /* The real 16550A apparently has a 250ns response latency to line status changes.
219 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
221 if (s->poll_msl) {
222 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
223 NANOSECONDS_PER_SECOND / 100);
227 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
228 void *opaque)
230 SerialState *s = opaque;
231 s->watch_tag = 0;
232 serial_xmit(s);
233 return FALSE;
236 static void serial_xmit(SerialState *s)
238 do {
239 assert(!(s->lsr & UART_LSR_TEMT));
240 if (s->tsr_retry == 0) {
241 assert(!(s->lsr & UART_LSR_THRE));
243 if (s->fcr & UART_FCR_FE) {
244 assert(!fifo8_is_empty(&s->xmit_fifo));
245 s->tsr = fifo8_pop(&s->xmit_fifo);
246 if (!s->xmit_fifo.num) {
247 s->lsr |= UART_LSR_THRE;
249 } else {
250 s->tsr = s->thr;
251 s->lsr |= UART_LSR_THRE;
253 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
254 s->thr_ipending = 1;
255 serial_update_irq(s);
259 if (s->mcr & UART_MCR_LOOP) {
260 /* in loopback mode, say that we just received a char */
261 serial_receive1(s, &s->tsr, 1);
262 } else if (qemu_chr_fe_write(s->chr, &s->tsr, 1) != 1 &&
263 s->tsr_retry < MAX_XMIT_RETRY) {
264 assert(s->watch_tag == 0);
265 s->watch_tag = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
266 serial_watch_cb, s);
267 if (s->watch_tag > 0) {
268 s->tsr_retry++;
269 return;
272 s->tsr_retry = 0;
274 /* Transmit another byte if it is already available. It is only
275 possible when FIFO is enabled and not empty. */
276 } while (!(s->lsr & UART_LSR_THRE));
278 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
279 s->lsr |= UART_LSR_TEMT;
282 /* Setter for FCR.
283 is_load flag means, that value is set while loading VM state
284 and interrupt should not be invoked */
285 static void serial_write_fcr(SerialState *s, uint8_t val)
287 /* Set fcr - val only has the bits that are supposed to "stick" */
288 s->fcr = val;
290 if (val & UART_FCR_FE) {
291 s->iir |= UART_IIR_FE;
292 /* Set recv_fifo trigger Level */
293 switch (val & 0xC0) {
294 case UART_FCR_ITL_1:
295 s->recv_fifo_itl = 1;
296 break;
297 case UART_FCR_ITL_2:
298 s->recv_fifo_itl = 4;
299 break;
300 case UART_FCR_ITL_3:
301 s->recv_fifo_itl = 8;
302 break;
303 case UART_FCR_ITL_4:
304 s->recv_fifo_itl = 14;
305 break;
307 } else {
308 s->iir &= ~UART_IIR_FE;
312 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
313 unsigned size)
315 SerialState *s = opaque;
317 addr &= 7;
318 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val);
319 switch(addr) {
320 default:
321 case 0:
322 if (s->lcr & UART_LCR_DLAB) {
323 s->divider = (s->divider & 0xff00) | val;
324 serial_update_parameters(s);
325 } else {
326 s->thr = (uint8_t) val;
327 if(s->fcr & UART_FCR_FE) {
328 /* xmit overruns overwrite data, so make space if needed */
329 if (fifo8_is_full(&s->xmit_fifo)) {
330 fifo8_pop(&s->xmit_fifo);
332 fifo8_push(&s->xmit_fifo, s->thr);
334 s->thr_ipending = 0;
335 s->lsr &= ~UART_LSR_THRE;
336 s->lsr &= ~UART_LSR_TEMT;
337 serial_update_irq(s);
338 if (s->tsr_retry == 0) {
339 serial_xmit(s);
342 break;
343 case 1:
344 if (s->lcr & UART_LCR_DLAB) {
345 s->divider = (s->divider & 0x00ff) | (val << 8);
346 serial_update_parameters(s);
347 } else {
348 uint8_t changed = (s->ier ^ val) & 0x0f;
349 s->ier = val & 0x0f;
350 /* If the backend device is a real serial port, turn polling of the modem
351 * status lines on physical port on or off depending on UART_IER_MSI state.
353 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
354 if (s->ier & UART_IER_MSI) {
355 s->poll_msl = 1;
356 serial_update_msl(s);
357 } else {
358 timer_del(s->modem_status_poll);
359 s->poll_msl = 0;
363 /* Turning on the THRE interrupt on IER can trigger the interrupt
364 * if LSR.THRE=1, even if it had been masked before by reading IIR.
