Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / target / arm / helper.c
blob0c6f8c9e37b0b02975a3d6df9803e7b9e0173959
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 /* Cacheability and shareability attributes for a memory access */
23 typedef struct ARMCacheAttrs {
24 unsigned int attrs:8; /* as in the MAIR register encoding */
25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26 } ARMCacheAttrs;
28 static bool get_phys_addr(CPUARMState *env, target_ulong address,
29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
31 target_ulong *page_size,
32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
35 MMUAccessType access_type, ARMMMUIdx mmu_idx,
36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37 target_ulong *page_size_ptr,
38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
40 /* Security attributes for an address, as returned by v8m_security_lookup. */
41 typedef struct V8M_SAttributes {
42 bool ns;
43 bool nsc;
44 uint8_t sregion;
45 bool srvalid;
46 uint8_t iregion;
47 bool irvalid;
48 } V8M_SAttributes;
50 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52 V8M_SAttributes *sattrs);
54 /* Definitions for the PMCCNTR and PMCR registers */
55 #define PMCRD 0x8
56 #define PMCRC 0x4
57 #define PMCRE 0x1
58 #endif
60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
62 int nregs;
64 /* VFP data registers are always little-endian. */
65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66 if (reg < nregs) {
67 stfq_le_p(buf, env->vfp.regs[reg]);
68 return 8;
70 if (arm_feature(env, ARM_FEATURE_NEON)) {
71 /* Aliases for Q regs. */
72 nregs += 16;
73 if (reg < nregs) {
74 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
75 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
76 return 16;
79 switch (reg - nregs) {
80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
84 return 0;
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
89 int nregs;
91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92 if (reg < nregs) {
93 env->vfp.regs[reg] = ldfq_le_p(buf);
94 return 8;
96 if (arm_feature(env, ARM_FEATURE_NEON)) {
97 nregs += 16;
98 if (reg < nregs) {
99 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
100 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
101 return 16;
104 switch (reg - nregs) {
105 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
106 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
107 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
109 return 0;
112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
114 switch (reg) {
115 case 0 ... 31:
116 /* 128 bit FP register */
117 stfq_le_p(buf, env->vfp.regs[reg * 2]);
118 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
119 return 16;
120 case 32:
121 /* FPSR */
122 stl_p(buf, vfp_get_fpsr(env));
123 return 4;
124 case 33:
125 /* FPCR */
126 stl_p(buf, vfp_get_fpcr(env));
127 return 4;
128 default:
129 return 0;
133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
135 switch (reg) {
136 case 0 ... 31:
137 /* 128 bit FP register */
138 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
139 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
140 return 16;
141 case 32:
142 /* FPSR */
143 vfp_set_fpsr(env, ldl_p(buf));
144 return 4;
145 case 33:
146 /* FPCR */
147 vfp_set_fpcr(env, ldl_p(buf));
148 return 4;
149 default:
150 return 0;
154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
156 assert(ri->fieldoffset);
157 if (cpreg_field_is_64bit(ri)) {
158 return CPREG_FIELD64(env, ri);
159 } else {
160 return CPREG_FIELD32(env, ri);
164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
165 uint64_t value)
167 assert(ri->fieldoffset);
168 if (cpreg_field_is_64bit(ri)) {
169 CPREG_FIELD64(env, ri) = value;
170 } else {
171 CPREG_FIELD32(env, ri) = value;
175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
177 return (char *)env + ri->fieldoffset;
180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
182 /* Raw read of a coprocessor register (as needed for migration, etc). */
183 if (ri->type & ARM_CP_CONST) {
184 return ri->resetvalue;
185 } else if (ri->raw_readfn) {
186 return ri->raw_readfn(env, ri);
187 } else if (ri->readfn) {
188 return ri->readfn(env, ri);
189 } else {
190 return raw_read(env, ri);
194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
195 uint64_t v)
197 /* Raw write of a coprocessor register (as needed for migration, etc).
198 * Note that constant registers are treated as write-ignored; the
199 * caller should check for success by whether a readback gives the
200 * value written.
202 if (ri->type & ARM_CP_CONST) {
203 return;
204 } else if (ri->raw_writefn) {
205 ri->raw_writefn(env, ri, v);
206 } else if (ri->writefn) {
207 ri->writefn(env, ri, v);
208 } else {
209 raw_write(env, ri, v);
213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
215 /* Return true if the regdef would cause an assertion if you called
216 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
217 * program bug for it not to have the NO_RAW flag).
218 * NB that returning false here doesn't necessarily mean that calling
219 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
220 * read/write access functions which are safe for raw use" from "has
221 * read/write access functions which have side effects but has forgotten
222 * to provide raw access functions".
223 * The tests here line up with the conditions in read/write_raw_cp_reg()
224 * and assertions in raw_read()/raw_write().
226 if ((ri->type & ARM_CP_CONST) ||
227 ri->fieldoffset ||
228 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
229 return false;
231 return true;
234 bool write_cpustate_to_list(ARMCPU *cpu)
236 /* Write the coprocessor state from cpu->env to the (index,value) list. */
237 int i;
238 bool ok = true;
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 const ARMCPRegInfo *ri;
244 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
245 if (!ri) {
246 ok = false;
247 continue;
249 if (ri->type & ARM_CP_NO_RAW) {
250 continue;
252 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
254 return ok;
257 bool write_list_to_cpustate(ARMCPU *cpu)
259 int i;
260 bool ok = true;
262 for (i = 0; i < cpu->cpreg_array_len; i++) {
263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
264 uint64_t v = cpu->cpreg_values[i];
265 const ARMCPRegInfo *ri;
267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
268 if (!ri) {
269 ok = false;
270 continue;
272 if (ri->type & ARM_CP_NO_RAW) {
273 continue;
275 /* Write value and confirm it reads back as written
276 * (to catch read-only registers and partially read-only
277 * registers where the incoming migration value doesn't match)
279 write_raw_cp_reg(&cpu->env, ri, v);
280 if (read_raw_cp_reg(&cpu->env, ri) != v) {
281 ok = false;
284 return ok;
287 static void add_cpreg_to_list(gpointer key, gpointer opaque)
289 ARMCPU *cpu = opaque;
290 uint64_t regidx;
291 const ARMCPRegInfo *ri;
293 regidx = *(uint32_t *)key;
294 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
296 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
297 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
298 /* The value array need not be initialized at this point */
299 cpu->cpreg_array_len++;
303 static void count_cpreg(gpointer key, gpointer opaque)
305 ARMCPU *cpu = opaque;
306 uint64_t regidx;
307 const ARMCPRegInfo *ri;
309 regidx = *(uint32_t *)key;
310 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
313 cpu->cpreg_array_len++;
317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
319 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
320 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
322 if (aidx > bidx) {
323 return 1;
325 if (aidx < bidx) {
326 return -1;
328 return 0;
331 void init_cpreg_list(ARMCPU *cpu)
333 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
334 * Note that we require cpreg_tuples[] to be sorted by key ID.
336 GList *keys;
337 int arraylen;
339 keys = g_hash_table_get_keys(cpu->cp_regs);
340 keys = g_list_sort(keys, cpreg_key_compare);
342 cpu->cpreg_array_len = 0;
344 g_list_foreach(keys, count_cpreg, cpu);
346 arraylen = cpu->cpreg_array_len;
347 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
348 cpu->cpreg_values = g_new(uint64_t, arraylen);
349 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
350 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
351 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
352 cpu->cpreg_array_len = 0;
354 g_list_foreach(keys, add_cpreg_to_list, cpu);
356 assert(cpu->cpreg_array_len == arraylen);
358 g_list_free(keys);
362 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
363 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
365 * access_el3_aa32ns: Used to check AArch32 register views.
366 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
368 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
369 const ARMCPRegInfo *ri,
370 bool isread)
372 bool secure = arm_is_secure_below_el3(env);
374 assert(!arm_el_is_aa64(env, 3));
375 if (secure) {
376 return CP_ACCESS_TRAP_UNCATEGORIZED;
378 return CP_ACCESS_OK;
381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
382 const ARMCPRegInfo *ri,
383 bool isread)
385 if (!arm_el_is_aa64(env, 3)) {
386 return access_el3_aa32ns(env, ri, isread);
388 return CP_ACCESS_OK;
391 /* Some secure-only AArch32 registers trap to EL3 if used from
392 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
393 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
394 * We assume that the .access field is set to PL1_RW.
396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
397 const ARMCPRegInfo *ri,
398 bool isread)
400 if (arm_current_el(env) == 3) {
401 return CP_ACCESS_OK;
403 if (arm_is_secure_below_el3(env)) {
404 return CP_ACCESS_TRAP_EL3;
406 /* This will be EL1 NS and EL2 NS, which just UNDEF */
407 return CP_ACCESS_TRAP_UNCATEGORIZED;
410 /* Check for traps to "powerdown debug" registers, which are controlled
411 * by MDCR.TDOSA
413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
414 bool isread)
416 int el = arm_current_el(env);
418 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
419 && !arm_is_secure_below_el3(env)) {
420 return CP_ACCESS_TRAP_EL2;
422 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
423 return CP_ACCESS_TRAP_EL3;
425 return CP_ACCESS_OK;
428 /* Check for traps to "debug ROM" registers, which are controlled
429 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
432 bool isread)
434 int el = arm_current_el(env);
436 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
437 && !arm_is_secure_below_el3(env)) {
438 return CP_ACCESS_TRAP_EL2;
440 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
441 return CP_ACCESS_TRAP_EL3;
443 return CP_ACCESS_OK;
446 /* Check for traps to general debug registers, which are controlled
447 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
450 bool isread)
452 int el = arm_current_el(env);
454 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
455 && !arm_is_secure_below_el3(env)) {
456 return CP_ACCESS_TRAP_EL2;
458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
459 return CP_ACCESS_TRAP_EL3;
461 return CP_ACCESS_OK;
464 /* Check for traps to performance monitor registers, which are controlled
465 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
468 bool isread)
470 int el = arm_current_el(env);
472 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
473 && !arm_is_secure_below_el3(env)) {
474 return CP_ACCESS_TRAP_EL2;
476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
477 return CP_ACCESS_TRAP_EL3;
479 return CP_ACCESS_OK;
482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
484 ARMCPU *cpu = arm_env_get_cpu(env);
486 raw_write(env, ri, value);
487 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
492 ARMCPU *cpu = arm_env_get_cpu(env);
494 if (raw_read(env, ri) != value) {
495 /* Unlike real hardware the qemu TLB uses virtual addresses,
496 * not modified virtual addresses, so this causes a TLB flush.
498 tlb_flush(CPU(cpu));
499 raw_write(env, ri, value);
503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
504 uint64_t value)
506 ARMCPU *cpu = arm_env_get_cpu(env);
508 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
509 && !extended_addresses_enabled(env)) {
510 /* For VMSA (when not using the LPAE long descriptor page table
511 * format) this register includes the ASID, so do a TLB flush.
512 * For PMSA it is purely a process ID and no action is needed.
514 tlb_flush(CPU(cpu));
516 raw_write(env, ri, value);
519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
520 uint64_t value)
522 /* Invalidate all (TLBIALL) */
523 ARMCPU *cpu = arm_env_get_cpu(env);
525 tlb_flush(CPU(cpu));
528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
529 uint64_t value)
531 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
532 ARMCPU *cpu = arm_env_get_cpu(env);
534 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
538 uint64_t value)
540 /* Invalidate by ASID (TLBIASID) */
541 ARMCPU *cpu = arm_env_get_cpu(env);
543 tlb_flush(CPU(cpu));
546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
549 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
550 ARMCPU *cpu = arm_env_get_cpu(env);
552 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
555 /* IS variants of TLB operations must affect all cores */
556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
559 CPUState *cs = ENV_GET_CPU(env);
561 tlb_flush_all_cpus_synced(cs);
564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 CPUState *cs = ENV_GET_CPU(env);
569 tlb_flush_all_cpus_synced(cs);
572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
575 CPUState *cs = ENV_GET_CPU(env);
577 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 uint64_t value)
583 CPUState *cs = ENV_GET_CPU(env);
585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
589 uint64_t value)
591 CPUState *cs = ENV_GET_CPU(env);
593 tlb_flush_by_mmuidx(cs,
594 ARMMMUIdxBit_S12NSE1 |
595 ARMMMUIdxBit_S12NSE0 |
596 ARMMMUIdxBit_S2NS);
599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600 uint64_t value)
602 CPUState *cs = ENV_GET_CPU(env);
604 tlb_flush_by_mmuidx_all_cpus_synced(cs,
605 ARMMMUIdxBit_S12NSE1 |
606 ARMMMUIdxBit_S12NSE0 |
607 ARMMMUIdxBit_S2NS);
610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
611 uint64_t value)
613 /* Invalidate by IPA. This has to invalidate any structures that
614 * contain only stage 2 translation information, but does not need
615 * to apply to structures that contain combined stage 1 and stage 2
616 * translation information.
617 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
619 CPUState *cs = ENV_GET_CPU(env);
620 uint64_t pageaddr;
622 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
623 return;
626 pageaddr = sextract64(value << 12, 0, 40);
628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
634 CPUState *cs = ENV_GET_CPU(env);
635 uint64_t pageaddr;
637 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
638 return;
641 pageaddr = sextract64(value << 12, 0, 40);
643 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
644 ARMMMUIdxBit_S2NS);
647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
648 uint64_t value)
650 CPUState *cs = ENV_GET_CPU(env);
652 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
658 CPUState *cs = ENV_GET_CPU(env);
660 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
664 uint64_t value)
666 CPUState *cs = ENV_GET_CPU(env);
667 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
669 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
673 uint64_t value)
675 CPUState *cs = ENV_GET_CPU(env);
676 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
678 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
679 ARMMMUIdxBit_S1E2);
682 static const ARMCPRegInfo cp_reginfo[] = {
683 /* Define the secure and non-secure FCSE identifier CP registers
684 * separately because there is no secure bank in V8 (no _EL3). This allows
685 * the secure register to be properly reset and migrated. There is also no
686 * v8 EL1 version of the register so the non-secure instance stands alone.
688 { .name = "FCSEIDR(NS)",
689 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
690 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
691 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
692 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
693 { .name = "FCSEIDR(S)",
694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
698 /* Define the secure and non-secure context identifier CP registers
699 * separately because there is no secure bank in V8 (no _EL3). This allows
700 * the secure register to be properly reset and migrated. In the
701 * non-secure case, the 32-bit register will have reset and migration
702 * disabled during registration as it is handled by the 64-bit instance.
704 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
705 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
706 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
707 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
708 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
709 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
710 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
714 REGINFO_SENTINEL
717 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
718 /* NB: Some of these registers exist in v8 but with more precise
719 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
721 /* MMU Domain access control / MPU write buffer control */
722 { .name = "DACR",
723 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
724 .access = PL1_RW, .resetvalue = 0,
725 .writefn = dacr_write, .raw_writefn = raw_write,
726 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
727 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
728 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
729 * For v6 and v5, these mappings are overly broad.
731 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
732 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
733 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
736 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
737 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
738 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
739 /* Cache maintenance ops; some of this space may be overridden later. */
740 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
741 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
742 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
743 REGINFO_SENTINEL
746 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
747 /* Not all pre-v6 cores implemented this WFI, so this is slightly
748 * over-broad.
750 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
751 .access = PL1_W, .type = ARM_CP_WFI },
752 REGINFO_SENTINEL
755 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
756 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
757 * is UNPREDICTABLE; we choose to NOP as most implementations do).
759 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
760 .access = PL1_W, .type = ARM_CP_WFI },
761 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
762 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
763 * OMAPCP will override this space.
765 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
766 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
767 .resetvalue = 0 },
768 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
769 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
770 .resetvalue = 0 },
771 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
772 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
773 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
774 .resetvalue = 0 },
775 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
776 * implementing it as RAZ means the "debug architecture version" bits
777 * will read as a reserved value, which should cause Linux to not try
778 * to use the debug hardware.
780 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
781 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
782 /* MMU TLB control. Note that the wildcarding means we cover not just
783 * the unified TLB ops but also the dside/iside/inner-shareable variants.
785 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
786 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
787 .type = ARM_CP_NO_RAW },
788 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
789 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
790 .type = ARM_CP_NO_RAW },
791 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
792 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
793 .type = ARM_CP_NO_RAW },
794 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
795 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
796 .type = ARM_CP_NO_RAW },
797 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
798 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
799 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
800 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
801 REGINFO_SENTINEL
804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
805 uint64_t value)
807 uint32_t mask = 0;
809 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
810 if (!arm_feature(env, ARM_FEATURE_V8)) {
811 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
812 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
813 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
815 if (arm_feature(env, ARM_FEATURE_VFP)) {
816 /* VFP coprocessor: cp10 & cp11 [23:20] */
817 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
819 if (!arm_feature(env, ARM_FEATURE_NEON)) {
820 /* ASEDIS [31] bit is RAO/WI */
821 value |= (1 << 31);
824 /* VFPv3 and upwards with NEON implement 32 double precision
825 * registers (D0-D31).
827 if (!arm_feature(env, ARM_FEATURE_NEON) ||
828 !arm_feature(env, ARM_FEATURE_VFP3)) {
829 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
830 value |= (1 << 30);
833 value &= mask;
835 env->cp15.cpacr_el1 = value;
838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
839 bool isread)
841 if (arm_feature(env, ARM_FEATURE_V8)) {
842 /* Check if CPACR accesses are to be trapped to EL2 */
843 if (arm_current_el(env) == 1 &&
844 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
845 return CP_ACCESS_TRAP_EL2;
846 /* Check if CPACR accesses are to be trapped to EL3 */
847 } else if (arm_current_el(env) < 3 &&
848 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
849 return CP_ACCESS_TRAP_EL3;
853 return CP_ACCESS_OK;
856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
857 bool isread)
859 /* Check if CPTR accesses are set to trap to EL3 */
860 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
861 return CP_ACCESS_TRAP_EL3;
864 return CP_ACCESS_OK;
867 static const ARMCPRegInfo v6_cp_reginfo[] = {
868 /* prefetch by MVA in v6, NOP in v7 */
869 { .name = "MVA_prefetch",
870 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
871 .access = PL1_W, .type = ARM_CP_NOP },
872 /* We need to break the TB after ISB to execute self-modifying code
873 * correctly and also to take any pending interrupts immediately.
874 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
876 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
877 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
878 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
879 .access = PL0_W, .type = ARM_CP_NOP },
880 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
881 .access = PL0_W, .type = ARM_CP_NOP },
882 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
883 .access = PL1_RW,
884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
885 offsetof(CPUARMState, cp15.ifar_ns) },
886 .resetvalue = 0, },
887 /* Watchpoint Fault Address Register : should actually only be present
888 * for 1136, 1176, 11MPCore.
890 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
891 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
892 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
893 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
895 .resetvalue = 0, .writefn = cpacr_write },
896 REGINFO_SENTINEL
899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
900 bool isread)
902 /* Performance monitor registers user accessibility is controlled
903 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
904 * trapping to EL2 or EL3 for other accesses.
906 int el = arm_current_el(env);
908 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
909 return CP_ACCESS_TRAP;
911 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
912 && !arm_is_secure_below_el3(env)) {
913 return CP_ACCESS_TRAP_EL2;
915 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
916 return CP_ACCESS_TRAP_EL3;
919 return CP_ACCESS_OK;
922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
923 const ARMCPRegInfo *ri,
924 bool isread)
926 /* ER: event counter read trap control */
927 if (arm_feature(env, ARM_FEATURE_V8)
928 && arm_current_el(env) == 0
929 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
930 && isread) {
931 return CP_ACCESS_OK;
934 return pmreg_access(env, ri, isread);
937 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
938 const ARMCPRegInfo *ri,
939 bool isread)
941 /* SW: software increment write trap control */
942 if (arm_feature(env, ARM_FEATURE_V8)
943 && arm_current_el(env) == 0
944 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
945 && !isread) {
946 return CP_ACCESS_OK;
949 return pmreg_access(env, ri, isread);
952 #ifndef CONFIG_USER_ONLY
954 static CPAccessResult pmreg_access_selr(CPUARMState *env,
955 const ARMCPRegInfo *ri,
956 bool isread)
958 /* ER: event counter read trap control */
959 if (arm_feature(env, ARM_FEATURE_V8)
960 && arm_current_el(env) == 0
961 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
962 return CP_ACCESS_OK;
965 return pmreg_access(env, ri, isread);
968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
969 const ARMCPRegInfo *ri,
970 bool isread)
972 /* CR: cycle counter read trap control */
973 if (arm_feature(env, ARM_FEATURE_V8)
974 && arm_current_el(env) == 0
975 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
976 && isread) {
977 return CP_ACCESS_OK;
980 return pmreg_access(env, ri, isread);
983 static inline bool arm_ccnt_enabled(CPUARMState *env)
985 /* This does not support checking PMCCFILTR_EL0 register */
987 if (!(env->cp15.c9_pmcr & PMCRE)) {
988 return false;
991 return true;
994 void pmccntr_sync(CPUARMState *env)
996 uint64_t temp_ticks;
998 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
999 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1001 if (env->cp15.c9_pmcr & PMCRD) {
1002 /* Increment once every 64 processor clock cycles */
1003 temp_ticks /= 64;
1006 if (arm_ccnt_enabled(env)) {
1007 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1012 uint64_t value)
1014 pmccntr_sync(env);
1016 if (value & PMCRC) {
1017 /* The counter has been reset */
1018 env->cp15.c15_ccnt = 0;
1021 /* only the DP, X, D and E bits are writable */
1022 env->cp15.c9_pmcr &= ~0x39;
1023 env->cp15.c9_pmcr |= (value & 0x39);
1025 pmccntr_sync(env);
1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1030 uint64_t total_ticks;
1032 if (!arm_ccnt_enabled(env)) {
1033 /* Counter is disabled, do not change value */
1034 return env->cp15.c15_ccnt;
1037 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1038 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1040 if (env->cp15.c9_pmcr & PMCRD) {
1041 /* Increment once every 64 processor clock cycles */
1042 total_ticks /= 64;
1044 return total_ticks - env->cp15.c15_ccnt;
1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1048 uint64_t value)
1050 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1051 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1052 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1053 * accessed.
1055 env->cp15.c9_pmselr = value & 0x1f;
1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1059 uint64_t value)
1061 uint64_t total_ticks;
1063 if (!arm_ccnt_enabled(env)) {
1064 /* Counter is disabled, set the absolute value */
1065 env->cp15.c15_ccnt = value;
1066 return;
1069 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1070 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1072 if (env->cp15.c9_pmcr & PMCRD) {
1073 /* Increment once every 64 processor clock cycles */
1074 total_ticks /= 64;
1076 env->cp15.c15_ccnt = total_ticks - value;
1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1080 uint64_t value)
1082 uint64_t cur_val = pmccntr_read(env, NULL);
1084 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1087 #else /* CONFIG_USER_ONLY */
1089 void pmccntr_sync(CPUARMState *env)
1093 #endif
1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096 uint64_t value)
1098 pmccntr_sync(env);
1099 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1100 pmccntr_sync(env);
1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
1106 value &= (1 << 31);
1107 env->cp15.c9_pmcnten |= value;
1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1111 uint64_t value)
1113 value &= (1 << 31);
1114 env->cp15.c9_pmcnten &= ~value;
1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1118 uint64_t value)
1120 env->cp15.c9_pmovsr &= ~value;
1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t value)
1126 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1127 * PMSELR value is equal to or greater than the number of implemented
1128 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1130 if (env->cp15.c9_pmselr == 0x1f) {
1131 pmccfiltr_write(env, ri, value);
1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1137 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1138 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1140 if (env->cp15.c9_pmselr == 0x1f) {
1141 return env->cp15.pmccfiltr_el0;
1142 } else {
1143 return 0;
1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1148 uint64_t value)
1150 if (arm_feature(env, ARM_FEATURE_V8)) {
1151 env->cp15.c9_pmuserenr = value & 0xf;
1152 } else {
1153 env->cp15.c9_pmuserenr = value & 1;
1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158 uint64_t value)
1160 /* We have no event counters so only the C bit can be changed */
1161 value &= (1 << 31);
1162 env->cp15.c9_pminten |= value;
1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166 uint64_t value)
1168 value &= (1 << 31);
1169 env->cp15.c9_pminten &= ~value;
1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173 uint64_t value)
1175 /* Note that even though the AArch64 view of this register has bits
1176 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1177 * architectural requirements for bits which are RES0 only in some
1178 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1179 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1181 raw_write(env, ri, value & ~0x1FULL);
1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1186 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1187 * For bits that vary between AArch32/64, code needs to check the
1188 * current execution mode before directly using the feature bit.
1190 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1192 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1193 valid_mask &= ~SCR_HCE;
1195 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1196 * supported if EL2 exists. The bit is UNK/SBZP when
1197 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1198 * when EL2 is unavailable.
1199 * On ARMv8, this bit is always available.
1201 if (arm_feature(env, ARM_FEATURE_V7) &&
1202 !arm_feature(env, ARM_FEATURE_V8)) {
1203 valid_mask &= ~SCR_SMD;
1207 /* Clear all-context RES0 bits. */
1208 value &= valid_mask;
1209 raw_write(env, ri, value);
1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1214 ARMCPU *cpu = arm_env_get_cpu(env);
1216 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1217 * bank
1219 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1220 ri->secure & ARM_CP_SECSTATE_S);
1222 return cpu->ccsidr[index];
1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1226 uint64_t value)
1228 raw_write(env, ri, value & 0xf);
1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1233 CPUState *cs = ENV_GET_CPU(env);
1234 uint64_t ret = 0;
1236 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1237 ret |= CPSR_I;
1239 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1240 ret |= CPSR_F;
1242 /* External aborts are not possible in QEMU so A bit is always clear */
1243 return ret;
1246 static const ARMCPRegInfo v7_cp_reginfo[] = {
1247 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1248 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1249 .access = PL1_W, .type = ARM_CP_NOP },
1250 /* Performance monitors are implementation defined in v7,
1251 * but with an ARM recommended set of registers, which we
1252 * follow (although we don't actually implement any counters)
1254 * Performance registers fall into three categories:
1255 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1256 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1257 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1258 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1259 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1261 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1262 .access = PL0_RW, .type = ARM_CP_ALIAS,
1263 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1264 .writefn = pmcntenset_write,
1265 .accessfn = pmreg_access,
1266 .raw_writefn = raw_write },
1267 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1268 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1269 .access = PL0_RW, .accessfn = pmreg_access,
1270 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1271 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1272 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1273 .access = PL0_RW,
1274 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1275 .accessfn = pmreg_access,
1276 .writefn = pmcntenclr_write,
1277 .type = ARM_CP_ALIAS },
1278 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1279 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1280 .access = PL0_RW, .accessfn = pmreg_access,
1281 .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1283 .writefn = pmcntenclr_write },
1284 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1285 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1286 .accessfn = pmreg_access,
1287 .writefn = pmovsr_write,
1288 .raw_writefn = raw_write },
1289 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1291 .access = PL0_RW, .accessfn = pmreg_access,
1292 .type = ARM_CP_ALIAS,
1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294 .writefn = pmovsr_write,
1295 .raw_writefn = raw_write },
1296 /* Unimplemented so WI. */
1297 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1298 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1299 #ifndef CONFIG_USER_ONLY
1300 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1301 .access = PL0_RW, .type = ARM_CP_ALIAS,
1302 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1303 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1304 .raw_writefn = raw_write},
1305 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1306 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1307 .access = PL0_RW, .accessfn = pmreg_access_selr,
1308 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1309 .writefn = pmselr_write, .raw_writefn = raw_write, },
1310 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1311 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1312 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1313 .accessfn = pmreg_access_ccntr },
1314 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1315 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1316 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1317 .type = ARM_CP_IO,
1318 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1319 #endif
1320 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1322 .writefn = pmccfiltr_write,
1323 .access = PL0_RW, .accessfn = pmreg_access,
1324 .type = ARM_CP_IO,
1325 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1326 .resetvalue = 0, },
1327 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1328 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1329 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1330 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1332 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1333 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1334 /* Unimplemented, RAZ/WI. */
1335 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1336 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1337 .accessfn = pmreg_access_xevcntr },
1338 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1339 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1341 .resetvalue = 0,
1342 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1343 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1345 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1346 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1347 .resetvalue = 0,
1348 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1349 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1350 .access = PL1_RW, .accessfn = access_tpm,
1351 .type = ARM_CP_ALIAS,
1352 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1353 .resetvalue = 0,
1354 .writefn = pmintenset_write, .raw_writefn = raw_write },
1355 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1356 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1357 .access = PL1_RW, .accessfn = access_tpm,
1358 .type = ARM_CP_IO,
1359 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1360 .writefn = pmintenset_write, .raw_writefn = raw_write,
1361 .resetvalue = 0x0 },
1362 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1363 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1364 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1365 .writefn = pmintenclr_write, },
1366 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1367 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1368 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1370 .writefn = pmintenclr_write },
1371 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1373 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1374 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1375 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1376 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1377 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1378 offsetof(CPUARMState, cp15.csselr_ns) } },
1379 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1380 * just RAZ for all cores:
1382 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1384 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1385 /* Auxiliary fault status registers: these also are IMPDEF, and we
1386 * choose to RAZ/WI for all cores.
1388 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1389 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1390 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1391 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1392 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1393 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1394 /* MAIR can just read-as-written because we don't implement caches
1395 * and so don't need to care about memory attributes.
1397 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1400 .resetvalue = 0 },
1401 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1402 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1403 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1404 .resetvalue = 0 },
1405 /* For non-long-descriptor page tables these are PRRR and NMRR;
1406 * regardless they still act as reads-as-written for QEMU.
1408 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1409 * allows them to assign the correct fieldoffset based on the endianness
1410 * handled in the field definitions.
1412 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1413 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1414 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1415 offsetof(CPUARMState, cp15.mair0_ns) },
1416 .resetfn = arm_cp_reset_ignore },
1417 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1418 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1419 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1420 offsetof(CPUARMState, cp15.mair1_ns) },
1421 .resetfn = arm_cp_reset_ignore },
1422 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1423 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1424 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1425 /* 32 bit ITLB invalidates */
1426 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1428 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1429 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1430 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1431 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1432 /* 32 bit DTLB invalidates */
1433 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1435 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1437 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1438 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1439 /* 32 bit TLB invalidates */
1440 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1442 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1444 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1445 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1446 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1447 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1448 REGINFO_SENTINEL
1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1452 /* 32 bit TLB invalidates, Inner Shareable */
1453 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1455 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1457 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1458 .type = ARM_CP_NO_RAW, .access = PL1_W,
1459 .writefn = tlbiasid_is_write },
1460 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1461 .type = ARM_CP_NO_RAW, .access = PL1_W,
1462 .writefn = tlbimvaa_is_write },
1463 REGINFO_SENTINEL
1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1467 uint64_t value)
1469 value &= 1;
1470 env->teecr = value;
1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1474 bool isread)
1476 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1477 return CP_ACCESS_TRAP;
1479 return CP_ACCESS_OK;
1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1483 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1485 .resetvalue = 0,
1486 .writefn = teecr_write },
1487 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1488 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1489 .accessfn = teehbr_access, .resetvalue = 0 },
1490 REGINFO_SENTINEL
1493 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1494 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1495 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1496 .access = PL0_RW,
1497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1498 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1499 .access = PL0_RW,
1500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1501 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1502 .resetfn = arm_cp_reset_ignore },
1503 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1504 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1505 .access = PL0_R|PL1_W,
1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1507 .resetvalue = 0},
1508 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1509 .access = PL0_R|PL1_W,
1510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1511 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1512 .resetfn = arm_cp_reset_ignore },
1513 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1514 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1515 .access = PL1_RW,
1516 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1517 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1518 .access = PL1_RW,
1519 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1520 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1521 .resetvalue = 0 },
1522 REGINFO_SENTINEL
1525 #ifndef CONFIG_USER_ONLY
1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1528 bool isread)
1530 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1531 * Writable only at the highest implemented exception level.
1533 int el = arm_current_el(env);
1535 switch (el) {
1536 case 0:
1537 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1538 return CP_ACCESS_TRAP;
1540 break;
1541 case 1:
1542 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1543 arm_is_secure_below_el3(env)) {
1544 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1545 return CP_ACCESS_TRAP_UNCATEGORIZED;
1547 break;
1548 case 2:
1549 case 3:
1550 break;
1553 if (!isread && el < arm_highest_el(env)) {
1554 return CP_ACCESS_TRAP_UNCATEGORIZED;
1557 return CP_ACCESS_OK;
1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1561 bool isread)
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1566 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1567 if (cur_el == 0 &&
1568 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1569 return CP_ACCESS_TRAP;
1572 if (arm_feature(env, ARM_FEATURE_EL2) &&
1573 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1574 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1575 return CP_ACCESS_TRAP_EL2;
1577 return CP_ACCESS_OK;
1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1581 bool isread)
1583 unsigned int cur_el = arm_current_el(env);
1584 bool secure = arm_is_secure(env);
1586 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1587 * EL0[PV]TEN is zero.
1589 if (cur_el == 0 &&
1590 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1591 return CP_ACCESS_TRAP;
1594 if (arm_feature(env, ARM_FEATURE_EL2) &&
1595 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1596 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1597 return CP_ACCESS_TRAP_EL2;
1599 return CP_ACCESS_OK;
1602 static CPAccessResult gt_pct_access(CPUARMState *env,
1603 const ARMCPRegInfo *ri,
1604 bool isread)
1606 return gt_counter_access(env, GTIMER_PHYS, isread);
1609 static CPAccessResult gt_vct_access(CPUARMState *env,
1610 const ARMCPRegInfo *ri,
1611 bool isread)
1613 return gt_counter_access(env, GTIMER_VIRT, isread);
1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1617 bool isread)
1619 return gt_timer_access(env, GTIMER_PHYS, isread);
1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1623 bool isread)
1625 return gt_timer_access(env, GTIMER_VIRT, isread);
1628 static CPAccessResult gt_stimer_access(CPUARMState *env,
1629 const ARMCPRegInfo *ri,
1630 bool isread)
1632 /* The AArch64 register view of the secure physical timer is
1633 * always accessible from EL3, and configurably accessible from
1634 * Secure EL1.
1636 switch (arm_current_el(env)) {
1637 case 1:
1638 if (!arm_is_secure(env)) {
1639 return CP_ACCESS_TRAP;
1641 if (!(env->cp15.scr_el3 & SCR_ST)) {
1642 return CP_ACCESS_TRAP_EL3;
1644 return CP_ACCESS_OK;
1645 case 0:
1646 case 2:
1647 return CP_ACCESS_TRAP;
1648 case 3:
1649 return CP_ACCESS_OK;
1650 default:
1651 g_assert_not_reached();
1655 static uint64_t gt_get_countervalue(CPUARMState *env)
1657 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1662 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1664 if (gt->ctl & 1) {
1665 /* Timer enabled: calculate and set current ISTATUS, irq, and
1666 * reset timer to when ISTATUS next has to change
1668 uint64_t offset = timeridx == GTIMER_VIRT ?
1669 cpu->env.cp15.cntvoff_el2 : 0;
1670 uint64_t count = gt_get_countervalue(&cpu->env);
1671 /* Note that this must be unsigned 64 bit arithmetic: */
1672 int istatus = count - offset >= gt->cval;
1673 uint64_t nexttick;
1674 int irqstate;
1676 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1678 irqstate = (istatus && !(gt->ctl & 2));
1679 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1681 if (istatus) {
1682 /* Next transition is when count rolls back over to zero */
1683 nexttick = UINT64_MAX;
1684 } else {
1685 /* Next transition is when we hit cval */
1686 nexttick = gt->cval + offset;
1688 /* Note that the desired next expiry time might be beyond the
1689 * signed-64-bit range of a QEMUTimer -- in this case we just
1690 * set the timer for as far in the future as possible. When the
1691 * timer expires we will reset the timer for any remaining period.
