Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / target / arm / cpu.h
blobc672b6f7c581f3493f48eb1d6696fbaef00e8eff
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
42 #include "fpu/softfloat.h"
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_HVC 11 /* HyperVisor Call */
54 #define EXCP_HYP_TRAP 12
55 #define EXCP_SMC 13 /* Secure Monitor Call */
56 #define EXCP_VIRQ 14
57 #define EXCP_VFIQ 15
58 #define EXCP_SEMIHOST 16 /* semihosting call */
59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SECURE 7
70 #define ARMV7M_EXCP_SVC 11
71 #define ARMV7M_EXCP_DEBUG 12
72 #define ARMV7M_EXCP_PENDSV 14
73 #define ARMV7M_EXCP_SYSTICK 15
75 /* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
84 enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
90 /* ARM-specific interrupt pending bits. */
91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
95 /* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
101 #ifdef HOST_WORDS_BIGENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
115 #define NB_MMU_MODES 8
116 /* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
120 #define TARGET_INSN_START_EXTRA_WORDS 2
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
130 /* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
138 /* CPU state for each instance of a generic timer (in cp15 c14) */
139 typedef struct ARMGenericTimer {
140 uint64_t cval; /* Timer CompareValue register */
141 uint64_t ctl; /* Timer Control register */
142 } ARMGenericTimer;
144 #define GTIMER_PHYS 0
145 #define GTIMER_VIRT 1
146 #define GTIMER_HYP 2
147 #define GTIMER_SEC 3
148 #define NUM_GTIMERS 4
150 typedef struct {
151 uint64_t raw_tcr;
152 uint32_t mask;
153 uint32_t base_mask;
154 } TCR;
156 typedef struct CPUARMState {
157 /* Regs for current mode. */
158 uint32_t regs[16];
160 /* 32/64 switch only happens when taking and returning from
161 * exceptions so the overlap semantics are taken care of then
162 * instead of having a complicated union.
164 /* Regs for A64 mode. */
165 uint64_t xregs[32];
166 uint64_t pc;
167 /* PSTATE isn't an architectural register for ARMv8. However, it is
168 * convenient for us to assemble the underlying state into a 32 bit format
169 * identical to the architectural format used for the SPSR. (This is also
170 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
171 * 'pstate' register are.) Of the PSTATE bits:
172 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
173 * semantics as for AArch32, as described in the comments on each field)
174 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
175 * DAIF (exception masks) are kept in env->daif
176 * all other bits are stored in their correct places in env->pstate
178 uint32_t pstate;
179 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
181 /* Frequently accessed CPSR bits are stored separately for efficiency.
182 This contains all the other bits. Use cpsr_{read,write} to access
183 the whole CPSR. */
184 uint32_t uncached_cpsr;
185 uint32_t spsr;
187 /* Banked registers. */
188 uint64_t banked_spsr[8];
189 uint32_t banked_r13[8];
190 uint32_t banked_r14[8];
192 /* These hold r8-r12. */
193 uint32_t usr_regs[5];
194 uint32_t fiq_regs[5];
196 /* cpsr flag cache for faster execution */
197 uint32_t CF; /* 0 or 1 */
198 uint32_t VF; /* V is the bit 31. All other bits are undefined */
199 uint32_t NF; /* N is bit 31. All other bits are undefined. */
200 uint32_t ZF; /* Z set if zero. */
201 uint32_t QF; /* 0 or 1 */
202 uint32_t GE; /* cpsr[19:16] */
203 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
204 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
205 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
207 uint64_t elr_el[4]; /* AArch64 exception link regs */
208 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
210 /* System control coprocessor (cp15) */
211 struct {
212 uint32_t c0_cpuid;
213 union { /* Cache size selection */
214 struct {
215 uint64_t _unused_csselr0;
216 uint64_t csselr_ns;
217 uint64_t _unused_csselr1;
218 uint64_t csselr_s;
220 uint64_t csselr_el[4];
222 union { /* System control register. */
223 struct {
224 uint64_t _unused_sctlr;
225 uint64_t sctlr_ns;
226 uint64_t hsctlr;
227 uint64_t sctlr_s;
229 uint64_t sctlr_el[4];
231 uint64_t cpacr_el1; /* Architectural feature access control register */
232 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
233 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
234 uint64_t sder; /* Secure debug enable register. */
235 uint32_t nsacr; /* Non-secure access control register. */
236 union { /* MMU translation table base 0. */
237 struct {
238 uint64_t _unused_ttbr0_0;
239 uint64_t ttbr0_ns;
240 uint64_t _unused_ttbr0_1;
241 uint64_t ttbr0_s;
243 uint64_t ttbr0_el[4];
245 union { /* MMU translation table base 1. */
246 struct {
247 uint64_t _unused_ttbr1_0;
248 uint64_t ttbr1_ns;
249 uint64_t _unused_ttbr1_1;
250 uint64_t ttbr1_s;
252 uint64_t ttbr1_el[4];
254 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
255 /* MMU translation table base control. */
256 TCR tcr_el[4];
257 TCR vtcr_el2; /* Virtualization Translation Control. */
258 uint32_t c2_data; /* MPU data cacheable bits. */
259 uint32_t c2_insn; /* MPU instruction cacheable bits. */
260 union { /* MMU domain access control register
261 * MPU write buffer control.
