configure: arm/aarch64: allow enable-seccomp
[qemu/ar7.git] / target-alpha / vax_helper.c
blob2e2f49971bbac7b1e85fc0f770ef2b0bacdf32b7
1 /*
2 * Helpers for vax floating point instructions.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "fpu/softfloat.h"
24 #define FP_STATUS (env->fp_status)
27 /* F floating (VAX) */
28 static uint64_t float32_to_f(float32 fa)
30 uint64_t r, exp, mant, sig;
31 CPU_FloatU a;
33 a.f = fa;
34 sig = ((uint64_t)a.l & 0x80000000) << 32;
35 exp = (a.l >> 23) & 0xff;
36 mant = ((uint64_t)a.l & 0x007fffff) << 29;
38 if (exp == 255) {
39 /* NaN or infinity */
40 r = 1; /* VAX dirty zero */
41 } else if (exp == 0) {
42 if (mant == 0) {
43 /* Zero */
44 r = 0;
45 } else {
46 /* Denormalized */
47 r = sig | ((exp + 1) << 52) | mant;
49 } else {
50 if (exp >= 253) {
51 /* Overflow */
52 r = 1; /* VAX dirty zero */
53 } else {
54 r = sig | ((exp + 2) << 52);
58 return r;
61 static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
63 uint32_t exp, mant_sig;
64 CPU_FloatU r;
66 exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
67 mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
69 if (unlikely(!exp && mant_sig)) {
70 /* Reserved operands / Dirty zero */
71 dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
74 if (exp < 3) {
75 /* Underflow */
76 r.l = 0;
77 } else {
78 r.l = ((exp - 2) << 23) | mant_sig;
81 return r.f;
84 uint32_t helper_f_to_memory(uint64_t a)
86 uint32_t r;
87 r = (a & 0x00001fffe0000000ull) >> 13;
88 r |= (a & 0x07ffe00000000000ull) >> 45;
89 r |= (a & 0xc000000000000000ull) >> 48;
90 return r;
93 uint64_t helper_memory_to_f(uint32_t a)
95 uint64_t r;
96 r = ((uint64_t)(a & 0x0000c000)) << 48;
97 r |= ((uint64_t)(a & 0x003fffff)) << 45;
98 r |= ((uint64_t)(a & 0xffff0000)) << 13;
99 if (!(a & 0x00004000)) {
100 r |= 0x7ll << 59;
102 return r;
105 /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should
106 either implement VAX arithmetic properly or just signal invalid opcode. */
108 uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b)
110 float32 fa, fb, fr;
112 fa = f_to_float32(env, GETPC(), a);
113 fb = f_to_float32(env, GETPC(), b);
114 fr = float32_add(fa, fb, &FP_STATUS);
115 return float32_to_f(fr);
118 uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b)
120 float32 fa, fb, fr;
122 fa = f_to_float32(env, GETPC(), a);
123 fb = f_to_float32(env, GETPC(), b);
124 fr = float32_sub(fa, fb, &FP_STATUS);
125 return float32_to_f(fr);
128 uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b)
130 float32 fa, fb, fr;
132 fa = f_to_float32(env, GETPC(), a);
133 fb = f_to_float32(env, GETPC(), b);
134 fr = float32_mul(fa, fb, &FP_STATUS);
135 return float32_to_f(fr);
138 uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b)
140 float32 fa, fb, fr;
142 fa = f_to_float32(env, GETPC(), a);
143 fb = f_to_float32(env, GETPC(), b);
144 fr = float32_div(fa, fb, &FP_STATUS);
145 return float32_to_f(fr);
148 uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t)
150 float32 ft, fr;
152 ft = f_to_float32(env, GETPC(), t);
153 fr = float32_sqrt(ft, &FP_STATUS);
154 return float32_to_f(fr);
158 /* G floating (VAX) */
159 static uint64_t float64_to_g(float64 fa)
161 uint64_t r, exp, mant, sig;
162 CPU_DoubleU a;
164 a.d = fa;
165 sig = a.ll & 0x8000000000000000ull;
166 exp = (a.ll >> 52) & 0x7ff;
167 mant = a.ll & 0x000fffffffffffffull;
169 if (exp == 2047) {
170 /* NaN or infinity */
171 r = 1; /* VAX dirty zero */
172 } else if (exp == 0) {
173 if (mant == 0) {
174 /* Zero */
175 r = 0;
176 } else {
177 /* Denormalized */
178 r = sig | ((exp + 1) << 52) | mant;
180 } else {
181 if (exp >= 2045) {