1693 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1694 nexttick = INT64_MAX / GTIMER_SCALE;
1696 timer_mod(cpu->gt_timer[timeridx], nexttick);
1697 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1698 } else {
1699 /* Timer disabled: ISTATUS and timer output always clear */
1700 gt->ctl &= ~4;
1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1702 timer_del(cpu->gt_timer[timeridx]);
1703 trace_arm_gt_recalc_disabled(timeridx);
1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1708 int timeridx)
1710 ARMCPU *cpu = arm_env_get_cpu(env);
1712 timer_del(cpu->gt_timer[timeridx]);
1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1717 return gt_get_countervalue(env);
1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1722 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726 int timeridx,
1727 uint64_t value)
1729 trace_arm_gt_cval_write(timeridx, value);
1730 env->cp15.c14_timer[timeridx].cval = value;
1731 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1735 int timeridx)
1737 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1739 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1740 (gt_get_countervalue(env) - offset));
1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744 int timeridx,
1745 uint64_t value)
1747 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1749 trace_arm_gt_tval_write(timeridx, value);
1750 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1751 sextract64(value, 0, 32);
1752 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756 int timeridx,
1757 uint64_t value)
1759 ARMCPU *cpu = arm_env_get_cpu(env);
1760 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1762 trace_arm_gt_ctl_write(timeridx, value);
1763 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1764 if ((oldval ^ value) & 1) {
1765 /* Enable toggled */
1766 gt_recalc_timer(cpu, timeridx);
1767 } else if ((oldval ^ value) & 2) {
1768 /* IMASK toggled: don't need to recalculate,
1769 * just set the interrupt line based on ISTATUS
1771 int irqstate = (oldval & 4) && !(value & 2);
1773 trace_arm_gt_imask_toggle(timeridx, irqstate);
1774 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1780 gt_timer_reset(env, ri, GTIMER_PHYS);
1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784 uint64_t value)
1786 gt_cval_write(env, ri, GTIMER_PHYS, value);
1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1791 return gt_tval_read(env, ri, GTIMER_PHYS);
1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795 uint64_t value)
1797 gt_tval_write(env, ri, GTIMER_PHYS, value);
1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801 uint64_t value)
1803 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1808 gt_timer_reset(env, ri, GTIMER_VIRT);
1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812 uint64_t value)
1814 gt_cval_write(env, ri, GTIMER_VIRT, value);
1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1819 return gt_tval_read(env, ri, GTIMER_VIRT);
1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1825 gt_tval_write(env, ri, GTIMER_VIRT, value);
1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829 uint64_t value)
1831 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1835 uint64_t value)
1837 ARMCPU *cpu = arm_env_get_cpu(env);
1839 trace_arm_gt_cntvoff_write(value);
1840 raw_write(env, ri, value);
1841 gt_recalc_timer(cpu, GTIMER_VIRT);
1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1846 gt_timer_reset(env, ri, GTIMER_HYP);
1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1852 gt_cval_write(env, ri, GTIMER_HYP, value);
1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1857 return gt_tval_read(env, ri, GTIMER_HYP);
1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861 uint64_t value)
1863 gt_tval_write(env, ri, GTIMER_HYP, value);
1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867 uint64_t value)
1869 gt_ctl_write(env, ri, GTIMER_HYP, value);
1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1874 gt_timer_reset(env, ri, GTIMER_SEC);
1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878 uint64_t value)
1880 gt_cval_write(env, ri, GTIMER_SEC, value);
1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1885 return gt_tval_read(env, ri, GTIMER_SEC);
1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889 uint64_t value)
1891 gt_tval_write(env, ri, GTIMER_SEC, value);
1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895 uint64_t value)
1897 gt_ctl_write(env, ri, GTIMER_SEC, value);
1900 void arm_gt_ptimer_cb(void *opaque)
1902 ARMCPU *cpu = opaque;
1904 gt_recalc_timer(cpu, GTIMER_PHYS);
1907 void arm_gt_vtimer_cb(void *opaque)
1909 ARMCPU *cpu = opaque;
1911 gt_recalc_timer(cpu, GTIMER_VIRT);
1914 void arm_gt_htimer_cb(void *opaque)
1916 ARMCPU *cpu = opaque;
1918 gt_recalc_timer(cpu, GTIMER_HYP);
1921 void arm_gt_stimer_cb(void *opaque)
1923 ARMCPU *cpu = opaque;
1925 gt_recalc_timer(cpu, GTIMER_SEC);
1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1929 /* Note that CNTFRQ is purely reads-as-written for the benefit
1930 * of software; writing it doesn't actually change the timer frequency.
1931 * Our reset value matches the fixed frequency we implement the timer at.
1933 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1934 .type = ARM_CP_ALIAS,
1935 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1936 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1938 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1939 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1940 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1942 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1944 /* overall control: mostly access permissions */
1945 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1946 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1947 .access = PL1_RW,
1948 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1949 .resetvalue = 0,
1951 /* per-timer control */
1952 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1953 .secure = ARM_CP_SECSTATE_NS,
1954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1955 .accessfn = gt_ptimer_access,
1956 .fieldoffset = offsetoflow32(CPUARMState,
1957 cp15.c14_timer[GTIMER_PHYS].ctl),
1958 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1960 { .name = "CNTP_CTL(S)",
1961 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1962 .secure = ARM_CP_SECSTATE_S,
1963 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1964 .accessfn = gt_ptimer_access,
1965 .fieldoffset = offsetoflow32(CPUARMState,
1966 cp15.c14_timer[GTIMER_SEC].ctl),
1967 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1969 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1971 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1972 .accessfn = gt_ptimer_access,
1973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1974 .resetvalue = 0,
1975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1977 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1978 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1979 .accessfn = gt_vtimer_access,
1980 .fieldoffset = offsetoflow32(CPUARMState,
1981 cp15.c14_timer[GTIMER_VIRT].ctl),
1982 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1984 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1986 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1987 .accessfn = gt_vtimer_access,
1988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1989 .resetvalue = 0,
1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1992 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1993 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1994 .secure = ARM_CP_SECSTATE_NS,
1995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1996 .accessfn = gt_ptimer_access,
1997 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1999 { .name = "CNTP_TVAL(S)",
2000 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2001 .secure = ARM_CP_SECSTATE_S,
2002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2003 .accessfn = gt_ptimer_access,
2004 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2006 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2007 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2009 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2010 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2012 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2014 .accessfn = gt_vtimer_access,
2015 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2017 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2020 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2021 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2023 /* The counter itself */
2024 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2025 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2026 .accessfn = gt_pct_access,
2027 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2029 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2031 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2032 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2034 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2035 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2036 .accessfn = gt_vct_access,
2037 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2039 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2041 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2042 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2044 /* Comparison value, indicating when the timer goes off */
2045 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2046 .secure = ARM_CP_SECSTATE_NS,
2047 .access = PL1_RW | PL0_R,
2048 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2049 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2050 .accessfn = gt_ptimer_access,
2051 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2053 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2054 .secure = ARM_CP_SECSTATE_S,
2055 .access = PL1_RW | PL0_R,
2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2058 .accessfn = gt_ptimer_access,
2059 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2061 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2063 .access = PL1_RW | PL0_R,
2064 .type = ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2066 .resetvalue = 0, .accessfn = gt_ptimer_access,
2067 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2069 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2070 .access = PL1_RW | PL0_R,
2071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2073 .accessfn = gt_vtimer_access,
2074 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2076 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2077 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2078 .access = PL1_RW | PL0_R,
2079 .type = ARM_CP_IO,
2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081 .resetvalue = 0, .accessfn = gt_vtimer_access,
2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2084 /* Secure timer -- this is actually restricted to only EL3
2085 * and configurably Secure-EL1 via the accessfn.
2087 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2089 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2090 .accessfn = gt_stimer_access,
2091 .readfn = gt_sec_tval_read,
2092 .writefn = gt_sec_tval_write,
2093 .resetfn = gt_sec_timer_reset,
2095 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2097 .type = ARM_CP_IO, .access = PL1_RW,
2098 .accessfn = gt_stimer_access,
2099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2100 .resetvalue = 0,
2101 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2103 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2105 .type = ARM_CP_IO, .access = PL1_RW,
2106 .accessfn = gt_stimer_access,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2108 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2110 REGINFO_SENTINEL
2113 #else
2114 /* In user-mode none of the generic timer registers are accessible,
2115 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2116 * so instead just don't register any of them.
2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2119 REGINFO_SENTINEL
2122 #endif
2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2126 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2127 raw_write(env, ri, value);
2128 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2129 raw_write(env, ri, value & 0xfffff6ff);
2130 } else {
2131 raw_write(env, ri, value & 0xfffff1ff);
2135 #ifndef CONFIG_USER_ONLY
2136 /* get_phys_addr() isn't present for user-mode-only targets */
2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2139 bool isread)
2141 if (ri->opc2 & 4) {
2142 /* The ATS12NSO* operations must trap to EL3 if executed in
2143 * Secure EL1 (which can only happen if EL3 is AArch64).
2144 * They are simply UNDEF if executed from NS EL1.
2145 * They function normally from EL2 or EL3.
2147 if (arm_current_el(env) == 1) {
2148 if (arm_is_secure_below_el3(env)) {
2149 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2151 return CP_ACCESS_TRAP_UNCATEGORIZED;
2154 return CP_ACCESS_OK;
2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2158 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2160 hwaddr phys_addr;
2161 target_ulong page_size;
2162 int prot;
2163 bool ret;
2164 uint64_t par64;
2165 bool format64 = false;
2166 MemTxAttrs attrs = {};
2167 ARMMMUFaultInfo fi = {};
2168 ARMCacheAttrs cacheattrs = {};
2170 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2171 &prot, &page_size, &fi, &cacheattrs);
2173 if (is_a64(env)) {
2174 format64 = true;
2175 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2177 * ATS1Cxx:
2178 * * TTBCR.EAE determines whether the result is returned using the
2179 * 32-bit or the 64-bit PAR format
2180 * * Instructions executed in Hyp mode always use the 64bit format
2182 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2183 * * The Non-secure TTBCR.EAE bit is set to 1
2184 * * The implementation includes EL2, and the value of HCR.VM is 1
2186 * ATS1Hx always uses the 64bit format (not supported yet).
2188 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2190 if (arm_feature(env, ARM_FEATURE_EL2)) {
2191 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2192 format64 |= env->cp15.hcr_el2 & HCR_VM;
2193 } else {
2194 format64 |= arm_current_el(env) == 2;
2199 if (format64) {
2200 /* Create a 64-bit PAR */
2201 par64 = (1 << 11); /* LPAE bit always set */
2202 if (!ret) {
2203 par64 |= phys_addr & ~0xfffULL;
2204 if (!attrs.secure) {
2205 par64 |= (1 << 9); /* NS */
2207 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2208 par64 |= cacheattrs.shareability << 7; /* SH */
2209 } else {
2210 uint32_t fsr = arm_fi_to_lfsc(&fi);
2212 par64 |= 1; /* F */
2213 par64 |= (fsr & 0x3f) << 1; /* FS */
2214 /* Note that S2WLK and FSTAGE are always zero, because we don't
2215 * implement virtualization and therefore there can't be a stage 2
2216 * fault.
2219 } else {
2220 /* fsr is a DFSR/IFSR value for the short descriptor
2221 * translation table format (with WnR always clear).
2222 * Convert it to a 32-bit PAR.
2224 if (!ret) {
2225 /* We do not set any attribute bits in the PAR */
2226 if (page_size == (1 << 24)
2227 && arm_feature(env, ARM_FEATURE_V7)) {
2228 par64 = (phys_addr & 0xff000000) | (1 << 1);
2229 } else {
2230 par64 = phys_addr & 0xfffff000;
2232 if (!attrs.secure) {
2233 par64 |= (1 << 9); /* NS */
2235 } else {
2236 uint32_t fsr = arm_fi_to_sfsc(&fi);
2238 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2239 ((fsr & 0xf) << 1) | 1;
2242 return par64;
2245 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2247 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2248 uint64_t par64;
2249 ARMMMUIdx mmu_idx;
2250 int el = arm_current_el(env);
2251 bool secure = arm_is_secure_below_el3(env);
2253 switch (ri->opc2 & 6) {
2254 case 0:
2255 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2256 switch (el) {
2257 case 3:
2258 mmu_idx = ARMMMUIdx_S1E3;
2259 break;
2260 case 2:
2261 mmu_idx = ARMMMUIdx_S1NSE1;
2262 break;
2263 case 1:
2264 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2265 break;
2266 default:
2267 g_assert_not_reached();
2269 break;
2270 case 2:
2271 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2272 switch (el) {
2273 case 3:
2274 mmu_idx = ARMMMUIdx_S1SE0;
2275 break;
2276 case 2:
2277 mmu_idx = ARMMMUIdx_S1NSE0;
2278 break;
2279 case 1:
2280 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2281 break;
2282 default:
2283 g_assert_not_reached();
2285 break;
2286 case 4:
2287 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2288 mmu_idx = ARMMMUIdx_S12NSE1;
2289 break;
2290 case 6:
2291 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2292 mmu_idx = ARMMMUIdx_S12NSE0;
2293 break;
2294 default:
2295 g_assert_not_reached();
2298 par64 = do_ats_write(env, value, access_type, mmu_idx);
2300 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2303 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2304 uint64_t value)
2306 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2307 uint64_t par64;
2309 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2311 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2314 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2315 bool isread)
2317 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2318 return CP_ACCESS_TRAP;
2320 return CP_ACCESS_OK;
2323 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2324 uint64_t value)
2326 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2327 ARMMMUIdx mmu_idx;
2328 int secure = arm_is_secure_below_el3(env);
2330 switch (ri->opc2 & 6) {
2331 case 0:
2332 switch (ri->opc1) {
2333 case 0: /* AT S1E1R, AT S1E1W */
2334 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2335 break;
2336 case 4: /* AT S1E2R, AT S1E2W */
2337 mmu_idx = ARMMMUIdx_S1E2;
2338 break;
2339 case 6: /* AT S1E3R, AT S1E3W */
2340 mmu_idx = ARMMMUIdx_S1E3;
2341 break;
2342 default:
2343 g_assert_not_reached();
2345 break;
2346 case 2: /* AT S1E0R, AT S1E0W */
2347 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2348 break;
2349 case 4: /* AT S12E1R, AT S12E1W */
2350 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2351 break;
2352 case 6: /* AT S12E0R, AT S12E0W */
2353 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2354 break;
2355 default:
2356 g_assert_not_reached();
2359 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2361 #endif
2363 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2364 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2365 .access = PL1_RW, .resetvalue = 0,
2366 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2367 offsetoflow32(CPUARMState, cp15.par_ns) },
2368 .writefn = par_write },
2369 #ifndef CONFIG_USER_ONLY
2370 /* This underdecoding is safe because the reginfo is NO_RAW. */
2371 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2372 .access = PL1_W, .accessfn = ats_access,
2373 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2374 #endif
2375 REGINFO_SENTINEL
2378 /* Return basic MPU access permission bits. */
2379 static uint32_t simple_mpu_ap_bits(uint32_t val)
2381 uint32_t ret;
2382 uint32_t mask;
2383 int i;
2384 ret = 0;
2385 mask = 3;
2386 for (i = 0; i < 16; i += 2) {
2387 ret |= (val >> i) & mask;
2388 mask <<= 2;
2390 return ret;
2393 /* Pad basic MPU access permission bits to extended format. */
2394 static uint32_t extended_mpu_ap_bits(uint32_t val)
2396 uint32_t ret;
2397 uint32_t mask;
2398 int i;
2399 ret = 0;
2400 mask = 3;
2401 for (i = 0; i < 16; i += 2) {
2402 ret |= (val & mask) << i;
2403 mask <<= 2;
2405 return ret;
2408 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2409 uint64_t value)
2411 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2414 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2416 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2419 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420 uint64_t value)
2422 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2425 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2427 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2430 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2432 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2434 if (!u32p) {
2435 return 0;
2438 u32p += env->pmsav7.rnr[M_REG_NS];
2439 return *u32p;
2442 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443 uint64_t value)
2445 ARMCPU *cpu = arm_env_get_cpu(env);
2446 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2448 if (!u32p) {
2449 return;
2452 u32p += env->pmsav7.rnr[M_REG_NS];
2453 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2454 *u32p = value;
2457 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2458 uint64_t value)
2460 ARMCPU *cpu = arm_env_get_cpu(env);
2461 uint32_t nrgs = cpu->pmsav7_dregion;
2463 if (value >= nrgs) {
2464 qemu_log_mask(LOG_GUEST_ERROR,
2465 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2466 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2467 return;
2470 raw_write(env, ri, value);
2473 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2474 /* Reset for all these registers is handled in arm_cpu_reset(),
2475 * because the PMSAv7 is also used by M-profile CPUs, which do
2476 * not register cpregs but still need the state to be reset.
2478 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2479 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2480 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2481 .readfn = pmsav7_read, .writefn = pmsav7_write,
2482 .resetfn = arm_cp_reset_ignore },
2483 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2484 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2485 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2486 .readfn = pmsav7_read, .writefn = pmsav7_write,
2487 .resetfn = arm_cp_reset_ignore },
2488 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2489 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2490 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2491 .readfn = pmsav7_read, .writefn = pmsav7_write,
2492 .resetfn = arm_cp_reset_ignore },
2493 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2494 .access = PL1_RW,
2495 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2496 .writefn = pmsav7_rgnr_write,
2497 .resetfn = arm_cp_reset_ignore },
2498 REGINFO_SENTINEL
2501 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2502 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2503 .access = PL1_RW, .type = ARM_CP_ALIAS,
2504 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2505 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2506 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2507 .access = PL1_RW, .type = ARM_CP_ALIAS,
2508 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2509 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2510 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2511 .access = PL1_RW,
2512 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2513 .resetvalue = 0, },
2514 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2515 .access = PL1_RW,
2516 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2517 .resetvalue = 0, },
2518 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2519 .access = PL1_RW,
2520 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2521 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2522 .access = PL1_RW,
2523 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2524 /* Protection region base and size registers */
2525 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2526 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2527 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2528 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2529 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2530 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2531 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2532 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2533 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2534 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2535 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2536 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2537 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2538 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2539 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2540 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2541 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2542 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2543 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2544 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2545 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2546 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2547 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2548 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2549 REGINFO_SENTINEL
2552 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2553 uint64_t value)
2555 TCR *tcr = raw_ptr(env, ri);
2556 int maskshift = extract32(value, 0, 3);
2558 if (!arm_feature(env, ARM_FEATURE_V8)) {
2559 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2560 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2561 * using Long-desciptor translation table format */
2562 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2563 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2564 /* In an implementation that includes the Security Extensions
2565 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2566 * Short-descriptor translation table format.
2568 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2569 } else {
2570 value &= TTBCR_N;
2574 /* Update the masks corresponding to the TCR bank being written
2575 * Note that we always calculate mask and base_mask, but
2576 * they are only used for short-descriptor tables (ie if EAE is 0);
2577 * for long-descriptor tables the TCR fields are used differently
2578 * and the mask and base_mask values are meaningless.
2580 tcr->raw_tcr = value;
2581 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2582 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2585 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586 uint64_t value)
2588 ARMCPU *cpu = arm_env_get_cpu(env);
2590 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2591 /* With LPAE the TTBCR could result in a change of ASID
2592 * via the TTBCR.A1 bit, so do a TLB flush.
2594 tlb_flush(CPU(cpu));
2596 vmsa_ttbcr_raw_write(env, ri, value);
2599 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2601 TCR *tcr = raw_ptr(env, ri);
2603 /* Reset both the TCR as well as the masks corresponding to the bank of
2604 * the TCR being reset.
2606 tcr->raw_tcr = 0;
2607 tcr->mask = 0;
2608 tcr->base_mask = 0xffffc000u;
2611 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2612 uint64_t value)
2614 ARMCPU *cpu = arm_env_get_cpu(env);
2615 TCR *tcr = raw_ptr(env, ri);
2617 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2618 tlb_flush(CPU(cpu));
2619 tcr->raw_tcr = value;
2622 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2623 uint64_t value)
2625 /* 64 bit accesses to the TTBRs can change the ASID and so we
2626 * must flush the TLB.
2628 if (cpreg_field_is_64bit(ri)) {
2629 ARMCPU *cpu = arm_env_get_cpu(env);
2631 tlb_flush(CPU(cpu));
2633 raw_write(env, ri, value);
2636 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637 uint64_t value)
2639 ARMCPU *cpu = arm_env_get_cpu(env);
2640 CPUState *cs = CPU(cpu);
2642 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2643 if (raw_read(env, ri) != value) {
2644 tlb_flush_by_mmuidx(cs,
2645 ARMMMUIdxBit_S12NSE1 |
2646 ARMMMUIdxBit_S12NSE0 |
2647 ARMMMUIdxBit_S2NS);
2648 raw_write(env, ri, value);
2652 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2653 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2654 .access = PL1_RW, .type = ARM_CP_ALIAS,
2655 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2656 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2657 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2658 .access = PL1_RW, .resetvalue = 0,
2659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2660 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2661 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2662 .access = PL1_RW, .resetvalue = 0,
2663 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2664 offsetof(CPUARMState, cp15.dfar_ns) } },
2665 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2666 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2667 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2668 .resetvalue = 0, },
2669 REGINFO_SENTINEL
2672 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2673 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2674 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2675 .access = PL1_RW,
2676 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2677 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2678 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2679 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2680 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2681 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2682 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2683 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2684 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2685 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2686 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2687 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2688 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2689 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2690 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2691 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2692 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2693 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2694 .raw_writefn = vmsa_ttbcr_raw_write,
2695 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2696 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2697 REGINFO_SENTINEL
2700 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2701 uint64_t value)
2703 env->cp15.c15_ticonfig = value & 0xe7;
2704 /* The OS_TYPE bit in this register changes the reported CPUID! */
2705 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2706 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2709 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2710 uint64_t value)
2712 env->cp15.c15_threadid = value & 0xffff;
2715 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2716 uint64_t value)
2718 /* Wait-for-interrupt (deprecated) */
2719 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2722 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723 uint64_t value)
2725 /* On OMAP there are registers indicating the max/min index of dcache lines
2726 * containing a dirty line; cache flush operations have to reset these.
2728 env->cp15.c15_i_max = 0x000;
2729 env->cp15.c15_i_min = 0xff0;
2732 static const ARMCPRegInfo omap_cp_reginfo[] = {
2733 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2735 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2736 .resetvalue = 0, },
2737 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2738 .access = PL1_RW, .type = ARM_CP_NOP },
2739 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2740 .access = PL1_RW,
2741 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2742 .writefn = omap_ticonfig_write },
2743 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2744 .access = PL1_RW,
2745 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2746 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2747 .access = PL1_RW, .resetvalue = 0xff0,
2748 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2749 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2750 .access = PL1_RW,
2751 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2752 .writefn = omap_threadid_write },
2753 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2754 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2755 .type = ARM_CP_NO_RAW,
2756 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2757 /* TODO: Peripheral port remap register:
2758 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2759 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2760 * when MMU is off.
2762 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2763 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2764 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2765 .writefn = omap_cachemaint_write },
2766 { .name = "C9", .cp = 15, .crn = 9,
2767 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2768 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2769 REGINFO_SENTINEL
2772 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2773 uint64_t value)
2775 env->cp15.c15_cpar = value & 0x3fff;
2778 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2779 { .name = "XSCALE_CPAR",
2780 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2781 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2782 .writefn = xscale_cpar_write, },
2783 { .name = "XSCALE_AUXCR",
2784 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2785 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2786 .resetvalue = 0, },
2787 /* XScale specific cache-lockdown: since we have no cache we NOP these
2788 * and hope the guest does not really rely on cache behaviour.
2790 { .name = "XSCALE_LOCK_ICACHE_LINE",
2791 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2792 .access = PL1_W, .type = ARM_CP_NOP },
2793 { .name = "XSCALE_UNLOCK_ICACHE",
2794 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2795 .access = PL1_W, .type = ARM_CP_NOP },
2796 { .name = "XSCALE_DCACHE_LOCK",
2797 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2798 .access = PL1_RW, .type = ARM_CP_NOP },
2799 { .name = "XSCALE_UNLOCK_DCACHE",
2800 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2801 .access = PL1_W, .type = ARM_CP_NOP },
2802 REGINFO_SENTINEL
2805 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2806 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2807 * implementation of this implementation-defined space.
2808 * Ideally this should eventually disappear in favour of actually
2809 * implementing the correct behaviour for all cores.
2811 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2812 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2813 .access = PL1_RW,
2814 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2815 .resetvalue = 0 },
2816 REGINFO_SENTINEL
2819 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2820 /* Cache status: RAZ because we have no cache so it's always clean */
2821 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2822 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2823 .resetvalue = 0 },
2824 REGINFO_SENTINEL
2827 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2828 /* We never have a a block transfer operation in progress */
2829 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2830 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2831 .resetvalue = 0 },
2832 /* The cache ops themselves: these all NOP for QEMU */
2833 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2834 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2835 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2836 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2837 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2838 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2839 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2840 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2841 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2842 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2843 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2844 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2845 REGINFO_SENTINEL
2848 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2849 /* The cache test-and-clean instructions always return (1 << 30)
2850 * to indicate that there are no dirty cache lines.
2852 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2853 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2854 .resetvalue = (1 << 30) },
2855 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2856 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2857 .resetvalue = (1 << 30) },
2858 REGINFO_SENTINEL
2861 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2862 /* Ignore ReadBuffer accesses */
2863 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2864 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2865 .access = PL1_RW, .resetvalue = 0,
2866 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2867 REGINFO_SENTINEL
2870 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2872 ARMCPU *cpu = arm_env_get_cpu(env);
2873 unsigned int cur_el = arm_current_el(env);
2874 bool secure = arm_is_secure(env);
2876 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2877 return env->cp15.vpidr_el2;
2879 return raw_read(env, ri);
2882 static uint64_t mpidr_read_val(CPUARMState *env)
2884 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2885 uint64_t mpidr = cpu->mp_affinity;
2887 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2888 mpidr |= (1U << 31);
2889 /* Cores which are uniprocessor (non-coherent)
2890 * but still implement the MP extensions set
2891 * bit 30. (For instance, Cortex-R5).
2893 if (cpu->mp_is_up) {
2894 mpidr |= (1u << 30);
2897 return mpidr;
2900 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2902 unsigned int cur_el = arm_current_el(env);
2903 bool secure = arm_is_secure(env);
2905 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2906 return env->cp15.vmpidr_el2;
2908 return mpidr_read_val(env);
2911 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2912 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2913 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2914 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2915 REGINFO_SENTINEL
2918 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2919 /* NOP AMAIR0/1 */
2920 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2921 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2922 .access = PL1_RW, .type = ARM_CP_CONST,
2923 .resetvalue = 0 },
2924 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2925 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2926 .access = PL1_RW, .type = ARM_CP_CONST,
2927 .resetvalue = 0 },
2928 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2929 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2930 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2931 offsetof(CPUARMState, cp15.par_ns)} },
2932 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2933 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2934 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2935 offsetof(CPUARMState, cp15.ttbr0_ns) },
2936 .writefn = vmsa_ttbr_write, },
2937 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2938 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2939 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2940 offsetof(CPUARMState, cp15.ttbr1_ns) },
2941 .writefn = vmsa_ttbr_write, },
2942 REGINFO_SENTINEL
2945 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2947 return vfp_get_fpcr(env);
2950 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951 uint64_t value)
2953 vfp_set_fpcr(env, value);
2956 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2958 return vfp_get_fpsr(env);
2961 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2962 uint64_t value)
2964 vfp_set_fpsr(env, value);
2967 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2968 bool isread)
2970 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2971 return CP_ACCESS_TRAP;
2973 return CP_ACCESS_OK;
2976 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2979 env->daif = value & PSTATE_DAIF;
2982 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2983 const ARMCPRegInfo *ri,
2984 bool isread)
2986 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2987 * SCTLR_EL1.UCI is set.
2989 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2990 return CP_ACCESS_TRAP;
2992 return CP_ACCESS_OK;
2995 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2996 * Page D4-1736 (DDI0487A.b)
2999 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3000 uint64_t value)
3002 CPUState *cs = ENV_GET_CPU(env);
3004 if (arm_is_secure_below_el3(env)) {
3005 tlb_flush_by_mmuidx(cs,
3006 ARMMMUIdxBit_S1SE1 |
3007 ARMMMUIdxBit_S1SE0);
3008 } else {
3009 tlb_flush_by_mmuidx(cs,
3010 ARMMMUIdxBit_S12NSE1 |
3011 ARMMMUIdxBit_S12NSE0);
3015 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3018 CPUState *cs = ENV_GET_CPU(env);
3019 bool sec = arm_is_secure_below_el3(env);
3021 if (sec) {
3022 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3023 ARMMMUIdxBit_S1SE1 |
3024 ARMMMUIdxBit_S1SE0);
3025 } else {
3026 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3027 ARMMMUIdxBit_S12NSE1 |
3028 ARMMMUIdxBit_S12NSE0);
3032 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3035 /* Note that the 'ALL' scope must invalidate both stage 1 and
3036 * stage 2 translations, whereas most other scopes only invalidate
3037 * stage 1 translations.
3039 ARMCPU *cpu = arm_env_get_cpu(env);
3040 CPUState *cs = CPU(cpu);
3042 if (arm_is_secure_below_el3(env)) {
3043 tlb_flush_by_mmuidx(cs,
3044 ARMMMUIdxBit_S1SE1 |
3045 ARMMMUIdxBit_S1SE0);
3046 } else {
3047 if (arm_feature(env, ARM_FEATURE_EL2)) {
3048 tlb_flush_by_mmuidx(cs,
3049 ARMMMUIdxBit_S12NSE1 |
3050 ARMMMUIdxBit_S12NSE0 |
3051 ARMMMUIdxBit_S2NS);
3052 } else {
3053 tlb_flush_by_mmuidx(cs,
3054 ARMMMUIdxBit_S12NSE1 |
3055 ARMMMUIdxBit_S12NSE0);
3060 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061 uint64_t value)
3063 ARMCPU *cpu = arm_env_get_cpu(env);
3064 CPUState *cs = CPU(cpu);
3066 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3069 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070 uint64_t value)
3072 ARMCPU *cpu = arm_env_get_cpu(env);
3073 CPUState *cs = CPU(cpu);
3075 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3078 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3079 uint64_t value)
3081 /* Note that the 'ALL' scope must invalidate both stage 1 and
3082 * stage 2 translations, whereas most other scopes only invalidate
3083 * stage 1 translations.
3085 CPUState *cs = ENV_GET_CPU(env);
3086 bool sec = arm_is_secure_below_el3(env);
3087 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3089 if (sec) {
3090 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3091 ARMMMUIdxBit_S1SE1 |
3092 ARMMMUIdxBit_S1SE0);
3093 } else if (has_el2) {
3094 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3095 ARMMMUIdxBit_S12NSE1 |
3096 ARMMMUIdxBit_S12NSE0 |
3097 ARMMMUIdxBit_S2NS);
3098 } else {
3099 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3100 ARMMMUIdxBit_S12NSE1 |
3101 ARMMMUIdxBit_S12NSE0);
3105 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3106 uint64_t value)
3108 CPUState *cs = ENV_GET_CPU(env);
3110 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3113 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3114 uint64_t value)
3116 CPUState *cs = ENV_GET_CPU(env);
3118 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3121 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3122 uint64_t value)
3124 /* Invalidate by VA, EL1&0 (AArch64 version).
3125 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3126 * since we don't support flush-for-specific-ASID-only or
3127 * flush-last-level-only.
3129 ARMCPU *cpu = arm_env_get_cpu(env);
3130 CPUState *cs = CPU(cpu);
3131 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3133 if (arm_is_secure_below_el3(env)) {
3134 tlb_flush_page_by_mmuidx(cs, pageaddr,
3135 ARMMMUIdxBit_S1SE1 |
3136 ARMMMUIdxBit_S1SE0);
3137 } else {
3138 tlb_flush_page_by_mmuidx(cs, pageaddr,
3139 ARMMMUIdxBit_S12NSE1 |
3140 ARMMMUIdxBit_S12NSE0);
3144 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145 uint64_t value)
3147 /* Invalidate by VA, EL2
3148 * Currently handles both VAE2 and VALE2, since we don't support
3149 * flush-last-level-only.
3151 ARMCPU *cpu = arm_env_get_cpu(env);
3152 CPUState *cs = CPU(cpu);
3153 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3155 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3158 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3159 uint64_t value)
3161 /* Invalidate by VA, EL3
3162 * Currently handles both VAE3 and VALE3, since we don't support
3163 * flush-last-level-only.
3165 ARMCPU *cpu = arm_env_get_cpu(env);
3166 CPUState *cs = CPU(cpu);
3167 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3169 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3172 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3173 uint64_t value)
3175 ARMCPU *cpu = arm_env_get_cpu(env);
3176 CPUState *cs = CPU(cpu);
3177 bool sec = arm_is_secure_below_el3(env);
3178 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3180 if (sec) {
3181 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3182 ARMMMUIdxBit_S1SE1 |
3183 ARMMMUIdxBit_S1SE0);
3184 } else {
3185 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3186 ARMMMUIdxBit_S12NSE1 |
3187 ARMMMUIdxBit_S12NSE0);
3191 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3192 uint64_t value)
3194 CPUState *cs = ENV_GET_CPU(env);
3195 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3197 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3198 ARMMMUIdxBit_S1E2);
3201 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3202 uint64_t value)
3204 CPUState *cs = ENV_GET_CPU(env);
3205 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3207 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3208 ARMMMUIdxBit_S1E3);
3211 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3212 uint64_t value)
3214 /* Invalidate by IPA. This has to invalidate any structures that
3215 * contain only stage 2 translation information, but does not need
3216 * to apply to structures that contain combined stage 1 and stage 2
3217 * translation information.
3218 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3220 ARMCPU *cpu = arm_env_get_cpu(env);
3221 CPUState *cs = CPU(cpu);
3222 uint64_t pageaddr;
3224 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3225 return;
3228 pageaddr = sextract64(value << 12, 0, 48);
3230 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3233 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3234 uint64_t value)
3236 CPUState *cs = ENV_GET_CPU(env);
3237 uint64_t pageaddr;
3239 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3240 return;
3243 pageaddr = sextract64(value << 12, 0, 48);
3245 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3246 ARMMMUIdxBit_S2NS);
3249 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3250 bool isread)
3252 /* We don't implement EL2, so the only control on DC ZVA is the
3253 * bit in the SCTLR which can prohibit access for EL0.
3255 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3256 return CP_ACCESS_TRAP;
3258 return CP_ACCESS_OK;
3261 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3263 ARMCPU *cpu = arm_env_get_cpu(env);
3264 int dzp_bit = 1 << 4;
3266 /* DZP indicates whether DC ZVA access is allowed */
3267 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3268 dzp_bit = 0;
3270 return cpu->dcz_blocksize | dzp_bit;
3273 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3274 bool isread)
3276 if (!(env->pstate & PSTATE_SP)) {
3277 /* Access to SP_EL0 is undefined if it's being used as
3278 * the stack pointer.
3280 return CP_ACCESS_TRAP_UNCATEGORIZED;
3282 return CP_ACCESS_OK;
3285 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3287 return env->pstate & PSTATE_SP;
3290 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3292 update_spsel(env, val);
3295 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3296 uint64_t value)
3298 ARMCPU *cpu = arm_env_get_cpu(env);
3300 if (raw_read(env, ri) == value) {
3301 /* Skip the TLB flush if nothing actually changed; Linux likes
3302 * to do a lot of pointless SCTLR writes.
3304 return;
3307 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3308 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3309 value &= ~SCTLR_M;
3312 raw_write(env, ri, value);
3313 /* ??? Lots of these bits are not implemented. */
3314 /* This may enable/disable the MMU, so do a TLB flush. */
3315 tlb_flush(CPU(cpu));
3318 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3319 bool isread)
3321 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3322 return CP_ACCESS_TRAP_FP_EL2;
3324 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3325 return CP_ACCESS_TRAP_FP_EL3;
3327 return CP_ACCESS_OK;
3330 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3331 uint64_t value)
3333 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3336 static const ARMCPRegInfo v8_cp_reginfo[] = {
3337 /* Minimal set of EL0-visible registers. This will need to be expanded
3338 * significantly for system emulation of AArch64 CPUs.