263 struct {
264 uint64_t dacr_ns;
265 uint64_t dacr_s;
267 struct {
268 uint64_t dacr32_el2;
271 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
272 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
273 uint64_t hcr_el2; /* Hypervisor configuration register */
274 uint64_t scr_el3; /* Secure configuration register. */
275 union { /* Fault status registers. */
276 struct {
277 uint64_t ifsr_ns;
278 uint64_t ifsr_s;
280 struct {
281 uint64_t ifsr32_el2;
284 union {
285 struct {
286 uint64_t _unused_dfsr;
287 uint64_t dfsr_ns;
288 uint64_t hsr;
289 uint64_t dfsr_s;
291 uint64_t esr_el[4];
293 uint32_t c6_region[8]; /* MPU base/size registers. */
294 union { /* Fault address registers. */
295 struct {
296 uint64_t _unused_far0;
297 #ifdef HOST_WORDS_BIGENDIAN
298 uint32_t ifar_ns;
299 uint32_t dfar_ns;
300 uint32_t ifar_s;
301 uint32_t dfar_s;
302 #else
303 uint32_t dfar_ns;
304 uint32_t ifar_ns;
305 uint32_t dfar_s;
306 uint32_t ifar_s;
307 #endif
308 uint64_t _unused_far3;
310 uint64_t far_el[4];
312 uint64_t hpfar_el2;
313 uint64_t hstr_el2;
314 union { /* Translation result. */
315 struct {
316 uint64_t _unused_par_0;
317 uint64_t par_ns;
318 uint64_t _unused_par_1;
319 uint64_t par_s;
321 uint64_t par_el[4];
324 uint32_t c9_insn; /* Cache lockdown registers. */
325 uint32_t c9_data;
326 uint64_t c9_pmcr; /* performance monitor control register */
327 uint64_t c9_pmcnten; /* perf monitor counter enables */
328 uint32_t c9_pmovsr; /* perf monitor overflow status */
329 uint32_t c9_pmuserenr; /* perf monitor user enable */
330 uint64_t c9_pmselr; /* perf monitor counter selection register */
331 uint64_t c9_pminten; /* perf monitor interrupt enables */
332 union { /* Memory attribute redirection */
333 struct {
334 #ifdef HOST_WORDS_BIGENDIAN
335 uint64_t _unused_mair_0;
336 uint32_t mair1_ns;
337 uint32_t mair0_ns;
338 uint64_t _unused_mair_1;
339 uint32_t mair1_s;
340 uint32_t mair0_s;
341 #else
342 uint64_t _unused_mair_0;
343 uint32_t mair0_ns;
344 uint32_t mair1_ns;
345 uint64_t _unused_mair_1;
346 uint32_t mair0_s;
347 uint32_t mair1_s;
348 #endif
350 uint64_t mair_el[4];
352 union { /* vector base address register */
353 struct {
354 uint64_t _unused_vbar;
355 uint64_t vbar_ns;
356 uint64_t hvbar;
357 uint64_t vbar_s;
359 uint64_t vbar_el[4];
361 uint32_t mvbar; /* (monitor) vector base address register */
362 struct { /* FCSE PID. */
363 uint32_t fcseidr_ns;
364 uint32_t fcseidr_s;
366 union { /* Context ID. */
367 struct {
368 uint64_t _unused_contextidr_0;
369 uint64_t contextidr_ns;
370 uint64_t _unused_contextidr_1;
371 uint64_t contextidr_s;
373 uint64_t contextidr_el[4];
375 union { /* User RW Thread register. */
376 struct {
377 uint64_t tpidrurw_ns;
378 uint64_t tpidrprw_ns;
379 uint64_t htpidr;
380 uint64_t _tpidr_el3;
382 uint64_t tpidr_el[4];
384 /* The secure banks of these registers don't map anywhere */
385 uint64_t tpidrurw_s;
386 uint64_t tpidrprw_s;
387 uint64_t tpidruro_s;
389 union { /* User RO Thread register. */
390 uint64_t tpidruro_ns;
391 uint64_t tpidrro_el[1];
393 uint64_t c14_cntfrq; /* Counter Frequency register */
394 uint64_t c14_cntkctl; /* Timer Control register */
395 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
396 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
397 ARMGenericTimer c14_timer[NUM_GTIMERS];
398 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
399 uint32_t c15_ticonfig; /* TI925T configuration byte. */
400 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
401 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
402 uint32_t c15_threadid; /* TI debugger thread-ID. */
403 uint32_t c15_config_base_address; /* SCU base address. */
404 uint32_t c15_diagnostic; /* diagnostic register */
405 uint32_t c15_power_diagnostic;
406 uint32_t c15_power_control; /* power control */
407 uint64_t dbgbvr[16]; /* breakpoint value registers */
408 uint64_t dbgbcr[16]; /* breakpoint control registers */
409 uint64_t dbgwvr[16]; /* watchpoint value registers */
410 uint64_t dbgwcr[16]; /* watchpoint control registers */
411 uint64_t mdscr_el1;
412 uint64_t oslsr_el1; /* OS Lock Status */
413 uint64_t mdcr_el2;
414 uint64_t mdcr_el3;
415 /* If the counter is enabled, this stores the last time the counter
416 * was reset. Otherwise it stores the counter value
418 uint64_t c15_ccnt;
419 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
420 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
421 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
422 } cp15;
424 struct {
425 /* M profile has up to 4 stack pointers:
426 * a Main Stack Pointer and a Process Stack Pointer for each
427 * of the Secure and Non-Secure states. (If the CPU doesn't support
428 * the security extension then it has only two SPs.)
429 * In QEMU we always store the currently active SP in regs[13],
430 * and the non-active SP for the current security state in
431 * v7m.other_sp. The stack pointers for the inactive security state
432 * are stored in other_ss_msp and other_ss_psp.