365 * This is not in the datasheet, but Windows relies on it. It is
366 * unclear if THRE has to be resampled every time THRI becomes
367 * 1, or only on the rising edge. Bochs does the latter, and Windows
368 * always toggles IER to all zeroes and back to all ones, so do the
369 * same.
371 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
372 * so that the thr_ipending subsection is not migrated.
374 if (changed & UART_IER_THRI) {
375 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
376 s->thr_ipending = 1;
377 } else {
378 s->thr_ipending = 0;
382 if (changed) {
383 serial_update_irq(s);
386 break;
387 case 2:
388 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
389 if ((val ^ s->fcr) & UART_FCR_FE) {
390 val |= UART_FCR_XFR | UART_FCR_RFR;
393 /* FIFO clear */
395 if (val & UART_FCR_RFR) {
396 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
397 timer_del(s->fifo_timeout_timer);
398 s->timeout_ipending = 0;
399 fifo8_reset(&s->recv_fifo);
402 if (val & UART_FCR_XFR) {
403 s->lsr |= UART_LSR_THRE;
404 s->thr_ipending = 1;
405 fifo8_reset(&s->xmit_fifo);
408 serial_write_fcr(s, val & 0xC9);
409 serial_update_irq(s);
410 break;
411 case 3:
413 int break_enable;
414 s->lcr = val;
415 serial_update_parameters(s);
416 break_enable = (val >> 6) & 1;
417 if (break_enable != s->last_break_enable) {
418 s->last_break_enable = break_enable;
419 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
420 &break_enable);
423 break;
424 case 4:
426 int flags;
427 int old_mcr = s->mcr;
428 s->mcr = val & 0x1f;
429 if (val & UART_MCR_LOOP)
430 break;
432 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
434 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
436 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
438 if (val & UART_MCR_RTS)
439 flags |= CHR_TIOCM_RTS;
440 if (val & UART_MCR_DTR)
441 flags |= CHR_TIOCM_DTR;
443 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
444 /* Update the modem status after a one-character-send wait-time, since there may be a response
445 from the device/computer at the other end of the serial line */
446 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
449 break;
450 case 5:
451 break;
452 case 6:
453 break;
454 case 7:
455 s->scr = val;
456 break;
460 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
462 SerialState *s = opaque;
463 uint32_t ret;
465 addr &= 7;
466 switch(addr) {
467 default:
468 case 0:
469 if (s->lcr & UART_LCR_DLAB) {
470 ret = s->divider & 0xff;
471 } else {
472 if(s->fcr & UART_FCR_FE) {
473 ret = fifo8_is_empty(&s->recv_fifo) ?
474 0 : fifo8_pop(&s->recv_fifo);
475 if (s->recv_fifo.num == 0) {
476 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
477 } else {
478 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
480 s->timeout_ipending = 0;
481 } else {
482 ret = s->rbr;
483 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
485 serial_update_irq(s);
486 if (!(s->mcr & UART_MCR_LOOP)) {
487 /* in loopback mode, don't receive any data */
488 qemu_chr_accept_input(s->chr);
491 break;
492 case 1:
493 if (s->lcr & UART_LCR_DLAB) {
494 ret = (s->divider >> 8) & 0xff;
495 } else {
496 ret = s->ier;
498 break;
499 case 2:
500 ret = s->iir;
501 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
502 s->thr_ipending = 0;
503 serial_update_irq(s);
505 break;
506 case 3:
507 ret = s->lcr;
508 break;
509 case 4:
510 ret = s->mcr;
511 break;
512 case 5:
513 ret = s->lsr;
514 /* Clear break and overrun interrupts */
515 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
516 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
517 serial_update_irq(s);
519 break;
520 case 6:
521 if (s->mcr & UART_MCR_LOOP) {
522 /* in loopback, the modem output pins are connected to the
523 inputs */
524 ret = (s->mcr & 0x0c) << 4;
525 ret |= (s->mcr & 0x02) << 3;
526 ret |= (s->mcr & 0x01) << 5;
527 } else {
528 if (s->poll_msl >= 0)
529 serial_update_msl(s);
530 ret = s->msr;
531 /* Clear delta bits & msr int after read, if they were set */
532 if (s->msr & UART_MSR_ANY_DELTA) {
533 s->msr &= 0xF0;
534 serial_update_irq(s);
537 break;
538 case 7:
539 ret = s->scr;
540 break;
542 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret);
543 return ret;
546 static int serial_can_receive(SerialState *s)
548 if(s->fcr & UART_FCR_FE) {
549 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
551 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
552 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
553 * effect will be to almost always fill the fifo completely before
554 * the guest has a chance to respond, effectively overriding the ITL
555 * that the guest has set.