3340 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3342 .access = PL0_RW, .type = ARM_CP_NZCV },
3343 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3345 .type = ARM_CP_NO_RAW,
3346 .access = PL0_RW, .accessfn = aa64_daif_access,
3347 .fieldoffset = offsetof(CPUARMState, daif),
3348 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3349 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3351 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3352 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3354 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3355 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3357 .access = PL0_R, .type = ARM_CP_NO_RAW,
3358 .readfn = aa64_dczid_read },
3359 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3361 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3362 #ifndef CONFIG_USER_ONLY
3363 /* Avoid overhead of an access check that always passes in user-mode */
3364 .accessfn = aa64_zva_access,
3365 #endif
3367 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3368 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3369 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3370 /* Cache ops: all NOPs since we don't emulate caches */
3371 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3372 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3373 .access = PL1_W, .type = ARM_CP_NOP },
3374 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3376 .access = PL1_W, .type = ARM_CP_NOP },
3377 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3378 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3379 .access = PL0_W, .type = ARM_CP_NOP,
3380 .accessfn = aa64_cacheop_access },
3381 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3382 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3383 .access = PL1_W, .type = ARM_CP_NOP },
3384 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3385 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3386 .access = PL1_W, .type = ARM_CP_NOP },
3387 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3388 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3389 .access = PL0_W, .type = ARM_CP_NOP,
3390 .accessfn = aa64_cacheop_access },
3391 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3392 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3393 .access = PL1_W, .type = ARM_CP_NOP },
3394 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3395 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3396 .access = PL0_W, .type = ARM_CP_NOP,
3397 .accessfn = aa64_cacheop_access },
3398 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3399 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3400 .access = PL0_W, .type = ARM_CP_NOP,
3401 .accessfn = aa64_cacheop_access },
3402 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3403 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3404 .access = PL1_W, .type = ARM_CP_NOP },
3405 /* TLBI operations */
3406 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3408 .access = PL1_W, .type = ARM_CP_NO_RAW,
3409 .writefn = tlbi_aa64_vmalle1is_write },
3410 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3412 .access = PL1_W, .type = ARM_CP_NO_RAW,
3413 .writefn = tlbi_aa64_vae1is_write },
3414 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3416 .access = PL1_W, .type = ARM_CP_NO_RAW,
3417 .writefn = tlbi_aa64_vmalle1is_write },
3418 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3420 .access = PL1_W, .type = ARM_CP_NO_RAW,
3421 .writefn = tlbi_aa64_vae1is_write },
3422 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3424 .access = PL1_W, .type = ARM_CP_NO_RAW,
3425 .writefn = tlbi_aa64_vae1is_write },
3426 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3428 .access = PL1_W, .type = ARM_CP_NO_RAW,
3429 .writefn = tlbi_aa64_vae1is_write },
3430 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3431 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3432 .access = PL1_W, .type = ARM_CP_NO_RAW,
3433 .writefn = tlbi_aa64_vmalle1_write },
3434 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3436 .access = PL1_W, .type = ARM_CP_NO_RAW,
3437 .writefn = tlbi_aa64_vae1_write },
3438 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3440 .access = PL1_W, .type = ARM_CP_NO_RAW,
3441 .writefn = tlbi_aa64_vmalle1_write },
3442 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3443 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3444 .access = PL1_W, .type = ARM_CP_NO_RAW,
3445 .writefn = tlbi_aa64_vae1_write },
3446 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3448 .access = PL1_W, .type = ARM_CP_NO_RAW,
3449 .writefn = tlbi_aa64_vae1_write },
3450 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3452 .access = PL1_W, .type = ARM_CP_NO_RAW,
3453 .writefn = tlbi_aa64_vae1_write },
3454 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3456 .access = PL2_W, .type = ARM_CP_NO_RAW,
3457 .writefn = tlbi_aa64_ipas2e1is_write },
3458 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3460 .access = PL2_W, .type = ARM_CP_NO_RAW,
3461 .writefn = tlbi_aa64_ipas2e1is_write },
3462 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3463 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3464 .access = PL2_W, .type = ARM_CP_NO_RAW,
3465 .writefn = tlbi_aa64_alle1is_write },
3466 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3468 .access = PL2_W, .type = ARM_CP_NO_RAW,
3469 .writefn = tlbi_aa64_alle1is_write },
3470 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3472 .access = PL2_W, .type = ARM_CP_NO_RAW,
3473 .writefn = tlbi_aa64_ipas2e1_write },
3474 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3476 .access = PL2_W, .type = ARM_CP_NO_RAW,
3477 .writefn = tlbi_aa64_ipas2e1_write },
3478 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3480 .access = PL2_W, .type = ARM_CP_NO_RAW,
3481 .writefn = tlbi_aa64_alle1_write },
3482 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3483 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3484 .access = PL2_W, .type = ARM_CP_NO_RAW,
3485 .writefn = tlbi_aa64_alle1is_write },
3486 #ifndef CONFIG_USER_ONLY
3487 /* 64 bit address translation operations */
3488 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3490 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3491 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3492 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3493 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3494 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3495 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3496 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3497 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3498 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3499 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3500 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3501 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3502 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3503 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3504 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3505 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3506 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3507 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3508 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3509 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3510 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3511 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3512 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3513 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3514 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3515 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3516 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3517 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3518 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3519 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3520 .type = ARM_CP_ALIAS,
3521 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3522 .access = PL1_RW, .resetvalue = 0,
3523 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3524 .writefn = par_write },
3525 #endif
3526 /* TLB invalidate last level of translation table walk */
3527 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3528 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3529 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3530 .type = ARM_CP_NO_RAW, .access = PL1_W,
3531 .writefn = tlbimvaa_is_write },
3532 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3533 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3534 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3535 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3536 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3537 .type = ARM_CP_NO_RAW, .access = PL2_W,
3538 .writefn = tlbimva_hyp_write },
3539 { .name = "TLBIMVALHIS",
3540 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3541 .type = ARM_CP_NO_RAW, .access = PL2_W,
3542 .writefn = tlbimva_hyp_is_write },
3543 { .name = "TLBIIPAS2",
3544 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3545 .type = ARM_CP_NO_RAW, .access = PL2_W,
3546 .writefn = tlbiipas2_write },
3547 { .name = "TLBIIPAS2IS",
3548 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3549 .type = ARM_CP_NO_RAW, .access = PL2_W,
3550 .writefn = tlbiipas2_is_write },
3551 { .name = "TLBIIPAS2L",
3552 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3553 .type = ARM_CP_NO_RAW, .access = PL2_W,
3554 .writefn = tlbiipas2_write },
3555 { .name = "TLBIIPAS2LIS",
3556 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3557 .type = ARM_CP_NO_RAW, .access = PL2_W,
3558 .writefn = tlbiipas2_is_write },
3559 /* 32 bit cache operations */
3560 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3561 .type = ARM_CP_NOP, .access = PL1_W },
3562 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3563 .type = ARM_CP_NOP, .access = PL1_W },
3564 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3565 .type = ARM_CP_NOP, .access = PL1_W },
3566 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3567 .type = ARM_CP_NOP, .access = PL1_W },
3568 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3569 .type = ARM_CP_NOP, .access = PL1_W },
3570 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3571 .type = ARM_CP_NOP, .access = PL1_W },
3572 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3573 .type = ARM_CP_NOP, .access = PL1_W },
3574 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3575 .type = ARM_CP_NOP, .access = PL1_W },
3576 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3577 .type = ARM_CP_NOP, .access = PL1_W },
3578 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3579 .type = ARM_CP_NOP, .access = PL1_W },
3580 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3581 .type = ARM_CP_NOP, .access = PL1_W },
3582 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3583 .type = ARM_CP_NOP, .access = PL1_W },
3584 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3585 .type = ARM_CP_NOP, .access = PL1_W },
3586 /* MMU Domain access control / MPU write buffer control */
3587 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3588 .access = PL1_RW, .resetvalue = 0,
3589 .writefn = dacr_write, .raw_writefn = raw_write,
3590 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3591 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3592 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3593 .type = ARM_CP_ALIAS,
3594 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3595 .access = PL1_RW,
3596 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3597 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3598 .type = ARM_CP_ALIAS,
3599 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3600 .access = PL1_RW,
3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3602 /* We rely on the access checks not allowing the guest to write to the
3603 * state field when SPSel indicates that it's being used as the stack
3604 * pointer.
3606 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3607 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3608 .access = PL1_RW, .accessfn = sp_el0_access,
3609 .type = ARM_CP_ALIAS,
3610 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3611 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3612 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3613 .access = PL2_RW, .type = ARM_CP_ALIAS,
3614 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3615 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3616 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3617 .type = ARM_CP_NO_RAW,
3618 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3619 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3620 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3621 .type = ARM_CP_ALIAS,
3622 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3623 .access = PL2_RW, .accessfn = fpexc32_access },
3624 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3625 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3626 .access = PL2_RW, .resetvalue = 0,
3627 .writefn = dacr_write, .raw_writefn = raw_write,
3628 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3629 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3630 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3631 .access = PL2_RW, .resetvalue = 0,
3632 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3633 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3634 .type = ARM_CP_ALIAS,
3635 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3636 .access = PL2_RW,
3637 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3638 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3639 .type = ARM_CP_ALIAS,
3640 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3641 .access = PL2_RW,
3642 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3643 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3644 .type = ARM_CP_ALIAS,
3645 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3646 .access = PL2_RW,
3647 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3648 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3649 .type = ARM_CP_ALIAS,
3650 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3651 .access = PL2_RW,
3652 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3653 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3654 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3655 .resetvalue = 0,
3656 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3657 { .name = "SDCR", .type = ARM_CP_ALIAS,
3658 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3659 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3660 .writefn = sdcr_write,
3661 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3662 REGINFO_SENTINEL
3665 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3666 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3667 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3668 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3669 .access = PL2_RW,
3670 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3671 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3672 .type = ARM_CP_NO_RAW,
3673 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3674 .access = PL2_RW,
3675 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3676 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3677 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3678 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3679 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3680 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3681 .access = PL2_RW, .type = ARM_CP_CONST,
3682 .resetvalue = 0 },
3683 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3684 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3685 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3686 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3687 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3688 .access = PL2_RW, .type = ARM_CP_CONST,
3689 .resetvalue = 0 },
3690 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3691 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3692 .access = PL2_RW, .type = ARM_CP_CONST,
3693 .resetvalue = 0 },
3694 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3695 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3696 .access = PL2_RW, .type = ARM_CP_CONST,
3697 .resetvalue = 0 },
3698 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3699 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3700 .access = PL2_RW, .type = ARM_CP_CONST,
3701 .resetvalue = 0 },
3702 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3703 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3704 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3705 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3706 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3707 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3708 .type = ARM_CP_CONST, .resetvalue = 0 },
3709 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3710 .cp = 15, .opc1 = 6, .crm = 2,
3711 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3712 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3713 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3714 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3715 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3716 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3717 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3718 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3719 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3720 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3721 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3722 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3723 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3724 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3725 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3726 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3727 .resetvalue = 0 },
3728 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3729 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3730 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3731 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3732 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3733 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3734 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3735 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3736 .resetvalue = 0 },
3737 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3738 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3739 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3740 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3741 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3742 .resetvalue = 0 },
3743 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3744 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3745 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3746 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3747 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3748 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3749 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3750 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3751 .access = PL2_RW, .accessfn = access_tda,
3752 .type = ARM_CP_CONST, .resetvalue = 0 },
3753 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3754 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3755 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3756 .type = ARM_CP_CONST, .resetvalue = 0 },
3757 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3758 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3759 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3760 REGINFO_SENTINEL
3763 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3765 ARMCPU *cpu = arm_env_get_cpu(env);
3766 uint64_t valid_mask = HCR_MASK;
3768 if (arm_feature(env, ARM_FEATURE_EL3)) {
3769 valid_mask &= ~HCR_HCD;
3770 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3771 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3772 * However, if we're using the SMC PSCI conduit then QEMU is
3773 * effectively acting like EL3 firmware and so the guest at
3774 * EL2 should retain the ability to prevent EL1 from being
3775 * able to make SMC calls into the ersatz firmware, so in
3776 * that case HCR.TSC should be read/write.
3778 valid_mask &= ~HCR_TSC;
3781 /* Clear RES0 bits. */
3782 value &= valid_mask;
3784 /* These bits change the MMU setup:
3785 * HCR_VM enables stage 2 translation
3786 * HCR_PTW forbids certain page-table setups
3787 * HCR_DC Disables stage1 and enables stage2 translation
3789 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3790 tlb_flush(CPU(cpu));
3792 raw_write(env, ri, value);
3795 static const ARMCPRegInfo el2_cp_reginfo[] = {
3796 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3797 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3798 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3799 .writefn = hcr_write },
3800 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3801 .type = ARM_CP_ALIAS,
3802 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3803 .access = PL2_RW,
3804 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3805 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3806 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3807 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3808 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3809 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3810 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3811 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3812 .type = ARM_CP_ALIAS,
3813 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3814 .access = PL2_RW,
3815 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3816 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3817 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3818 .access = PL2_RW, .writefn = vbar_write,
3819 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3820 .resetvalue = 0 },
3821 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3822 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3823 .access = PL3_RW, .type = ARM_CP_ALIAS,
3824 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3825 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3826 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3827 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3828 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3829 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3830 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3831 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3832 .resetvalue = 0 },
3833 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3834 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3835 .access = PL2_RW, .type = ARM_CP_ALIAS,
3836 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3837 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3838 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3839 .access = PL2_RW, .type = ARM_CP_CONST,
3840 .resetvalue = 0 },
3841 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3842 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3843 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3844 .access = PL2_RW, .type = ARM_CP_CONST,
3845 .resetvalue = 0 },
3846 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3847 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3848 .access = PL2_RW, .type = ARM_CP_CONST,
3849 .resetvalue = 0 },
3850 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3851 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3852 .access = PL2_RW, .type = ARM_CP_CONST,
3853 .resetvalue = 0 },
3854 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3855 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3856 .access = PL2_RW,
3857 /* no .writefn needed as this can't cause an ASID change;
3858 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3860 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3861 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3862 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3863 .type = ARM_CP_ALIAS,
3864 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3865 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3866 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3867 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3868 .access = PL2_RW,
3869 /* no .writefn needed as this can't cause an ASID change;
3870 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3872 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3873 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3874 .cp = 15, .opc1 = 6, .crm = 2,
3875 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3876 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3877 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3878 .writefn = vttbr_write },
3879 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3880 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3881 .access = PL2_RW, .writefn = vttbr_write,
3882 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3883 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3884 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3885 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3886 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3887 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3888 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3889 .access = PL2_RW, .resetvalue = 0,
3890 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3891 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3892 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3893 .access = PL2_RW, .resetvalue = 0,
3894 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3895 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3896 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3897 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3898 { .name = "TLBIALLNSNH",
3899 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3900 .type = ARM_CP_NO_RAW, .access = PL2_W,
3901 .writefn = tlbiall_nsnh_write },
3902 { .name = "TLBIALLNSNHIS",
3903 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3904 .type = ARM_CP_NO_RAW, .access = PL2_W,
3905 .writefn = tlbiall_nsnh_is_write },
3906 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3907 .type = ARM_CP_NO_RAW, .access = PL2_W,
3908 .writefn = tlbiall_hyp_write },
3909 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3910 .type = ARM_CP_NO_RAW, .access = PL2_W,
3911 .writefn = tlbiall_hyp_is_write },
3912 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3913 .type = ARM_CP_NO_RAW, .access = PL2_W,
3914 .writefn = tlbimva_hyp_write },
3915 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3916 .type = ARM_CP_NO_RAW, .access = PL2_W,
3917 .writefn = tlbimva_hyp_is_write },
3918 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3920 .type = ARM_CP_NO_RAW, .access = PL2_W,
3921 .writefn = tlbi_aa64_alle2_write },
3922 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3924 .type = ARM_CP_NO_RAW, .access = PL2_W,
3925 .writefn = tlbi_aa64_vae2_write },
3926 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3928 .access = PL2_W, .type = ARM_CP_NO_RAW,
3929 .writefn = tlbi_aa64_vae2_write },
3930 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3932 .access = PL2_W, .type = ARM_CP_NO_RAW,
3933 .writefn = tlbi_aa64_alle2is_write },
3934 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3936 .type = ARM_CP_NO_RAW, .access = PL2_W,
3937 .writefn = tlbi_aa64_vae2is_write },
3938 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3940 .access = PL2_W, .type = ARM_CP_NO_RAW,
3941 .writefn = tlbi_aa64_vae2is_write },
3942 #ifndef CONFIG_USER_ONLY
3943 /* Unlike the other EL2-related AT operations, these must
3944 * UNDEF from EL3 if EL2 is not implemented, which is why we
3945 * define them here rather than with the rest of the AT ops.
3947 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3948 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3949 .access = PL2_W, .accessfn = at_s1e2_access,
3950 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3951 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3952 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3953 .access = PL2_W, .accessfn = at_s1e2_access,
3954 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3955 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3956 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3957 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3958 * to behave as if SCR.NS was 1.
3960 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3961 .access = PL2_W,
3962 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3963 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3964 .access = PL2_W,
3965 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3966 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3967 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3968 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3969 * reset values as IMPDEF. We choose to reset to 3 to comply with
3970 * both ARMv7 and ARMv8.
3972 .access = PL2_RW, .resetvalue = 3,
3973 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3974 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3975 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3976 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3977 .writefn = gt_cntvoff_write,
3978 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3979 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3980 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3981 .writefn = gt_cntvoff_write,
3982 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3983 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3984 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3985 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3986 .type = ARM_CP_IO, .access = PL2_RW,
3987 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3988 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3989 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3990 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3991 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3992 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3993 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3994 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3995 .resetfn = gt_hyp_timer_reset,
3996 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3997 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3998 .type = ARM_CP_IO,
3999 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4000 .access = PL2_RW,
4001 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4002 .resetvalue = 0,
4003 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4004 #endif
4005 /* The only field of MDCR_EL2 that has a defined architectural reset value
4006 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4007 * don't impelment any PMU event counters, so using zero as a reset
4008 * value for MDCR_EL2 is okay
4010 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4011 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4012 .access = PL2_RW, .resetvalue = 0,
4013 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4014 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4015 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4016 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4017 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4018 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4019 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4020 .access = PL2_RW,
4021 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4022 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4023 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4024 .access = PL2_RW,
4025 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4026 REGINFO_SENTINEL
4029 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4030 bool isread)
4032 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4033 * At Secure EL1 it traps to EL3.
4035 if (arm_current_el(env) == 3) {
4036 return CP_ACCESS_OK;
4038 if (arm_is_secure_below_el3(env)) {
4039 return CP_ACCESS_TRAP_EL3;
4041 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4042 if (isread) {
4043 return CP_ACCESS_OK;
4045 return CP_ACCESS_TRAP_UNCATEGORIZED;
4048 static const ARMCPRegInfo el3_cp_reginfo[] = {
4049 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4050 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4051 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4052 .resetvalue = 0, .writefn = scr_write },
4053 { .name = "SCR", .type = ARM_CP_ALIAS,
4054 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4055 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4056 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4057 .writefn = scr_write },
4058 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4059 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4060 .access = PL3_RW, .resetvalue = 0,
4061 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4062 { .name = "SDER",
4063 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4064 .access = PL3_RW, .resetvalue = 0,
4065 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4066 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4067 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4068 .writefn = vbar_write, .resetvalue = 0,
4069 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4070 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4071 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4072 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4073 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4074 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4075 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4076 .access = PL3_RW,
4077 /* no .writefn needed as this can't cause an ASID change;
4078 * we must provide a .raw_writefn and .resetfn because we handle
4079 * reset and migration for the AArch32 TTBCR(S), which might be
4080 * using mask and base_mask.
4082 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4083 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4084 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4085 .type = ARM_CP_ALIAS,
4086 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4087 .access = PL3_RW,
4088 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4089 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4090 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4091 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4092 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4093 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4094 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4095 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4096 .type = ARM_CP_ALIAS,
4097 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4098 .access = PL3_RW,
4099 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4100 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4101 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4102 .access = PL3_RW, .writefn = vbar_write,
4103 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4104 .resetvalue = 0 },
4105 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4106 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4107 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4108 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4109 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4110 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4111 .access = PL3_RW, .resetvalue = 0,
4112 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4113 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4114 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4115 .access = PL3_RW, .type = ARM_CP_CONST,
4116 .resetvalue = 0 },
4117 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4118 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4119 .access = PL3_RW, .type = ARM_CP_CONST,
4120 .resetvalue = 0 },
4121 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4122 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4123 .access = PL3_RW, .type = ARM_CP_CONST,
4124 .resetvalue = 0 },
4125 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4126 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4127 .access = PL3_W, .type = ARM_CP_NO_RAW,
4128 .writefn = tlbi_aa64_alle3is_write },
4129 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4130 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4131 .access = PL3_W, .type = ARM_CP_NO_RAW,
4132 .writefn = tlbi_aa64_vae3is_write },
4133 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4134 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4135 .access = PL3_W, .type = ARM_CP_NO_RAW,
4136 .writefn = tlbi_aa64_vae3is_write },
4137 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4138 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4139 .access = PL3_W, .type = ARM_CP_NO_RAW,
4140 .writefn = tlbi_aa64_alle3_write },
4141 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4143 .access = PL3_W, .type = ARM_CP_NO_RAW,
4144 .writefn = tlbi_aa64_vae3_write },
4145 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4146 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4147 .access = PL3_W, .type = ARM_CP_NO_RAW,
4148 .writefn = tlbi_aa64_vae3_write },
4149 REGINFO_SENTINEL
4152 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4153 bool isread)
4155 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4156 * but the AArch32 CTR has its own reginfo struct)
4158 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4159 return CP_ACCESS_TRAP;
4161 return CP_ACCESS_OK;
4164 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4165 uint64_t value)
4167 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4168 * read via a bit in OSLSR_EL1.
4170 int oslock;
4172 if (ri->state == ARM_CP_STATE_AA32) {
4173 oslock = (value == 0xC5ACCE55);
4174 } else {
4175 oslock = value & 1;
4178 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4181 static const ARMCPRegInfo debug_cp_reginfo[] = {
4182 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4183 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4184 * unlike DBGDRAR it is never accessible from EL0.
4185 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4186 * accessor.
4188 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4189 .access = PL0_R, .accessfn = access_tdra,
4190 .type = ARM_CP_CONST, .resetvalue = 0 },
4191 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4192 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4193 .access = PL1_R, .accessfn = access_tdra,
4194 .type = ARM_CP_CONST, .resetvalue = 0 },
4195 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4196 .access = PL0_R, .accessfn = access_tdra,
4197 .type = ARM_CP_CONST, .resetvalue = 0 },
4198 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4199 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4200 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4201 .access = PL1_RW, .accessfn = access_tda,
4202 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4203 .resetvalue = 0 },
4204 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4205 * We don't implement the configurable EL0 access.
4207 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4208 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4209 .type = ARM_CP_ALIAS,
4210 .access = PL1_R, .accessfn = access_tda,
4211 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4212 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4213 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4214 .access = PL1_W, .type = ARM_CP_NO_RAW,
4215 .accessfn = access_tdosa,
4216 .writefn = oslar_write },
4217 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4219 .access = PL1_R, .resetvalue = 10,
4220 .accessfn = access_tdosa,
4221 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4222 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4223 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4224 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4225 .access = PL1_RW, .accessfn = access_tdosa,
4226 .type = ARM_CP_NOP },
4227 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4228 * implement vector catch debug events yet.
4230 { .name = "DBGVCR",
4231 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4232 .access = PL1_RW, .accessfn = access_tda,
4233 .type = ARM_CP_NOP },
4234 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4235 * to save and restore a 32-bit guest's DBGVCR)
4237 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4238 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4239 .access = PL2_RW, .accessfn = access_tda,
4240 .type = ARM_CP_NOP },
4241 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4242 * Channel but Linux may try to access this register. The 32-bit
4243 * alias is DBGDCCINT.
4245 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4246 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4247 .access = PL1_RW, .accessfn = access_tda,
4248 .type = ARM_CP_NOP },
4249 REGINFO_SENTINEL
4252 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4253 /* 64 bit access versions of the (dummy) debug registers */
4254 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4255 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4256 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4257 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4258 REGINFO_SENTINEL
4261 void hw_watchpoint_update(ARMCPU *cpu, int n)
4263 CPUARMState *env = &cpu->env;
4264 vaddr len = 0;
4265 vaddr wvr = env->cp15.dbgwvr[n];
4266 uint64_t wcr = env->cp15.dbgwcr[n];
4267 int mask;
4268 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4270 if (env->cpu_watchpoint[n]) {
4271 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4272 env->cpu_watchpoint[n] = NULL;
4275 if (!extract64(wcr, 0, 1)) {
4276 /* E bit clear : watchpoint disabled */
4277 return;
4280 switch (extract64(wcr, 3, 2)) {
4281 case 0:
4282 /* LSC 00 is reserved and must behave as if the wp is disabled */
4283 return;
4284 case 1:
4285 flags |= BP_MEM_READ;
4286 break;
4287 case 2:
4288 flags |= BP_MEM_WRITE;
4289 break;
4290 case 3:
4291 flags |= BP_MEM_ACCESS;
4292 break;
4295 /* Attempts to use both MASK and BAS fields simultaneously are
4296 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4297 * thus generating a watchpoint for every byte in the masked region.
4299 mask = extract64(wcr, 24, 4);
4300 if (mask == 1 || mask == 2) {
4301 /* Reserved values of MASK; we must act as if the mask value was
4302 * some non-reserved value, or as if the watchpoint were disabled.
4303 * We choose the latter.
4305 return;
4306 } else if (mask) {
4307 /* Watchpoint covers an aligned area up to 2GB in size */
4308 len = 1ULL << mask;
4309 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4310 * whether the watchpoint fires when the unmasked bits match; we opt
4311 * to generate the exceptions.
4313 wvr &= ~(len - 1);
4314 } else {
4315 /* Watchpoint covers bytes defined by the byte address select bits */
4316 int bas = extract64(wcr, 5, 8);
4317 int basstart;
4319 if (bas == 0) {
4320 /* This must act as if the watchpoint is disabled */
4321 return;
4324 if (extract64(wvr, 2, 1)) {
4325 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4326 * ignored, and BAS[3:0] define which bytes to watch.
4328 bas &= 0xf;
4330 /* The BAS bits are supposed to be programmed to indicate a contiguous
4331 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4332 * we fire for each byte in the word/doubleword addressed by the WVR.
4333 * We choose to ignore any non-zero bits after the first range of 1s.
4335 basstart = ctz32(bas);
4336 len = cto32(bas >> basstart);
4337 wvr += basstart;
4340 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4341 &env->cpu_watchpoint[n]);
4344 void hw_watchpoint_update_all(ARMCPU *cpu)
4346 int i;
4347 CPUARMState *env = &cpu->env;
4349 /* Completely clear out existing QEMU watchpoints and our array, to
4350 * avoid possible stale entries following migration load.
4352 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4353 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4355 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4356 hw_watchpoint_update(cpu, i);
4360 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4361 uint64_t value)
4363 ARMCPU *cpu = arm_env_get_cpu(env);
4364 int i = ri->crm;
4366 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4367 * register reads and behaves as if values written are sign extended.
4368 * Bits [1:0] are RES0.
4370 value = sextract64(value, 0, 49) & ~3ULL;
4372 raw_write(env, ri, value);
4373 hw_watchpoint_update(cpu, i);
4376 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4377 uint64_t value)
4379 ARMCPU *cpu = arm_env_get_cpu(env);
4380 int i = ri->crm;
4382 raw_write(env, ri, value);
4383 hw_watchpoint_update(cpu, i);
4386 void hw_breakpoint_update(ARMCPU *cpu, int n)
4388 CPUARMState *env = &cpu->env;
4389 uint64_t bvr = env->cp15.dbgbvr[n];
4390 uint64_t bcr = env->cp15.dbgbcr[n];
4391 vaddr addr;
4392 int bt;
4393 int flags = BP_CPU;
4395 if (env->cpu_breakpoint[n]) {
4396 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4397 env->cpu_breakpoint[n] = NULL;
4400 if (!extract64(bcr, 0, 1)) {
4401 /* E bit clear : watchpoint disabled */
4402 return;
4405 bt = extract64(bcr, 20, 4);
4407 switch (bt) {
4408 case 4: /* unlinked address mismatch (reserved if AArch64) */
4409 case 5: /* linked address mismatch (reserved if AArch64) */
4410 qemu_log_mask(LOG_UNIMP,
4411 "arm: address mismatch breakpoint types not implemented");
4412 return;
4413 case 0: /* unlinked address match */
4414 case 1: /* linked address match */
4416 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4417 * we behave as if the register was sign extended. Bits [1:0] are
4418 * RES0. The BAS field is used to allow setting breakpoints on 16
4419 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4420 * a bp will fire if the addresses covered by the bp and the addresses
4421 * covered by the insn overlap but the insn doesn't start at the
4422 * start of the bp address range. We choose to require the insn and
4423 * the bp to have the same address. The constraints on writing to
4424 * BAS enforced in dbgbcr_write mean we have only four cases:
4425 * 0b0000 => no breakpoint
4426 * 0b0011 => breakpoint on addr
4427 * 0b1100 => breakpoint on addr + 2
4428 * 0b1111 => breakpoint on addr
4429 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4431 int bas = extract64(bcr, 5, 4);
4432 addr = sextract64(bvr, 0, 49) & ~3ULL;
4433 if (bas == 0) {
4434 return;
4436 if (bas == 0xc) {
4437 addr += 2;
4439 break;
4441 case 2: /* unlinked context ID match */
4442 case 8: /* unlinked VMID match (reserved if no EL2) */
4443 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4444 qemu_log_mask(LOG_UNIMP,
4445 "arm: unlinked context breakpoint types not implemented");
4446 return;
4447 case 9: /* linked VMID match (reserved if no EL2) */
4448 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4449 case 3: /* linked context ID match */
4450 default:
4451 /* We must generate no events for Linked context matches (unless
4452 * they are linked to by some other bp/wp, which is handled in
4453 * updates for the linking bp/wp). We choose to also generate no events
4454 * for reserved values.
4456 return;
4459 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4462 void hw_breakpoint_update_all(ARMCPU *cpu)
4464 int i;
4465 CPUARMState *env = &cpu->env;
4467 /* Completely clear out existing QEMU breakpoints and our array, to
4468 * avoid possible stale entries following migration load.
4470 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4471 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4473 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4474 hw_breakpoint_update(cpu, i);
4478 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479 uint64_t value)
4481 ARMCPU *cpu = arm_env_get_cpu(env);
4482 int i = ri->crm;
4484 raw_write(env, ri, value);
4485 hw_breakpoint_update(cpu, i);
4488 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4489 uint64_t value)
4491 ARMCPU *cpu = arm_env_get_cpu(env);
4492 int i = ri->crm;
4494 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4495 * copy of BAS[0].
4497 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4498 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4500 raw_write(env, ri, value);
4501 hw_breakpoint_update(cpu, i);
4504 static void define_debug_regs(ARMCPU *cpu)
4506 /* Define v7 and v8 architectural debug registers.
4507 * These are just dummy implementations for now.
4509 int i;
4510 int wrps, brps, ctx_cmps;
4511 ARMCPRegInfo dbgdidr = {
4512 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4513 .access = PL0_R, .accessfn = access_tda,
4514 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4517 /* Note that all these register fields hold "number of Xs minus 1". */
4518 brps = extract32(cpu->dbgdidr, 24, 4);
4519 wrps = extract32(cpu->dbgdidr, 28, 4);
4520 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4522 assert(ctx_cmps <= brps);
4524 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4525 * of the debug registers such as number of breakpoints;
4526 * check that if they both exist then they agree.
4528 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4529 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4530 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4531 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4534 define_one_arm_cp_reg(cpu, &dbgdidr);
4535 define_arm_cp_regs(cpu, debug_cp_reginfo);
4537 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4538 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4541 for (i = 0; i < brps + 1; i++) {
4542 ARMCPRegInfo dbgregs[] = {
4543 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4544 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4545 .access = PL1_RW, .accessfn = access_tda,
4546 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4547 .writefn = dbgbvr_write, .raw_writefn = raw_write
4549 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4550 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4551 .access = PL1_RW, .accessfn = access_tda,
4552 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4553 .writefn = dbgbcr_write, .raw_writefn = raw_write
4555 REGINFO_SENTINEL
4557 define_arm_cp_regs(cpu, dbgregs);
4560 for (i = 0; i < wrps + 1; i++) {
4561 ARMCPRegInfo dbgregs[] = {
4562 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4563 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4564 .access = PL1_RW, .accessfn = access_tda,
4565 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4566 .writefn = dbgwvr_write, .raw_writefn = raw_write
4568 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4569 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4570 .access = PL1_RW, .accessfn = access_tda,
4571 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4572 .writefn = dbgwcr_write, .raw_writefn = raw_write
4574 REGINFO_SENTINEL
4576 define_arm_cp_regs(cpu, dbgregs);
4580 /* We don't know until after realize whether there's a GICv3
4581 * attached, and that is what registers the gicv3 sysregs.
4582 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4583 * at runtime.
4585 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4587 ARMCPU *cpu = arm_env_get_cpu(env);
4588 uint64_t pfr1 = cpu->id_pfr1;
4590 if (env->gicv3state) {
4591 pfr1 |= 1 << 28;
4593 return pfr1;
4596 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4598 ARMCPU *cpu = arm_env_get_cpu(env);
4599 uint64_t pfr0 = cpu->id_aa64pfr0;
4601 if (env->gicv3state) {
4602 pfr0 |= 1 << 24;
4604 return pfr0;
4607 void register_cp_regs_for_features(ARMCPU *cpu)
4609 /* Register all the coprocessor registers based on feature bits */
4610 CPUARMState *env = &cpu->env;
4611 if (arm_feature(env, ARM_FEATURE_M)) {
4612 /* M profile has no coprocessor registers */
4613 return;
4616 define_arm_cp_regs(cpu, cp_reginfo);
4617 if (!arm_feature(env, ARM_FEATURE_V8)) {
4618 /* Must go early as it is full of wildcards that may be
4619 * overridden by later definitions.
4621 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4624 if (arm_feature(env, ARM_FEATURE_V6)) {
4625 /* The ID registers all have impdef reset values */
4626 ARMCPRegInfo v6_idregs[] = {
4627 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4629 .access = PL1_R, .type = ARM_CP_CONST,
4630 .resetvalue = cpu->id_pfr0 },
4631 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4632 * the value of the GIC field until after we define these regs.
4634 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4636 .access = PL1_R, .type = ARM_CP_NO_RAW,
4637 .readfn = id_pfr1_read,
4638 .writefn = arm_cp_write_ignore },
4639 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4641 .access = PL1_R, .type = ARM_CP_CONST,
4642 .resetvalue = cpu->id_dfr0 },
4643 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4645 .access = PL1_R, .type = ARM_CP_CONST,
4646 .resetvalue = cpu->id_afr0 },
4647 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4649 .access = PL1_R, .type = ARM_CP_CONST,
4650 .resetvalue = cpu->id_mmfr0 },
4651 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4653 .access = PL1_R, .type = ARM_CP_CONST,
4654 .resetvalue = cpu->id_mmfr1 },
4655 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4657 .access = PL1_R, .type = ARM_CP_CONST,
4658 .resetvalue = cpu->id_mmfr2 },
4659 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4661 .access = PL1_R, .type = ARM_CP_CONST,
4662 .resetvalue = cpu->id_mmfr3 },
4663 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4665 .access = PL1_R, .type = ARM_CP_CONST,
4666 .resetvalue = cpu->id_isar0 },
4667 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4668 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4669 .access = PL1_R, .type = ARM_CP_CONST,
4670 .resetvalue = cpu->id_isar1 },
4671 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4673 .access = PL1_R, .type = ARM_CP_CONST,
4674 .resetvalue = cpu->id_isar2 },
4675 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4677 .access = PL1_R, .type = ARM_CP_CONST,
4678 .resetvalue = cpu->id_isar3 },
4679 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4681 .access = PL1_R, .type = ARM_CP_CONST,
4682 .resetvalue = cpu->id_isar4 },
4683 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4685 .access = PL1_R, .type = ARM_CP_CONST,
4686 .resetvalue = cpu->id_isar5 },
4687 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4689 .access = PL1_R, .type = ARM_CP_CONST,
4690 .resetvalue = cpu->id_mmfr4 },
4691 /* 7 is as yet unallocated and must RAZ */
4692 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4693 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4694 .access = PL1_R, .type = ARM_CP_CONST,
4695 .resetvalue = 0 },
4696 REGINFO_SENTINEL
4698 define_arm_cp_regs(cpu, v6_idregs);
4699 define_arm_cp_regs(cpu, v6_cp_reginfo);
4700 } else {
4701 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4703 if (arm_feature(env, ARM_FEATURE_V6K)) {
4704 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4706 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4707 !arm_feature(env, ARM_FEATURE_PMSA)) {
4708 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4710 if (arm_feature(env, ARM_FEATURE_V7)) {
4711 /* v7 performance monitor control register: same implementor
4712 * field as main ID register, and we implement only the cycle
4713 * count register.
4715 #ifndef CONFIG_USER_ONLY
4716 ARMCPRegInfo pmcr = {
4717 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4718 .access = PL0_RW,
4719 .type = ARM_CP_IO | ARM_CP_ALIAS,
4720 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4721 .accessfn = pmreg_access, .writefn = pmcr_write,
4722 .raw_writefn = raw_write,
4724 ARMCPRegInfo pmcr64 = {
4725 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4726 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4727 .access = PL0_RW, .accessfn = pmreg_access,
4728 .type = ARM_CP_IO,
4729 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4730 .resetvalue = cpu->midr & 0xff000000,
4731 .writefn = pmcr_write, .raw_writefn = raw_write,
4733 define_one_arm_cp_reg(cpu, &pmcr);
4734 define_one_arm_cp_reg(cpu, &pmcr64);
4735 #endif
4736 ARMCPRegInfo clidr = {
4737 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4738 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4739 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4741 define_one_arm_cp_reg(cpu, &clidr);
4742 define_arm_cp_regs(cpu, v7_cp_reginfo);
4743 define_debug_regs(cpu);
4744 } else {
4745 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4747 if (arm_feature(env, ARM_FEATURE_V8)) {
4748 /* AArch64 ID registers, which all have impdef reset values.
4749 * Note that within the ID register ranges the unused slots
4750 * must all RAZ, not UNDEF; future architecture versions may
4751 * define new registers here.
4753 ARMCPRegInfo v8_idregs[] = {
4754 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4755 * know the right value for the GIC field until after we
4756 * define these regs.