433 * switch_v7m_security_state() is responsible for rearranging them
434 * when we change security state.
436 uint32_t other_sp;
437 uint32_t other_ss_msp;
438 uint32_t other_ss_psp;
439 uint32_t vecbase[M_REG_NUM_BANKS];
440 uint32_t basepri[M_REG_NUM_BANKS];
441 uint32_t control[M_REG_NUM_BANKS];
442 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
443 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
444 uint32_t hfsr; /* HardFault Status */
445 uint32_t dfsr; /* Debug Fault Status Register */
446 uint32_t sfsr; /* Secure Fault Status Register */
447 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
448 uint32_t bfar; /* BusFault Address */
449 uint32_t sfar; /* Secure Fault Address Register */
450 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
451 int exception;
452 uint32_t primask[M_REG_NUM_BANKS];
453 uint32_t faultmask[M_REG_NUM_BANKS];
454 uint32_t aircr; /* only holds r/w state if security extn implemented */
455 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
456 } v7m;
458 /* Information associated with an exception about to be taken:
459 * code which raises an exception must set cs->exception_index and
460 * the relevant parts of this structure; the cpu_do_interrupt function
461 * will then set the guest-visible registers as part of the exception
462 * entry process.
464 struct {
465 uint32_t syndrome; /* AArch64 format syndrome register */
466 uint32_t fsr; /* AArch32 format fault status register info */
467 uint64_t vaddress; /* virtual addr associated with exception, if any */
468 uint32_t target_el; /* EL the exception should be targeted for */
469 /* If we implement EL2 we will also need to store information
470 * about the intermediate physical address for stage 2 faults.
472 } exception;
474 /* Thumb-2 EE state. */
475 uint32_t teecr;
476 uint32_t teehbr;
478 /* VFP coprocessor state. */
479 struct {
480 /* VFP/Neon register state. Note that the mapping between S, D and Q
481 * views of the register bank differs between AArch64 and AArch32:
482 * In AArch32:
483 * Qn = regs[2n+1]:regs[2n]
484 * Dn = regs[n]
485 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
486 * (and regs[32] to regs[63] are inaccessible)
487 * In AArch64:
488 * Qn = regs[2n+1]:regs[2n]
489 * Dn = regs[2n]
490 * Sn = regs[2n] bits 31..0
491 * This corresponds to the architecturally defined mapping between
492 * the two execution states, and means we do not need to explicitly
493 * map these registers when changing states.
495 float64 regs[64];
497 uint32_t xregs[16];
498 /* We store these fpcsr fields separately for convenience. */
499 int vec_len;
500 int vec_stride;
502 /* scratch space when Tn are not sufficient. */
503 uint32_t scratch[8];
505 /* fp_status is the "normal" fp status. standard_fp_status retains
506 * values corresponding to the ARM "Standard FPSCR Value", ie
507 * default-NaN, flush-to-zero, round-to-nearest and is used by
508 * any operations (generally Neon) which the architecture defines
509 * as controlled by the standard FPSCR value rather than the FPSCR.
511 * To avoid having to transfer exception bits around, we simply
512 * say that the FPSCR cumulative exception flags are the logical
513 * OR of the flags in the two fp statuses. This relies on the
514 * only thing which needs to read the exception flags being
515 * an explicit FPSCR read.
517 float_status fp_status;
518 float_status standard_fp_status;
519 } vfp;
520 uint64_t exclusive_addr;
521 uint64_t exclusive_val;
522 uint64_t exclusive_high;
524 /* iwMMXt coprocessor state. */
525 struct {
526 uint64_t regs[16];
527 uint64_t val;
529 uint32_t cregs[16];
530 } iwmmxt;
532 #if defined(CONFIG_USER_ONLY)
533 /* For usermode syscall translation. */
534 int eabi;
535 #endif
537 struct CPUBreakpoint *cpu_breakpoint[16];
538 struct CPUWatchpoint *cpu_watchpoint[16];
540 /* Fields up to this point are cleared by a CPU reset */
541 struct {} end_reset_fields;
543 CPU_COMMON
545 /* Fields after CPU_COMMON are preserved across CPU reset. */
547 /* Internal CPU feature flags. */
548 uint64_t features;
550 /* PMSAv7 MPU */
551 struct {
552 uint32_t *drbar;
553 uint32_t *drsr;
554 uint32_t *dracr;
555 uint32_t rnr[M_REG_NUM_BANKS];
556 } pmsav7;
558 /* PMSAv8 MPU */
559 struct {
560 /* The PMSAv8 implementation also shares some PMSAv7 config
561 * and state:
562 * pmsav7.rnr (region number register)
563 * pmsav7_dregion (number of configured regions)
565 uint32_t *rbar[M_REG_NUM_BANKS];
566 uint32_t *rlar[M_REG_NUM_BANKS];
567 uint32_t mair0[M_REG_NUM_BANKS];
568 uint32_t mair1[M_REG_NUM_BANKS];
569 } pmsav8;
571 /* v8M SAU */
572 struct {
573 uint32_t *rbar;
574 uint32_t *rlar;
575 uint32_t rnr;
576 uint32_t ctrl;
577 } sau;
579 void *nvic;
580 const struct arm_boot_info *boot_info;
581 /* Store GICv3CPUState to access from this struct */
582 void *gicv3state;
583 } CPUARMState;
586 * ARMELChangeHook:
587 * type of a function which can be registered via arm_register_el_change_hook()
588 * to get callbacks when the CPU changes its exception level or mode.