557 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
558 s->recv_fifo_itl - s->recv_fifo.num : 1;
559 } else {
560 return 0;
562 } else {
563 return !(s->lsr & UART_LSR_DR);
567 static void serial_receive_break(SerialState *s)
569 s->rbr = 0;
570 /* When the LSR_DR is set a null byte is pushed into the fifo */
571 recv_fifo_put(s, '\0');
572 s->lsr |= UART_LSR_BI | UART_LSR_DR;
573 serial_update_irq(s);
576 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
577 static void fifo_timeout_int (void *opaque) {
578 SerialState *s = opaque;
579 if (s->recv_fifo.num) {
580 s->timeout_ipending = 1;
581 serial_update_irq(s);
585 static int serial_can_receive1(void *opaque)
587 SerialState *s = opaque;
588 return serial_can_receive(s);
591 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
593 SerialState *s = opaque;
595 if (s->wakeup) {
596 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER);
598 if(s->fcr & UART_FCR_FE) {
599 int i;
600 for (i = 0; i < size; i++) {
601 recv_fifo_put(s, buf[i]);
603 s->lsr |= UART_LSR_DR;
604 /* call the timeout receive callback in 4 char transmit time */
605 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
606 } else {
607 if (s->lsr & UART_LSR_DR)
608 s->lsr |= UART_LSR_OE;
609 s->rbr = buf[0];
610 s->lsr |= UART_LSR_DR;
612 serial_update_irq(s);
615 static void serial_event(void *opaque, int event)
617 SerialState *s = opaque;
618 DPRINTF("event %x\n", event);
619 if (event == CHR_EVENT_BREAK)
620 serial_receive_break(s);
623 static void serial_pre_save(void *opaque)
625 SerialState *s = opaque;
626 s->fcr_vmstate = s->fcr;
629 static int serial_pre_load(void *opaque)
631 SerialState *s = opaque;
632 s->thr_ipending = -1;
633 s->poll_msl = -1;
634 return 0;
637 static int serial_post_load(void *opaque, int version_id)
639 SerialState *s = opaque;
641 if (version_id < 3) {
642 s->fcr_vmstate = 0;
644 if (s->thr_ipending == -1) {
645 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
648 if (s->tsr_retry > 0) {
649 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
650 if (s->lsr & UART_LSR_TEMT) {
651 error_report("inconsistent state in serial device "
652 "(tsr empty, tsr_retry=%d", s->tsr_retry);
653 return -1;
656 if (s->tsr_retry > MAX_XMIT_RETRY) {
657 s->tsr_retry = MAX_XMIT_RETRY;
660 assert(s->watch_tag == 0);
661 s->watch_tag = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
662 serial_watch_cb, s);
663 } else {
664 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
665 if (!(s->lsr & UART_LSR_TEMT)) {
666 error_report("inconsistent state in serial device "
667 "(tsr not empty, tsr_retry=0");
668 return -1;
672 s->last_break_enable = (s->lcr >> 6) & 1;
673 /* Initialize fcr via setter to perform essential side-effects */
674 serial_write_fcr(s, s->fcr_vmstate);
675 serial_update_parameters(s);
676 return 0;
679 static bool serial_thr_ipending_needed(void *opaque)
681 SerialState *s = opaque;
683 if (s->ier & UART_IER_THRI) {
684 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
685 return s->thr_ipending != expected_value;
686 } else {
687 /* LSR.THRE will be sampled again when the interrupt is
688 * enabled. thr_ipending is not used in this case, do
689 * not migrate it.