4758 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4760 .access = PL1_R, .type = ARM_CP_NO_RAW,
4761 .readfn = id_aa64pfr0_read,
4762 .writefn = arm_cp_write_ignore },
4763 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4765 .access = PL1_R, .type = ARM_CP_CONST,
4766 .resetvalue = cpu->id_aa64pfr1},
4767 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4769 .access = PL1_R, .type = ARM_CP_CONST,
4770 .resetvalue = 0 },
4771 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4773 .access = PL1_R, .type = ARM_CP_CONST,
4774 .resetvalue = 0 },
4775 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4777 .access = PL1_R, .type = ARM_CP_CONST,
4778 .resetvalue = 0 },
4779 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4781 .access = PL1_R, .type = ARM_CP_CONST,
4782 .resetvalue = 0 },
4783 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4785 .access = PL1_R, .type = ARM_CP_CONST,
4786 .resetvalue = 0 },
4787 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4789 .access = PL1_R, .type = ARM_CP_CONST,
4790 .resetvalue = 0 },
4791 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4793 .access = PL1_R, .type = ARM_CP_CONST,
4794 .resetvalue = cpu->id_aa64dfr0 },
4795 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4797 .access = PL1_R, .type = ARM_CP_CONST,
4798 .resetvalue = cpu->id_aa64dfr1 },
4799 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4801 .access = PL1_R, .type = ARM_CP_CONST,
4802 .resetvalue = 0 },
4803 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4805 .access = PL1_R, .type = ARM_CP_CONST,
4806 .resetvalue = 0 },
4807 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4809 .access = PL1_R, .type = ARM_CP_CONST,
4810 .resetvalue = cpu->id_aa64afr0 },
4811 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4813 .access = PL1_R, .type = ARM_CP_CONST,
4814 .resetvalue = cpu->id_aa64afr1 },
4815 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4817 .access = PL1_R, .type = ARM_CP_CONST,
4818 .resetvalue = 0 },
4819 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4821 .access = PL1_R, .type = ARM_CP_CONST,
4822 .resetvalue = 0 },
4823 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4825 .access = PL1_R, .type = ARM_CP_CONST,
4826 .resetvalue = cpu->id_aa64isar0 },
4827 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4829 .access = PL1_R, .type = ARM_CP_CONST,
4830 .resetvalue = cpu->id_aa64isar1 },
4831 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4833 .access = PL1_R, .type = ARM_CP_CONST,
4834 .resetvalue = 0 },
4835 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4837 .access = PL1_R, .type = ARM_CP_CONST,
4838 .resetvalue = 0 },
4839 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4841 .access = PL1_R, .type = ARM_CP_CONST,
4842 .resetvalue = 0 },
4843 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4845 .access = PL1_R, .type = ARM_CP_CONST,
4846 .resetvalue = 0 },
4847 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4849 .access = PL1_R, .type = ARM_CP_CONST,
4850 .resetvalue = 0 },
4851 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4853 .access = PL1_R, .type = ARM_CP_CONST,
4854 .resetvalue = 0 },
4855 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4857 .access = PL1_R, .type = ARM_CP_CONST,
4858 .resetvalue = cpu->id_aa64mmfr0 },
4859 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4861 .access = PL1_R, .type = ARM_CP_CONST,
4862 .resetvalue = cpu->id_aa64mmfr1 },
4863 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4865 .access = PL1_R, .type = ARM_CP_CONST,
4866 .resetvalue = 0 },
4867 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4869 .access = PL1_R, .type = ARM_CP_CONST,
4870 .resetvalue = 0 },
4871 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4873 .access = PL1_R, .type = ARM_CP_CONST,
4874 .resetvalue = 0 },
4875 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4877 .access = PL1_R, .type = ARM_CP_CONST,
4878 .resetvalue = 0 },
4879 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4881 .access = PL1_R, .type = ARM_CP_CONST,
4882 .resetvalue = 0 },
4883 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4885 .access = PL1_R, .type = ARM_CP_CONST,
4886 .resetvalue = 0 },
4887 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4889 .access = PL1_R, .type = ARM_CP_CONST,
4890 .resetvalue = cpu->mvfr0 },
4891 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4893 .access = PL1_R, .type = ARM_CP_CONST,
4894 .resetvalue = cpu->mvfr1 },
4895 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4897 .access = PL1_R, .type = ARM_CP_CONST,
4898 .resetvalue = cpu->mvfr2 },
4899 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4901 .access = PL1_R, .type = ARM_CP_CONST,
4902 .resetvalue = 0 },
4903 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4905 .access = PL1_R, .type = ARM_CP_CONST,
4906 .resetvalue = 0 },
4907 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4909 .access = PL1_R, .type = ARM_CP_CONST,
4910 .resetvalue = 0 },
4911 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4913 .access = PL1_R, .type = ARM_CP_CONST,
4914 .resetvalue = 0 },
4915 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4917 .access = PL1_R, .type = ARM_CP_CONST,
4918 .resetvalue = 0 },
4919 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4920 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4921 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4922 .resetvalue = cpu->pmceid0 },
4923 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4925 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4926 .resetvalue = cpu->pmceid0 },
4927 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4928 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4929 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4930 .resetvalue = cpu->pmceid1 },
4931 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4932 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4933 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4934 .resetvalue = cpu->pmceid1 },
4935 REGINFO_SENTINEL
4937 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4938 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4939 !arm_feature(env, ARM_FEATURE_EL2)) {
4940 ARMCPRegInfo rvbar = {
4941 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4942 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4943 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4945 define_one_arm_cp_reg(cpu, &rvbar);
4947 define_arm_cp_regs(cpu, v8_idregs);
4948 define_arm_cp_regs(cpu, v8_cp_reginfo);
4950 if (arm_feature(env, ARM_FEATURE_EL2)) {
4951 uint64_t vmpidr_def = mpidr_read_val(env);
4952 ARMCPRegInfo vpidr_regs[] = {
4953 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4954 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4955 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4956 .resetvalue = cpu->midr,
4957 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4958 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4959 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4960 .access = PL2_RW, .resetvalue = cpu->midr,
4961 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4962 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4963 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4964 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4965 .resetvalue = vmpidr_def,
4966 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4967 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4968 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4969 .access = PL2_RW,
4970 .resetvalue = vmpidr_def,
4971 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4972 REGINFO_SENTINEL
4974 define_arm_cp_regs(cpu, vpidr_regs);
4975 define_arm_cp_regs(cpu, el2_cp_reginfo);
4976 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4977 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4978 ARMCPRegInfo rvbar = {
4979 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4980 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4981 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4983 define_one_arm_cp_reg(cpu, &rvbar);
4985 } else {
4986 /* If EL2 is missing but higher ELs are enabled, we need to
4987 * register the no_el2 reginfos.
4989 if (arm_feature(env, ARM_FEATURE_EL3)) {
4990 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4991 * of MIDR_EL1 and MPIDR_EL1.
4993 ARMCPRegInfo vpidr_regs[] = {
4994 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4995 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4996 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4997 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4998 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4999 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5000 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5001 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5002 .type = ARM_CP_NO_RAW,
5003 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5004 REGINFO_SENTINEL
5006 define_arm_cp_regs(cpu, vpidr_regs);
5007 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5010 if (arm_feature(env, ARM_FEATURE_EL3)) {
5011 define_arm_cp_regs(cpu, el3_cp_reginfo);
5012 ARMCPRegInfo el3_regs[] = {
5013 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5014 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5015 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5016 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5017 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5018 .access = PL3_RW,
5019 .raw_writefn = raw_write, .writefn = sctlr_write,
5020 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5021 .resetvalue = cpu->reset_sctlr },
5022 REGINFO_SENTINEL
5025 define_arm_cp_regs(cpu, el3_regs);
5027 /* The behaviour of NSACR is sufficiently various that we don't
5028 * try to describe it in a single reginfo:
5029 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5030 * reads as constant 0xc00 from NS EL1 and NS EL2
5031 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5032 * if v7 without EL3, register doesn't exist
5033 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5035 if (arm_feature(env, ARM_FEATURE_EL3)) {
5036 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5037 ARMCPRegInfo nsacr = {
5038 .name = "NSACR", .type = ARM_CP_CONST,
5039 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5040 .access = PL1_RW, .accessfn = nsacr_access,
5041 .resetvalue = 0xc00
5043 define_one_arm_cp_reg(cpu, &nsacr);
5044 } else {
5045 ARMCPRegInfo nsacr = {
5046 .name = "NSACR",
5047 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5048 .access = PL3_RW | PL1_R,
5049 .resetvalue = 0,
5050 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5052 define_one_arm_cp_reg(cpu, &nsacr);
5054 } else {
5055 if (arm_feature(env, ARM_FEATURE_V8)) {
5056 ARMCPRegInfo nsacr = {
5057 .name = "NSACR", .type = ARM_CP_CONST,
5058 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5059 .access = PL1_R,
5060 .resetvalue = 0xc00
5062 define_one_arm_cp_reg(cpu, &nsacr);
5066 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5067 if (arm_feature(env, ARM_FEATURE_V6)) {
5068 /* PMSAv6 not implemented */
5069 assert(arm_feature(env, ARM_FEATURE_V7));
5070 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5071 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5072 } else {
5073 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5075 } else {
5076 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5077 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5079 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5080 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5082 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5083 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5085 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5086 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5088 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5089 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5091 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5092 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5094 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5095 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5097 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5098 define_arm_cp_regs(cpu, omap_cp_reginfo);
5100 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5101 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5103 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5104 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5106 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5107 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5109 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5110 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5112 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5113 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5114 * be read-only (ie write causes UNDEF exception).
5117 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5118 /* Pre-v8 MIDR space.
5119 * Note that the MIDR isn't a simple constant register because
5120 * of the TI925 behaviour where writes to another register can
5121 * cause the MIDR value to change.
5123 * Unimplemented registers in the c15 0 0 0 space default to
5124 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5125 * and friends override accordingly.
5127 { .name = "MIDR",
5128 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5129 .access = PL1_R, .resetvalue = cpu->midr,
5130 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5131 .readfn = midr_read,
5132 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5133 .type = ARM_CP_OVERRIDE },
5134 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5135 { .name = "DUMMY",
5136 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5137 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5138 { .name = "DUMMY",
5139 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5140 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5141 { .name = "DUMMY",
5142 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5143 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5144 { .name = "DUMMY",
5145 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5146 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5147 { .name = "DUMMY",
5148 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5149 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5150 REGINFO_SENTINEL
5152 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5153 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5155 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5156 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5157 .readfn = midr_read },
5158 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5159 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5160 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5161 .access = PL1_R, .resetvalue = cpu->midr },
5162 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5163 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5164 .access = PL1_R, .resetvalue = cpu->midr },
5165 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5167 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5168 REGINFO_SENTINEL
5170 ARMCPRegInfo id_cp_reginfo[] = {
5171 /* These are common to v8 and pre-v8 */
5172 { .name = "CTR",
5173 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5174 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5175 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5176 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5177 .access = PL0_R, .accessfn = ctr_el0_access,
5178 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5179 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5180 { .name = "TCMTR",
5181 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5182 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5183 REGINFO_SENTINEL
5185 /* TLBTR is specific to VMSA */
5186 ARMCPRegInfo id_tlbtr_reginfo = {
5187 .name = "TLBTR",
5188 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5191 /* MPUIR is specific to PMSA V6+ */
5192 ARMCPRegInfo id_mpuir_reginfo = {
5193 .name = "MPUIR",
5194 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5195 .access = PL1_R, .type = ARM_CP_CONST,
5196 .resetvalue = cpu->pmsav7_dregion << 8
5198 ARMCPRegInfo crn0_wi_reginfo = {
5199 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5200 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5201 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5203 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5204 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5205 ARMCPRegInfo *r;
5206 /* Register the blanket "writes ignored" value first to cover the
5207 * whole space. Then update the specific ID registers to allow write
5208 * access, so that they ignore writes rather than causing them to
5209 * UNDEF.
5211 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5212 for (r = id_pre_v8_midr_cp_reginfo;
5213 r->type != ARM_CP_SENTINEL; r++) {
5214 r->access = PL1_RW;
5216 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5217 r->access = PL1_RW;
5219 id_tlbtr_reginfo.access = PL1_RW;
5220 id_tlbtr_reginfo.access = PL1_RW;
5222 if (arm_feature(env, ARM_FEATURE_V8)) {
5223 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5224 } else {
5225 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5227 define_arm_cp_regs(cpu, id_cp_reginfo);
5228 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5229 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5230 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5231 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5235 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5236 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5239 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5240 ARMCPRegInfo auxcr_reginfo[] = {
5241 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5242 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5243 .access = PL1_RW, .type = ARM_CP_CONST,
5244 .resetvalue = cpu->reset_auxcr },
5245 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5246 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5247 .access = PL2_RW, .type = ARM_CP_CONST,
5248 .resetvalue = 0 },
5249 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5250 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5251 .access = PL3_RW, .type = ARM_CP_CONST,
5252 .resetvalue = 0 },
5253 REGINFO_SENTINEL
5255 define_arm_cp_regs(cpu, auxcr_reginfo);
5258 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5259 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5260 /* 32 bit view is [31:18] 0...0 [43:32]. */
5261 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5262 | extract64(cpu->reset_cbar, 32, 12);
5263 ARMCPRegInfo cbar_reginfo[] = {
5264 { .name = "CBAR",
5265 .type = ARM_CP_CONST,
5266 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5267 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5268 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5269 .type = ARM_CP_CONST,
5270 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5271 .access = PL1_R, .resetvalue = cbar32 },
5272 REGINFO_SENTINEL
5274 /* We don't implement a r/w 64 bit CBAR currently */
5275 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5276 define_arm_cp_regs(cpu, cbar_reginfo);
5277 } else {
5278 ARMCPRegInfo cbar = {
5279 .name = "CBAR",
5280 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5281 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5282 .fieldoffset = offsetof(CPUARMState,
5283 cp15.c15_config_base_address)
5285 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5286 cbar.access = PL1_R;
5287 cbar.fieldoffset = 0;
5288 cbar.type = ARM_CP_CONST;
5290 define_one_arm_cp_reg(cpu, &cbar);
5294 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5295 ARMCPRegInfo vbar_cp_reginfo[] = {
5296 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5297 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5298 .access = PL1_RW, .writefn = vbar_write,
5299 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5300 offsetof(CPUARMState, cp15.vbar_ns) },
5301 .resetvalue = 0 },
5302 REGINFO_SENTINEL
5304 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5307 /* Generic registers whose values depend on the implementation */
5309 ARMCPRegInfo sctlr = {
5310 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5311 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5312 .access = PL1_RW,
5313 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5314 offsetof(CPUARMState, cp15.sctlr_ns) },
5315 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5316 .raw_writefn = raw_write,
5318 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5319 /* Normally we would always end the TB on an SCTLR write, but Linux
5320 * arch/arm/mach-pxa/sleep.S expects two instructions following
5321 * an MMU enable to execute from cache. Imitate this behaviour.
5323 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5325 define_one_arm_cp_reg(cpu, &sctlr);
5329 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5331 CPUState *cs = CPU(cpu);
5332 CPUARMState *env = &cpu->env;
5334 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5335 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5336 aarch64_fpu_gdb_set_reg,
5337 34, "aarch64-fpu.xml", 0);
5338 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5339 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5340 51, "arm-neon.xml", 0);
5341 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5342 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5343 35, "arm-vfp3.xml", 0);
5344 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5345 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5346 19, "arm-vfp.xml", 0);
5350 /* Sort alphabetically by type name, except for "any". */
5351 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5353 ObjectClass *class_a = (ObjectClass *)a;
5354 ObjectClass *class_b = (ObjectClass *)b;
5355 const char *name_a, *name_b;
5357 name_a = object_class_get_name(class_a);
5358 name_b = object_class_get_name(class_b);
5359 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5360 return 1;
5361 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5362 return -1;
5363 } else {
5364 return strcmp(name_a, name_b);
5368 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5370 ObjectClass *oc = data;
5371 CPUListState *s = user_data;
5372 const char *typename;
5373 char *name;
5375 typename = object_class_get_name(oc);
5376 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5377 (*s->cpu_fprintf)(s->file, " %s\n",
5378 name);
5379 g_free(name);
5382 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5384 CPUListState s = {
5385 .file = f,
5386 .cpu_fprintf = cpu_fprintf,
5388 GSList *list;
5390 list = object_class_get_list(TYPE_ARM_CPU, false);
5391 list = g_slist_sort(list, arm_cpu_list_compare);
5392 (*cpu_fprintf)(f, "Available CPUs:\n");
5393 g_slist_foreach(list, arm_cpu_list_entry, &s);
5394 g_slist_free(list);
5395 #ifdef CONFIG_KVM
5396 /* The 'host' CPU type is dynamically registered only if KVM is
5397 * enabled, so we have to special-case it here:
5399 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5400 #endif
5403 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5405 ObjectClass *oc = data;
5406 CpuDefinitionInfoList **cpu_list = user_data;
5407 CpuDefinitionInfoList *entry;
5408 CpuDefinitionInfo *info;
5409 const char *typename;
5411 typename = object_class_get_name(oc);
5412 info = g_malloc0(sizeof(*info));
5413 info->name = g_strndup(typename,
5414 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5415 info->q_typename = g_strdup(typename);
5417 entry = g_malloc0(sizeof(*entry));
5418 entry->value = info;
5419 entry->next = *cpu_list;
5420 *cpu_list = entry;
5423 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5425 CpuDefinitionInfoList *cpu_list = NULL;
5426 GSList *list;
5428 list = object_class_get_list(TYPE_ARM_CPU, false);
5429 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5430 g_slist_free(list);
5432 return cpu_list;
5435 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5436 void *opaque, int state, int secstate,
5437 int crm, int opc1, int opc2)
5439 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5440 * add a single reginfo struct to the hash table.
5442 uint32_t *key = g_new(uint32_t, 1);
5443 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5444 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5445 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5447 /* Reset the secure state to the specific incoming state. This is
5448 * necessary as the register may have been defined with both states.
5450 r2->secure = secstate;
5452 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5453 /* Register is banked (using both entries in array).
5454 * Overwriting fieldoffset as the array is only used to define
5455 * banked registers but later only fieldoffset is used.
5457 r2->fieldoffset = r->bank_fieldoffsets[ns];
5460 if (state == ARM_CP_STATE_AA32) {
5461 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5462 /* If the register is banked then we don't need to migrate or
5463 * reset the 32-bit instance in certain cases:
5465 * 1) If the register has both 32-bit and 64-bit instances then we
5466 * can count on the 64-bit instance taking care of the
5467 * non-secure bank.
5468 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5469 * taking care of the secure bank. This requires that separate
5470 * 32 and 64-bit definitions are provided.
5472 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5473 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5474 r2->type |= ARM_CP_ALIAS;
5476 } else if ((secstate != r->secure) && !ns) {
5477 /* The register is not banked so we only want to allow migration of
5478 * the non-secure instance.
5480 r2->type |= ARM_CP_ALIAS;
5483 if (r->state == ARM_CP_STATE_BOTH) {
5484 /* We assume it is a cp15 register if the .cp field is left unset.
5486 if (r2->cp == 0) {
5487 r2->cp = 15;
5490 #ifdef HOST_WORDS_BIGENDIAN
5491 if (r2->fieldoffset) {
5492 r2->fieldoffset += sizeof(uint32_t);
5494 #endif
5497 if (state == ARM_CP_STATE_AA64) {
5498 /* To allow abbreviation of ARMCPRegInfo
5499 * definitions, we treat cp == 0 as equivalent to
5500 * the value for "standard guest-visible sysreg".
5501 * STATE_BOTH definitions are also always "standard
5502 * sysreg" in their AArch64 view (the .cp value may
5503 * be non-zero for the benefit of the AArch32 view).
5505 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5506 r2->cp = CP_REG_ARM64_SYSREG_CP;
5508 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5509 r2->opc0, opc1, opc2);
5510 } else {
5511 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5513 if (opaque) {
5514 r2->opaque = opaque;
5516 /* reginfo passed to helpers is correct for the actual access,
5517 * and is never ARM_CP_STATE_BOTH:
5519 r2->state = state;
5520 /* Make sure reginfo passed to helpers for wildcarded regs
5521 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5523 r2->crm = crm;
5524 r2->opc1 = opc1;
5525 r2->opc2 = opc2;
5526 /* By convention, for wildcarded registers only the first
5527 * entry is used for migration; the others are marked as
5528 * ALIAS so we don't try to transfer the register
5529 * multiple times. Special registers (ie NOP/WFI) are
5530 * never migratable and not even raw-accessible.
5532 if ((r->type & ARM_CP_SPECIAL)) {
5533 r2->type |= ARM_CP_NO_RAW;
5535 if (((r->crm == CP_ANY) && crm != 0) ||
5536 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5537 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5538 r2->type |= ARM_CP_ALIAS;
5541 /* Check that raw accesses are either forbidden or handled. Note that
5542 * we can't assert this earlier because the setup of fieldoffset for
5543 * banked registers has to be done first.
5545 if (!(r2->type & ARM_CP_NO_RAW)) {
5546 assert(!raw_accessors_invalid(r2));
5549 /* Overriding of an existing definition must be explicitly
5550 * requested.
5552 if (!(r->type & ARM_CP_OVERRIDE)) {
5553 ARMCPRegInfo *oldreg;
5554 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5555 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5556 fprintf(stderr, "Register redefined: cp=%d %d bit "
5557 "crn=%d crm=%d opc1=%d opc2=%d, "
5558 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5559 r2->crn, r2->crm, r2->opc1, r2->opc2,
5560 oldreg->name, r2->name);
5561 g_assert_not_reached();
5564 g_hash_table_insert(cpu->cp_regs, key, r2);
5568 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5569 const ARMCPRegInfo *r, void *opaque)
5571 /* Define implementations of coprocessor registers.
5572 * We store these in a hashtable because typically
5573 * there are less than 150 registers in a space which
5574 * is 16*16*16*8*8 = 262144 in size.
5575 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5576 * If a register is defined twice then the second definition is
5577 * used, so this can be used to define some generic registers and
5578 * then override them with implementation specific variations.
5579 * At least one of the original and the second definition should
5580 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5581 * against accidental use.
5583 * The state field defines whether the register is to be
5584 * visible in the AArch32 or AArch64 execution state. If the
5585 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5586 * reginfo structure for the AArch32 view, which sees the lower
5587 * 32 bits of the 64 bit register.
5589 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5590 * be wildcarded. AArch64 registers are always considered to be 64
5591 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5592 * the register, if any.
5594 int crm, opc1, opc2, state;
5595 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5596 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5597 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5598 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5599 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5600 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5601 /* 64 bit registers have only CRm and Opc1 fields */
5602 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5603 /* op0 only exists in the AArch64 encodings */
5604 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5605 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5606 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5607 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5608 * encodes a minimum access level for the register. We roll this
5609 * runtime check into our general permission check code, so check
5610 * here that the reginfo's specified permissions are strict enough
5611 * to encompass the generic architectural permission check.
5613 if (r->state != ARM_CP_STATE_AA32) {
5614 int mask = 0;
5615 switch (r->opc1) {
5616 case 0: case 1: case 2:
5617 /* min_EL EL1 */
5618 mask = PL1_RW;
5619 break;
5620 case 3:
5621 /* min_EL EL0 */
5622 mask = PL0_RW;
5623 break;
5624 case 4:
5625 /* min_EL EL2 */
5626 mask = PL2_RW;
5627 break;
5628 case 5:
5629 /* unallocated encoding, so not possible */
5630 assert(false);
5631 break;
5632 case 6:
5633 /* min_EL EL3 */
5634 mask = PL3_RW;
5635 break;
5636 case 7:
5637 /* min_EL EL1, secure mode only (we don't check the latter) */
5638 mask = PL1_RW;
5639 break;
5640 default:
5641 /* broken reginfo with out-of-range opc1 */
5642 assert(false);
5643 break;
5645 /* assert our permissions are not too lax (stricter is fine) */
5646 assert((r->access & ~mask) == 0);
5649 /* Check that the register definition has enough info to handle
5650 * reads and writes if they are permitted.
5652 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5653 if (r->access & PL3_R) {
5654 assert((r->fieldoffset ||
5655 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5656 r->readfn);
5658 if (r->access & PL3_W) {
5659 assert((r->fieldoffset ||
5660 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5661 r->writefn);
5664 /* Bad type field probably means missing sentinel at end of reg list */
5665 assert(cptype_valid(r->type));
5666 for (crm = crmmin; crm <= crmmax; crm++) {
5667 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5668 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5669 for (state = ARM_CP_STATE_AA32;
5670 state <= ARM_CP_STATE_AA64; state++) {
5671 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5672 continue;
5674 if (state == ARM_CP_STATE_AA32) {
5675 /* Under AArch32 CP registers can be common
5676 * (same for secure and non-secure world) or banked.
5678 switch (r->secure) {
5679 case ARM_CP_SECSTATE_S:
5680 case ARM_CP_SECSTATE_NS:
5681 add_cpreg_to_hashtable(cpu, r, opaque, state,
5682 r->secure, crm, opc1, opc2);
5683 break;
5684 default:
5685 add_cpreg_to_hashtable(cpu, r, opaque, state,
5686 ARM_CP_SECSTATE_S,
5687 crm, opc1, opc2);
5688 add_cpreg_to_hashtable(cpu, r, opaque, state,
5689 ARM_CP_SECSTATE_NS,
5690 crm, opc1, opc2);
5691 break;
5693 } else {
5694 /* AArch64 registers get mapped to non-secure instance
5695 * of AArch32 */
5696 add_cpreg_to_hashtable(cpu, r, opaque, state,
5697 ARM_CP_SECSTATE_NS,
5698 crm, opc1, opc2);
5706 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5707 const ARMCPRegInfo *regs, void *opaque)
5709 /* Define a whole list of registers */
5710 const ARMCPRegInfo *r;
5711 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5712 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5716 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5718 return g_hash_table_lookup(cpregs, &encoded_cp);
5721 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5722 uint64_t value)
5724 /* Helper coprocessor write function for write-ignore registers */
5727 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5729 /* Helper coprocessor write function for read-as-zero registers */
5730 return 0;
5733 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5735 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5738 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5740 /* Return true if it is not valid for us to switch to
5741 * this CPU mode (ie all the UNPREDICTABLE cases in
5742 * the ARM ARM CPSRWriteByInstr pseudocode).
5745 /* Changes to or from Hyp via MSR and CPS are illegal. */
5746 if (write_type == CPSRWriteByInstr &&
5747 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5748 mode == ARM_CPU_MODE_HYP)) {
5749 return 1;
5752 switch (mode) {
5753 case ARM_CPU_MODE_USR:
5754 return 0;
5755 case ARM_CPU_MODE_SYS:
5756 case ARM_CPU_MODE_SVC:
5757 case ARM_CPU_MODE_ABT:
5758 case ARM_CPU_MODE_UND:
5759 case ARM_CPU_MODE_IRQ:
5760 case ARM_CPU_MODE_FIQ:
5761 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5762 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5764 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5765 * and CPS are treated as illegal mode changes.
5767 if (write_type == CPSRWriteByInstr &&
5768 (env->cp15.hcr_el2 & HCR_TGE) &&
5769 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5770 !arm_is_secure_below_el3(env)) {
5771 return 1;
5773 return 0;
5774 case ARM_CPU_MODE_HYP:
5775 return !arm_feature(env, ARM_FEATURE_EL2)
5776 || arm_current_el(env) < 2 || arm_is_secure(env);
5777 case ARM_CPU_MODE_MON:
5778 return arm_current_el(env) < 3;
5779 default:
5780 return 1;
5784 uint32_t cpsr_read(CPUARMState *env)
5786 int ZF;
5787 ZF = (env->ZF == 0);
5788 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5789 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5790 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5791 | ((env->condexec_bits & 0xfc) << 8)
5792 | (env->GE << 16) | (env->daif & CPSR_AIF);
5795 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5796 CPSRWriteType write_type)
5798 uint32_t changed_daif;
5800 if (mask & CPSR_NZCV) {
5801 env->ZF = (~val) & CPSR_Z;
5802 env->NF = val;
5803 env->CF = (val >> 29) & 1;
5804 env->VF = (val << 3) & 0x80000000;
5806 if (mask & CPSR_Q)
5807 env->QF = ((val & CPSR_Q) != 0);
5808 if (mask & CPSR_T)
5809 env->thumb = ((val & CPSR_T) != 0);
5810 if (mask & CPSR_IT_0_1) {
5811 env->condexec_bits &= ~3;
5812 env->condexec_bits |= (val >> 25) & 3;
5814 if (mask & CPSR_IT_2_7) {
5815 env->condexec_bits &= 3;
5816 env->condexec_bits |= (val >> 8) & 0xfc;
5818 if (mask & CPSR_GE) {
5819 env->GE = (val >> 16) & 0xf;
5822 /* In a V7 implementation that includes the security extensions but does
5823 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5824 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5825 * bits respectively.
5827 * In a V8 implementation, it is permitted for privileged software to
5828 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5830 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5831 arm_feature(env, ARM_FEATURE_EL3) &&
5832 !arm_feature(env, ARM_FEATURE_EL2) &&
5833 !arm_is_secure(env)) {
5835 changed_daif = (env->daif ^ val) & mask;
5837 if (changed_daif & CPSR_A) {
5838 /* Check to see if we are allowed to change the masking of async
5839 * abort exceptions from a non-secure state.
5841 if (!(env->cp15.scr_el3 & SCR_AW)) {
5842 qemu_log_mask(LOG_GUEST_ERROR,
5843 "Ignoring attempt to switch CPSR_A flag from "
5844 "non-secure world with SCR.AW bit clear\n");
5845 mask &= ~CPSR_A;
5849 if (changed_daif & CPSR_F) {
5850 /* Check to see if we are allowed to change the masking of FIQ
5851 * exceptions from a non-secure state.
5853 if (!(env->cp15.scr_el3 & SCR_FW)) {
5854 qemu_log_mask(LOG_GUEST_ERROR,
5855 "Ignoring attempt to switch CPSR_F flag from "
5856 "non-secure world with SCR.FW bit clear\n");
5857 mask &= ~CPSR_F;
5860 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5861 * If this bit is set software is not allowed to mask
5862 * FIQs, but is allowed to set CPSR_F to 0.
5864 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5865 (val & CPSR_F)) {
5866 qemu_log_mask(LOG_GUEST_ERROR,
5867 "Ignoring attempt to enable CPSR_F flag "
5868 "(non-maskable FIQ [NMFI] support enabled)\n");
5869 mask &= ~CPSR_F;
5874 env->daif &= ~(CPSR_AIF & mask);
5875 env->daif |= val & CPSR_AIF & mask;
5877 if (write_type != CPSRWriteRaw &&
5878 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5879 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5880 /* Note that we can only get here in USR mode if this is a
5881 * gdb stub write; for this case we follow the architectural
5882 * behaviour for guest writes in USR mode of ignoring an attempt
5883 * to switch mode. (Those are caught by translate.c for writes
5884 * triggered by guest instructions.)
5886 mask &= ~CPSR_M;
5887 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5888 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5889 * v7, and has defined behaviour in v8:
5890 * + leave CPSR.M untouched
5891 * + allow changes to the other CPSR fields
5892 * + set PSTATE.IL
5893 * For user changes via the GDB stub, we don't set PSTATE.IL,
5894 * as this would be unnecessarily harsh for a user error.
5896 mask &= ~CPSR_M;
5897 if (write_type != CPSRWriteByGDBStub &&
5898 arm_feature(env, ARM_FEATURE_V8)) {
5899 mask |= CPSR_IL;
5900 val |= CPSR_IL;
5902 } else {
5903 switch_mode(env, val & CPSR_M);
5906 mask &= ~CACHED_CPSR_BITS;
5907 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5910 /* Sign/zero extend */
5911 uint32_t HELPER(sxtb16)(uint32_t x)
5913 uint32_t res;
5914 res = (uint16_t)(int8_t)x;
5915 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5916 return res;
5919 uint32_t HELPER(uxtb16)(uint32_t x)
5921 uint32_t res;
5922 res = (uint16_t)(uint8_t)x;
5923 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5924 return res;
5927 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5929 if (den == 0)
5930 return 0;
5931 if (num == INT_MIN && den == -1)
5932 return INT_MIN;
5933 return num / den;
5936 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5938 if (den == 0)
5939 return 0;
5940 return num / den;
5943 uint32_t HELPER(rbit)(uint32_t x)
5945 return revbit32(x);
5948 #if defined(CONFIG_USER_ONLY)
5950 /* These should probably raise undefined insn exceptions. */
5951 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5953 ARMCPU *cpu = arm_env_get_cpu(env);
5955 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5958 uint32_t QEMU_NORETURN HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5960 ARMCPU *cpu = arm_env_get_cpu(env);
5962 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5965 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5967 /* translate.c should never generate calls here in user-only mode */
5968 g_assert_not_reached();
5971 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
5973 /* translate.c should never generate calls here in user-only mode */
5974 g_assert_not_reached();
5977 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
5979 /* The TT instructions can be used by unprivileged code, but in
5980 * user-only emulation we don't have the MPU.
5981 * Luckily since we know we are NonSecure unprivileged (and that in
5982 * turn means that the A flag wasn't specified), all the bits in the
5983 * register must be zero:
5984 * IREGION: 0 because IRVALID is 0
5985 * IRVALID: 0 because NS
5986 * S: 0 because NS
5987 * NSRW: 0 because NS
5988 * NSR: 0 because NS
5989 * RW: 0 because unpriv and A flag not set
5990 * R: 0 because unpriv and A flag not set
5991 * SRVALID: 0 because NS
5992 * MRVALID: 0 because unpriv and A flag not set
5993 * SREGION: 0 becaus SRVALID is 0
5994 * MREGION: 0 because MRVALID is 0
5996 return 0;
5999 void switch_mode(CPUARMState *env, int mode)
6001 ARMCPU *cpu = arm_env_get_cpu(env);
6003 if (mode != ARM_CPU_MODE_USR) {
6004 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6008 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6009 uint32_t cur_el, bool secure)
6011 return 1;
6014 void aarch64_sync_64_to_32(CPUARMState *env)
6016 g_assert_not_reached();
6019 #else
6021 void switch_mode(CPUARMState *env, int mode)
6023 int old_mode;
6024 int i;
6026 old_mode = env->uncached_cpsr & CPSR_M;
6027 if (mode == old_mode)
6028 return;
6030 if (old_mode == ARM_CPU_MODE_FIQ) {
6031 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6032 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6033 } else if (mode == ARM_CPU_MODE_FIQ) {
6034 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6035 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6038 i = bank_number(old_mode);
6039 env->banked_r13[i] = env->regs[13];
6040 env->banked_r14[i] = env->regs[14];
6041 env->banked_spsr[i] = env->spsr;
6043 i = bank_number(mode);
6044 env->regs[13] = env->banked_r13[i];
6045 env->regs[14] = env->banked_r14[i];
6046 env->spsr = env->banked_spsr[i];
6049 /* Physical Interrupt Target EL Lookup Table
6051 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6053 * The below multi-dimensional table is used for looking up the target
6054 * exception level given numerous condition criteria. Specifically, the
6055 * target EL is based on SCR and HCR routing controls as well as the
6056 * currently executing EL and secure state.
6058 * Dimensions:
6059 * target_el_table[2][2][2][2][2][4]
6060 * | | | | | +--- Current EL
6061 * | | | | +------ Non-secure(0)/Secure(1)
6062 * | | | +--------- HCR mask override
6063 * | | +------------ SCR exec state control
6064 * | +--------------- SCR mask override
6065 * +------------------ 32-bit(0)/64-bit(1) EL3
6067 * The table values are as such:
6068 * 0-3 = EL0-EL3
6069 * -1 = Cannot occur
6071 * The ARM ARM target EL table includes entries indicating that an "exception
6072 * is not taken". The two cases where this is applicable are:
6073 * 1) An exception is taken from EL3 but the SCR does not have the exception
6074 * routed to EL3.
6075 * 2) An exception is taken from EL2 but the HCR does not have the exception
6076 * routed to EL2.
6077 * In these two cases, the below table contain a target of EL1. This value is
6078 * returned as it is expected that the consumer of the table data will check
6079 * for "target EL >= current EL" to ensure the exception is not taken.
6081 * SCR HCR
6082 * 64 EA AMO From
6083 * BIT IRQ IMO Non-secure Secure
6084 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6086 static const int8_t target_el_table[2][2][2][2][2][4] = {
6087 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6088 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6089 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6090 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6091 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6092 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6093 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6094 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6095 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6096 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6097 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6098 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6099 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6100 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6101 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6102 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6106 * Determine the target EL for physical exceptions
6108 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6109 uint32_t cur_el, bool secure)
6111 CPUARMState *env = cs->env_ptr;
6112 int rw;
6113 int scr;
6114 int hcr;
6115 int target_el;
6116 /* Is the highest EL AArch64? */
6117 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6119 if (arm_feature(env, ARM_FEATURE_EL3)) {
6120 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6121 } else {
6122 /* Either EL2 is the highest EL (and so the EL2 register width
6123 * is given by is64); or there is no EL2 or EL3, in which case
6124 * the value of 'rw' does not affect the table lookup anyway.
6126 rw = is64;
6129 switch (excp_idx) {
6130 case EXCP_IRQ:
6131 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6132 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6133 break;
6134 case EXCP_FIQ:
6135 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6136 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6137 break;
6138 default:
6139 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6140 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6141 break;
6144 /* If HCR.TGE is set then HCR is treated as being 1 */
6145 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6147 /* Perform a table-lookup for the target EL given the current state */
6148 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6150 assert(target_el > 0);
6152 return target_el;
6155 static void v7m_push(CPUARMState *env, uint32_t val)
6157 CPUState *cs = CPU(arm_env_get_cpu(env));
6159 env->regs[13] -= 4;
6160 stl_phys(cs->as, env->regs[13], val);
6163 /* Return true if we're using the process stack pointer (not the MSP) */
6164 static bool v7m_using_psp(CPUARMState *env)
6166 /* Handler mode always uses the main stack; for thread mode
6167 * the CONTROL.SPSEL bit determines the answer.
6168 * Note that in v7M it is not possible to be in Handler mode with
6169 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6171 return !arm_v7m_is_handler_mode(env) &&
6172 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6175 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6176 * This may change the current stack pointer between Main and Process
6177 * stack pointers if it is done for the CONTROL register for the current
6178 * security state.
6180 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6181 bool new_spsel,
6182 bool secstate)
6184 bool old_is_psp = v7m_using_psp(env);
6186 env->v7m.control[secstate] =
6187 deposit32(env->v7m.control[secstate],
6188 R_V7M_CONTROL_SPSEL_SHIFT,
6189 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6191 if (secstate == env->v7m.secure) {
6192 bool new_is_psp = v7m_using_psp(env);
6193 uint32_t tmp;
6195 if (old_is_psp != new_is_psp) {
6196 tmp = env->v7m.other_sp;
6197 env->v7m.other_sp = env->regs[13];
6198 env->regs[13] = tmp;
6203 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6204 * stack pointer between Main and Process stack pointers.
6206 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6208 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6211 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6213 /* Write a new value to v7m.exception, thus transitioning into or out
6214 * of Handler mode; this may result in a change of active stack pointer.