590 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
593 /* These values map onto the return values for
594 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
595 typedef enum ARMPSCIState {
596 PSCI_ON = 0,
597 PSCI_OFF = 1,
598 PSCI_ON_PENDING = 2
599 } ARMPSCIState;
602 * ARMCPU:
603 * @env: #CPUARMState
605 * An ARM CPU core.
607 struct ARMCPU {
608 /*< private >*/
609 CPUState parent_obj;
610 /*< public >*/
612 CPUARMState env;
614 /* Coprocessor information */
615 GHashTable *cp_regs;
616 /* For marshalling (mostly coprocessor) register state between the
617 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
618 * we use these arrays.
620 /* List of register indexes managed via these arrays; (full KVM style
621 * 64 bit indexes, not CPRegInfo 32 bit indexes)
623 uint64_t *cpreg_indexes;
624 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
625 uint64_t *cpreg_values;
626 /* Length of the indexes, values, reset_values arrays */
627 int32_t cpreg_array_len;
628 /* These are used only for migration: incoming data arrives in
629 * these fields and is sanity checked in post_load before copying
630 * to the working data structures above.
632 uint64_t *cpreg_vmstate_indexes;
633 uint64_t *cpreg_vmstate_values;
634 int32_t cpreg_vmstate_array_len;
636 /* Timers used by the generic (architected) timer */
637 QEMUTimer *gt_timer[NUM_GTIMERS];
638 /* GPIO outputs for generic timer */
639 qemu_irq gt_timer_outputs[NUM_GTIMERS];
640 /* GPIO output for GICv3 maintenance interrupt signal */
641 qemu_irq gicv3_maintenance_interrupt;
642 /* GPIO output for the PMU interrupt */
643 qemu_irq pmu_interrupt;
645 /* MemoryRegion to use for secure physical accesses */
646 MemoryRegion *secure_memory;
648 /* 'compatible' string for this CPU for Linux device trees */
649 const char *dtb_compatible;
651 /* PSCI version for this CPU
652 * Bits[31:16] = Major Version
653 * Bits[15:0] = Minor Version
655 uint32_t psci_version;
657 /* Should CPU start in PSCI powered-off state? */
658 bool start_powered_off;
660 /* Current power state, access guarded by BQL */
661 ARMPSCIState power_state;
663 /* CPU has virtualization extension */
664 bool has_el2;
665 /* CPU has security extension */
666 bool has_el3;
667 /* CPU has PMU (Performance Monitor Unit) */
668 bool has_pmu;
670 /* CPU has memory protection unit */
671 bool has_mpu;
672 /* PMSAv7 MPU number of supported regions */
673 uint32_t pmsav7_dregion;
674 /* v8M SAU number of supported regions */
675 uint32_t sau_sregion;
677 /* PSCI conduit used to invoke PSCI methods
678 * 0 - disabled, 1 - smc, 2 - hvc
680 uint32_t psci_conduit;
682 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
683 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
685 uint32_t kvm_target;
687 /* KVM init features for this CPU */
688 uint32_t kvm_init_features[7];
690 /* Uniprocessor system with MP extensions */
691 bool mp_is_up;
693 /* The instance init functions for implementation-specific subclasses
694 * set these fields to specify the implementation-dependent values of
695 * various constant registers and reset values of non-constant
696 * registers.
697 * Some of these might become QOM properties eventually.
698 * Field names match the official register names as defined in the
699 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
700 * is used for reset values of non-constant registers; no reset_
701 * prefix means a constant register.
703 uint32_t midr;
704 uint32_t revidr;
705 uint32_t reset_fpsid;
706 uint32_t mvfr0;
707 uint32_t mvfr1;
708 uint32_t mvfr2;
709 uint32_t ctr;
710 uint32_t reset_sctlr;
711 uint32_t id_pfr0;
712 uint32_t id_pfr1;
713 uint32_t id_dfr0;
714 uint32_t pmceid0;
715 uint32_t pmceid1;
716 uint32_t id_afr0;
717 uint32_t id_mmfr0;
718 uint32_t id_mmfr1;
719 uint32_t id_mmfr2;
720 uint32_t id_mmfr3;
721 uint32_t id_mmfr4;
722 uint32_t id_isar0;
723 uint32_t id_isar1;
724 uint32_t id_isar2;
725 uint32_t id_isar3;
726 uint32_t id_isar4;
727 uint32_t id_isar5;
728 uint64_t id_aa64pfr0;
729 uint64_t id_aa64pfr1;
730 uint64_t id_aa64dfr0;
731 uint64_t id_aa64dfr1;
732 uint64_t id_aa64afr0;
733 uint64_t id_aa64afr1;
734 uint64_t id_aa64isar0;
735 uint64_t id_aa64isar1;
736 uint64_t id_aa64mmfr0;
737 uint64_t id_aa64mmfr1;
738 uint32_t dbgdidr;
739 uint32_t clidr;
740 uint64_t mp_affinity; /* MP ID without feature bits */
741 /* The elements of this array are the CCSIDR values for each cache,
742 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
744 uint32_t ccsidr[16];
745 uint64_t reset_cbar;
746 uint32_t reset_auxcr;
747 bool reset_hivecs;
748 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
749 uint32_t dcz_blocksize;
750 uint64_t rvbar;
752 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
753 int gic_num_lrs; /* number of list registers */
754 int gic_vpribits; /* number of virtual priority bits */
755 int gic_vprebits; /* number of virtual preemption bits */
757 /* Whether the cfgend input is high (i.e. this CPU should reset into
758 * big-endian mode). This setting isn't used directly: instead it modifies
759 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
760 * architecture version.