691 return false;
695 static const VMStateDescription vmstate_serial_thr_ipending = {
696 .name = "serial/thr_ipending",
697 .version_id = 1,
698 .minimum_version_id = 1,
699 .needed = serial_thr_ipending_needed,
700 .fields = (VMStateField[]) {
701 VMSTATE_INT32(thr_ipending, SerialState),
702 VMSTATE_END_OF_LIST()
706 static bool serial_tsr_needed(void *opaque)
708 SerialState *s = (SerialState *)opaque;
709 return s->tsr_retry != 0;
712 static const VMStateDescription vmstate_serial_tsr = {
713 .name = "serial/tsr",
714 .version_id = 1,
715 .minimum_version_id = 1,
716 .needed = serial_tsr_needed,
717 .fields = (VMStateField[]) {
718 VMSTATE_UINT32(tsr_retry, SerialState),
719 VMSTATE_UINT8(thr, SerialState),
720 VMSTATE_UINT8(tsr, SerialState),
721 VMSTATE_END_OF_LIST()
725 static bool serial_recv_fifo_needed(void *opaque)
727 SerialState *s = (SerialState *)opaque;
728 return !fifo8_is_empty(&s->recv_fifo);
732 static const VMStateDescription vmstate_serial_recv_fifo = {
733 .name = "serial/recv_fifo",
734 .version_id = 1,
735 .minimum_version_id = 1,
736 .needed = serial_recv_fifo_needed,
737 .fields = (VMStateField[]) {
738 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
739 VMSTATE_END_OF_LIST()
743 static bool serial_xmit_fifo_needed(void *opaque)
745 SerialState *s = (SerialState *)opaque;
746 return !fifo8_is_empty(&s->xmit_fifo);
749 static const VMStateDescription vmstate_serial_xmit_fifo = {
750 .name = "serial/xmit_fifo",
751 .version_id = 1,
752 .minimum_version_id = 1,
753 .needed = serial_xmit_fifo_needed,
754 .fields = (VMStateField[]) {
755 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
756 VMSTATE_END_OF_LIST()
760 static bool serial_fifo_timeout_timer_needed(void *opaque)
762 SerialState *s = (SerialState *)opaque;
763 return timer_pending(s->fifo_timeout_timer);
766 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
767 .name = "serial/fifo_timeout_timer",
768 .version_id = 1,
769 .minimum_version_id = 1,
770 .needed = serial_fifo_timeout_timer_needed,
771 .fields = (VMStateField[]) {
772 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
773 VMSTATE_END_OF_LIST()
777 static bool serial_timeout_ipending_needed(void *opaque)
779 SerialState *s = (SerialState *)opaque;
780 return s->timeout_ipending != 0;
783 static const VMStateDescription vmstate_serial_timeout_ipending = {
784 .name = "serial/timeout_ipending",
785 .version_id = 1,
786 .minimum_version_id = 1,
787 .needed = serial_timeout_ipending_needed,
788 .fields = (VMStateField[]) {
789 VMSTATE_INT32(timeout_ipending, SerialState),
790 VMSTATE_END_OF_LIST()
794 static bool serial_poll_needed(void *opaque)
796 SerialState *s = (SerialState *)opaque;
797 return s->poll_msl >= 0;
800 static const VMStateDescription vmstate_serial_poll = {
801 .name = "serial/poll",
802 .version_id = 1,
803 .needed = serial_poll_needed,
804 .minimum_version_id = 1,
805 .fields = (VMStateField[]) {
806 VMSTATE_INT32(poll_msl, SerialState),
807 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
808 VMSTATE_END_OF_LIST()
812 const VMStateDescription vmstate_serial = {
813 .name = "serial",
814 .version_id = 3,
815 .minimum_version_id = 2,
816 .pre_save = serial_pre_save,
817 .pre_load = serial_pre_load,
818 .post_load = serial_post_load,
819 .fields = (VMStateField[]) {
820 VMSTATE_UINT16_V(divider, SerialState, 2),
821 VMSTATE_UINT8(rbr, SerialState),
822 VMSTATE_UINT8(ier, SerialState),
823 VMSTATE_UINT8(iir, SerialState),
824 VMSTATE_UINT8(lcr, SerialState),
825 VMSTATE_UINT8(mcr, SerialState),
826 VMSTATE_UINT8(lsr, SerialState),
827 VMSTATE_UINT8(msr, SerialState),
828 VMSTATE_UINT8(scr, SerialState),
829 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
830 VMSTATE_END_OF_LIST()
832 .subsections = (const VMStateDescription*[]) {
833 &vmstate_serial_thr_ipending,
834 &vmstate_serial_tsr,
835 &vmstate_serial_recv_fifo,
836 &vmstate_serial_xmit_fifo,
837 &vmstate_serial_fifo_timeout_timer,
838 &vmstate_serial_timeout_ipending,