6216 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6217 uint32_t tmp;
6219 env->v7m.exception = new_exc;
6221 new_is_psp = v7m_using_psp(env);
6223 if (old_is_psp != new_is_psp) {
6224 tmp = env->v7m.other_sp;
6225 env->v7m.other_sp = env->regs[13];
6226 env->regs[13] = tmp;
6230 /* Switch M profile security state between NS and S */
6231 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6233 uint32_t new_ss_msp, new_ss_psp;
6235 if (env->v7m.secure == new_secstate) {
6236 return;
6239 /* All the banked state is accessed by looking at env->v7m.secure
6240 * except for the stack pointer; rearrange the SP appropriately.
6242 new_ss_msp = env->v7m.other_ss_msp;
6243 new_ss_psp = env->v7m.other_ss_psp;
6245 if (v7m_using_psp(env)) {
6246 env->v7m.other_ss_psp = env->regs[13];
6247 env->v7m.other_ss_msp = env->v7m.other_sp;
6248 } else {
6249 env->v7m.other_ss_msp = env->regs[13];
6250 env->v7m.other_ss_psp = env->v7m.other_sp;
6253 env->v7m.secure = new_secstate;
6255 if (v7m_using_psp(env)) {
6256 env->regs[13] = new_ss_psp;
6257 env->v7m.other_sp = new_ss_msp;
6258 } else {
6259 env->regs[13] = new_ss_msp;
6260 env->v7m.other_sp = new_ss_psp;
6264 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6266 /* Handle v7M BXNS:
6267 * - if the return value is a magic value, do exception return (like BX)
6268 * - otherwise bit 0 of the return value is the target security state
6270 uint32_t min_magic;
6272 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6273 /* Covers FNC_RETURN and EXC_RETURN magic */
6274 min_magic = FNC_RETURN_MIN_MAGIC;
6275 } else {
6276 /* EXC_RETURN magic only */
6277 min_magic = EXC_RETURN_MIN_MAGIC;
6280 if (dest >= min_magic) {
6281 /* This is an exception return magic value; put it where
6282 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6283 * Note that if we ever add gen_ss_advance() singlestep support to
6284 * M profile this should count as an "instruction execution complete"
6285 * event (compare gen_bx_excret_final_code()).
6287 env->regs[15] = dest & ~1;
6288 env->thumb = dest & 1;
6289 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6290 /* notreached */
6293 /* translate.c should have made BXNS UNDEF unless we're secure */
6294 assert(env->v7m.secure);
6296 switch_v7m_security_state(env, dest & 1);
6297 env->thumb = 1;
6298 env->regs[15] = dest & ~1;
6301 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6303 /* Handle v7M BLXNS:
6304 * - bit 0 of the destination address is the target security state
6307 /* At this point regs[15] is the address just after the BLXNS */
6308 uint32_t nextinst = env->regs[15] | 1;
6309 uint32_t sp = env->regs[13] - 8;
6310 uint32_t saved_psr;
6312 /* translate.c will have made BLXNS UNDEF unless we're secure */
6313 assert(env->v7m.secure);
6315 if (dest & 1) {
6316 /* target is Secure, so this is just a normal BLX,
6317 * except that the low bit doesn't indicate Thumb/not.
6319 env->regs[14] = nextinst;
6320 env->thumb = 1;
6321 env->regs[15] = dest & ~1;
6322 return;
6325 /* Target is non-secure: first push a stack frame */
6326 if (!QEMU_IS_ALIGNED(sp, 8)) {
6327 qemu_log_mask(LOG_GUEST_ERROR,
6328 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6331 saved_psr = env->v7m.exception;
6332 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6333 saved_psr |= XPSR_SFPA;
6336 /* Note that these stores can throw exceptions on MPU faults */
6337 cpu_stl_data(env, sp, nextinst);
6338 cpu_stl_data(env, sp + 4, saved_psr);
6340 env->regs[13] = sp;
6341 env->regs[14] = 0xfeffffff;
6342 if (arm_v7m_is_handler_mode(env)) {
6343 /* Write a dummy value to IPSR, to avoid leaking the current secure
6344 * exception number to non-secure code. This is guaranteed not
6345 * to cause write_v7m_exception() to actually change stacks.
6347 write_v7m_exception(env, 1);
6349 switch_v7m_security_state(env, 0);
6350 env->thumb = 1;
6351 env->regs[15] = dest;
6354 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6355 bool spsel)
6357 /* Return a pointer to the location where we currently store the
6358 * stack pointer for the requested security state and thread mode.
6359 * This pointer will become invalid if the CPU state is updated
6360 * such that the stack pointers are switched around (eg changing
6361 * the SPSEL control bit).
6362 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6363 * Unlike that pseudocode, we require the caller to pass us in the
6364 * SPSEL control bit value; this is because we also use this
6365 * function in handling of pushing of the callee-saves registers
6366 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6367 * and in the tailchain codepath the SPSEL bit comes from the exception
6368 * return magic LR value from the previous exception. The pseudocode
6369 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6370 * to make this utility function generic enough to do the job.
6372 bool want_psp = threadmode && spsel;
6374 if (secure == env->v7m.secure) {
6375 if (want_psp == v7m_using_psp(env)) {
6376 return &env->regs[13];
6377 } else {
6378 return &env->v7m.other_sp;
6380 } else {
6381 if (want_psp) {
6382 return &env->v7m.other_ss_psp;
6383 } else {
6384 return &env->v7m.other_ss_msp;
6389 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6391 CPUState *cs = CPU(cpu);
6392 CPUARMState *env = &cpu->env;
6393 MemTxResult result;
6394 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6395 uint32_t addr;
6397 addr = address_space_ldl(cs->as, vec,
6398 MEMTXATTRS_UNSPECIFIED, &result);
6399 if (result != MEMTX_OK) {
6400 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6401 * which would then be immediately followed by our failing to load
6402 * the entry vector for that HardFault, which is a Lockup case.
6403 * Since we don't model Lockup, we just report this guest error
6404 * via cpu_abort().
6406 cpu_abort(cs, "Failed to read from %s exception vector table "
6407 "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6408 (unsigned)vec);
6410 return addr;
6413 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6415 /* For v8M, push the callee-saves register part of the stack frame.
6416 * Compare the v8M pseudocode PushCalleeStack().
6417 * In the tailchaining case this may not be the current stack.
6419 CPUARMState *env = &cpu->env;
6420 CPUState *cs = CPU(cpu);
6421 uint32_t *frame_sp_p;
6422 uint32_t frameptr;
6424 if (dotailchain) {
6425 frame_sp_p = get_v7m_sp_ptr(env, true,
6426 lr & R_V7M_EXCRET_MODE_MASK,
6427 lr & R_V7M_EXCRET_SPSEL_MASK);
6428 } else {
6429 frame_sp_p = &env->regs[13];
6432 frameptr = *frame_sp_p - 0x28;
6434 stl_phys(cs->as, frameptr, 0xfefa125b);
6435 stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6436 stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6437 stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6438 stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6439 stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6440 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6441 stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6442 stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6444 *frame_sp_p = frameptr;
6447 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6449 /* Do the "take the exception" parts of exception entry,
6450 * but not the pushing of state to the stack. This is
6451 * similar to the pseudocode ExceptionTaken() function.
6453 CPUARMState *env = &cpu->env;
6454 uint32_t addr;
6455 bool targets_secure;
6457 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6459 if (arm_feature(env, ARM_FEATURE_V8)) {
6460 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6461 (lr & R_V7M_EXCRET_S_MASK)) {
6462 /* The background code (the owner of the registers in the
6463 * exception frame) is Secure. This means it may either already
6464 * have or now needs to push callee-saves registers.
6466 if (targets_secure) {
6467 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6468 /* We took an exception from Secure to NonSecure
6469 * (which means the callee-saved registers got stacked)
6470 * and are now tailchaining to a Secure exception.
6471 * Clear DCRS so eventual return from this Secure
6472 * exception unstacks the callee-saved registers.
6474 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6476 } else {
6477 /* We're going to a non-secure exception; push the
6478 * callee-saves registers to the stack now, if they're
6479 * not already saved.
6481 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6482 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6483 v7m_push_callee_stack(cpu, lr, dotailchain);
6485 lr |= R_V7M_EXCRET_DCRS_MASK;
6489 lr &= ~R_V7M_EXCRET_ES_MASK;
6490 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6491 lr |= R_V7M_EXCRET_ES_MASK;
6493 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6494 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6495 lr |= R_V7M_EXCRET_SPSEL_MASK;
6498 /* Clear registers if necessary to prevent non-secure exception
6499 * code being able to see register values from secure code.
6500 * Where register values become architecturally UNKNOWN we leave
6501 * them with their previous values.
6503 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6504 if (!targets_secure) {
6505 /* Always clear the caller-saved registers (they have been
6506 * pushed to the stack earlier in v7m_push_stack()).
6507 * Clear callee-saved registers if the background code is
6508 * Secure (in which case these regs were saved in
6509 * v7m_push_callee_stack()).
6511 int i;
6513 for (i = 0; i < 13; i++) {
6514 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6515 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6516 env->regs[i] = 0;
6519 /* Clear EAPSR */
6520 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6525 /* Switch to target security state -- must do this before writing SPSEL */
6526 switch_v7m_security_state(env, targets_secure);
6527 write_v7m_control_spsel(env, 0);
6528 arm_clear_exclusive(env);
6529 /* Clear IT bits */
6530 env->condexec_bits = 0;
6531 env->regs[14] = lr;
6532 addr = arm_v7m_load_vector(cpu, targets_secure);
6533 env->regs[15] = addr & 0xfffffffe;
6534 env->thumb = addr & 1;
6537 static void v7m_push_stack(ARMCPU *cpu)
6539 /* Do the "set up stack frame" part of exception entry,
6540 * similar to pseudocode PushStack().
6542 CPUARMState *env = &cpu->env;
6543 uint32_t xpsr = xpsr_read(env);
6545 /* Align stack pointer if the guest wants that */
6546 if ((env->regs[13] & 4) &&
6547 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6548 env->regs[13] -= 4;
6549 xpsr |= XPSR_SPREALIGN;
6551 /* Switch to the handler mode. */
6552 v7m_push(env, xpsr);
6553 v7m_push(env, env->regs[15]);
6554 v7m_push(env, env->regs[14]);
6555 v7m_push(env, env->regs[12]);
6556 v7m_push(env, env->regs[3]);
6557 v7m_push(env, env->regs[2]);
6558 v7m_push(env, env->regs[1]);
6559 v7m_push(env, env->regs[0]);
6562 static void do_v7m_exception_exit(ARMCPU *cpu)
6564 CPUARMState *env = &cpu->env;
6565 CPUState *cs = CPU(cpu);
6566 uint32_t excret;
6567 uint32_t xpsr;
6568 bool ufault = false;
6569 bool sfault = false;
6570 bool return_to_sp_process;
6571 bool return_to_handler;
6572 bool rettobase = false;
6573 bool exc_secure = false;
6574 bool return_to_secure;
6576 /* If we're not in Handler mode then jumps to magic exception-exit
6577 * addresses don't have magic behaviour. However for the v8M
6578 * security extensions the magic secure-function-return has to
6579 * work in thread mode too, so to avoid doing an extra check in
6580 * the generated code we allow exception-exit magic to also cause the
6581 * internal exception and bring us here in thread mode. Correct code
6582 * will never try to do this (the following insn fetch will always
6583 * fault) so we the overhead of having taken an unnecessary exception
6584 * doesn't matter.
6586 if (!arm_v7m_is_handler_mode(env)) {
6587 return;
6590 /* In the spec pseudocode ExceptionReturn() is called directly
6591 * from BXWritePC() and gets the full target PC value including
6592 * bit zero. In QEMU's implementation we treat it as a normal
6593 * jump-to-register (which is then caught later on), and so split
6594 * the target value up between env->regs[15] and env->thumb in
6595 * gen_bx(). Reconstitute it.
6597 excret = env->regs[15];
6598 if (env->thumb) {
6599 excret |= 1;
6602 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6603 " previous exception %d\n",
6604 excret, env->v7m.exception);
6606 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6607 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6608 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6609 excret);
6612 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6613 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6614 * we pick which FAULTMASK to clear.
6616 if (!env->v7m.secure &&
6617 ((excret & R_V7M_EXCRET_ES_MASK) ||
6618 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6619 sfault = 1;
6620 /* For all other purposes, treat ES as 0 (R_HXSR) */
6621 excret &= ~R_V7M_EXCRET_ES_MASK;
6625 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6626 /* Auto-clear FAULTMASK on return from other than NMI.
6627 * If the security extension is implemented then this only
6628 * happens if the raw execution priority is >= 0; the
6629 * value of the ES bit in the exception return value indicates
6630 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6632 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6633 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6634 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6635 env->v7m.faultmask[exc_secure] = 0;
6637 } else {
6638 env->v7m.faultmask[M_REG_NS] = 0;
6642 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6643 exc_secure)) {
6644 case -1:
6645 /* attempt to exit an exception that isn't active */
6646 ufault = true;
6647 break;
6648 case 0:
6649 /* still an irq active now */
6650 break;
6651 case 1:
6652 /* we returned to base exception level, no nesting.
6653 * (In the pseudocode this is written using "NestedActivation != 1"
6654 * where we have 'rettobase == false'.)
6656 rettobase = true;
6657 break;
6658 default:
6659 g_assert_not_reached();
6662 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6663 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6664 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6665 (excret & R_V7M_EXCRET_S_MASK);
6667 if (arm_feature(env, ARM_FEATURE_V8)) {
6668 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6669 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6670 * we choose to take the UsageFault.
6672 if ((excret & R_V7M_EXCRET_S_MASK) ||
6673 (excret & R_V7M_EXCRET_ES_MASK) ||
6674 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6675 ufault = true;
6678 if (excret & R_V7M_EXCRET_RES0_MASK) {
6679 ufault = true;
6681 } else {
6682 /* For v7M we only recognize certain combinations of the low bits */
6683 switch (excret & 0xf) {
6684 case 1: /* Return to Handler */
6685 break;
6686 case 13: /* Return to Thread using Process stack */
6687 case 9: /* Return to Thread using Main stack */
6688 /* We only need to check NONBASETHRDENA for v7M, because in
6689 * v8M this bit does not exist (it is RES1).
6691 if (!rettobase &&
6692 !(env->v7m.ccr[env->v7m.secure] &
6693 R_V7M_CCR_NONBASETHRDENA_MASK)) {
6694 ufault = true;
6696 break;
6697 default:
6698 ufault = true;
6702 if (sfault) {
6703 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6704 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6705 v7m_exception_taken(cpu, excret, true);
6706 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6707 "stackframe: failed EXC_RETURN.ES validity check\n");
6708 return;
6711 if (ufault) {
6712 /* Bad exception return: instead of popping the exception
6713 * stack, directly take a usage fault on the current stack.
6715 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6716 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6717 v7m_exception_taken(cpu, excret, true);
6718 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6719 "stackframe: failed exception return integrity check\n");
6720 return;
6723 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6724 * Handler mode (and will be until we write the new XPSR.Interrupt
6725 * field) this does not switch around the current stack pointer.
6727 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6729 switch_v7m_security_state(env, return_to_secure);
6732 /* The stack pointer we should be reading the exception frame from
6733 * depends on bits in the magic exception return type value (and
6734 * for v8M isn't necessarily the stack pointer we will eventually
6735 * end up resuming execution with). Get a pointer to the location
6736 * in the CPU state struct where the SP we need is currently being
6737 * stored; we will use and modify it in place.
6738 * We use this limited C variable scope so we don't accidentally
6739 * use 'frame_sp_p' after we do something that makes it invalid.
6741 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6742 return_to_secure,
6743 !return_to_handler,
6744 return_to_sp_process);
6745 uint32_t frameptr = *frame_sp_p;
6747 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6748 arm_feature(env, ARM_FEATURE_V8)) {
6749 qemu_log_mask(LOG_GUEST_ERROR,
6750 "M profile exception return with non-8-aligned SP "
6751 "for destination state is UNPREDICTABLE\n");
6754 /* Do we need to pop callee-saved registers? */
6755 if (return_to_secure &&
6756 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6757 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6758 uint32_t expected_sig = 0xfefa125b;
6759 uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6761 if (expected_sig != actual_sig) {
6762 /* Take a SecureFault on the current stack */
6763 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6764 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6765 v7m_exception_taken(cpu, excret, true);
6766 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6767 "stackframe: failed exception return integrity "
6768 "signature check\n");
6769 return;
6772 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6773 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6774 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6775 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6776 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6777 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6778 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6779 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6781 frameptr += 0x28;
6784 /* Pop registers. TODO: make these accesses use the correct
6785 * attributes and address space (S/NS, priv/unpriv) and handle
6786 * memory transaction failures.
6788 env->regs[0] = ldl_phys(cs->as, frameptr);
6789 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6790 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6791 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6792 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6793 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6794 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6796 /* Returning from an exception with a PC with bit 0 set is defined
6797 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6798 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6799 * the lsbit, and there are several RTOSes out there which incorrectly
6800 * assume the r15 in the stack frame should be a Thumb-style "lsbit
6801 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6802 * complain about the badly behaved guest.
6804 if (env->regs[15] & 1) {
6805 env->regs[15] &= ~1U;
6806 if (!arm_feature(env, ARM_FEATURE_V8)) {
6807 qemu_log_mask(LOG_GUEST_ERROR,
6808 "M profile return from interrupt with misaligned "
6809 "PC is UNPREDICTABLE on v7M\n");
6813 xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6815 if (arm_feature(env, ARM_FEATURE_V8)) {
6816 /* For v8M we have to check whether the xPSR exception field
6817 * matches the EXCRET value for return to handler/thread
6818 * before we commit to changing the SP and xPSR.
6820 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6821 if (return_to_handler != will_be_handler) {
6822 /* Take an INVPC UsageFault on the current stack.
6823 * By this point we will have switched to the security state
6824 * for the background state, so this UsageFault will target
6825 * that state.
6827 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6828 env->v7m.secure);
6829 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6830 v7m_exception_taken(cpu, excret, true);
6831 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6832 "stackframe: failed exception return integrity "
6833 "check\n");
6834 return;
6838 /* Commit to consuming the stack frame */
6839 frameptr += 0x20;
6840 /* Undo stack alignment (the SPREALIGN bit indicates that the original
6841 * pre-exception SP was not 8-aligned and we added a padding word to
6842 * align it, so we undo this by ORing in the bit that increases it
6843 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6844 * would work too but a logical OR is how the pseudocode specifies it.)
6846 if (xpsr & XPSR_SPREALIGN) {
6847 frameptr |= 4;
6849 *frame_sp_p = frameptr;
6851 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6852 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6854 /* The restored xPSR exception field will be zero if we're
6855 * resuming in Thread mode. If that doesn't match what the
6856 * exception return excret specified then this is a UsageFault.
6857 * v7M requires we make this check here; v8M did it earlier.
6859 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6860 /* Take an INVPC UsageFault by pushing the stack again;
6861 * we know we're v7M so this is never a Secure UsageFault.
6863 assert(!arm_feature(env, ARM_FEATURE_V8));
6864 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6865 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6866 v7m_push_stack(cpu);
6867 v7m_exception_taken(cpu, excret, false);
6868 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6869 "failed exception return integrity check\n");
6870 return;
6873 /* Otherwise, we have a successful exception exit. */
6874 arm_clear_exclusive(env);
6875 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6878 static bool do_v7m_function_return(ARMCPU *cpu)
6880 /* v8M security extensions magic function return.
6881 * We may either:
6882 * (1) throw an exception (longjump)
6883 * (2) return true if we successfully handled the function return
6884 * (3) return false if we failed a consistency check and have
6885 * pended a UsageFault that needs to be taken now
6887 * At this point the magic return value is split between env->regs[15]
6888 * and env->thumb. We don't bother to reconstitute it because we don't
6889 * need it (all values are handled the same way).
6891 CPUARMState *env = &cpu->env;
6892 uint32_t newpc, newpsr, newpsr_exc;
6894 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
6897 bool threadmode, spsel;
6898 TCGMemOpIdx oi;
6899 ARMMMUIdx mmu_idx;
6900 uint32_t *frame_sp_p;
6901 uint32_t frameptr;
6903 /* Pull the return address and IPSR from the Secure stack */
6904 threadmode = !arm_v7m_is_handler_mode(env);
6905 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
6907 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
6908 frameptr = *frame_sp_p;
6910 /* These loads may throw an exception (for MPU faults). We want to
6911 * do them as secure, so work out what MMU index that is.
6913 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6914 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
6915 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
6916 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
6918 /* Consistency checks on new IPSR */
6919 newpsr_exc = newpsr & XPSR_EXCP;
6920 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
6921 (env->v7m.exception == 1 && newpsr_exc != 0))) {
6922 /* Pend the fault and tell our caller to take it */
6923 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6924 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6925 env->v7m.secure);
6926 qemu_log_mask(CPU_LOG_INT,
6927 "...taking INVPC UsageFault: "
6928 "IPSR consistency check failed\n");
6929 return false;
6932 *frame_sp_p = frameptr + 8;
6935 /* This invalidates frame_sp_p */
6936 switch_v7m_security_state(env, true);
6937 env->v7m.exception = newpsr_exc;
6938 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
6939 if (newpsr & XPSR_SFPA) {
6940 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
6942 xpsr_write(env, 0, XPSR_IT);
6943 env->thumb = newpc & 1;
6944 env->regs[15] = newpc & ~1;
6946 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
6947 return true;
6950 static void arm_log_exception(int idx)
6952 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6953 const char *exc = NULL;
6954 static const char * const excnames[] = {
6955 [EXCP_UDEF] = "Undefined Instruction",
6956 [EXCP_SWI] = "SVC",
6957 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6958 [EXCP_DATA_ABORT] = "Data Abort",
6959 [EXCP_IRQ] = "IRQ",
6960 [EXCP_FIQ] = "FIQ",
6961 [EXCP_BKPT] = "Breakpoint",
6962 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6963 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6964 [EXCP_HVC] = "Hypervisor Call",
6965 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6966 [EXCP_SMC] = "Secure Monitor Call",
6967 [EXCP_VIRQ] = "Virtual IRQ",
6968 [EXCP_VFIQ] = "Virtual FIQ",
6969 [EXCP_SEMIHOST] = "Semihosting call",
6970 [EXCP_NOCP] = "v7M NOCP UsageFault",
6971 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6974 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6975 exc = excnames[idx];
6977 if (!exc) {
6978 exc = "unknown";
6980 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6984 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
6985 uint32_t addr, uint16_t *insn)
6987 /* Load a 16-bit portion of a v7M instruction, returning true on success,
6988 * or false on failure (in which case we will have pended the appropriate
6989 * exception).
6990 * We need to do the instruction fetch's MPU and SAU checks
6991 * like this because there is no MMU index that would allow
6992 * doing the load with a single function call. Instead we must
6993 * first check that the security attributes permit the load
6994 * and that they don't mismatch on the two halves of the instruction,
6995 * and then we do the load as a secure load (ie using the security
6996 * attributes of the address, not the CPU, as architecturally required).
6998 CPUState *cs = CPU(cpu);
6999 CPUARMState *env = &cpu->env;
7000 V8M_SAttributes sattrs = {};
7001 MemTxAttrs attrs = {};
7002 ARMMMUFaultInfo fi = {};
7003 MemTxResult txres;
7004 target_ulong page_size;
7005 hwaddr physaddr;
7006 int prot;
7008 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7009 if (!sattrs.nsc || sattrs.ns) {
7010 /* This must be the second half of the insn, and it straddles a
7011 * region boundary with the second half not being S&NSC.
7013 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7014 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7015 qemu_log_mask(CPU_LOG_INT,
7016 "...really SecureFault with SFSR.INVEP\n");
7017 return false;
7019 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7020 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7021 /* the MPU lookup failed */
7022 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7023 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7024 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7025 return false;
7027 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7028 attrs, &txres);
7029 if (txres != MEMTX_OK) {
7030 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7031 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7032 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7033 return false;
7035 return true;
7038 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7040 /* Check whether this attempt to execute code in a Secure & NS-Callable
7041 * memory region is for an SG instruction; if so, then emulate the
7042 * effect of the SG instruction and return true. Otherwise pend
7043 * the correct kind of exception and return false.
7045 CPUARMState *env = &cpu->env;
7046 ARMMMUIdx mmu_idx;
7047 uint16_t insn;
7049 /* We should never get here unless get_phys_addr_pmsav8() caused
7050 * an exception for NS executing in S&NSC memory.
7052 assert(!env->v7m.secure);
7053 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7055 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7056 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7058 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7059 return false;
7062 if (!env->thumb) {
7063 goto gen_invep;
7066 if (insn != 0xe97f) {
7067 /* Not an SG instruction first half (we choose the IMPDEF
7068 * early-SG-check option).
7070 goto gen_invep;
7073 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7074 return false;
7077 if (insn != 0xe97f) {
7078 /* Not an SG instruction second half (yes, both halves of the SG
7079 * insn have the same hex value)
7081 goto gen_invep;
7084 /* OK, we have confirmed that we really have an SG instruction.
7085 * We know we're NS in S memory so don't need to repeat those checks.
7087 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7088 ", executing it\n", env->regs[15]);
7089 env->regs[14] &= ~1;
7090 switch_v7m_security_state(env, true);
7091 xpsr_write(env, 0, XPSR_IT);
7092 env->regs[15] += 4;
7093 return true;
7095 gen_invep:
7096 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7097 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7098 qemu_log_mask(CPU_LOG_INT,
7099 "...really SecureFault with SFSR.INVEP\n");
7100 return false;
7103 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7105 ARMCPU *cpu = ARM_CPU(cs);
7106 CPUARMState *env = &cpu->env;
7107 uint32_t lr;
7109 arm_log_exception(cs->exception_index);
7111 /* For exceptions we just mark as pending on the NVIC, and let that
7112 handle it. */
7113 switch (cs->exception_index) {
7114 case EXCP_UDEF:
7115 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7116 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7117 break;
7118 case EXCP_NOCP:
7119 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7120 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7121 break;
7122 case EXCP_INVSTATE:
7123 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7124 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7125 break;
7126 case EXCP_SWI:
7127 /* The PC already points to the next instruction. */
7128 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7129 break;
7130 case EXCP_PREFETCH_ABORT:
7131 case EXCP_DATA_ABORT:
7132 /* Note that for M profile we don't have a guest facing FSR, but
7133 * the env->exception.fsr will be populated by the code that
7134 * raises the fault, in the A profile short-descriptor format.
7136 switch (env->exception.fsr & 0xf) {
7137 case M_FAKE_FSR_NSC_EXEC:
7138 /* Exception generated when we try to execute code at an address
7139 * which is marked as Secure & Non-Secure Callable and the CPU
7140 * is in the Non-Secure state. The only instruction which can
7141 * be executed like this is SG (and that only if both halves of
7142 * the SG instruction have the same security attributes.)
7143 * Everything else must generate an INVEP SecureFault, so we
7144 * emulate the SG instruction here.
7146 if (v7m_handle_execute_nsc(cpu)) {
7147 return;
7149 break;
7150 case M_FAKE_FSR_SFAULT:
7151 /* Various flavours of SecureFault for attempts to execute or
7152 * access data in the wrong security state.
7154 switch (cs->exception_index) {
7155 case EXCP_PREFETCH_ABORT:
7156 if (env->v7m.secure) {
7157 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7158 qemu_log_mask(CPU_LOG_INT,
7159 "...really SecureFault with SFSR.INVTRAN\n");
7160 } else {
7161 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7162 qemu_log_mask(CPU_LOG_INT,
7163 "...really SecureFault with SFSR.INVEP\n");
7165 break;
7166 case EXCP_DATA_ABORT:
7167 /* This must be an NS access to S memory */
7168 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7169 qemu_log_mask(CPU_LOG_INT,
7170 "...really SecureFault with SFSR.AUVIOL\n");
7171 break;
7173 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7174 break;
7175 case 0x8: /* External Abort */
7176 switch (cs->exception_index) {
7177 case EXCP_PREFETCH_ABORT:
7178 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7179 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7180 break;
7181 case EXCP_DATA_ABORT:
7182 env->v7m.cfsr[M_REG_NS] |=
7183 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7184 env->v7m.bfar = env->exception.vaddress;
7185 qemu_log_mask(CPU_LOG_INT,
7186 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7187 env->v7m.bfar);
7188 break;
7190 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7191 break;
7192 default:
7193 /* All other FSR values are either MPU faults or "can't happen
7194 * for M profile" cases.
7196 switch (cs->exception_index) {
7197 case EXCP_PREFETCH_ABORT:
7198 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7199 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7200 break;
7201 case EXCP_DATA_ABORT:
7202 env->v7m.cfsr[env->v7m.secure] |=
7203 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7204 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7205 qemu_log_mask(CPU_LOG_INT,
7206 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7207 env->v7m.mmfar[env->v7m.secure]);
7208 break;
7210 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7211 env->v7m.secure);
7212 break;
7214 break;
7215 case EXCP_BKPT:
7216 if (semihosting_enabled()) {
7217 int nr;
7218 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7219 if (nr == 0xab) {
7220 env->regs[15] += 2;
7221 qemu_log_mask(CPU_LOG_INT,
7222 "...handling as semihosting call 0x%x\n",
7223 env->regs[0]);
7224 env->regs[0] = do_arm_semihosting(env);
7225 return;
7228 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7229 break;
7230 case EXCP_IRQ:
7231 break;
7232 case EXCP_EXCEPTION_EXIT:
7233 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7234 /* Must be v8M security extension function return */
7235 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7236 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7237 if (do_v7m_function_return(cpu)) {
7238 return;
7240 } else {
7241 do_v7m_exception_exit(cpu);
7242 return;
7244 break;
7245 default:
7246 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7247 return; /* Never happens. Keep compiler happy. */
7250 if (arm_feature(env, ARM_FEATURE_V8)) {
7251 lr = R_V7M_EXCRET_RES1_MASK |
7252 R_V7M_EXCRET_DCRS_MASK |
7253 R_V7M_EXCRET_FTYPE_MASK;
7254 /* The S bit indicates whether we should return to Secure
7255 * or NonSecure (ie our current state).
7256 * The ES bit indicates whether we're taking this exception
7257 * to Secure or NonSecure (ie our target state). We set it
7258 * later, in v7m_exception_taken().
7259 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7260 * This corresponds to the ARM ARM pseudocode for v8M setting
7261 * some LR bits in PushStack() and some in ExceptionTaken();
7262 * the distinction matters for the tailchain cases where we
7263 * can take an exception without pushing the stack.
7265 if (env->v7m.secure) {
7266 lr |= R_V7M_EXCRET_S_MASK;
7268 } else {
7269 lr = R_V7M_EXCRET_RES1_MASK |
7270 R_V7M_EXCRET_S_MASK |
7271 R_V7M_EXCRET_DCRS_MASK |
7272 R_V7M_EXCRET_FTYPE_MASK |
7273 R_V7M_EXCRET_ES_MASK;
7274 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7275 lr |= R_V7M_EXCRET_SPSEL_MASK;
7278 if (!arm_v7m_is_handler_mode(env)) {
7279 lr |= R_V7M_EXCRET_MODE_MASK;
7282 v7m_push_stack(cpu);
7283 v7m_exception_taken(cpu, lr, false);
7284 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7287 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7288 * register set. This is necessary when switching between AArch32 and AArch64
7289 * execution state.
7291 void aarch64_sync_32_to_64(CPUARMState *env)
7293 int i;
7294 uint32_t mode = env->uncached_cpsr & CPSR_M;
7296 /* We can blanket copy R[0:7] to X[0:7] */
7297 for (i = 0; i < 8; i++) {
7298 env->xregs[i] = env->regs[i];
7301 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7302 * Otherwise, they come from the banked user regs.
7304 if (mode == ARM_CPU_MODE_FIQ) {
7305 for (i = 8; i < 13; i++) {
7306 env->xregs[i] = env->usr_regs[i - 8];
7308 } else {
7309 for (i = 8; i < 13; i++) {
7310 env->xregs[i] = env->regs[i];
7314 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7315 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7316 * from the mode banked register.
7318 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7319 env->xregs[13] = env->regs[13];
7320 env->xregs[14] = env->regs[14];
7321 } else {
7322 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7323 /* HYP is an exception in that it is copied from r14 */
7324 if (mode == ARM_CPU_MODE_HYP) {
7325 env->xregs[14] = env->regs[14];
7326 } else {
7327 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7331 if (mode == ARM_CPU_MODE_HYP) {
7332 env->xregs[15] = env->regs[13];
7333 } else {
7334 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7337 if (mode == ARM_CPU_MODE_IRQ) {
7338 env->xregs[16] = env->regs[14];
7339 env->xregs[17] = env->regs[13];
7340 } else {
7341 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7342 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7345 if (mode == ARM_CPU_MODE_SVC) {
7346 env->xregs[18] = env->regs[14];
7347 env->xregs[19] = env->regs[13];
7348 } else {
7349 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7350 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7353 if (mode == ARM_CPU_MODE_ABT) {
7354 env->xregs[20] = env->regs[14];
7355 env->xregs[21] = env->regs[13];
7356 } else {
7357 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7358 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7361 if (mode == ARM_CPU_MODE_UND) {
7362 env->xregs[22] = env->regs[14];
7363 env->xregs[23] = env->regs[13];
7364 } else {
7365 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7366 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7369 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7370 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7371 * FIQ bank for r8-r14.
7373 if (mode == ARM_CPU_MODE_FIQ) {
7374 for (i = 24; i < 31; i++) {
7375 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7377 } else {
7378 for (i = 24; i < 29; i++) {
7379 env->xregs[i] = env->fiq_regs[i - 24];
7381 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7382 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7385 env->pc = env->regs[15];
7388 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7389 * register set. This is necessary when switching between AArch32 and AArch64
7390 * execution state.
7392 void aarch64_sync_64_to_32(CPUARMState *env)
7394 int i;
7395 uint32_t mode = env->uncached_cpsr & CPSR_M;
7397 /* We can blanket copy X[0:7] to R[0:7] */
7398 for (i = 0; i < 8; i++) {
7399 env->regs[i] = env->xregs[i];
7402 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7403 * Otherwise, we copy x8-x12 into the banked user regs.
7405 if (mode == ARM_CPU_MODE_FIQ) {
7406 for (i = 8; i < 13; i++) {
7407 env->usr_regs[i - 8] = env->xregs[i];
7409 } else {
7410 for (i = 8; i < 13; i++) {
7411 env->regs[i] = env->xregs[i];
7415 /* Registers r13 & r14 depend on the current mode.
7416 * If we are in a given mode, we copy the corresponding x registers to r13
7417 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7418 * for the mode.
7420 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7421 env->regs[13] = env->xregs[13];
7422 env->regs[14] = env->xregs[14];
7423 } else {
7424 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7426 /* HYP is an exception in that it does not have its own banked r14 but
7427 * shares the USR r14
7429 if (mode == ARM_CPU_MODE_HYP) {
7430 env->regs[14] = env->xregs[14];
7431 } else {
7432 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7436 if (mode == ARM_CPU_MODE_HYP) {
7437 env->regs[13] = env->xregs[15];
7438 } else {
7439 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7442 if (mode == ARM_CPU_MODE_IRQ) {
7443 env->regs[14] = env->xregs[16];
7444 env->regs[13] = env->xregs[17];
7445 } else {
7446 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7447 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7450 if (mode == ARM_CPU_MODE_SVC) {
7451 env->regs[14] = env->xregs[18];
7452 env->regs[13] = env->xregs[19];
7453 } else {
7454 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7455 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7458 if (mode == ARM_CPU_MODE_ABT) {
7459 env->regs[14] = env->xregs[20];
7460 env->regs[13] = env->xregs[21];
7461 } else {
7462 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7463 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7466 if (mode == ARM_CPU_MODE_UND) {
7467 env->regs[14] = env->xregs[22];
7468 env->regs[13] = env->xregs[23];
7469 } else {
7470 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7471 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7474 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7475 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7476 * FIQ bank for r8-r14.