762 bool cfgend;
764 ARMELChangeHook *el_change_hook;
765 void *el_change_hook_opaque;
767 int32_t node_id; /* NUMA node this CPU belongs to */
769 /* Used to synchronize KVM and QEMU in-kernel device levels */
770 uint8_t device_irq_level;
773 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
775 return container_of(env, ARMCPU, env);
778 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
780 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
782 #define ENV_OFFSET offsetof(ARMCPU, env)
784 #ifndef CONFIG_USER_ONLY
785 extern const struct VMStateDescription vmstate_arm_cpu;
786 #endif
788 void arm_cpu_do_interrupt(CPUState *cpu);
789 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
790 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
792 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
793 int flags);
795 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
796 MemTxAttrs *attrs);
798 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
799 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
801 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
802 int cpuid, void *opaque);
803 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
804 int cpuid, void *opaque);
806 #ifdef TARGET_AARCH64
807 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
808 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
809 #endif
811 target_ulong do_arm_semihosting(CPUARMState *env);
812 void aarch64_sync_32_to_64(CPUARMState *env);
813 void aarch64_sync_64_to_32(CPUARMState *env);
815 static inline bool is_a64(CPUARMState *env)
817 return env->aarch64;
820 /* you can call this signal handler from your SIGBUS and SIGSEGV
821 signal handlers to inform the virtual CPU of exceptions. non zero
822 is returned if the signal was handled by the virtual CPU. */
823 int cpu_arm_signal_handler(int host_signum, void *pinfo,
824 void *puc);
827 * pmccntr_sync
828 * @env: CPUARMState
830 * Synchronises the counter in the PMCCNTR. This must always be called twice,
831 * once before any action that might affect the timer and again afterwards.
832 * The function is used to swap the state of the register if required.
833 * This only happens when not in user mode (!CONFIG_USER_ONLY)
835 void pmccntr_sync(CPUARMState *env);
837 /* SCTLR bit meanings. Several bits have been reused in newer
838 * versions of the architecture; in that case we define constants
839 * for both old and new bit meanings. Code which tests against those
840 * bits should probably check or otherwise arrange that the CPU
841 * is the architectural version it expects.
843 #define SCTLR_M (1U << 0)
844 #define SCTLR_A (1U << 1)
845 #define SCTLR_C (1U << 2)
846 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
847 #define SCTLR_SA (1U << 3)
848 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
849 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
850 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
851 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
852 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
853 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
854 #define SCTLR_ITD (1U << 7) /* v8 onward */
855 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
856 #define SCTLR_SED (1U << 8) /* v8 onward */
857 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
858 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
859 #define SCTLR_F (1U << 10) /* up to v6 */
860 #define SCTLR_SW (1U << 10) /* v7 onward */
861 #define SCTLR_Z (1U << 11)
862 #define SCTLR_I (1U << 12)
863 #define SCTLR_V (1U << 13)
864 #define SCTLR_RR (1U << 14) /* up to v7 */
865 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
866 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
867 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
868 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
869 #define SCTLR_nTWI (1U << 16) /* v8 onward */
870 #define SCTLR_HA (1U << 17)
871 #define SCTLR_BR (1U << 17) /* PMSA only */
872 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
873 #define SCTLR_nTWE (1U << 18) /* v8 onward */
874 #define SCTLR_WXN (1U << 19)
875 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
876 #define SCTLR_UWXN (1U << 20) /* v7 onward */
877 #define SCTLR_FI (1U << 21)
878 #define SCTLR_U (1U << 22)
879 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
880 #define SCTLR_VE (1U << 24) /* up to v7 */
881 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
882 #define SCTLR_EE (1U << 25)
883 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
884 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
885 #define SCTLR_NMFI (1U << 27)
886 #define SCTLR_TRE (1U << 28)
887 #define SCTLR_AFE (1U << 29)
888 #define SCTLR_TE (1U << 30)
890 #define CPTR_TCPAC (1U << 31)
891 #define CPTR_TTA (1U << 20)
892 #define CPTR_TFP (1U << 10)
894 #define MDCR_EPMAD (1U << 21)
895 #define MDCR_EDAD (1U << 20)
896 #define MDCR_SPME (1U << 17)
897 #define MDCR_SDD (1U << 16)
898 #define MDCR_SPD (3U << 14)
899 #define MDCR_TDRA (1U << 11)
900 #define MDCR_TDOSA (1U << 10)
901 #define MDCR_TDA (1U << 9)
902 #define MDCR_TDE (1U << 8)
903 #define MDCR_HPME (1U << 7)
904 #define MDCR_TPM (1U << 6)
905 #define MDCR_TPMCR (1U << 5)
907 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
908 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
910 #define CPSR_M (0x1fU)
911 #define CPSR_T (1U << 5)
912 #define CPSR_F (1U << 6)
913 #define CPSR_I (1U << 7)
914 #define CPSR_A (1U << 8)
915 #define CPSR_E (1U << 9)
916 #define CPSR_IT_2_7 (0xfc00U)
917 #define CPSR_GE (0xfU << 16)
918 #define CPSR_IL (1U << 20)
919 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
920 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
921 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
922 * where it is live state but not accessible to the AArch32 code.