182 /* Overflow */
183 r = 1; /* VAX dirty zero */
184 } else {
185 r = sig | ((exp + 2) << 52);
189 return r;
192 static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
194 uint64_t exp, mant_sig;
195 CPU_DoubleU r;
197 exp = (a >> 52) & 0x7ff;
198 mant_sig = a & 0x800fffffffffffffull;
200 if (!exp && mant_sig) {
201 /* Reserved operands / Dirty zero */
202 dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
205 if (exp < 3) {
206 /* Underflow */
207 r.ll = 0;
208 } else {
209 r.ll = ((exp - 2) << 52) | mant_sig;
212 return r.d;
215 uint64_t helper_g_to_memory(uint64_t a)
217 uint64_t r;
218 r = (a & 0x000000000000ffffull) << 48;
219 r |= (a & 0x00000000ffff0000ull) << 16;
220 r |= (a & 0x0000ffff00000000ull) >> 16;
221 r |= (a & 0xffff000000000000ull) >> 48;
222 return r;
225 uint64_t helper_memory_to_g(uint64_t a)
227 uint64_t r;
228 r = (a & 0x000000000000ffffull) << 48;
229 r |= (a & 0x00000000ffff0000ull) << 16;
230 r |= (a & 0x0000ffff00000000ull) >> 16;
231 r |= (a & 0xffff000000000000ull) >> 48;
232 return r;
235 uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b)
237 float64 fa, fb, fr;
239 fa = g_to_float64(env, GETPC(), a);
240 fb = g_to_float64(env, GETPC(), b);
241 fr = float64_add(fa, fb, &FP_STATUS);
242 return float64_to_g(fr);
245 uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b)
247 float64 fa, fb, fr;
249 fa = g_to_float64(env, GETPC(), a);
250 fb = g_to_float64(env, GETPC(), b);
251 fr = float64_sub(fa, fb, &FP_STATUS);
252 return float64_to_g(fr);
255 uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b)
257 float64 fa, fb, fr;
259 fa = g_to_float64(env, GETPC(), a);
260 fb = g_to_float64(env, GETPC(), b);
261 fr = float64_mul(fa, fb, &FP_STATUS);
262 return float64_to_g(fr);
265 uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b)
267 float64 fa, fb, fr;
269 fa = g_to_float64(env, GETPC(), a);
270 fb = g_to_float64(env, GETPC(), b);
271 fr = float64_div(fa, fb, &FP_STATUS);
272 return float64_to_g(fr);
275 uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a)
277 float64 fa, fr;
279 fa = g_to_float64(env, GETPC(), a);
280 fr = float64_sqrt(fa, &FP_STATUS);
281 return float64_to_g(fr);
284 uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b)
286 float64 fa, fb;
288 fa = g_to_float64(env, GETPC(), a);
289 fb = g_to_float64(env, GETPC(), b);
291 if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
292 return 0x4000000000000000ULL;
293 } else {
294 return 0;
298 uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b)
300 float64 fa, fb;
302 fa = g_to_float64(env, GETPC(), a);
303 fb = g_to_float64(env, GETPC(), b);
305 if (float64_le(fa, fb, &FP_STATUS)) {
306 return 0x4000000000000000ULL;
307 } else {
308 return 0;
312 uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b)
314 float64 fa, fb;
316 fa = g_to_float64(env, GETPC(), a);
317 fb = g_to_float64(env, GETPC(), b);
319 if (float64_lt(fa, fb, &FP_STATUS)) {
320 return 0x4000000000000000ULL;
321 } else {
322 return 0;
326 uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a)
328 float32 fr = int64_to_float32(a, &FP_STATUS);
329 return float32_to_f(fr);
332 uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a)
334 float64 fa;
335 float32 fr;
337 fa = g_to_float64(env, GETPC(), a);
338 fr = float64_to_float32(fa, &FP_STATUS);
339 return float32_to_f(fr);
342 uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a)
344 float64 fa = g_to_float64(env, GETPC(), a);
345 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
348 uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a)
350 float64 fr;
351 fr = int64_to_float64(a, &FP_STATUS);
352 return float64_to_g(fr);