7478 if (mode == ARM_CPU_MODE_FIQ) {
7479 for (i = 24; i < 31; i++) {
7480 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7482 } else {
7483 for (i = 24; i < 29; i++) {
7484 env->fiq_regs[i - 24] = env->xregs[i];
7486 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7487 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7490 env->regs[15] = env->pc;
7493 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7495 ARMCPU *cpu = ARM_CPU(cs);
7496 CPUARMState *env = &cpu->env;
7497 uint32_t addr;
7498 uint32_t mask;
7499 int new_mode;
7500 uint32_t offset;
7501 uint32_t moe;
7503 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7504 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7505 case EC_BREAKPOINT:
7506 case EC_BREAKPOINT_SAME_EL:
7507 moe = 1;
7508 break;
7509 case EC_WATCHPOINT:
7510 case EC_WATCHPOINT_SAME_EL:
7511 moe = 10;
7512 break;
7513 case EC_AA32_BKPT:
7514 moe = 3;
7515 break;
7516 case EC_VECTORCATCH:
7517 moe = 5;
7518 break;
7519 default:
7520 moe = 0;
7521 break;
7524 if (moe) {
7525 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7528 /* TODO: Vectored interrupt controller. */
7529 switch (cs->exception_index) {
7530 case EXCP_UDEF:
7531 new_mode = ARM_CPU_MODE_UND;
7532 addr = 0x04;
7533 mask = CPSR_I;
7534 if (env->thumb)
7535 offset = 2;
7536 else
7537 offset = 4;
7538 break;
7539 case EXCP_SWI:
7540 new_mode = ARM_CPU_MODE_SVC;
7541 addr = 0x08;
7542 mask = CPSR_I;
7543 /* The PC already points to the next instruction. */
7544 offset = 0;
7545 break;
7546 case EXCP_BKPT:
7547 env->exception.fsr = 2;
7548 /* Fall through to prefetch abort. */
7549 case EXCP_PREFETCH_ABORT:
7550 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7551 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7552 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7553 env->exception.fsr, (uint32_t)env->exception.vaddress);
7554 new_mode = ARM_CPU_MODE_ABT;
7555 addr = 0x0c;
7556 mask = CPSR_A | CPSR_I;
7557 offset = 4;
7558 break;
7559 case EXCP_DATA_ABORT:
7560 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7561 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7562 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7563 env->exception.fsr,
7564 (uint32_t)env->exception.vaddress);
7565 new_mode = ARM_CPU_MODE_ABT;
7566 addr = 0x10;
7567 mask = CPSR_A | CPSR_I;
7568 offset = 8;
7569 break;
7570 case EXCP_IRQ:
7571 new_mode = ARM_CPU_MODE_IRQ;
7572 addr = 0x18;
7573 /* Disable IRQ and imprecise data aborts. */
7574 mask = CPSR_A | CPSR_I;
7575 offset = 4;
7576 if (env->cp15.scr_el3 & SCR_IRQ) {
7577 /* IRQ routed to monitor mode */
7578 new_mode = ARM_CPU_MODE_MON;
7579 mask |= CPSR_F;
7581 break;
7582 case EXCP_FIQ:
7583 new_mode = ARM_CPU_MODE_FIQ;
7584 addr = 0x1c;
7585 /* Disable FIQ, IRQ and imprecise data aborts. */
7586 mask = CPSR_A | CPSR_I | CPSR_F;
7587 if (env->cp15.scr_el3 & SCR_FIQ) {
7588 /* FIQ routed to monitor mode */
7589 new_mode = ARM_CPU_MODE_MON;
7591 offset = 4;
7592 break;
7593 case EXCP_VIRQ:
7594 new_mode = ARM_CPU_MODE_IRQ;
7595 addr = 0x18;
7596 /* Disable IRQ and imprecise data aborts. */
7597 mask = CPSR_A | CPSR_I;
7598 offset = 4;
7599 break;
7600 case EXCP_VFIQ:
7601 new_mode = ARM_CPU_MODE_FIQ;
7602 addr = 0x1c;
7603 /* Disable FIQ, IRQ and imprecise data aborts. */
7604 mask = CPSR_A | CPSR_I | CPSR_F;
7605 offset = 4;
7606 break;
7607 case EXCP_SMC:
7608 new_mode = ARM_CPU_MODE_MON;
7609 addr = 0x08;
7610 mask = CPSR_A | CPSR_I | CPSR_F;
7611 offset = 0;
7612 break;
7613 default:
7614 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7615 return; /* Never happens. Keep compiler happy. */
7618 if (new_mode == ARM_CPU_MODE_MON) {
7619 addr += env->cp15.mvbar;
7620 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7621 /* High vectors. When enabled, base address cannot be remapped. */
7622 addr += 0xffff0000;
7623 } else {
7624 /* ARM v7 architectures provide a vector base address register to remap
7625 * the interrupt vector table.
7626 * This register is only followed in non-monitor mode, and is banked.
7627 * Note: only bits 31:5 are valid.
7629 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7632 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7633 env->cp15.scr_el3 &= ~SCR_NS;
7636 switch_mode (env, new_mode);
7637 /* For exceptions taken to AArch32 we must clear the SS bit in both
7638 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7640 env->uncached_cpsr &= ~PSTATE_SS;
7641 env->spsr = cpsr_read(env);
7642 /* Clear IT bits. */
7643 env->condexec_bits = 0;
7644 /* Switch to the new mode, and to the correct instruction set. */
7645 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7646 /* Set new mode endianness */
7647 env->uncached_cpsr &= ~CPSR_E;
7648 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7649 env->uncached_cpsr |= CPSR_E;
7651 env->daif |= mask;
7652 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7653 * and we should just guard the thumb mode on V4 */
7654 if (arm_feature(env, ARM_FEATURE_V4T)) {
7655 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7657 env->regs[14] = env->regs[15] + offset;
7658 env->regs[15] = addr;
7661 /* Handle exception entry to a target EL which is using AArch64 */
7662 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7664 ARMCPU *cpu = ARM_CPU(cs);
7665 CPUARMState *env = &cpu->env;
7666 unsigned int new_el = env->exception.target_el;
7667 target_ulong addr = env->cp15.vbar_el[new_el];
7668 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7670 if (arm_current_el(env) < new_el) {
7671 /* Entry vector offset depends on whether the implemented EL
7672 * immediately lower than the target level is using AArch32 or AArch64
7674 bool is_aa64;
7676 switch (new_el) {
7677 case 3:
7678 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7679 break;
7680 case 2:
7681 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7682 break;
7683 case 1:
7684 is_aa64 = is_a64(env);
7685 break;
7686 default:
7687 g_assert_not_reached();
7690 if (is_aa64) {
7691 addr += 0x400;
7692 } else {
7693 addr += 0x600;
7695 } else if (pstate_read(env) & PSTATE_SP) {
7696 addr += 0x200;
7699 switch (cs->exception_index) {
7700 case EXCP_PREFETCH_ABORT:
7701 case EXCP_DATA_ABORT:
7702 env->cp15.far_el[new_el] = env->exception.vaddress;
7703 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7704 env->cp15.far_el[new_el]);
7705 /* fall through */
7706 case EXCP_BKPT:
7707 case EXCP_UDEF:
7708 case EXCP_SWI:
7709 case EXCP_HVC:
7710 case EXCP_HYP_TRAP:
7711 case EXCP_SMC:
7712 env->cp15.esr_el[new_el] = env->exception.syndrome;
7713 break;
7714 case EXCP_IRQ:
7715 case EXCP_VIRQ:
7716 addr += 0x80;
7717 break;
7718 case EXCP_FIQ:
7719 case EXCP_VFIQ:
7720 addr += 0x100;
7721 break;
7722 case EXCP_SEMIHOST:
7723 qemu_log_mask(CPU_LOG_INT,
7724 "...handling as semihosting call 0x%" PRIx64 "\n",
7725 env->xregs[0]);
7726 env->xregs[0] = do_arm_semihosting(env);
7727 return;
7728 default:
7729 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7732 if (is_a64(env)) {
7733 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7734 aarch64_save_sp(env, arm_current_el(env));
7735 env->elr_el[new_el] = env->pc;
7736 } else {
7737 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7738 env->elr_el[new_el] = env->regs[15];
7740 aarch64_sync_32_to_64(env);
7742 env->condexec_bits = 0;
7744 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7745 env->elr_el[new_el]);
7747 pstate_write(env, PSTATE_DAIF | new_mode);
7748 env->aarch64 = 1;
7749 aarch64_restore_sp(env, new_el);
7751 env->pc = addr;
7753 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7754 new_el, env->pc, pstate_read(env));
7757 static inline bool check_for_semihosting(CPUState *cs)
7759 /* Check whether this exception is a semihosting call; if so
7760 * then handle it and return true; otherwise return false.
7762 ARMCPU *cpu = ARM_CPU(cs);
7763 CPUARMState *env = &cpu->env;
7765 if (is_a64(env)) {
7766 if (cs->exception_index == EXCP_SEMIHOST) {
7767 /* This is always the 64-bit semihosting exception.
7768 * The "is this usermode" and "is semihosting enabled"
7769 * checks have been done at translate time.
7771 qemu_log_mask(CPU_LOG_INT,
7772 "...handling as semihosting call 0x%" PRIx64 "\n",
7773 env->xregs[0]);
7774 env->xregs[0] = do_arm_semihosting(env);
7775 return true;
7777 return false;
7778 } else {
7779 uint32_t imm;
7781 /* Only intercept calls from privileged modes, to provide some
7782 * semblance of security.
7784 if (cs->exception_index != EXCP_SEMIHOST &&
7785 (!semihosting_enabled() ||
7786 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7787 return false;
7790 switch (cs->exception_index) {
7791 case EXCP_SEMIHOST:
7792 /* This is always a semihosting call; the "is this usermode"
7793 * and "is semihosting enabled" checks have been done at
7794 * translate time.
7796 break;
7797 case EXCP_SWI:
7798 /* Check for semihosting interrupt. */
7799 if (env->thumb) {
7800 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7801 & 0xff;
7802 if (imm == 0xab) {
7803 break;
7805 } else {
7806 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7807 & 0xffffff;
7808 if (imm == 0x123456) {
7809 break;
7812 return false;
7813 case EXCP_BKPT:
7814 /* See if this is a semihosting syscall. */
7815 if (env->thumb) {
7816 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7817 & 0xff;
7818 if (imm == 0xab) {
7819 env->regs[15] += 2;
7820 break;
7823 return false;
7824 default:
7825 return false;
7828 qemu_log_mask(CPU_LOG_INT,
7829 "...handling as semihosting call 0x%x\n",
7830 env->regs[0]);
7831 env->regs[0] = do_arm_semihosting(env);
7832 return true;
7836 /* Handle a CPU exception for A and R profile CPUs.
7837 * Do any appropriate logging, handle PSCI calls, and then hand off
7838 * to the AArch64-entry or AArch32-entry function depending on the
7839 * target exception level's register width.
7841 void arm_cpu_do_interrupt(CPUState *cs)
7843 ARMCPU *cpu = ARM_CPU(cs);
7844 CPUARMState *env = &cpu->env;
7845 unsigned int new_el = env->exception.target_el;
7847 assert(!arm_feature(env, ARM_FEATURE_M));
7849 arm_log_exception(cs->exception_index);
7850 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7851 new_el);
7852 if (qemu_loglevel_mask(CPU_LOG_INT)
7853 && !excp_is_internal(cs->exception_index)) {
7854 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7855 env->exception.syndrome >> ARM_EL_EC_SHIFT,
7856 env->exception.syndrome);
7859 if (arm_is_psci_call(cpu, cs->exception_index)) {
7860 arm_handle_psci_call(cpu);
7861 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7862 return;
7865 /* Semihosting semantics depend on the register width of the
7866 * code that caused the exception, not the target exception level,
7867 * so must be handled here.
7869 if (check_for_semihosting(cs)) {
7870 return;
7873 assert(!excp_is_internal(cs->exception_index));
7874 if (arm_el_is_aa64(env, new_el)) {
7875 arm_cpu_do_interrupt_aarch64(cs);
7876 } else {
7877 arm_cpu_do_interrupt_aarch32(cs);
7880 /* Hooks may change global state so BQL should be held, also the
7881 * BQL needs to be held for any modification of
7882 * cs->interrupt_request.
7884 g_assert(qemu_mutex_iothread_locked());
7886 arm_call_el_change_hook(cpu);
7888 if (!kvm_enabled()) {
7889 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7893 /* Return the exception level which controls this address translation regime */
7894 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7896 switch (mmu_idx) {
7897 case ARMMMUIdx_S2NS:
7898 case ARMMMUIdx_S1E2:
7899 return 2;
7900 case ARMMMUIdx_S1E3:
7901 return 3;
7902 case ARMMMUIdx_S1SE0:
7903 return arm_el_is_aa64(env, 3) ? 1 : 3;
7904 case ARMMMUIdx_S1SE1:
7905 case ARMMMUIdx_S1NSE0:
7906 case ARMMMUIdx_S1NSE1:
7907 case ARMMMUIdx_MPrivNegPri:
7908 case ARMMMUIdx_MUserNegPri:
7909 case ARMMMUIdx_MPriv:
7910 case ARMMMUIdx_MUser:
7911 case ARMMMUIdx_MSPrivNegPri:
7912 case ARMMMUIdx_MSUserNegPri:
7913 case ARMMMUIdx_MSPriv:
7914 case ARMMMUIdx_MSUser:
7915 return 1;
7916 default:
7917 g_assert_not_reached();
7921 /* Return the SCTLR value which controls this address translation regime */
7922 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7924 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7927 /* Return true if the specified stage of address translation is disabled */
7928 static inline bool regime_translation_disabled(CPUARMState *env,
7929 ARMMMUIdx mmu_idx)
7931 if (arm_feature(env, ARM_FEATURE_M)) {
7932 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7933 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7934 case R_V7M_MPU_CTRL_ENABLE_MASK:
7935 /* Enabled, but not for HardFault and NMI */
7936 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
7937 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7938 /* Enabled for all cases */
7939 return false;
7940 case 0:
7941 default:
7942 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7943 * we warned about that in armv7m_nvic.c when the guest set it.
7945 return true;
7949 if (mmu_idx == ARMMMUIdx_S2NS) {
7950 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7952 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7955 static inline bool regime_translation_big_endian(CPUARMState *env,
7956 ARMMMUIdx mmu_idx)
7958 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7961 /* Return the TCR controlling this translation regime */
7962 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7964 if (mmu_idx == ARMMMUIdx_S2NS) {
7965 return &env->cp15.vtcr_el2;
7967 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7970 /* Convert a possible stage1+2 MMU index into the appropriate
7971 * stage 1 MMU index
7973 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7975 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7976 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7978 return mmu_idx;
7981 /* Returns TBI0 value for current regime el */
7982 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7984 TCR *tcr;
7985 uint32_t el;
7987 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7988 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7990 mmu_idx = stage_1_mmu_idx(mmu_idx);
7992 tcr = regime_tcr(env, mmu_idx);
7993 el = regime_el(env, mmu_idx);
7995 if (el > 1) {
7996 return extract64(tcr->raw_tcr, 20, 1);
7997 } else {
7998 return extract64(tcr->raw_tcr, 37, 1);
8002 /* Returns TBI1 value for current regime el */
8003 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8005 TCR *tcr;
8006 uint32_t el;
8008 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8009 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8011 mmu_idx = stage_1_mmu_idx(mmu_idx);
8013 tcr = regime_tcr(env, mmu_idx);
8014 el = regime_el(env, mmu_idx);
8016 if (el > 1) {
8017 return 0;
8018 } else {
8019 return extract64(tcr->raw_tcr, 38, 1);
8023 /* Return the TTBR associated with this translation regime */
8024 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8025 int ttbrn)
8027 if (mmu_idx == ARMMMUIdx_S2NS) {
8028 return env->cp15.vttbr_el2;
8030 if (ttbrn == 0) {
8031 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8032 } else {
8033 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8037 /* Return true if the translation regime is using LPAE format page tables */
8038 static inline bool regime_using_lpae_format(CPUARMState *env,
8039 ARMMMUIdx mmu_idx)
8041 int el = regime_el(env, mmu_idx);
8042 if (el == 2 || arm_el_is_aa64(env, el)) {
8043 return true;
8045 if (arm_feature(env, ARM_FEATURE_LPAE)
8046 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8047 return true;
8049 return false;
8052 /* Returns true if the stage 1 translation regime is using LPAE format page
8053 * tables. Used when raising alignment exceptions, whose FSR changes depending
8054 * on whether the long or short descriptor format is in use. */
8055 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8057 mmu_idx = stage_1_mmu_idx(mmu_idx);
8059 return regime_using_lpae_format(env, mmu_idx);
8062 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8064 switch (mmu_idx) {
8065 case ARMMMUIdx_S1SE0:
8066 case ARMMMUIdx_S1NSE0:
8067 case ARMMMUIdx_MUser:
8068 case ARMMMUIdx_MSUser:
8069 case ARMMMUIdx_MUserNegPri:
8070 case ARMMMUIdx_MSUserNegPri:
8071 return true;
8072 default:
8073 return false;
8074 case ARMMMUIdx_S12NSE0:
8075 case ARMMMUIdx_S12NSE1:
8076 g_assert_not_reached();
8080 /* Translate section/page access permissions to page
8081 * R/W protection flags
8083 * @env: CPUARMState
8084 * @mmu_idx: MMU index indicating required translation regime
8085 * @ap: The 3-bit access permissions (AP[2:0])
8086 * @domain_prot: The 2-bit domain access permissions
8088 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8089 int ap, int domain_prot)
8091 bool is_user = regime_is_user(env, mmu_idx);
8093 if (domain_prot == 3) {
8094 return PAGE_READ | PAGE_WRITE;
8097 switch (ap) {
8098 case 0:
8099 if (arm_feature(env, ARM_FEATURE_V7)) {
8100 return 0;
8102 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8103 case SCTLR_S:
8104 return is_user ? 0 : PAGE_READ;
8105 case SCTLR_R:
8106 return PAGE_READ;
8107 default:
8108 return 0;
8110 case 1:
8111 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8112 case 2:
8113 if (is_user) {
8114 return PAGE_READ;
8115 } else {
8116 return PAGE_READ | PAGE_WRITE;
8118 case 3:
8119 return PAGE_READ | PAGE_WRITE;
8120 case 4: /* Reserved. */
8121 return 0;
8122 case 5:
8123 return is_user ? 0 : PAGE_READ;
8124 case 6:
8125 return PAGE_READ;
8126 case 7:
8127 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8128 return 0;
8130 return PAGE_READ;
8131 default:
8132 g_assert_not_reached();
8136 /* Translate section/page access permissions to page
8137 * R/W protection flags.
8139 * @ap: The 2-bit simple AP (AP[2:1])
8140 * @is_user: TRUE if accessing from PL0
8142 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8144 switch (ap) {
8145 case 0:
8146 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8147 case 1:
8148 return PAGE_READ | PAGE_WRITE;
8149 case 2:
8150 return is_user ? 0 : PAGE_READ;
8151 case 3:
8152 return PAGE_READ;
8153 default:
8154 g_assert_not_reached();
8158 static inline int
8159 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8161 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8164 /* Translate S2 section/page access permissions to protection flags
8166 * @env: CPUARMState
8167 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8168 * @xn: XN (execute-never) bit
8170 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8172 int prot = 0;
8174 if (s2ap & 1) {
8175 prot |= PAGE_READ;
8177 if (s2ap & 2) {
8178 prot |= PAGE_WRITE;
8180 if (!xn) {
8181 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8182 prot |= PAGE_EXEC;
8185 return prot;
8188 /* Translate section/page access permissions to protection flags
8190 * @env: CPUARMState
8191 * @mmu_idx: MMU index indicating required translation regime
8192 * @is_aa64: TRUE if AArch64
8193 * @ap: The 2-bit simple AP (AP[2:1])
8194 * @ns: NS (non-secure) bit
8195 * @xn: XN (execute-never) bit
8196 * @pxn: PXN (privileged execute-never) bit
8198 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8199 int ap, int ns, int xn, int pxn)
8201 bool is_user = regime_is_user(env, mmu_idx);
8202 int prot_rw, user_rw;
8203 bool have_wxn;
8204 int wxn = 0;
8206 assert(mmu_idx != ARMMMUIdx_S2NS);
8208 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8209 if (is_user) {
8210 prot_rw = user_rw;
8211 } else {
8212 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8215 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8216 return prot_rw;
8219 /* TODO have_wxn should be replaced with
8220 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8221 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8222 * compatible processors have EL2, which is required for [U]WXN.
8224 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8226 if (have_wxn) {
8227 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8230 if (is_aa64) {
8231 switch (regime_el(env, mmu_idx)) {
8232 case 1:
8233 if (!is_user) {
8234 xn = pxn || (user_rw & PAGE_WRITE);
8236 break;
8237 case 2:
8238 case 3:
8239 break;
8241 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8242 switch (regime_el(env, mmu_idx)) {
8243 case 1:
8244 case 3:
8245 if (is_user) {
8246 xn = xn || !(user_rw & PAGE_READ);
8247 } else {
8248 int uwxn = 0;
8249 if (have_wxn) {
8250 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8252 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8253 (uwxn && (user_rw & PAGE_WRITE));
8255 break;
8256 case 2:
8257 break;
8259 } else {
8260 xn = wxn = 0;
8263 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8264 return prot_rw;
8266 return prot_rw | PAGE_EXEC;
8269 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8270 uint32_t *table, uint32_t address)
8272 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8273 TCR *tcr = regime_tcr(env, mmu_idx);
8275 if (address & tcr->mask) {
8276 if (tcr->raw_tcr & TTBCR_PD1) {
8277 /* Translation table walk disabled for TTBR1 */
8278 return false;
8280 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8281 } else {
8282 if (tcr->raw_tcr & TTBCR_PD0) {
8283 /* Translation table walk disabled for TTBR0 */
8284 return false;
8286 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8288 *table |= (address >> 18) & 0x3ffc;
8289 return true;
8292 /* Translate a S1 pagetable walk through S2 if needed. */
8293 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8294 hwaddr addr, MemTxAttrs txattrs,
8295 ARMMMUFaultInfo *fi)
8297 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8298 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8299 target_ulong s2size;
8300 hwaddr s2pa;
8301 int s2prot;
8302 int ret;
8304 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8305 &txattrs, &s2prot, &s2size, fi, NULL);
8306 if (ret) {
8307 fi->s2addr = addr;
8308 fi->stage2 = true;
8309 fi->s1ptw = true;
8310 return ~0;
8312 addr = s2pa;
8314 return addr;
8317 /* All loads done in the course of a page table walk go through here.
8318 * TODO: rather than ignoring errors from physical memory reads (which
8319 * are external aborts in ARM terminology) we should propagate this
8320 * error out so that we can turn it into a Data Abort if this walk
8321 * was being done for a CPU load/store or an address translation instruction
8322 * (but not if it was for a debug access).
8324 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8325 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8327 ARMCPU *cpu = ARM_CPU(cs);
8328 CPUARMState *env = &cpu->env;
8329 MemTxAttrs attrs = {};
8330 AddressSpace *as;
8332 attrs.secure = is_secure;
8333 as = arm_addressspace(cs, attrs);
8334 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8335 if (fi->s1ptw) {
8336 return 0;
8338 if (regime_translation_big_endian(env, mmu_idx)) {
8339 return address_space_ldl_be(as, addr, attrs, NULL);
8340 } else {
8341 return address_space_ldl_le(as, addr, attrs, NULL);
8345 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8346 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8348 ARMCPU *cpu = ARM_CPU(cs);
8349 CPUARMState *env = &cpu->env;
8350 MemTxAttrs attrs = {};
8351 AddressSpace *as;
8353 attrs.secure = is_secure;
8354 as = arm_addressspace(cs, attrs);
8355 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8356 if (fi->s1ptw) {
8357 return 0;
8359 if (regime_translation_big_endian(env, mmu_idx)) {
8360 return address_space_ldq_be(as, addr, attrs, NULL);
8361 } else {
8362 return address_space_ldq_le(as, addr, attrs, NULL);
8366 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8367 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8368 hwaddr *phys_ptr, int *prot,
8369 target_ulong *page_size,
8370 ARMMMUFaultInfo *fi)
8372 CPUState *cs = CPU(arm_env_get_cpu(env));
8373 int level = 1;
8374 uint32_t table;
8375 uint32_t desc;
8376 int type;
8377 int ap;
8378 int domain = 0;
8379 int domain_prot;
8380 hwaddr phys_addr;
8381 uint32_t dacr;
8383 /* Pagetable walk. */
8384 /* Lookup l1 descriptor. */
8385 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8386 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8387 fi->type = ARMFault_Translation;
8388 goto do_fault;
8390 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8391 mmu_idx, fi);
8392 type = (desc & 3);
8393 domain = (desc >> 5) & 0x0f;
8394 if (regime_el(env, mmu_idx) == 1) {
8395 dacr = env->cp15.dacr_ns;
8396 } else {
8397 dacr = env->cp15.dacr_s;
8399 domain_prot = (dacr >> (domain * 2)) & 3;
8400 if (type == 0) {
8401 /* Section translation fault. */
8402 fi->type = ARMFault_Translation;
8403 goto do_fault;
8405 if (type != 2) {
8406 level = 2;
8408 if (domain_prot == 0 || domain_prot == 2) {
8409 fi->type = ARMFault_Domain;
8410 goto do_fault;
8412 if (type == 2) {
8413 /* 1Mb section. */
8414 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8415 ap = (desc >> 10) & 3;
8416 *page_size = 1024 * 1024;
8417 } else {
8418 /* Lookup l2 entry. */
8419 if (type == 1) {
8420 /* Coarse pagetable. */
8421 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8422 } else {
8423 /* Fine pagetable. */
8424 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8426 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8427 mmu_idx, fi);
8428 switch (desc & 3) {
8429 case 0: /* Page translation fault. */
8430 fi->type = ARMFault_Translation;
8431 goto do_fault;
8432 case 1: /* 64k page. */
8433 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8434 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8435 *page_size = 0x10000;
8436 break;
8437 case 2: /* 4k page. */
8438 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8439 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8440 *page_size = 0x1000;
8441 break;
8442 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8443 if (type == 1) {
8444 /* ARMv6/XScale extended small page format */
8445 if (arm_feature(env, ARM_FEATURE_XSCALE)
8446 || arm_feature(env, ARM_FEATURE_V6)) {
8447 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8448 *page_size = 0x1000;
8449 } else {
8450 /* UNPREDICTABLE in ARMv5; we choose to take a
8451 * page translation fault.
8453 fi->type = ARMFault_Translation;
8454 goto do_fault;
8456 } else {
8457 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8458 *page_size = 0x400;
8460 ap = (desc >> 4) & 3;
8461 break;
8462 default:
8463 /* Never happens, but compiler isn't smart enough to tell. */
8464 abort();
8467 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8468 *prot |= *prot ? PAGE_EXEC : 0;
8469 if (!(*prot & (1 << access_type))) {
8470 /* Access permission fault. */
8471 fi->type = ARMFault_Permission;
8472 goto do_fault;
8474 *phys_ptr = phys_addr;
8475 return false;
8476 do_fault:
8477 fi->domain = domain;
8478 fi->level = level;
8479 return true;
8482 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8483 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8484 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8485 target_ulong *page_size, ARMMMUFaultInfo *fi)
8487 CPUState *cs = CPU(arm_env_get_cpu(env));
8488 int level = 1;
8489 uint32_t table;
8490 uint32_t desc;
8491 uint32_t xn;
8492 uint32_t pxn = 0;
8493 int type;
8494 int ap;
8495 int domain = 0;
8496 int domain_prot;
8497 hwaddr phys_addr;
8498 uint32_t dacr;
8499 bool ns;
8501 /* Pagetable walk. */
8502 /* Lookup l1 descriptor. */
8503 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8504 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8505 fi->type = ARMFault_Translation;
8506 goto do_fault;
8508 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8509 mmu_idx, fi);
8510 type = (desc & 3);
8511 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8512 /* Section translation fault, or attempt to use the encoding
8513 * which is Reserved on implementations without PXN.
8515 fi->type = ARMFault_Translation;
8516 goto do_fault;
8518 if ((type == 1) || !(desc & (1 << 18))) {
8519 /* Page or Section. */
8520 domain = (desc >> 5) & 0x0f;
8522 if (regime_el(env, mmu_idx) == 1) {
8523 dacr = env->cp15.dacr_ns;
8524 } else {
8525 dacr = env->cp15.dacr_s;
8527 if (type == 1) {
8528 level = 2;
8530 domain_prot = (dacr >> (domain * 2)) & 3;
8531 if (domain_prot == 0 || domain_prot == 2) {
8532 /* Section or Page domain fault */
8533 fi->type = ARMFault_Domain;
8534 goto do_fault;
8536 if (type != 1) {
8537 if (desc & (1 << 18)) {
8538 /* Supersection. */
8539 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8540 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8541 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8542 *page_size = 0x1000000;
8543 } else {
8544 /* Section. */
8545 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8546 *page_size = 0x100000;
8548 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8549 xn = desc & (1 << 4);
8550 pxn = desc & 1;
8551 ns = extract32(desc, 19, 1);
8552 } else {
8553 if (arm_feature(env, ARM_FEATURE_PXN)) {
8554 pxn = (desc >> 2) & 1;
8556 ns = extract32(desc, 3, 1);
8557 /* Lookup l2 entry. */
8558 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8559 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8560 mmu_idx, fi);
8561 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8562 switch (desc & 3) {
8563 case 0: /* Page translation fault. */
8564 fi->type = ARMFault_Translation;
8565 goto do_fault;
8566 case 1: /* 64k page. */
8567 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8568 xn = desc & (1 << 15);
8569 *page_size = 0x10000;
8570 break;
8571 case 2: case 3: /* 4k page. */
8572 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8573 xn = desc & 1;
8574 *page_size = 0x1000;
8575 break;
8576 default:
8577 /* Never happens, but compiler isn't smart enough to tell. */
8578 abort();
8581 if (domain_prot == 3) {
8582 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8583 } else {
8584 if (pxn && !regime_is_user(env, mmu_idx)) {
8585 xn = 1;
8587 if (xn && access_type == MMU_INST_FETCH) {
8588 fi->type = ARMFault_Permission;
8589 goto do_fault;
8592 if (arm_feature(env, ARM_FEATURE_V6K) &&
8593 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8594 /* The simplified model uses AP[0] as an access control bit. */
8595 if ((ap & 1) == 0) {
8596 /* Access flag fault. */
8597 fi->type = ARMFault_AccessFlag;
8598 goto do_fault;
8600 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8601 } else {
8602 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8604 if (*prot && !xn) {
8605 *prot |= PAGE_EXEC;
8607 if (!(*prot & (1 << access_type))) {
8608 /* Access permission fault. */
8609 fi->type = ARMFault_Permission;
8610 goto do_fault;
8613 if (ns) {
8614 /* The NS bit will (as required by the architecture) have no effect if
8615 * the CPU doesn't support TZ or this is a non-secure translation
8616 * regime, because the attribute will already be non-secure.
8618 attrs->secure = false;
8620 *phys_ptr = phys_addr;
8621 return false;
8622 do_fault:
8623 fi->domain = domain;
8624 fi->level = level;
8625 return true;
8629 * check_s2_mmu_setup
8630 * @cpu: ARMCPU
8631 * @is_aa64: True if the translation regime is in AArch64 state
8632 * @startlevel: Suggested starting level
8633 * @inputsize: Bitsize of IPAs
8634 * @stride: Page-table stride (See the ARM ARM)
8636 * Returns true if the suggested S2 translation parameters are OK and
8637 * false otherwise.
8639 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8640 int inputsize, int stride)
8642 const int grainsize = stride + 3;
8643 int startsizecheck;
8645 /* Negative levels are never allowed. */
8646 if (level < 0) {
8647 return false;
8650 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8651 if (startsizecheck < 1 || startsizecheck > stride + 4) {
8652 return false;
8655 if (is_aa64) {
8656 CPUARMState *env = &cpu->env;
8657 unsigned int pamax = arm_pamax(cpu);
8659 switch (stride) {
8660 case 13: /* 64KB Pages. */
8661 if (level == 0 || (level == 1 && pamax <= 42)) {
8662 return false;
8664 break;
8665 case 11: /* 16KB Pages. */
8666 if (level == 0 || (level == 1 && pamax <= 40)) {
8667 return false;
8669 break;
8670 case 9: /* 4KB Pages. */
8671 if (level == 0 && pamax <= 42) {
8672 return false;
8674 break;
8675 default:
8676 g_assert_not_reached();
8679 /* Inputsize checks. */
8680 if (inputsize > pamax &&
8681 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8682 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
8683 return false;
8685 } else {
8686 /* AArch32 only supports 4KB pages. Assert on that. */
8687 assert(stride == 9);
8689 if (level == 0) {
8690 return false;
8693 return true;
8696 /* Translate from the 4-bit stage 2 representation of
8697 * memory attributes (without cache-allocation hints) to
8698 * the 8-bit representation of the stage 1 MAIR registers
8699 * (which includes allocation hints).
8701 * ref: shared/translation/attrs/S2AttrDecode()
8702 * .../S2ConvertAttrsHints()
8704 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
8706 uint8_t hiattr = extract32(s2attrs, 2, 2);
8707 uint8_t loattr = extract32(s2attrs, 0, 2);
8708 uint8_t hihint = 0, lohint = 0;
8710 if (hiattr != 0) { /* normal memory */
8711 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
8712 hiattr = loattr = 1; /* non-cacheable */
8713 } else {
8714 if (hiattr != 1) { /* Write-through or write-back */
8715 hihint = 3; /* RW allocate */
8717 if (loattr != 1) { /* Write-through or write-back */
8718 lohint = 3; /* RW allocate */
8723 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
8726 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8727 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8728 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8729 target_ulong *page_size_ptr,
8730 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
8732 ARMCPU *cpu = arm_env_get_cpu(env);
8733 CPUState *cs = CPU(cpu);
8734 /* Read an LPAE long-descriptor translation table. */
8735 ARMFaultType fault_type = ARMFault_Translation;
8736 uint32_t level;
8737 uint32_t epd = 0;
8738 int32_t t0sz, t1sz;
8739 uint32_t tg;
8740 uint64_t ttbr;
8741 int ttbr_select;
8742 hwaddr descaddr, indexmask, indexmask_grainsize;
8743 uint32_t tableattrs;
8744 target_ulong page_size;
8745 uint32_t attrs;
8746 int32_t stride = 9;
8747 int32_t addrsize;
8748 int inputsize;
8749 int32_t tbi = 0;
8750 TCR *tcr = regime_tcr(env, mmu_idx);
8751 int ap, ns, xn, pxn;
8752 uint32_t el = regime_el(env, mmu_idx);
8753 bool ttbr1_valid = true;
8754 uint64_t descaddrmask;
8755 bool aarch64 = arm_el_is_aa64(env, el);
8757 /* TODO:
8758 * This code does not handle the different format TCR for VTCR_EL2.
8759 * This code also does not support shareability levels.
8760 * Attribute and permission bit handling should also be checked when adding
8761 * support for those page table walks.
8763 if (aarch64) {
8764 level = 0;
8765 addrsize = 64;
8766 if (el > 1) {
8767 if (mmu_idx != ARMMMUIdx_S2NS) {
8768 tbi = extract64(tcr->raw_tcr, 20, 1);
8770 } else {
8771 if (extract64(address, 55, 1)) {
8772 tbi = extract64(tcr->raw_tcr, 38, 1);
8773 } else {
8774 tbi = extract64(tcr->raw_tcr, 37, 1);
8777 tbi *= 8;
8779 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8780 * invalid.
8782 if (el > 1) {
8783 ttbr1_valid = false;
8785 } else {
8786 level = 1;
8787 addrsize = 32;
8788 /* There is no TTBR1 for EL2 */
8789 if (el == 2) {
8790 ttbr1_valid = false;
8794 /* Determine whether this address is in the region controlled by
8795 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8796 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8797 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8799 if (aarch64) {
8800 /* AArch64 translation. */
8801 t0sz = extract32(tcr->raw_tcr, 0, 6);
8802 t0sz = MIN(t0sz, 39);
8803 t0sz = MAX(t0sz, 16);
8804 } else if (mmu_idx != ARMMMUIdx_S2NS) {
8805 /* AArch32 stage 1 translation. */
8806 t0sz = extract32(tcr->raw_tcr, 0, 3);
8807 } else {
8808 /* AArch32 stage 2 translation. */
8809 bool sext = extract32(tcr->raw_tcr, 4, 1);
8810 bool sign = extract32(tcr->raw_tcr, 3, 1);
8811 /* Address size is 40-bit for a stage 2 translation,
8812 * and t0sz can be negative (from -8 to 7),
8813 * so we need to adjust it to use the TTBR selecting logic below.
8815 addrsize = 40;
8816 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8818 /* If the sign-extend bit is not the same as t0sz[3], the result
8819 * is unpredictable. Flag this as a guest error. */
8820 if (sign != sext) {
8821 qemu_log_mask(LOG_GUEST_ERROR,
8822 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8825 t1sz = extract32(tcr->raw_tcr, 16, 6);
8826 if (aarch64) {
8827 t1sz = MIN(t1sz, 39);
8828 t1sz = MAX(t1sz, 16);
8830 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8831 /* there is a ttbr0 region and we are in it (high bits all zero) */
8832 ttbr_select = 0;
8833 } else if (ttbr1_valid && t1sz &&
8834 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8835 /* there is a ttbr1 region and we are in it (high bits all one) */
8836 ttbr_select = 1;
8837 } else if (!t0sz) {
8838 /* ttbr0 region is "everything not in the ttbr1 region" */
8839 ttbr_select = 0;
8840 } else if (!t1sz && ttbr1_valid) {
8841 /* ttbr1 region is "everything not in the ttbr0 region" */
8842 ttbr_select = 1;
8843 } else {
8844 /* in the gap between the two regions, this is a Translation fault */
8845 fault_type = ARMFault_Translation;
8846 goto do_fault;
8849 /* Note that QEMU ignores shareability and cacheability attributes,
8850 * so we don't need to do anything with the SH, ORGN, IRGN fields
8851 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
8852 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8853 * implement any ASID-like capability so we can ignore it (instead
8854 * we will always flush the TLB any time the ASID is changed).