924 #define CPSR_RESERVED (0x7U << 21)
925 #define CPSR_J (1U << 24)
926 #define CPSR_IT_0_1 (3U << 25)
927 #define CPSR_Q (1U << 27)
928 #define CPSR_V (1U << 28)
929 #define CPSR_C (1U << 29)
930 #define CPSR_Z (1U << 30)
931 #define CPSR_N (1U << 31)
932 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
933 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
935 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
936 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
937 | CPSR_NZCV)
938 /* Bits writable in user mode. */
939 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
940 /* Execution state bits. MRS read as zero, MSR writes ignored. */
941 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
942 /* Mask of bits which may be set by exception return copying them from SPSR */
943 #define CPSR_ERET_MASK (~CPSR_RESERVED)
945 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
946 #define XPSR_EXCP 0x1ffU
947 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
948 #define XPSR_IT_2_7 CPSR_IT_2_7
949 #define XPSR_GE CPSR_GE
950 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
951 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
952 #define XPSR_IT_0_1 CPSR_IT_0_1
953 #define XPSR_Q CPSR_Q
954 #define XPSR_V CPSR_V
955 #define XPSR_C CPSR_C
956 #define XPSR_Z CPSR_Z
957 #define XPSR_N CPSR_N
958 #define XPSR_NZCV CPSR_NZCV
959 #define XPSR_IT CPSR_IT
961 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
962 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
963 #define TTBCR_PD0 (1U << 4)
964 #define TTBCR_PD1 (1U << 5)
965 #define TTBCR_EPD0 (1U << 7)
966 #define TTBCR_IRGN0 (3U << 8)
967 #define TTBCR_ORGN0 (3U << 10)
968 #define TTBCR_SH0 (3U << 12)
969 #define TTBCR_T1SZ (3U << 16)
970 #define TTBCR_A1 (1U << 22)
971 #define TTBCR_EPD1 (1U << 23)
972 #define TTBCR_IRGN1 (3U << 24)
973 #define TTBCR_ORGN1 (3U << 26)
974 #define TTBCR_SH1 (1U << 28)
975 #define TTBCR_EAE (1U << 31)
977 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
978 * Only these are valid when in AArch64 mode; in
979 * AArch32 mode SPSRs are basically CPSR-format.
981 #define PSTATE_SP (1U)
982 #define PSTATE_M (0xFU)
983 #define PSTATE_nRW (1U << 4)
984 #define PSTATE_F (1U << 6)
985 #define PSTATE_I (1U << 7)
986 #define PSTATE_A (1U << 8)
987 #define PSTATE_D (1U << 9)
988 #define PSTATE_IL (1U << 20)
989 #define PSTATE_SS (1U << 21)
990 #define PSTATE_V (1U << 28)
991 #define PSTATE_C (1U << 29)
992 #define PSTATE_Z (1U << 30)
993 #define PSTATE_N (1U << 31)
994 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
995 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
996 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
997 /* Mode values for AArch64 */
998 #define PSTATE_MODE_EL3h 13
999 #define PSTATE_MODE_EL3t 12
1000 #define PSTATE_MODE_EL2h 9
1001 #define PSTATE_MODE_EL2t 8
1002 #define PSTATE_MODE_EL1h 5
1003 #define PSTATE_MODE_EL1t 4
1004 #define PSTATE_MODE_EL0t 0
1006 /* Write a new value to v7m.exception, thus transitioning into or out
1007 * of Handler mode; this may result in a change of active stack pointer.
1009 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1011 /* Map EL and handler into a PSTATE_MODE. */
1012 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1014 return (el << 2) | handler;
1017 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1018 * interprocessing, so we don't attempt to sync with the cpsr state used by
1019 * the 32 bit decoder.
1021 static inline uint32_t pstate_read(CPUARMState *env)
1023 int ZF;
1025 ZF = (env->ZF == 0);
1026 return (env->NF & 0x80000000) | (ZF << 30)
1027 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1028 | env->pstate | env->daif;
1031 static inline void pstate_write(CPUARMState *env, uint32_t val)
1033 env->ZF = (~val) & PSTATE_Z;
1034 env->NF = val;
1035 env->CF = (val >> 29) & 1;
1036 env->VF = (val << 3) & 0x80000000;
1037 env->daif = val & PSTATE_DAIF;
1038 env->pstate = val & ~CACHED_PSTATE_BITS;
1041 /* Return the current CPSR value. */
1042 uint32_t cpsr_read(CPUARMState *env);
1044 typedef enum CPSRWriteType {
1045 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1046 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1047 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1048 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1049 } CPSRWriteType;
1051 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1052 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1053 CPSRWriteType write_type);
1055 /* Return the current xPSR value. */
1056 static inline uint32_t xpsr_read(CPUARMState *env)
1058 int ZF;
1059 ZF = (env->ZF == 0);
1060 return (env->NF & 0x80000000) | (ZF << 30)
1061 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1062 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1063 | ((env->condexec_bits & 0xfc) << 8)
1064 | env->v7m.exception;
1067 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1068 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1070 if (mask & XPSR_NZCV) {
1071 env->ZF = (~val) & XPSR_Z;
1072 env->NF = val;
1073 env->CF = (val >> 29) & 1;
1074 env->VF = (val << 3) & 0x80000000;
1076 if (mask & XPSR_Q) {
1077 env->QF = ((val & XPSR_Q) != 0);
1079 if (mask & XPSR_T) {
1080 env->thumb = ((val & XPSR_T) != 0);
1082 if (mask & XPSR_IT_0_1) {
1083 env->condexec_bits &= ~3;
1084 env->condexec_bits |= (val >> 25) & 3;
1086 if (mask & XPSR_IT_2_7) {
1087 env->condexec_bits &= 3;
1088 env->condexec_bits |= (val >> 8) & 0xfc;
1090 if (mask & XPSR_EXCP) {
1091 /* Note that this only happens on exception exit */
1092 write_v7m_exception(env, val & XPSR_EXCP);
1096 #define HCR_VM (1ULL << 0)
1097 #define HCR_SWIO (1ULL << 1)
1098 #define HCR_PTW (1ULL << 2)
1099 #define HCR_FMO (1ULL << 3)
1100 #define HCR_IMO (1ULL << 4)
1101 #define HCR_AMO (1ULL << 5)
1102 #define HCR_VF (1ULL << 6)
1103 #define HCR_VI (1ULL << 7)
1104 #define HCR_VSE (1ULL << 8)
1105 #define HCR_FB (1ULL << 9)
1106 #define HCR_BSU_MASK (3ULL << 10)