839 &vmstate_serial_poll,
840 NULL
844 static void serial_reset(void *opaque)
846 SerialState *s = opaque;
848 if (s->watch_tag > 0) {
849 g_source_remove(s->watch_tag);
850 s->watch_tag = 0;
853 s->rbr = 0;
854 s->ier = 0;
855 s->iir = UART_IIR_NO_INT;
856 s->lcr = 0;
857 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
858 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
859 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
860 s->divider = 0x0C;
861 s->mcr = UART_MCR_OUT2;
862 s->scr = 0;
863 s->tsr_retry = 0;
864 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
865 s->poll_msl = 0;
867 s->timeout_ipending = 0;
868 timer_del(s->fifo_timeout_timer);
869 timer_del(s->modem_status_poll);
871 fifo8_reset(&s->recv_fifo);
872 fifo8_reset(&s->xmit_fifo);
874 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
876 s->thr_ipending = 0;
877 s->last_break_enable = 0;
878 qemu_irq_lower(s->irq);
880 serial_update_msl(s);
881 s->msr &= ~UART_MSR_ANY_DELTA;
884 void serial_realize_core(SerialState *s, Error **errp)
886 if (!s->chr) {
887 error_setg(errp, "Can't create serial device, empty char device");
888 return;
891 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
893 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
894 qemu_register_reset(serial_reset, s);
896 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1,
897 serial_event, s);
898 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
899 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
900 serial_reset(s);
903 void serial_exit_core(SerialState *s)
905 qemu_chr_add_handlers(s->chr, NULL, NULL, NULL, NULL);
906 qemu_unregister_reset(serial_reset, s);
909 /* Change the main reference oscillator frequency. */
910 void serial_set_frequency(SerialState *s, uint32_t frequency)
912 s->baudbase = frequency;
913 serial_update_parameters(s);
916 const MemoryRegionOps serial_io_ops = {
917 .read = serial_ioport_read,
918 .write = serial_ioport_write,
919 .impl = {
920 .min_access_size = 1,
921 .max_access_size = 1,
923 .endianness = DEVICE_LITTLE_ENDIAN,
926 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
927 CharDriverState *chr, MemoryRegion *system_io)
929 SerialState *s;
931 s = g_malloc0(sizeof(SerialState));
933 s->irq = irq;
934 s->baudbase = baudbase;
935 s->chr = chr;
936 serial_realize_core(s, &error_fatal);
938 vmstate_register(NULL, base, &vmstate_serial, s);
940 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
941 memory_region_add_subregion(system_io, base, &s->io);
943 return s;
946 /* Memory mapped interface */
947 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
948 unsigned size)
950 SerialState *s = opaque;
951 return serial_ioport_read(s, addr >> s->it_shift, 1);
954 static void serial_mm_write(void *opaque, hwaddr addr,
955 uint64_t value, unsigned size)
957 SerialState *s = opaque;
958 value &= ~0u >> (32 - (size * 8));
959 serial_ioport_write(s, addr >> s->it_shift, value, 1);
962 static const MemoryRegionOps serial_mm_ops[3] = {
963 [DEVICE_NATIVE_ENDIAN] = {
964 .read = serial_mm_read,
965 .write = serial_mm_write,
966 .endianness = DEVICE_NATIVE_ENDIAN,
968 [DEVICE_LITTLE_ENDIAN] = {
969 .read = serial_mm_read,
970 .write = serial_mm_write,
971 .endianness = DEVICE_LITTLE_ENDIAN,
973 [DEVICE_BIG_ENDIAN] = {
974 .read = serial_mm_read,
975 .write = serial_mm_write,
976 .endianness = DEVICE_BIG_ENDIAN,
980 SerialState *serial_mm_init(MemoryRegion *address_space,
981 hwaddr base, int it_shift,
982 qemu_irq irq, int baudbase,
983 CharDriverState *chr, enum device_endian end)
985 SerialState *s;
987 s = g_malloc0(sizeof(SerialState));
989 s->it_shift = it_shift;
990 s->irq = irq;
991 s->baudbase = baudbase;
992 s->chr = chr;
994 serial_realize_core(s, &error_fatal);
995 vmstate_register(NULL, base, &vmstate_serial, s);
997 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
998 "serial", 8 << it_shift);
999 memory_region_add_subregion(address_space, base, &s->io);
1000 return s;