8856 if (ttbr_select == 0) {
8857 ttbr = regime_ttbr(env, mmu_idx, 0);
8858 if (el < 2) {
8859 epd = extract32(tcr->raw_tcr, 7, 1);
8861 inputsize = addrsize - t0sz;
8863 tg = extract32(tcr->raw_tcr, 14, 2);
8864 if (tg == 1) { /* 64KB pages */
8865 stride = 13;
8867 if (tg == 2) { /* 16KB pages */
8868 stride = 11;
8870 } else {
8871 /* We should only be here if TTBR1 is valid */
8872 assert(ttbr1_valid);
8874 ttbr = regime_ttbr(env, mmu_idx, 1);
8875 epd = extract32(tcr->raw_tcr, 23, 1);
8876 inputsize = addrsize - t1sz;
8878 tg = extract32(tcr->raw_tcr, 30, 2);
8879 if (tg == 3) { /* 64KB pages */
8880 stride = 13;
8882 if (tg == 1) { /* 16KB pages */
8883 stride = 11;
8887 /* Here we should have set up all the parameters for the translation:
8888 * inputsize, ttbr, epd, stride, tbi
8891 if (epd) {
8892 /* Translation table walk disabled => Translation fault on TLB miss
8893 * Note: This is always 0 on 64-bit EL2 and EL3.
8895 goto do_fault;
8898 if (mmu_idx != ARMMMUIdx_S2NS) {
8899 /* The starting level depends on the virtual address size (which can
8900 * be up to 48 bits) and the translation granule size. It indicates
8901 * the number of strides (stride bits at a time) needed to
8902 * consume the bits of the input address. In the pseudocode this is:
8903 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8904 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8905 * our 'stride + 3' and 'stride' is our 'stride'.
8906 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8907 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8908 * = 4 - (inputsize - 4) / stride;
8910 level = 4 - (inputsize - 4) / stride;
8911 } else {
8912 /* For stage 2 translations the starting level is specified by the
8913 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8915 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8916 uint32_t startlevel;
8917 bool ok;
8919 if (!aarch64 || stride == 9) {
8920 /* AArch32 or 4KB pages */
8921 startlevel = 2 - sl0;
8922 } else {
8923 /* 16KB or 64KB pages */
8924 startlevel = 3 - sl0;
8927 /* Check that the starting level is valid. */
8928 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8929 inputsize, stride);
8930 if (!ok) {
8931 fault_type = ARMFault_Translation;
8932 goto do_fault;
8934 level = startlevel;
8937 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8938 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8940 /* Now we can extract the actual base address from the TTBR */
8941 descaddr = extract64(ttbr, 0, 48);
8942 descaddr &= ~indexmask;
8944 /* The address field in the descriptor goes up to bit 39 for ARMv7
8945 * but up to bit 47 for ARMv8, but we use the descaddrmask
8946 * up to bit 39 for AArch32, because we don't need other bits in that case
8947 * to construct next descriptor address (anyway they should be all zeroes).
8949 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8950 ~indexmask_grainsize;
8952 /* Secure accesses start with the page table in secure memory and
8953 * can be downgraded to non-secure at any step. Non-secure accesses
8954 * remain non-secure. We implement this by just ORing in the NSTable/NS
8955 * bits at each step.
8957 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8958 for (;;) {
8959 uint64_t descriptor;
8960 bool nstable;
8962 descaddr |= (address >> (stride * (4 - level))) & indexmask;
8963 descaddr &= ~7ULL;
8964 nstable = extract32(tableattrs, 4, 1);
8965 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
8966 if (fi->s1ptw) {
8967 goto do_fault;
8970 if (!(descriptor & 1) ||
8971 (!(descriptor & 2) && (level == 3))) {
8972 /* Invalid, or the Reserved level 3 encoding */
8973 goto do_fault;
8975 descaddr = descriptor & descaddrmask;
8977 if ((descriptor & 2) && (level < 3)) {
8978 /* Table entry. The top five bits are attributes which may
8979 * propagate down through lower levels of the table (and
8980 * which are all arranged so that 0 means "no effect", so
8981 * we can gather them up by ORing in the bits at each level).
8983 tableattrs |= extract64(descriptor, 59, 5);
8984 level++;
8985 indexmask = indexmask_grainsize;
8986 continue;
8988 /* Block entry at level 1 or 2, or page entry at level 3.
8989 * These are basically the same thing, although the number
8990 * of bits we pull in from the vaddr varies.
8992 page_size = (1ULL << ((stride * (4 - level)) + 3));
8993 descaddr |= (address & (page_size - 1));
8994 /* Extract attributes from the descriptor */
8995 attrs = extract64(descriptor, 2, 10)
8996 | (extract64(descriptor, 52, 12) << 10);
8998 if (mmu_idx == ARMMMUIdx_S2NS) {
8999 /* Stage 2 table descriptors do not include any attribute fields */
9000 break;
9002 /* Merge in attributes from table descriptors */
9003 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9004 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9005 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9006 * means "force PL1 access only", which means forcing AP[1] to 0.
9008 if (extract32(tableattrs, 2, 1)) {
9009 attrs &= ~(1 << 4);
9011 attrs |= nstable << 3; /* NS */
9012 break;
9014 /* Here descaddr is the final physical address, and attributes
9015 * are all in attrs.
9017 fault_type = ARMFault_AccessFlag;
9018 if ((attrs & (1 << 8)) == 0) {
9019 /* Access flag */
9020 goto do_fault;
9023 ap = extract32(attrs, 4, 2);
9024 xn = extract32(attrs, 12, 1);
9026 if (mmu_idx == ARMMMUIdx_S2NS) {
9027 ns = true;
9028 *prot = get_S2prot(env, ap, xn);
9029 } else {
9030 ns = extract32(attrs, 3, 1);
9031 pxn = extract32(attrs, 11, 1);
9032 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9035 fault_type = ARMFault_Permission;
9036 if (!(*prot & (1 << access_type))) {
9037 goto do_fault;
9040 if (ns) {
9041 /* The NS bit will (as required by the architecture) have no effect if
9042 * the CPU doesn't support TZ or this is a non-secure translation
9043 * regime, because the attribute will already be non-secure.
9045 txattrs->secure = false;
9048 if (cacheattrs != NULL) {
9049 if (mmu_idx == ARMMMUIdx_S2NS) {
9050 cacheattrs->attrs = convert_stage2_attrs(env,
9051 extract32(attrs, 0, 4));
9052 } else {
9053 /* Index into MAIR registers for cache attributes */
9054 uint8_t attrindx = extract32(attrs, 0, 3);
9055 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9056 assert(attrindx <= 7);
9057 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9059 cacheattrs->shareability = extract32(attrs, 6, 2);
9062 *phys_ptr = descaddr;
9063 *page_size_ptr = page_size;
9064 return false;
9066 do_fault:
9067 fi->type = fault_type;
9068 fi->level = level;
9069 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9070 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9071 return true;
9074 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9075 ARMMMUIdx mmu_idx,
9076 int32_t address, int *prot)
9078 if (!arm_feature(env, ARM_FEATURE_M)) {
9079 *prot = PAGE_READ | PAGE_WRITE;
9080 switch (address) {
9081 case 0xF0000000 ... 0xFFFFFFFF:
9082 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9083 /* hivecs execing is ok */
9084 *prot |= PAGE_EXEC;
9086 break;
9087 case 0x00000000 ... 0x7FFFFFFF:
9088 *prot |= PAGE_EXEC;
9089 break;
9091 } else {
9092 /* Default system address map for M profile cores.
9093 * The architecture specifies which regions are execute-never;
9094 * at the MPU level no other checks are defined.
9096 switch (address) {
9097 case 0x00000000 ... 0x1fffffff: /* ROM */
9098 case 0x20000000 ... 0x3fffffff: /* SRAM */
9099 case 0x60000000 ... 0x7fffffff: /* RAM */
9100 case 0x80000000 ... 0x9fffffff: /* RAM */
9101 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9102 break;
9103 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9104 case 0xa0000000 ... 0xbfffffff: /* Device */
9105 case 0xc0000000 ... 0xdfffffff: /* Device */
9106 case 0xe0000000 ... 0xffffffff: /* System */
9107 *prot = PAGE_READ | PAGE_WRITE;
9108 break;
9109 default:
9110 g_assert_not_reached();
9115 static bool pmsav7_use_background_region(ARMCPU *cpu,
9116 ARMMMUIdx mmu_idx, bool is_user)
9118 /* Return true if we should use the default memory map as a
9119 * "background" region if there are no hits against any MPU regions.
9121 CPUARMState *env = &cpu->env;
9123 if (is_user) {
9124 return false;
9127 if (arm_feature(env, ARM_FEATURE_M)) {
9128 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9129 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9130 } else {
9131 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9135 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9137 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9138 return arm_feature(env, ARM_FEATURE_M) &&
9139 extract32(address, 20, 12) == 0xe00;
9142 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9144 /* True if address is in the M profile system region
9145 * 0xe0000000 - 0xffffffff
9147 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9150 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9151 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9152 hwaddr *phys_ptr, int *prot,
9153 ARMMMUFaultInfo *fi)
9155 ARMCPU *cpu = arm_env_get_cpu(env);
9156 int n;
9157 bool is_user = regime_is_user(env, mmu_idx);
9159 *phys_ptr = address;
9160 *prot = 0;
9162 if (regime_translation_disabled(env, mmu_idx) ||
9163 m_is_ppb_region(env, address)) {
9164 /* MPU disabled or M profile PPB access: use default memory map.
9165 * The other case which uses the default memory map in the
9166 * v7M ARM ARM pseudocode is exception vector reads from the vector
9167 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9168 * which always does a direct read using address_space_ldl(), rather
9169 * than going via this function, so we don't need to check that here.
9171 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9172 } else { /* MPU enabled */
9173 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9174 /* region search */
9175 uint32_t base = env->pmsav7.drbar[n];
9176 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9177 uint32_t rmask;
9178 bool srdis = false;
9180 if (!(env->pmsav7.drsr[n] & 0x1)) {
9181 continue;
9184 if (!rsize) {
9185 qemu_log_mask(LOG_GUEST_ERROR,
9186 "DRSR[%d]: Rsize field cannot be 0\n", n);
9187 continue;
9189 rsize++;
9190 rmask = (1ull << rsize) - 1;
9192 if (base & rmask) {
9193 qemu_log_mask(LOG_GUEST_ERROR,
9194 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9195 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9196 n, base, rmask);
9197 continue;
9200 if (address < base || address > base + rmask) {
9201 continue;
9204 /* Region matched */
9206 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9207 int i, snd;
9208 uint32_t srdis_mask;
9210 rsize -= 3; /* sub region size (power of 2) */
9211 snd = ((address - base) >> rsize) & 0x7;
9212 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9214 srdis_mask = srdis ? 0x3 : 0x0;
9215 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9216 /* This will check in groups of 2, 4 and then 8, whether
9217 * the subregion bits are consistent. rsize is incremented
9218 * back up to give the region size, considering consistent
9219 * adjacent subregions as one region. Stop testing if rsize
9220 * is already big enough for an entire QEMU page.
9222 int snd_rounded = snd & ~(i - 1);
9223 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9224 snd_rounded + 8, i);
9225 if (srdis_mask ^ srdis_multi) {
9226 break;
9228 srdis_mask = (srdis_mask << i) | srdis_mask;
9229 rsize++;
9232 if (rsize < TARGET_PAGE_BITS) {
9233 qemu_log_mask(LOG_UNIMP,
9234 "DRSR[%d]: No support for MPU (sub)region "
9235 "alignment of %" PRIu32 " bits. Minimum is %d\n",
9236 n, rsize, TARGET_PAGE_BITS);
9237 continue;
9239 if (srdis) {
9240 continue;
9242 break;
9245 if (n == -1) { /* no hits */
9246 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9247 /* background fault */
9248 fi->type = ARMFault_Background;
9249 return true;
9251 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9252 } else { /* a MPU hit! */
9253 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9254 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9256 if (m_is_system_region(env, address)) {
9257 /* System space is always execute never */
9258 xn = 1;
9261 if (is_user) { /* User mode AP bit decoding */
9262 switch (ap) {
9263 case 0:
9264 case 1:
9265 case 5:
9266 break; /* no access */
9267 case 3:
9268 *prot |= PAGE_WRITE;
9269 /* fall through */
9270 case 2:
9271 case 6:
9272 *prot |= PAGE_READ | PAGE_EXEC;
9273 break;
9274 default:
9275 qemu_log_mask(LOG_GUEST_ERROR,
9276 "DRACR[%d]: Bad value for AP bits: 0x%"
9277 PRIx32 "\n", n, ap);
9279 } else { /* Priv. mode AP bits decoding */
9280 switch (ap) {
9281 case 0:
9282 break; /* no access */
9283 case 1:
9284 case 2:
9285 case 3:
9286 *prot |= PAGE_WRITE;
9287 /* fall through */
9288 case 5:
9289 case 6:
9290 *prot |= PAGE_READ | PAGE_EXEC;
9291 break;
9292 default:
9293 qemu_log_mask(LOG_GUEST_ERROR,
9294 "DRACR[%d]: Bad value for AP bits: 0x%"
9295 PRIx32 "\n", n, ap);
9299 /* execute never */
9300 if (xn) {
9301 *prot &= ~PAGE_EXEC;
9306 fi->type = ARMFault_Permission;
9307 fi->level = 1;
9308 return !(*prot & (1 << access_type));
9311 static bool v8m_is_sau_exempt(CPUARMState *env,
9312 uint32_t address, MMUAccessType access_type)
9314 /* The architecture specifies that certain address ranges are
9315 * exempt from v8M SAU/IDAU checks.
9317 return
9318 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9319 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9320 (address >= 0xe000e000 && address <= 0xe000efff) ||
9321 (address >= 0xe002e000 && address <= 0xe002efff) ||
9322 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9323 (address >= 0xe00ff000 && address <= 0xe00fffff);
9326 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9327 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9328 V8M_SAttributes *sattrs)
9330 /* Look up the security attributes for this address. Compare the
9331 * pseudocode SecurityCheck() function.
9332 * We assume the caller has zero-initialized *sattrs.
9334 ARMCPU *cpu = arm_env_get_cpu(env);
9335 int r;
9337 /* TODO: implement IDAU */
9339 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9340 /* 0xf0000000..0xffffffff is always S for insn fetches */
9341 return;
9344 if (v8m_is_sau_exempt(env, address, access_type)) {
9345 sattrs->ns = !regime_is_secure(env, mmu_idx);
9346 return;
9349 switch (env->sau.ctrl & 3) {
9350 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9351 break;
9352 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9353 sattrs->ns = true;
9354 break;
9355 default: /* SAU.ENABLE == 1 */
9356 for (r = 0; r < cpu->sau_sregion; r++) {
9357 if (env->sau.rlar[r] & 1) {
9358 uint32_t base = env->sau.rbar[r] & ~0x1f;
9359 uint32_t limit = env->sau.rlar[r] | 0x1f;
9361 if (base <= address && limit >= address) {
9362 if (sattrs->srvalid) {
9363 /* If we hit in more than one region then we must report
9364 * as Secure, not NS-Callable, with no valid region
9365 * number info.
9367 sattrs->ns = false;
9368 sattrs->nsc = false;
9369 sattrs->sregion = 0;
9370 sattrs->srvalid = false;
9371 break;
9372 } else {
9373 if (env->sau.rlar[r] & 2) {
9374 sattrs->nsc = true;
9375 } else {
9376 sattrs->ns = true;
9378 sattrs->srvalid = true;
9379 sattrs->sregion = r;
9385 /* TODO when we support the IDAU then it may override the result here */
9386 break;
9390 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9391 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9392 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9393 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9395 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9396 * that a full phys-to-virt translation does).
9397 * mregion is (if not NULL) set to the region number which matched,
9398 * or -1 if no region number is returned (MPU off, address did not
9399 * hit a region, address hit in multiple regions).
9401 ARMCPU *cpu = arm_env_get_cpu(env);
9402 bool is_user = regime_is_user(env, mmu_idx);
9403 uint32_t secure = regime_is_secure(env, mmu_idx);
9404 int n;
9405 int matchregion = -1;
9406 bool hit = false;
9408 *phys_ptr = address;
9409 *prot = 0;
9410 if (mregion) {
9411 *mregion = -1;
9414 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9415 * was an exception vector read from the vector table (which is always
9416 * done using the default system address map), because those accesses
9417 * are done in arm_v7m_load_vector(), which always does a direct
9418 * read using address_space_ldl(), rather than going via this function.
9420 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9421 hit = true;
9422 } else if (m_is_ppb_region(env, address)) {
9423 hit = true;
9424 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9425 hit = true;
9426 } else {
9427 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9428 /* region search */
9429 /* Note that the base address is bits [31:5] from the register
9430 * with bits [4:0] all zeroes, but the limit address is bits
9431 * [31:5] from the register with bits [4:0] all ones.
9433 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9434 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9436 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9437 /* Region disabled */
9438 continue;
9441 if (address < base || address > limit) {
9442 continue;
9445 if (hit) {
9446 /* Multiple regions match -- always a failure (unlike
9447 * PMSAv7 where highest-numbered-region wins)
9449 fi->type = ARMFault_Permission;
9450 fi->level = 1;
9451 return true;
9454 matchregion = n;
9455 hit = true;
9457 if (base & ~TARGET_PAGE_MASK) {
9458 qemu_log_mask(LOG_UNIMP,
9459 "MPU_RBAR[%d]: No support for MPU region base"
9460 "address of 0x%" PRIx32 ". Minimum alignment is "
9461 "%d\n",
9462 n, base, TARGET_PAGE_BITS);
9463 continue;
9465 if ((limit + 1) & ~TARGET_PAGE_MASK) {
9466 qemu_log_mask(LOG_UNIMP,
9467 "MPU_RBAR[%d]: No support for MPU region limit"
9468 "address of 0x%" PRIx32 ". Minimum alignment is "
9469 "%d\n",
9470 n, limit, TARGET_PAGE_BITS);
9471 continue;
9476 if (!hit) {
9477 /* background fault */
9478 fi->type = ARMFault_Background;
9479 return true;
9482 if (matchregion == -1) {
9483 /* hit using the background region */
9484 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9485 } else {
9486 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9487 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9489 if (m_is_system_region(env, address)) {
9490 /* System space is always execute never */
9491 xn = 1;
9494 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9495 if (*prot && !xn) {
9496 *prot |= PAGE_EXEC;
9498 /* We don't need to look the attribute up in the MAIR0/MAIR1
9499 * registers because that only tells us about cacheability.
9501 if (mregion) {
9502 *mregion = matchregion;
9506 fi->type = ARMFault_Permission;
9507 fi->level = 1;
9508 return !(*prot & (1 << access_type));
9512 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9513 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9514 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9515 int *prot, ARMMMUFaultInfo *fi)
9517 uint32_t secure = regime_is_secure(env, mmu_idx);
9518 V8M_SAttributes sattrs = {};
9520 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9521 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9522 if (access_type == MMU_INST_FETCH) {
9523 /* Instruction fetches always use the MMU bank and the
9524 * transaction attribute determined by the fetch address,
9525 * regardless of CPU state. This is painful for QEMU
9526 * to handle, because it would mean we need to encode
9527 * into the mmu_idx not just the (user, negpri) information
9528 * for the current security state but also that for the
9529 * other security state, which would balloon the number
9530 * of mmu_idx values needed alarmingly.
9531 * Fortunately we can avoid this because it's not actually
9532 * possible to arbitrarily execute code from memory with
9533 * the wrong security attribute: it will always generate
9534 * an exception of some kind or another, apart from the
9535 * special case of an NS CPU executing an SG instruction
9536 * in S&NSC memory. So we always just fail the translation
9537 * here and sort things out in the exception handler
9538 * (including possibly emulating an SG instruction).
9540 if (sattrs.ns != !secure) {
9541 if (sattrs.nsc) {
9542 fi->type = ARMFault_QEMU_NSCExec;
9543 } else {
9544 fi->type = ARMFault_QEMU_SFault;
9546 *phys_ptr = address;
9547 *prot = 0;
9548 return true;
9550 } else {
9551 /* For data accesses we always use the MMU bank indicated
9552 * by the current CPU state, but the security attributes
9553 * might downgrade a secure access to nonsecure.
9555 if (sattrs.ns) {
9556 txattrs->secure = false;
9557 } else if (!secure) {
9558 /* NS access to S memory must fault.
9559 * Architecturally we should first check whether the
9560 * MPU information for this address indicates that we
9561 * are doing an unaligned access to Device memory, which
9562 * should generate a UsageFault instead. QEMU does not
9563 * currently check for that kind of unaligned access though.
9564 * If we added it we would need to do so as a special case
9565 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9567 fi->type = ARMFault_QEMU_SFault;
9568 *phys_ptr = address;
9569 *prot = 0;
9570 return true;
9575 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
9576 txattrs, prot, fi, NULL);
9579 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9580 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9581 hwaddr *phys_ptr, int *prot,
9582 ARMMMUFaultInfo *fi)
9584 int n;
9585 uint32_t mask;
9586 uint32_t base;
9587 bool is_user = regime_is_user(env, mmu_idx);
9589 if (regime_translation_disabled(env, mmu_idx)) {
9590 /* MPU disabled. */
9591 *phys_ptr = address;
9592 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9593 return false;
9596 *phys_ptr = address;
9597 for (n = 7; n >= 0; n--) {
9598 base = env->cp15.c6_region[n];
9599 if ((base & 1) == 0) {
9600 continue;
9602 mask = 1 << ((base >> 1) & 0x1f);
9603 /* Keep this shift separate from the above to avoid an
9604 (undefined) << 32. */
9605 mask = (mask << 1) - 1;
9606 if (((base ^ address) & ~mask) == 0) {
9607 break;
9610 if (n < 0) {
9611 fi->type = ARMFault_Background;
9612 return true;
9615 if (access_type == MMU_INST_FETCH) {
9616 mask = env->cp15.pmsav5_insn_ap;
9617 } else {
9618 mask = env->cp15.pmsav5_data_ap;
9620 mask = (mask >> (n * 4)) & 0xf;
9621 switch (mask) {
9622 case 0:
9623 fi->type = ARMFault_Permission;
9624 fi->level = 1;
9625 return true;
9626 case 1:
9627 if (is_user) {
9628 fi->type = ARMFault_Permission;
9629 fi->level = 1;
9630 return true;
9632 *prot = PAGE_READ | PAGE_WRITE;
9633 break;
9634 case 2:
9635 *prot = PAGE_READ;
9636 if (!is_user) {
9637 *prot |= PAGE_WRITE;
9639 break;
9640 case 3:
9641 *prot = PAGE_READ | PAGE_WRITE;
9642 break;
9643 case 5:
9644 if (is_user) {
9645 fi->type = ARMFault_Permission;
9646 fi->level = 1;
9647 return true;
9649 *prot = PAGE_READ;
9650 break;
9651 case 6:
9652 *prot = PAGE_READ;
9653 break;
9654 default:
9655 /* Bad permission. */
9656 fi->type = ARMFault_Permission;
9657 fi->level = 1;
9658 return true;
9660 *prot |= PAGE_EXEC;
9661 return false;
9664 /* Combine either inner or outer cacheability attributes for normal
9665 * memory, according to table D4-42 and pseudocode procedure
9666 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
9668 * NB: only stage 1 includes allocation hints (RW bits), leading to
9669 * some asymmetry.
9671 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
9673 if (s1 == 4 || s2 == 4) {
9674 /* non-cacheable has precedence */
9675 return 4;
9676 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
9677 /* stage 1 write-through takes precedence */
9678 return s1;
9679 } else if (extract32(s2, 2, 2) == 2) {
9680 /* stage 2 write-through takes precedence, but the allocation hint
9681 * is still taken from stage 1
9683 return (2 << 2) | extract32(s1, 0, 2);
9684 } else { /* write-back */
9685 return s1;
9689 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
9690 * and CombineS1S2Desc()
9692 * @s1: Attributes from stage 1 walk
9693 * @s2: Attributes from stage 2 walk
9695 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
9697 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
9698 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
9699 ARMCacheAttrs ret;
9701 /* Combine shareability attributes (table D4-43) */
9702 if (s1.shareability == 2 || s2.shareability == 2) {
9703 /* if either are outer-shareable, the result is outer-shareable */
9704 ret.shareability = 2;
9705 } else if (s1.shareability == 3 || s2.shareability == 3) {
9706 /* if either are inner-shareable, the result is inner-shareable */
9707 ret.shareability = 3;
9708 } else {
9709 /* both non-shareable */
9710 ret.shareability = 0;
9713 /* Combine memory type and cacheability attributes */
9714 if (s1hi == 0 || s2hi == 0) {
9715 /* Device has precedence over normal */
9716 if (s1lo == 0 || s2lo == 0) {
9717 /* nGnRnE has precedence over anything */
9718 ret.attrs = 0;
9719 } else if (s1lo == 4 || s2lo == 4) {
9720 /* non-Reordering has precedence over Reordering */
9721 ret.attrs = 4; /* nGnRE */
9722 } else if (s1lo == 8 || s2lo == 8) {
9723 /* non-Gathering has precedence over Gathering */
9724 ret.attrs = 8; /* nGRE */
9725 } else {
9726 ret.attrs = 0xc; /* GRE */
9729 /* Any location for which the resultant memory type is any
9730 * type of Device memory is always treated as Outer Shareable.
9732 ret.shareability = 2;
9733 } else { /* Normal memory */
9734 /* Outer/inner cacheability combine independently */
9735 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
9736 | combine_cacheattr_nibble(s1lo, s2lo);
9738 if (ret.attrs == 0x44) {
9739 /* Any location for which the resultant memory type is Normal
9740 * Inner Non-cacheable, Outer Non-cacheable is always treated
9741 * as Outer Shareable.
9743 ret.shareability = 2;
9747 return ret;
9751 /* get_phys_addr - get the physical address for this virtual address
9753 * Find the physical address corresponding to the given virtual address,
9754 * by doing a translation table walk on MMU based systems or using the
9755 * MPU state on MPU based systems.
9757 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9758 * prot and page_size may not be filled in, and the populated fsr value provides
9759 * information on why the translation aborted, in the format of a
9760 * DFSR/IFSR fault register, with the following caveats:
9761 * * we honour the short vs long DFSR format differences.
9762 * * the WnR bit is never set (the caller must do this).
9763 * * for PSMAv5 based systems we don't bother to return a full FSR format
9764 * value.
9766 * @env: CPUARMState
9767 * @address: virtual address to get physical address for
9768 * @access_type: 0 for read, 1 for write, 2 for execute
9769 * @mmu_idx: MMU index indicating required translation regime
9770 * @phys_ptr: set to the physical address corresponding to the virtual address
9771 * @attrs: set to the memory transaction attributes to use
9772 * @prot: set to the permissions for the page containing phys_ptr
9773 * @page_size: set to the size of the page containing phys_ptr
9774 * @fi: set to fault info if the translation fails
9775 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
9777 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9778 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9779 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9780 target_ulong *page_size,
9781 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9783 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9784 /* Call ourselves recursively to do the stage 1 and then stage 2
9785 * translations.
9787 if (arm_feature(env, ARM_FEATURE_EL2)) {
9788 hwaddr ipa;
9789 int s2_prot;
9790 int ret;
9791 ARMCacheAttrs cacheattrs2 = {};
9793 ret = get_phys_addr(env, address, access_type,
9794 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9795 prot, page_size, fi, cacheattrs);
9797 /* If S1 fails or S2 is disabled, return early. */
9798 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9799 *phys_ptr = ipa;
9800 return ret;
9803 /* S1 is done. Now do S2 translation. */
9804 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9805 phys_ptr, attrs, &s2_prot,
9806 page_size, fi,
9807 cacheattrs != NULL ? &cacheattrs2 : NULL);
9808 fi->s2addr = ipa;
9809 /* Combine the S1 and S2 perms. */
9810 *prot &= s2_prot;
9812 /* Combine the S1 and S2 cache attributes, if needed */
9813 if (!ret && cacheattrs != NULL) {
9814 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
9817 return ret;
9818 } else {
9820 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9822 mmu_idx = stage_1_mmu_idx(mmu_idx);
9826 /* The page table entries may downgrade secure to non-secure, but
9827 * cannot upgrade an non-secure translation regime's attributes
9828 * to secure.
9830 attrs->secure = regime_is_secure(env, mmu_idx);
9831 attrs->user = regime_is_user(env, mmu_idx);
9833 /* Fast Context Switch Extension. This doesn't exist at all in v8.
9834 * In v7 and earlier it affects all stage 1 translations.
9836 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9837 && !arm_feature(env, ARM_FEATURE_V8)) {
9838 if (regime_el(env, mmu_idx) == 3) {
9839 address += env->cp15.fcseidr_s;
9840 } else {
9841 address += env->cp15.fcseidr_ns;
9845 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9846 bool ret;
9847 *page_size = TARGET_PAGE_SIZE;
9849 if (arm_feature(env, ARM_FEATURE_V8)) {
9850 /* PMSAv8 */
9851 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9852 phys_ptr, attrs, prot, fi);
9853 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9854 /* PMSAv7 */
9855 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9856 phys_ptr, prot, fi);
9857 } else {
9858 /* Pre-v7 MPU */
9859 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9860 phys_ptr, prot, fi);
9862 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9863 " mmu_idx %u -> %s (prot %c%c%c)\n",
9864 access_type == MMU_DATA_LOAD ? "reading" :
9865 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9866 (uint32_t)address, mmu_idx,
9867 ret ? "Miss" : "Hit",
9868 *prot & PAGE_READ ? 'r' : '-',
9869 *prot & PAGE_WRITE ? 'w' : '-',
9870 *prot & PAGE_EXEC ? 'x' : '-');
9872 return ret;
9875 /* Definitely a real MMU, not an MPU */
9877 if (regime_translation_disabled(env, mmu_idx)) {
9878 /* MMU disabled. */
9879 *phys_ptr = address;
9880 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9881 *page_size = TARGET_PAGE_SIZE;
9882 return 0;
9885 if (regime_using_lpae_format(env, mmu_idx)) {
9886 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
9887 phys_ptr, attrs, prot, page_size,
9888 fi, cacheattrs);
9889 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9890 return get_phys_addr_v6(env, address, access_type, mmu_idx,
9891 phys_ptr, attrs, prot, page_size, fi);
9892 } else {
9893 return get_phys_addr_v5(env, address, access_type, mmu_idx,
9894 phys_ptr, prot, page_size, fi);
9898 /* Walk the page table and (if the mapping exists) add the page
9899 * to the TLB. Return false on success, or true on failure. Populate
9900 * fsr with ARM DFSR/IFSR fault register format value on failure.
9902 bool arm_tlb_fill(CPUState *cs, vaddr address,
9903 MMUAccessType access_type, int mmu_idx,
9904 ARMMMUFaultInfo *fi)
9906 ARMCPU *cpu = ARM_CPU(cs);
9907 CPUARMState *env = &cpu->env;
9908 hwaddr phys_addr;
9909 target_ulong page_size;
9910 int prot;
9911 int ret;
9912 MemTxAttrs attrs = {};
9914 ret = get_phys_addr(env, address, access_type,
9915 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9916 &attrs, &prot, &page_size, fi, NULL);
9917 if (!ret) {
9918 /* Map a single [sub]page. */
9919 phys_addr &= TARGET_PAGE_MASK;
9920 address &= TARGET_PAGE_MASK;
9921 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9922 prot, mmu_idx, page_size);
9923 return 0;
9926 return ret;
9929 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9930 MemTxAttrs *attrs)
9932 ARMCPU *cpu = ARM_CPU(cs);
9933 CPUARMState *env = &cpu->env;
9934 hwaddr phys_addr;
9935 target_ulong page_size;
9936 int prot;
9937 bool ret;
9938 ARMMMUFaultInfo fi = {};
9939 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9941 *attrs = (MemTxAttrs) {};
9943 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9944 attrs, &prot, &page_size, &fi, NULL);
9946 if (ret) {
9947 return -1;
9949 return phys_addr;
9952 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9954 uint32_t mask;
9955 unsigned el = arm_current_el(env);
9957 /* First handle registers which unprivileged can read */
9959 switch (reg) {
9960 case 0 ... 7: /* xPSR sub-fields */
9961 mask = 0;
9962 if ((reg & 1) && el) {
9963 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
9965 if (!(reg & 4)) {
9966 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
9968 /* EPSR reads as zero */
9969 return xpsr_read(env) & mask;
9970 break;
9971 case 20: /* CONTROL */
9972 return env->v7m.control[env->v7m.secure];
9973 case 0x94: /* CONTROL_NS */
9974 /* We have to handle this here because unprivileged Secure code
9975 * can read the NS CONTROL register.
9977 if (!env->v7m.secure) {
9978 return 0;
9980 return env->v7m.control[M_REG_NS];
9983 if (el == 0) {
9984 return 0; /* unprivileged reads others as zero */
9987 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9988 switch (reg) {
9989 case 0x88: /* MSP_NS */
9990 if (!env->v7m.secure) {
9991 return 0;
9993 return env->v7m.other_ss_msp;
9994 case 0x89: /* PSP_NS */
9995 if (!env->v7m.secure) {
9996 return 0;
9998 return env->v7m.other_ss_psp;
9999 case 0x90: /* PRIMASK_NS */
10000 if (!env->v7m.secure) {
10001 return 0;
10003 return env->v7m.primask[M_REG_NS];
10004 case 0x91: /* BASEPRI_NS */
10005 if (!env->v7m.secure) {
10006 return 0;
10008 return env->v7m.basepri[M_REG_NS];
10009 case 0x93: /* FAULTMASK_NS */
10010 if (!env->v7m.secure) {
10011 return 0;
10013 return env->v7m.faultmask[M_REG_NS];
10014 case 0x98: /* SP_NS */
10016 /* This gives the non-secure SP selected based on whether we're
10017 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10019 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10021 if (!env->v7m.secure) {
10022 return 0;
10024 if (!arm_v7m_is_handler_mode(env) && spsel) {
10025 return env->v7m.other_ss_psp;
10026 } else {
10027 return env->v7m.other_ss_msp;
10030 default:
10031 break;
10035 switch (reg) {
10036 case 8: /* MSP */
10037 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10038 case 9: /* PSP */
10039 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10040 case 16: /* PRIMASK */
10041 return env->v7m.primask[env->v7m.secure];
10042 case 17: /* BASEPRI */
10043 case 18: /* BASEPRI_MAX */
10044 return env->v7m.basepri[env->v7m.secure];
10045 case 19: /* FAULTMASK */
10046 return env->v7m.faultmask[env->v7m.secure];
10047 default:
10048 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10049 " register %d\n", reg);
10050 return 0;
10054 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10056 /* We're passed bits [11..0] of the instruction; extract
10057 * SYSm and the mask bits.
10058 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10059 * we choose to treat them as if the mask bits were valid.
10060 * NB that the pseudocode 'mask' variable is bits [11..10],
10061 * whereas ours is [11..8].
10063 uint32_t mask = extract32(maskreg, 8, 4);
10064 uint32_t reg = extract32(maskreg, 0, 8);
10066 if (arm_current_el(env) == 0 && reg > 7) {
10067 /* only xPSR sub-fields may be written by unprivileged */
10068 return;
10071 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10072 switch (reg) {
10073 case 0x88: /* MSP_NS */
10074 if (!env->v7m.secure) {
10075 return;
10077 env->v7m.other_ss_msp = val;
10078 return;
10079 case 0x89: /* PSP_NS */
10080 if (!env->v7m.secure) {
10081 return;
10083 env->v7m.other_ss_psp = val;
10084 return;
10085 case 0x90: /* PRIMASK_NS */
10086 if (!env->v7m.secure) {
10087 return;
10089 env->v7m.primask[M_REG_NS] = val & 1;
10090 return;
10091 case 0x91: /* BASEPRI_NS */
10092 if (!env->v7m.secure) {
10093 return;
10095 env->v7m.basepri[M_REG_NS] = val & 0xff;
10096 return;
10097 case 0x93: /* FAULTMASK_NS */
10098 if (!env->v7m.secure) {
10099 return;
10101 env->v7m.faultmask[M_REG_NS] = val & 1;
10102 return;
10103 case 0x98: /* SP_NS */
10105 /* This gives the non-secure SP selected based on whether we're
10106 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10108 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10110 if (!env->v7m.secure) {
10111 return;
10113 if (!arm_v7m_is_handler_mode(env) && spsel) {
10114 env->v7m.other_ss_psp = val;
10115 } else {
10116 env->v7m.other_ss_msp = val;
10118 return;
10120 default:
10121 break;
10125 switch (reg) {
10126 case 0 ... 7: /* xPSR sub-fields */
10127 /* only APSR is actually writable */
10128 if (!(reg & 4)) {
10129 uint32_t apsrmask = 0;
10131 if (mask & 8) {
10132 apsrmask |= XPSR_NZCV | XPSR_Q;
10134 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10135 apsrmask |= XPSR_GE;
10137 xpsr_write(env, val, apsrmask);
10139 break;
10140 case 8: /* MSP */
10141 if (v7m_using_psp(env)) {
10142 env->v7m.other_sp = val;
10143 } else {
10144 env->regs[13] = val;
10146 break;
10147 case 9: /* PSP */
10148 if (v7m_using_psp(env)) {
10149 env->regs[13] = val;
10150 } else {
10151 env->v7m.other_sp = val;
10153 break;
10154 case 16: /* PRIMASK */
10155 env->v7m.primask[env->v7m.secure] = val & 1;
10156 break;
10157 case 17: /* BASEPRI */
10158 env->v7m.basepri[env->v7m.secure] = val & 0xff;
10159 break;
10160 case 18: /* BASEPRI_MAX */
10161 val &= 0xff;
10162 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10163 || env->v7m.basepri[env->v7m.secure] == 0)) {
10164 env->v7m.basepri[env->v7m.secure] = val;
10166 break;
10167 case 19: /* FAULTMASK */
10168 env->v7m.faultmask[env->v7m.secure] = val & 1;
10169 break;
10170 case 20: /* CONTROL */
10171 /* Writing to the SPSEL bit only has an effect if we are in
10172 * thread mode; other bits can be updated by any privileged code.