1107 #define HCR_DC (1ULL << 12)
1108 #define HCR_TWI (1ULL << 13)
1109 #define HCR_TWE (1ULL << 14)
1110 #define HCR_TID0 (1ULL << 15)
1111 #define HCR_TID1 (1ULL << 16)
1112 #define HCR_TID2 (1ULL << 17)
1113 #define HCR_TID3 (1ULL << 18)
1114 #define HCR_TSC (1ULL << 19)
1115 #define HCR_TIDCP (1ULL << 20)
1116 #define HCR_TACR (1ULL << 21)
1117 #define HCR_TSW (1ULL << 22)
1118 #define HCR_TPC (1ULL << 23)
1119 #define HCR_TPU (1ULL << 24)
1120 #define HCR_TTLB (1ULL << 25)
1121 #define HCR_TVM (1ULL << 26)
1122 #define HCR_TGE (1ULL << 27)
1123 #define HCR_TDZ (1ULL << 28)
1124 #define HCR_HCD (1ULL << 29)
1125 #define HCR_TRVM (1ULL << 30)
1126 #define HCR_RW (1ULL << 31)
1127 #define HCR_CD (1ULL << 32)
1128 #define HCR_ID (1ULL << 33)
1129 #define HCR_MASK ((1ULL << 34) - 1)
1131 #define SCR_NS (1U << 0)
1132 #define SCR_IRQ (1U << 1)
1133 #define SCR_FIQ (1U << 2)
1134 #define SCR_EA (1U << 3)
1135 #define SCR_FW (1U << 4)
1136 #define SCR_AW (1U << 5)
1137 #define SCR_NET (1U << 6)
1138 #define SCR_SMD (1U << 7)
1139 #define SCR_HCE (1U << 8)
1140 #define SCR_SIF (1U << 9)
1141 #define SCR_RW (1U << 10)
1142 #define SCR_ST (1U << 11)
1143 #define SCR_TWI (1U << 12)
1144 #define SCR_TWE (1U << 13)
1145 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1146 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1148 /* Return the current FPSCR value. */
1149 uint32_t vfp_get_fpscr(CPUARMState *env);
1150 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1152 /* For A64 the FPSCR is split into two logically distinct registers,
1153 * FPCR and FPSR. However since they still use non-overlapping bits
1154 * we store the underlying state in fpscr and just mask on read/write.
1156 #define FPSR_MASK 0xf800009f
1157 #define FPCR_MASK 0x07f79f00
1158 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1160 return vfp_get_fpscr(env) & FPSR_MASK;
1163 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1165 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1166 vfp_set_fpscr(env, new_fpscr);
1169 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1171 return vfp_get_fpscr(env) & FPCR_MASK;
1174 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1176 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1177 vfp_set_fpscr(env, new_fpscr);
1180 enum arm_cpu_mode {
1181 ARM_CPU_MODE_USR = 0x10,
1182 ARM_CPU_MODE_FIQ = 0x11,
1183 ARM_CPU_MODE_IRQ = 0x12,
1184 ARM_CPU_MODE_SVC = 0x13,
1185 ARM_CPU_MODE_MON = 0x16,
1186 ARM_CPU_MODE_ABT = 0x17,
1187 ARM_CPU_MODE_HYP = 0x1a,
1188 ARM_CPU_MODE_UND = 0x1b,
1189 ARM_CPU_MODE_SYS = 0x1f
1192 /* VFP system registers. */
1193 #define ARM_VFP_FPSID 0
1194 #define ARM_VFP_FPSCR 1
1195 #define ARM_VFP_MVFR2 5
1196 #define ARM_VFP_MVFR1 6
1197 #define ARM_VFP_MVFR0 7
1198 #define ARM_VFP_FPEXC 8
1199 #define ARM_VFP_FPINST 9
1200 #define ARM_VFP_FPINST2 10
1202 /* iwMMXt coprocessor control registers. */
1203 #define ARM_IWMMXT_wCID 0
1204 #define ARM_IWMMXT_wCon 1
1205 #define ARM_IWMMXT_wCSSF 2
1206 #define ARM_IWMMXT_wCASF 3
1207 #define ARM_IWMMXT_wCGR0 8
1208 #define ARM_IWMMXT_wCGR1 9
1209 #define ARM_IWMMXT_wCGR2 10
1210 #define ARM_IWMMXT_wCGR3 11
1212 /* V7M CCR bits */
1213 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1214 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1215 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1216 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1217 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1218 FIELD(V7M_CCR, STKALIGN, 9, 1)
1219 FIELD(V7M_CCR, DC, 16, 1)
1220 FIELD(V7M_CCR, IC, 17, 1)
1222 /* V7M AIRCR bits */
1223 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1224 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1225 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1226 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1227 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1228 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1229 FIELD(V7M_AIRCR, PRIS, 14, 1)
1230 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1231 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1233 /* V7M CFSR bits for MMFSR */
1234 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1235 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1236 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1237 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1238 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1239 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1241 /* V7M CFSR bits for BFSR */
1242 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1243 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1244 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1245 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1246 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1247 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1248 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1250 /* V7M CFSR bits for UFSR */
1251 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1252 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1253 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1254 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1255 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1256 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1258 /* V7M CFSR bit masks covering all of the subregister bits */
1259 FIELD(V7M_CFSR, MMFSR, 0, 8)
1260 FIELD(V7M_CFSR, BFSR, 8, 8)
1261 FIELD(V7M_CFSR, UFSR, 16, 16)
1263 /* V7M HFSR bits */
1264 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1265 FIELD(V7M_HFSR, FORCED, 30, 1)
1266 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1268 /* V7M DFSR bits */
1269 FIELD(V7M_DFSR, HALTED, 0, 1)
1270 FIELD(V7M_DFSR, BKPT, 1, 1)
1271 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1272 FIELD(V7M_DFSR, VCATCH, 3, 1)
1273 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1275 /* V7M SFSR bits */
1276 FIELD(V7M_SFSR, INVEP, 0, 1)
1277 FIELD(V7M_SFSR, INVIS, 1, 1)