10173 * write_v7m_control_spsel() deals with updating the SPSEL bit in
10174 * env->v7m.control, so we only need update the others.
10175 * For v7M, we must just ignore explicit writes to SPSEL in handler
10176 * mode; for v8M the write is permitted but will have no effect.
10178 if (arm_feature(env, ARM_FEATURE_V8) ||
10179 !arm_v7m_is_handler_mode(env)) {
10180 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10182 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10183 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10184 break;
10185 default:
10186 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10187 " register %d\n", reg);
10188 return;
10192 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10194 /* Implement the TT instruction. op is bits [7:6] of the insn. */
10195 bool forceunpriv = op & 1;
10196 bool alt = op & 2;
10197 V8M_SAttributes sattrs = {};
10198 uint32_t tt_resp;
10199 bool r, rw, nsr, nsrw, mrvalid;
10200 int prot;
10201 ARMMMUFaultInfo fi = {};
10202 MemTxAttrs attrs = {};
10203 hwaddr phys_addr;
10204 ARMMMUIdx mmu_idx;
10205 uint32_t mregion;
10206 bool targetpriv;
10207 bool targetsec = env->v7m.secure;
10209 /* Work out what the security state and privilege level we're
10210 * interested in is...
10212 if (alt) {
10213 targetsec = !targetsec;
10216 if (forceunpriv) {
10217 targetpriv = false;
10218 } else {
10219 targetpriv = arm_v7m_is_handler_mode(env) ||
10220 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10223 /* ...and then figure out which MMU index this is */
10224 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10226 /* We know that the MPU and SAU don't care about the access type
10227 * for our purposes beyond that we don't want to claim to be
10228 * an insn fetch, so we arbitrarily call this a read.
10231 /* MPU region info only available for privileged or if
10232 * inspecting the other MPU state.
10234 if (arm_current_el(env) != 0 || alt) {
10235 /* We can ignore the return value as prot is always set */
10236 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10237 &phys_addr, &attrs, &prot, &fi, &mregion);
10238 if (mregion == -1) {
10239 mrvalid = false;
10240 mregion = 0;
10241 } else {
10242 mrvalid = true;
10244 r = prot & PAGE_READ;
10245 rw = prot & PAGE_WRITE;
10246 } else {
10247 r = false;
10248 rw = false;
10249 mrvalid = false;
10250 mregion = 0;
10253 if (env->v7m.secure) {
10254 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10255 nsr = sattrs.ns && r;
10256 nsrw = sattrs.ns && rw;
10257 } else {
10258 sattrs.ns = true;
10259 nsr = false;
10260 nsrw = false;
10263 tt_resp = (sattrs.iregion << 24) |
10264 (sattrs.irvalid << 23) |
10265 ((!sattrs.ns) << 22) |
10266 (nsrw << 21) |
10267 (nsr << 20) |
10268 (rw << 19) |
10269 (r << 18) |
10270 (sattrs.srvalid << 17) |
10271 (mrvalid << 16) |
10272 (sattrs.sregion << 8) |
10273 mregion;
10275 return tt_resp;
10278 #endif
10280 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10282 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10283 * Note that we do not implement the (architecturally mandated)
10284 * alignment fault for attempts to use this on Device memory
10285 * (which matches the usual QEMU behaviour of not implementing either
10286 * alignment faults or any memory attribute handling).
10289 ARMCPU *cpu = arm_env_get_cpu(env);
10290 uint64_t blocklen = 4 << cpu->dcz_blocksize;
10291 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10293 #ifndef CONFIG_USER_ONLY
10295 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10296 * the block size so we might have to do more than one TLB lookup.
10297 * We know that in fact for any v8 CPU the page size is at least 4K
10298 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10299 * 1K as an artefact of legacy v5 subpage support being present in the
10300 * same QEMU executable.
10302 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10303 void *hostaddr[maxidx];
10304 int try, i;
10305 unsigned mmu_idx = cpu_mmu_index(env, false);
10306 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10308 for (try = 0; try < 2; try++) {
10310 for (i = 0; i < maxidx; i++) {
10311 hostaddr[i] = tlb_vaddr_to_host(env,
10312 vaddr + TARGET_PAGE_SIZE * i,
10313 1, mmu_idx);
10314 if (!hostaddr[i]) {
10315 break;
10318 if (i == maxidx) {
10319 /* If it's all in the TLB it's fair game for just writing to;
10320 * we know we don't need to update dirty status, etc.
10322 for (i = 0; i < maxidx - 1; i++) {
10323 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10325 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10326 return;
10328 /* OK, try a store and see if we can populate the tlb. This
10329 * might cause an exception if the memory isn't writable,
10330 * in which case we will longjmp out of here. We must for
10331 * this purpose use the actual register value passed to us
10332 * so that we get the fault address right.
10334 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10335 /* Now we can populate the other TLB entries, if any */
10336 for (i = 0; i < maxidx; i++) {
10337 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10338 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10339 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10344 /* Slow path (probably attempt to do this to an I/O device or
10345 * similar, or clearing of a block of code we have translations
10346 * cached for). Just do a series of byte writes as the architecture
10347 * demands. It's not worth trying to use a cpu_physical_memory_map(),
10348 * memset(), unmap() sequence here because:
10349 * + we'd need to account for the blocksize being larger than a page
10350 * + the direct-RAM access case is almost always going to be dealt
10351 * with in the fastpath code above, so there's no speed benefit
10352 * + we would have to deal with the map returning NULL because the
10353 * bounce buffer was in use
10355 for (i = 0; i < blocklen; i++) {
10356 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10359 #else
10360 memset(g2h(vaddr), 0, blocklen);
10361 #endif
10364 /* Note that signed overflow is undefined in C. The following routines are
10365 careful to use unsigned types where modulo arithmetic is required.
10366 Failure to do so _will_ break on newer gcc. */
10368 /* Signed saturating arithmetic. */
10370 /* Perform 16-bit signed saturating addition. */
10371 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10373 uint16_t res;
10375 res = a + b;
10376 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10377 if (a & 0x8000)
10378 res = 0x8000;
10379 else
10380 res = 0x7fff;
10382 return res;
10385 /* Perform 8-bit signed saturating addition. */
10386 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10388 uint8_t res;
10390 res = a + b;
10391 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10392 if (a & 0x80)
10393 res = 0x80;
10394 else
10395 res = 0x7f;
10397 return res;
10400 /* Perform 16-bit signed saturating subtraction. */
10401 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10403 uint16_t res;
10405 res = a - b;
10406 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10407 if (a & 0x8000)
10408 res = 0x8000;
10409 else
10410 res = 0x7fff;
10412 return res;
10415 /* Perform 8-bit signed saturating subtraction. */
10416 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10418 uint8_t res;
10420 res = a - b;
10421 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10422 if (a & 0x80)
10423 res = 0x80;
10424 else
10425 res = 0x7f;
10427 return res;
10430 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10431 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10432 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10433 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10434 #define PFX q
10436 #include "op_addsub.h"
10438 /* Unsigned saturating arithmetic. */
10439 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10441 uint16_t res;
10442 res = a + b;
10443 if (res < a)
10444 res = 0xffff;
10445 return res;
10448 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10450 if (a > b)
10451 return a - b;
10452 else
10453 return 0;
10456 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10458 uint8_t res;
10459 res = a + b;
10460 if (res < a)
10461 res = 0xff;
10462 return res;
10465 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10467 if (a > b)
10468 return a - b;
10469 else
10470 return 0;
10473 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10474 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10475 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10476 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10477 #define PFX uq
10479 #include "op_addsub.h"
10481 /* Signed modulo arithmetic. */
10482 #define SARITH16(a, b, n, op) do { \
10483 int32_t sum; \
10484 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10485 RESULT(sum, n, 16); \
10486 if (sum >= 0) \
10487 ge |= 3 << (n * 2); \
10488 } while(0)
10490 #define SARITH8(a, b, n, op) do { \
10491 int32_t sum; \
10492 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10493 RESULT(sum, n, 8); \
10494 if (sum >= 0) \
10495 ge |= 1 << n; \
10496 } while(0)
10499 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10500 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10501 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10502 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10503 #define PFX s
10504 #define ARITH_GE
10506 #include "op_addsub.h"
10508 /* Unsigned modulo arithmetic. */
10509 #define ADD16(a, b, n) do { \
10510 uint32_t sum; \
10511 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10512 RESULT(sum, n, 16); \
10513 if ((sum >> 16) == 1) \
10514 ge |= 3 << (n * 2); \
10515 } while(0)
10517 #define ADD8(a, b, n) do { \
10518 uint32_t sum; \
10519 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10520 RESULT(sum, n, 8); \
10521 if ((sum >> 8) == 1) \
10522 ge |= 1 << n; \
10523 } while(0)
10525 #define SUB16(a, b, n) do { \
10526 uint32_t sum; \
10527 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10528 RESULT(sum, n, 16); \
10529 if ((sum >> 16) == 0) \
10530 ge |= 3 << (n * 2); \
10531 } while(0)
10533 #define SUB8(a, b, n) do { \
10534 uint32_t sum; \
10535 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10536 RESULT(sum, n, 8); \
10537 if ((sum >> 8) == 0) \
10538 ge |= 1 << n; \
10539 } while(0)
10541 #define PFX u
10542 #define ARITH_GE
10544 #include "op_addsub.h"
10546 /* Halved signed arithmetic. */
10547 #define ADD16(a, b, n) \
10548 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10549 #define SUB16(a, b, n) \
10550 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10551 #define ADD8(a, b, n) \
10552 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10553 #define SUB8(a, b, n) \
10554 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10555 #define PFX sh
10557 #include "op_addsub.h"
10559 /* Halved unsigned arithmetic. */
10560 #define ADD16(a, b, n) \
10561 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10562 #define SUB16(a, b, n) \
10563 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10564 #define ADD8(a, b, n) \
10565 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10566 #define SUB8(a, b, n) \
10567 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10568 #define PFX uh
10570 #include "op_addsub.h"
10572 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10574 if (a > b)
10575 return a - b;
10576 else
10577 return b - a;
10580 /* Unsigned sum of absolute byte differences. */
10581 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10583 uint32_t sum;
10584 sum = do_usad(a, b);
10585 sum += do_usad(a >> 8, b >> 8);
10586 sum += do_usad(a >> 16, b >>16);
10587 sum += do_usad(a >> 24, b >> 24);
10588 return sum;
10591 /* For ARMv6 SEL instruction. */
10592 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10594 uint32_t mask;
10596 mask = 0;
10597 if (flags & 1)
10598 mask |= 0xff;
10599 if (flags & 2)
10600 mask |= 0xff00;
10601 if (flags & 4)
10602 mask |= 0xff0000;
10603 if (flags & 8)
10604 mask |= 0xff000000;
10605 return (a & mask) | (b & ~mask);
10608 /* VFP support. We follow the convention used for VFP instructions:
10609 Single precision routines have a "s" suffix, double precision a
10610 "d" suffix. */
10612 /* Convert host exception flags to vfp form. */
10613 static inline int vfp_exceptbits_from_host(int host_bits)
10615 int target_bits = 0;
10617 if (host_bits & float_flag_invalid)
10618 target_bits |= 1;
10619 if (host_bits & float_flag_divbyzero)
10620 target_bits |= 2;
10621 if (host_bits & float_flag_overflow)
10622 target_bits |= 4;
10623 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
10624 target_bits |= 8;
10625 if (host_bits & float_flag_inexact)
10626 target_bits |= 0x10;
10627 if (host_bits & float_flag_input_denormal)
10628 target_bits |= 0x80;
10629 return target_bits;
10632 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
10634 int i;
10635 uint32_t fpscr;
10637 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10638 | (env->vfp.vec_len << 16)
10639 | (env->vfp.vec_stride << 20);
10640 i = get_float_exception_flags(&env->vfp.fp_status);
10641 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
10642 fpscr |= vfp_exceptbits_from_host(i);
10643 return fpscr;
10646 uint32_t vfp_get_fpscr(CPUARMState *env)
10648 return HELPER(vfp_get_fpscr)(env);
10651 /* Convert vfp exception flags to target form. */
10652 static inline int vfp_exceptbits_to_host(int target_bits)
10654 int host_bits = 0;
10656 if (target_bits & 1)
10657 host_bits |= float_flag_invalid;
10658 if (target_bits & 2)
10659 host_bits |= float_flag_divbyzero;
10660 if (target_bits & 4)
10661 host_bits |= float_flag_overflow;
10662 if (target_bits & 8)
10663 host_bits |= float_flag_underflow;
10664 if (target_bits & 0x10)
10665 host_bits |= float_flag_inexact;
10666 if (target_bits & 0x80)
10667 host_bits |= float_flag_input_denormal;
10668 return host_bits;
10671 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
10673 int i;
10674 uint32_t changed;
10676 changed = env->vfp.xregs[ARM_VFP_FPSCR];
10677 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10678 env->vfp.vec_len = (val >> 16) & 7;
10679 env->vfp.vec_stride = (val >> 20) & 3;
10681 changed ^= val;
10682 if (changed & (3 << 22)) {
10683 i = (val >> 22) & 3;
10684 switch (i) {
10685 case FPROUNDING_TIEEVEN:
10686 i = float_round_nearest_even;
10687 break;
10688 case FPROUNDING_POSINF:
10689 i = float_round_up;
10690 break;
10691 case FPROUNDING_NEGINF:
10692 i = float_round_down;
10693 break;
10694 case FPROUNDING_ZERO:
10695 i = float_round_to_zero;
10696 break;
10698 set_float_rounding_mode(i, &env->vfp.fp_status);
10700 if (changed & (1 << 24)) {
10701 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10702 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10704 if (changed & (1 << 25))
10705 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
10707 i = vfp_exceptbits_to_host(val);
10708 set_float_exception_flags(i, &env->vfp.fp_status);
10709 set_float_exception_flags(0, &env->vfp.standard_fp_status);
10712 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
10714 HELPER(vfp_set_fpscr)(env, val);
10717 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10719 #define VFP_BINOP(name) \
10720 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
10722 float_status *fpst = fpstp; \
10723 return float32_ ## name(a, b, fpst); \
10725 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
10727 float_status *fpst = fpstp; \
10728 return float64_ ## name(a, b, fpst); \
10730 VFP_BINOP(add)
10731 VFP_BINOP(sub)
10732 VFP_BINOP(mul)
10733 VFP_BINOP(div)
10734 VFP_BINOP(min)
10735 VFP_BINOP(max)
10736 VFP_BINOP(minnum)
10737 VFP_BINOP(maxnum)
10738 #undef VFP_BINOP
10740 float32 VFP_HELPER(neg, s)(float32 a)
10742 return float32_chs(a);
10745 float64 VFP_HELPER(neg, d)(float64 a)
10747 return float64_chs(a);
10750 float32 VFP_HELPER(abs, s)(float32 a)
10752 return float32_abs(a);
10755 float64 VFP_HELPER(abs, d)(float64 a)
10757 return float64_abs(a);
10760 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
10762 return float32_sqrt(a, &env->vfp.fp_status);
10765 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
10767 return float64_sqrt(a, &env->vfp.fp_status);
10770 /* XXX: check quiet/signaling case */
10771 #define DO_VFP_cmp(p, type) \
10772 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
10774 uint32_t flags; \
10775 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10776 case 0: flags = 0x6; break; \
10777 case -1: flags = 0x8; break; \
10778 case 1: flags = 0x2; break; \
10779 default: case 2: flags = 0x3; break; \
10781 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10782 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10784 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
10786 uint32_t flags; \
10787 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10788 case 0: flags = 0x6; break; \
10789 case -1: flags = 0x8; break; \
10790 case 1: flags = 0x2; break; \
10791 default: case 2: flags = 0x3; break; \
10793 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10794 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10796 DO_VFP_cmp(s, float32)
10797 DO_VFP_cmp(d, float64)
10798 #undef DO_VFP_cmp
10800 /* Integer to float and float to integer conversions */
10802 #define CONV_ITOF(name, fsz, sign) \
10803 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10805 float_status *fpst = fpstp; \
10806 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
10809 #define CONV_FTOI(name, fsz, sign, round) \
10810 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10812 float_status *fpst = fpstp; \
10813 if (float##fsz##_is_any_nan(x)) { \
10814 float_raise(float_flag_invalid, fpst); \
10815 return 0; \
10817 return float##fsz##_to_##sign##int32##round(x, fpst); \
10820 #define FLOAT_CONVS(name, p, fsz, sign) \
10821 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10822 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10823 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10825 FLOAT_CONVS(si, s, 32, )
10826 FLOAT_CONVS(si, d, 64, )
10827 FLOAT_CONVS(ui, s, 32, u)
10828 FLOAT_CONVS(ui, d, 64, u)
10830 #undef CONV_ITOF
10831 #undef CONV_FTOI
10832 #undef FLOAT_CONVS
10834 /* floating point conversion */
10835 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10837 float64 r = float32_to_float64(x, &env->vfp.fp_status);
10838 /* ARM requires that S<->D conversion of any kind of NaN generates
10839 * a quiet NaN by forcing the most significant frac bit to 1.
10841 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10844 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10846 float32 r = float64_to_float32(x, &env->vfp.fp_status);
10847 /* ARM requires that S<->D conversion of any kind of NaN generates
10848 * a quiet NaN by forcing the most significant frac bit to 1.
10850 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10853 /* VFP3 fixed point conversion. */
10854 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10855 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
10856 void *fpstp) \
10858 float_status *fpst = fpstp; \
10859 float##fsz tmp; \
10860 tmp = itype##_to_##float##fsz(x, fpst); \
10861 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10864 /* Notice that we want only input-denormal exception flags from the
10865 * scalbn operation: the other possible flags (overflow+inexact if
10866 * we overflow to infinity, output-denormal) aren't correct for the
10867 * complete scale-and-convert operation.
10869 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10870 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10871 uint32_t shift, \
10872 void *fpstp) \
10874 float_status *fpst = fpstp; \
10875 int old_exc_flags = get_float_exception_flags(fpst); \
10876 float##fsz tmp; \
10877 if (float##fsz##_is_any_nan(x)) { \
10878 float_raise(float_flag_invalid, fpst); \
10879 return 0; \
10881 tmp = float##fsz##_scalbn(x, shift, fpst); \
10882 old_exc_flags |= get_float_exception_flags(fpst) \
10883 & float_flag_input_denormal; \
10884 set_float_exception_flags(old_exc_flags, fpst); \
10885 return float##fsz##_to_##itype##round(tmp, fpst); \
10888 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
10889 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10890 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10891 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10893 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
10894 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10895 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10897 VFP_CONV_FIX(sh, d, 64, 64, int16)
10898 VFP_CONV_FIX(sl, d, 64, 64, int32)
10899 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10900 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10901 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10902 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10903 VFP_CONV_FIX(sh, s, 32, 32, int16)
10904 VFP_CONV_FIX(sl, s, 32, 32, int32)
10905 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10906 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10907 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10908 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10909 #undef VFP_CONV_FIX
10910 #undef VFP_CONV_FIX_FLOAT
10911 #undef VFP_CONV_FLOAT_FIX_ROUND
10913 /* Set the current fp rounding mode and return the old one.
10914 * The argument is a softfloat float_round_ value.
10916 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10918 float_status *fp_status = &env->vfp.fp_status;
10920 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10921 set_float_rounding_mode(rmode, fp_status);
10923 return prev_rmode;
10926 /* Set the current fp rounding mode in the standard fp status and return
10927 * the old one. This is for NEON instructions that need to change the
10928 * rounding mode but wish to use the standard FPSCR values for everything
10929 * else. Always set the rounding mode back to the correct value after
10930 * modifying it.
10931 * The argument is a softfloat float_round_ value.
10933 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10935 float_status *fp_status = &env->vfp.standard_fp_status;
10937 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10938 set_float_rounding_mode(rmode, fp_status);
10940 return prev_rmode;
10943 /* Half precision conversions. */
10944 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10946 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10947 float32 r = float16_to_float32(make_float16(a), ieee, s);
10948 if (ieee) {
10949 return float32_maybe_silence_nan(r, s);
10951 return r;
10954 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10956 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10957 float16 r = float32_to_float16(a, ieee, s);
10958 if (ieee) {
10959 r = float16_maybe_silence_nan(r, s);
10961 return float16_val(r);
10964 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10966 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10969 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10971 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10974 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10976 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10979 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10981 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10984 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10986 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10987 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10988 if (ieee) {
10989 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10991 return r;
10994 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10996 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10997 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10998 if (ieee) {
10999 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
11001 return float16_val(r);
11004 #define float32_two make_float32(0x40000000)
11005 #define float32_three make_float32(0x40400000)
11006 #define float32_one_point_five make_float32(0x3fc00000)
11008 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11010 float_status *s = &env->vfp.standard_fp_status;
11011 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11012 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11013 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11014 float_raise(float_flag_input_denormal, s);
11016 return float32_two;
11018 return float32_sub(float32_two, float32_mul(a, b, s), s);
11021 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11023 float_status *s = &env->vfp.standard_fp_status;
11024 float32 product;
11025 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11026 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11027 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11028 float_raise(float_flag_input_denormal, s);
11030 return float32_one_point_five;
11032 product = float32_mul(a, b, s);
11033 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11036 /* NEON helpers. */
11038 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11039 * int->float conversions at run-time. */
11040 #define float64_256 make_float64(0x4070000000000000LL)
11041 #define float64_512 make_float64(0x4080000000000000LL)
11042 #define float32_maxnorm make_float32(0x7f7fffff)
11043 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11045 /* Reciprocal functions
11047 * The algorithm that must be used to calculate the estimate
11048 * is specified by the ARM ARM, see FPRecipEstimate()
11051 static float64 recip_estimate(float64 a, float_status *real_fp_status)
11053 /* These calculations mustn't set any fp exception flags,
11054 * so we use a local copy of the fp_status.
11056 float_status dummy_status = *real_fp_status;
11057 float_status *s = &dummy_status;
11058 /* q = (int)(a * 512.0) */
11059 float64 q = float64_mul(float64_512, a, s);
11060 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11062 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
11063 q = int64_to_float64(q_int, s);
11064 q = float64_add(q, float64_half, s);
11065 q = float64_div(q, float64_512, s);
11066 q = float64_div(float64_one, q, s);
11068 /* s = (int)(256.0 * r + 0.5) */
11069 q = float64_mul(q, float64_256, s);
11070 q = float64_add(q, float64_half, s);
11071 q_int = float64_to_int64_round_to_zero(q, s);
11073 /* return (double)s / 256.0 */
11074 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11077 /* Common wrapper to call recip_estimate */
11078 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
11080 uint64_t val64 = float64_val(num);
11081 uint64_t frac = extract64(val64, 0, 52);
11082 int64_t exp = extract64(val64, 52, 11);
11083 uint64_t sbit;
11084 float64 scaled, estimate;
11086 /* Generate the scaled number for the estimate function */
11087 if (exp == 0) {
11088 if (extract64(frac, 51, 1) == 0) {
11089 exp = -1;
11090 frac = extract64(frac, 0, 50) << 2;
11091 } else {
11092 frac = extract64(frac, 0, 51) << 1;
11096 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
11097 scaled = make_float64((0x3feULL << 52)
11098 | extract64(frac, 44, 8) << 44);
11100 estimate = recip_estimate(scaled, fpst);
11102 /* Build new result */
11103 val64 = float64_val(estimate);
11104 sbit = 0x8000000000000000ULL & val64;
11105 exp = off - exp;
11106 frac = extract64(val64, 0, 52);
11108 if (exp == 0) {
11109 frac = 1ULL << 51 | extract64(frac, 1, 51);
11110 } else if (exp == -1) {
11111 frac = 1ULL << 50 | extract64(frac, 2, 50);
11112 exp = 0;
11115 return make_float64(sbit | (exp << 52) | frac);
11118 static bool round_to_inf(float_status *fpst, bool sign_bit)
11120 switch (fpst->float_rounding_mode) {
11121 case float_round_nearest_even: /* Round to Nearest */
11122 return true;
11123 case float_round_up: /* Round to +Inf */
11124 return !sign_bit;
11125 case float_round_down: /* Round to -Inf */
11126 return sign_bit;
11127 case float_round_to_zero: /* Round to Zero */
11128 return false;
11131 g_assert_not_reached();
11134 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11136 float_status *fpst = fpstp;
11137 float32 f32 = float32_squash_input_denormal(input, fpst);
11138 uint32_t f32_val = float32_val(f32);
11139 uint32_t f32_sbit = 0x80000000ULL & f32_val;
11140 int32_t f32_exp = extract32(f32_val, 23, 8);
11141 uint32_t f32_frac = extract32(f32_val, 0, 23);
11142 float64 f64, r64;
11143 uint64_t r64_val;
11144 int64_t r64_exp;
11145 uint64_t r64_frac;
11147 if (float32_is_any_nan(f32)) {
11148 float32 nan = f32;
11149 if (float32_is_signaling_nan(f32, fpst)) {
11150 float_raise(float_flag_invalid, fpst);
11151 nan = float32_maybe_silence_nan(f32, fpst);
11153 if (fpst->default_nan_mode) {
11154 nan = float32_default_nan(fpst);
11156 return nan;
11157 } else if (float32_is_infinity(f32)) {
11158 return float32_set_sign(float32_zero, float32_is_neg(f32));
11159 } else if (float32_is_zero(f32)) {
11160 float_raise(float_flag_divbyzero, fpst);
11161 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11162 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
11163 /* Abs(value) < 2.0^-128 */
11164 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11165 if (round_to_inf(fpst, f32_sbit)) {
11166 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11167 } else {
11168 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
11170 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11171 float_raise(float_flag_underflow, fpst);
11172 return float32_set_sign(float32_zero, float32_is_neg(f32));
11176 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
11177 r64 = call_recip_estimate(f64, 253, fpst);
11178 r64_val = float64_val(r64);
11179 r64_exp = extract64(r64_val, 52, 11);
11180 r64_frac = extract64(r64_val, 0, 52);
11182 /* result = sign : result_exp<7:0> : fraction<51:29>; */
11183 return make_float32(f32_sbit |
11184 (r64_exp & 0xff) << 23 |
11185 extract64(r64_frac, 29, 24));
11188 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11190 float_status *fpst = fpstp;
11191 float64 f64 = float64_squash_input_denormal(input, fpst);
11192 uint64_t f64_val = float64_val(f64);
11193 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
11194 int64_t f64_exp = extract64(f64_val, 52, 11);
11195 float64 r64;
11196 uint64_t r64_val;
11197 int64_t r64_exp;
11198 uint64_t r64_frac;
11200 /* Deal with any special cases */
11201 if (float64_is_any_nan(f64)) {
11202 float64 nan = f64;
11203 if (float64_is_signaling_nan(f64, fpst)) {
11204 float_raise(float_flag_invalid, fpst);
11205 nan = float64_maybe_silence_nan(f64, fpst);
11207 if (fpst->default_nan_mode) {
11208 nan = float64_default_nan(fpst);
11210 return nan;
11211 } else if (float64_is_infinity(f64)) {
11212 return float64_set_sign(float64_zero, float64_is_neg(f64));
11213 } else if (float64_is_zero(f64)) {
11214 float_raise(float_flag_divbyzero, fpst);
11215 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11216 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11217 /* Abs(value) < 2.0^-1024 */
11218 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11219 if (round_to_inf(fpst, f64_sbit)) {
11220 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11221 } else {
11222 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11224 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11225 float_raise(float_flag_underflow, fpst);
11226 return float64_set_sign(float64_zero, float64_is_neg(f64));
11229 r64 = call_recip_estimate(f64, 2045, fpst);
11230 r64_val = float64_val(r64);
11231 r64_exp = extract64(r64_val, 52, 11);
11232 r64_frac = extract64(r64_val, 0, 52);
11234 /* result = sign : result_exp<10:0> : fraction<51:0> */
11235 return make_float64(f64_sbit |
11236 ((r64_exp & 0x7ff) << 52) |
11237 r64_frac);
11240 /* The algorithm that must be used to calculate the estimate
11241 * is specified by the ARM ARM.
11243 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
11245 /* These calculations mustn't set any fp exception flags,
11246 * so we use a local copy of the fp_status.
11248 float_status dummy_status = *real_fp_status;
11249 float_status *s = &dummy_status;
11250 float64 q;
11251 int64_t q_int;
11253 if (float64_lt(a, float64_half, s)) {
11254 /* range 0.25 <= a < 0.5 */
11256 /* a in units of 1/512 rounded down */
11257 /* q0 = (int)(a * 512.0); */
11258 q = float64_mul(float64_512, a, s);
11259 q_int = float64_to_int64_round_to_zero(q, s);
11261 /* reciprocal root r */
11262 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
11263 q = int64_to_float64(q_int, s);
11264 q = float64_add(q, float64_half, s);
11265 q = float64_div(q, float64_512, s);
11266 q = float64_sqrt(q, s);
11267 q = float64_div(float64_one, q, s);
11268 } else {
11269 /* range 0.5 <= a < 1.0 */
11271 /* a in units of 1/256 rounded down */
11272 /* q1 = (int)(a * 256.0); */
11273 q = float64_mul(float64_256, a, s);
11274 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11276 /* reciprocal root r */
11277 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11278 q = int64_to_float64(q_int, s);
11279 q = float64_add(q, float64_half, s);
11280 q = float64_div(q, float64_256, s);
11281 q = float64_sqrt(q, s);
11282 q = float64_div(float64_one, q, s);
11284 /* r in units of 1/256 rounded to nearest */
11285 /* s = (int)(256.0 * r + 0.5); */
11287 q = float64_mul(q, float64_256,s );
11288 q = float64_add(q, float64_half, s);
11289 q_int = float64_to_int64_round_to_zero(q, s);
11291 /* return (double)s / 256.0;*/
11292 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11295 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11297 float_status *s = fpstp;
11298 float32 f32 = float32_squash_input_denormal(input, s);
11299 uint32_t val = float32_val(f32);
11300 uint32_t f32_sbit = 0x80000000 & val;
11301 int32_t f32_exp = extract32(val, 23, 8);
11302 uint32_t f32_frac = extract32(val, 0, 23);
11303 uint64_t f64_frac;
11304 uint64_t val64;
11305 int result_exp;
11306 float64 f64;
11308 if (float32_is_any_nan(f32)) {
11309 float32 nan = f32;
11310 if (float32_is_signaling_nan(f32, s)) {
11311 float_raise(float_flag_invalid, s);
11312 nan = float32_maybe_silence_nan(f32, s);
11314 if (s->default_nan_mode) {
11315 nan = float32_default_nan(s);
11317 return nan;
11318 } else if (float32_is_zero(f32)) {
11319 float_raise(float_flag_divbyzero, s);
11320 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11321 } else if (float32_is_neg(f32)) {
11322 float_raise(float_flag_invalid, s);
11323 return float32_default_nan(s);
11324 } else if (float32_is_infinity(f32)) {
11325 return float32_zero;
11328 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11329 * preserving the parity of the exponent. */
11331 f64_frac = ((uint64_t) f32_frac) << 29;
11332 if (f32_exp == 0) {
11333 while (extract64(f64_frac, 51, 1) == 0) {
11334 f64_frac = f64_frac << 1;
11335 f32_exp = f32_exp-1;
11337 f64_frac = extract64(f64_frac, 0, 51) << 1;
11340 if (extract64(f32_exp, 0, 1) == 0) {
11341 f64 = make_float64(((uint64_t) f32_sbit) << 32
11342 | (0x3feULL << 52)
11343 | f64_frac);
11344 } else {
11345 f64 = make_float64(((uint64_t) f32_sbit) << 32
11346 | (0x3fdULL << 52)
11347 | f64_frac);
11350 result_exp = (380 - f32_exp) / 2;
11352 f64 = recip_sqrt_estimate(f64, s);
11354 val64 = float64_val(f64);
11356 val = ((result_exp & 0xff) << 23)
11357 | ((val64 >> 29) & 0x7fffff);
11358 return make_float32(val);
11361 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11363 float_status *s = fpstp;
11364 float64 f64 = float64_squash_input_denormal(input, s);
11365 uint64_t val = float64_val(f64);
11366 uint64_t f64_sbit = 0x8000000000000000ULL & val;
11367 int64_t f64_exp = extract64(val, 52, 11);
11368 uint64_t f64_frac = extract64(val, 0, 52);
11369 int64_t result_exp;
11370 uint64_t result_frac;
11372 if (float64_is_any_nan(f64)) {
11373 float64 nan = f64;
11374 if (float64_is_signaling_nan(f64, s)) {
11375 float_raise(float_flag_invalid, s);
11376 nan = float64_maybe_silence_nan(f64, s);
11378 if (s->default_nan_mode) {
11379 nan = float64_default_nan(s);
11381 return nan;
11382 } else if (float64_is_zero(f64)) {
11383 float_raise(float_flag_divbyzero, s);
11384 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11385 } else if (float64_is_neg(f64)) {
11386 float_raise(float_flag_invalid, s);
11387 return float64_default_nan(s);
11388 } else if (float64_is_infinity(f64)) {
11389 return float64_zero;
11392 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11393 * preserving the parity of the exponent. */
11395 if (f64_exp == 0) {
11396 while (extract64(f64_frac, 51, 1) == 0) {
11397 f64_frac = f64_frac << 1;
11398 f64_exp = f64_exp - 1;
11400 f64_frac = extract64(f64_frac, 0, 51) << 1;
11403 if (extract64(f64_exp, 0, 1) == 0) {
11404 f64 = make_float64(f64_sbit
11405 | (0x3feULL << 52)
11406 | f64_frac);
11407 } else {
11408 f64 = make_float64(f64_sbit
11409 | (0x3fdULL << 52)
11410 | f64_frac);
11413 result_exp = (3068 - f64_exp) / 2;
11415 f64 = recip_sqrt_estimate(f64, s);
11417 result_frac = extract64(float64_val(f64), 0, 52);
11419 return make_float64(f64_sbit |
11420 ((result_exp & 0x7ff) << 52) |
11421 result_frac);
11424 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11426 float_status *s = fpstp;
11427 float64 f64;
11429 if ((a & 0x80000000) == 0) {
11430 return 0xffffffff;
11433 f64 = make_float64((0x3feULL << 52)
11434 | ((int64_t)(a & 0x7fffffff) << 21));
11436 f64 = recip_estimate(f64, s);
11438 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11441 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11443 float_status *fpst = fpstp;
11444 float64 f64;
11446 if ((a & 0xc0000000) == 0) {
11447 return 0xffffffff;
11450 if (a & 0x80000000) {
11451 f64 = make_float64((0x3feULL << 52)
11452 | ((uint64_t)(a & 0x7fffffff) << 21));
11453 } else { /* bits 31-30 == '01' */
11454 f64 = make_float64((0x3fdULL << 52)
11455 | ((uint64_t)(a & 0x3fffffff) << 22));
11458 f64 = recip_sqrt_estimate(f64, fpst);
11460 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11463 /* VFPv4 fused multiply-accumulate */
11464 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11466 float_status *fpst = fpstp;
11467 return float32_muladd(a, b, c, 0, fpst);
11470 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11472 float_status *fpst = fpstp;
11473 return float64_muladd(a, b, c, 0, fpst);
11476 /* ARMv8 round to integral */
11477 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11479 return float32_round_to_int(x, fp_status);
11482 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11484 return float64_round_to_int(x, fp_status);
11487 float32 HELPER(rints)(float32 x, void *fp_status)
11489 int old_flags = get_float_exception_flags(fp_status), new_flags;
11490 float32 ret;
11492 ret = float32_round_to_int(x, fp_status);
11494 /* Suppress any inexact exceptions the conversion produced */
11495 if (!(old_flags & float_flag_inexact)) {
11496 new_flags = get_float_exception_flags(fp_status);
11497 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11500 return ret;
11503 float64 HELPER(rintd)(float64 x, void *fp_status)
11505 int old_flags = get_float_exception_flags(fp_status), new_flags;
11506 float64 ret;
11508 ret = float64_round_to_int(x, fp_status);
11510 new_flags = get_float_exception_flags(fp_status);
11512 /* Suppress any inexact exceptions the conversion produced */
11513 if (!(old_flags & float_flag_inexact)) {
11514 new_flags = get_float_exception_flags(fp_status);
11515 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11518 return ret;
11521 /* Convert ARM rounding mode to softfloat */
11522 int arm_rmode_to_sf(int rmode)
11524 switch (rmode) {
11525 case FPROUNDING_TIEAWAY:
11526 rmode = float_round_ties_away;
11527 break;
11528 case FPROUNDING_ODD:
11529 /* FIXME: add support for TIEAWAY and ODD */
11530 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11531 rmode);
11532 case FPROUNDING_TIEEVEN:
11533 default:
11534 rmode = float_round_nearest_even;
11535 break;
11536 case FPROUNDING_POSINF:
11537 rmode = float_round_up;
11538 break;
11539 case FPROUNDING_NEGINF:
11540 rmode = float_round_down;
11541 break;
11542 case FPROUNDING_ZERO:
11543 rmode = float_round_to_zero;
11544 break;
11546 return rmode;
11549 /* CRC helpers.
11550 * The upper bytes of val (above the number specified by 'bytes') must have
11551 * been zeroed out by the caller.
11553 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11555 uint8_t buf[4];
11557 stl_le_p(buf, val);
11559 /* zlib crc32 converts the accumulator and output to one's complement. */
11560 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11563 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11565 uint8_t buf[4];
11567 stl_le_p(buf, val);
11569 /* Linux crc32c converts the output to one's complement. */
11570 return crc32c(acc, buf, bytes) ^ 0xffffffff;