1278 FIELD(V7M_SFSR, INVER, 2, 1)
1279 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1280 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1281 FIELD(V7M_SFSR, LSPERR, 5, 1)
1282 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1283 FIELD(V7M_SFSR, LSERR, 7, 1)
1285 /* v7M MPU_CTRL bits */
1286 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1287 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1288 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1290 /* If adding a feature bit which corresponds to a Linux ELF
1291 * HWCAP bit, remember to update the feature-bit-to-hwcap
1292 * mapping in linux-user/elfload.c:get_elf_hwcap().
1294 enum arm_features {
1295 ARM_FEATURE_VFP, /* Vector Floating-point. */
1296 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1297 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1298 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1299 ARM_FEATURE_V6,
1300 ARM_FEATURE_V6K,
1301 ARM_FEATURE_V7,
1302 //~ See http://lists.nongnu.org/archive/html/qemu-devel/2009-05/msg01570.html
1303 //~ ARM_FEATURE_THUMB, /* TODO: still unused. */
1304 //~ ARM_FEATURE_THUMB1 = ARM_FEATURE_THUMB, /* TODO: still unused. */
1305 ARM_FEATURE_THUMB2,
1306 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1307 ARM_FEATURE_VFP3,
1308 ARM_FEATURE_VFP_FP16,
1309 ARM_FEATURE_NEON,
1310 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1311 ARM_FEATURE_M, /* Microcontroller profile. */
1312 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1313 // TODO: long multiply instructions (M variant), standard for v4 and v5.
1314 // TODO: enhanced dsp instructions (E variant).
1315 // TODO: ARMv5TExP.
1316 ARM_FEATURE_THUMB2EE,
1317 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1318 ARM_FEATURE_V4T,
1319 ARM_FEATURE_V5,
1320 ARM_FEATURE_STRONGARM,
1321 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1322 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1323 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1324 ARM_FEATURE_GENERIC_TIMER,
1325 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1326 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1327 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1328 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1329 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1330 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1331 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1332 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1333 ARM_FEATURE_V8,
1334 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1335 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1336 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1337 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1338 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1339 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1340 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1341 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1342 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1343 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1344 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1345 ARM_FEATURE_PMU, /* has PMU support */
1346 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1347 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1348 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1351 static inline int arm_feature(CPUARMState *env, int feature)
1353 return (env->features & (1ULL << feature)) != 0;
1356 #if !defined(CONFIG_USER_ONLY)
1357 /* Return true if exception levels below EL3 are in secure state,
1358 * or would be following an exception return to that level.
1359 * Unlike arm_is_secure() (which is always a question about the
1360 * _current_ state of the CPU) this doesn't care about the current
1361 * EL or mode.
1363 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1365 if (arm_feature(env, ARM_FEATURE_EL3)) {
1366 return !(env->cp15.scr_el3 & SCR_NS);
1367 } else {
1368 /* If EL3 is not supported then the secure state is implementation
1369 * defined, in which case QEMU defaults to non-secure.
1371 return false;
1375 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1376 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1378 if (arm_feature(env, ARM_FEATURE_EL3)) {
1379 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1380 /* CPU currently in AArch64 state and EL3 */
1381 return true;
1382 } else if (!is_a64(env) &&
1383 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1384 /* CPU currently in AArch32 state and monitor mode */
1385 return true;
1388 return false;
1391 /* Return true if the processor is in secure state */
1392 static inline bool arm_is_secure(CPUARMState *env)
1394 if (arm_is_el3_or_mon(env)) {
1395 return true;
1397 return arm_is_secure_below_el3(env);
1400 #else
1401 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1403 return false;
1406 static inline bool arm_is_secure(CPUARMState *env)
1408 return false;
1410 #endif
1412 /* Return true if the specified exception level is running in AArch64 state. */
1413 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1415 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1416 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1418 assert(el >= 1 && el <= 3);
1419 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1421 /* The highest exception level is always at the maximum supported
1422 * register width, and then lower levels have a register width controlled
1423 * by bits in the SCR or HCR registers.
1425 if (el == 3) {
1426 return aa64;
1429 if (arm_feature(env, ARM_FEATURE_EL3)) {
1430 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1433 if (el == 2) {
1434 return aa64;
1437 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1438 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1441 return aa64;
1444 /* Function for determing whether guest cp register reads and writes should
1445 * access the secure or non-secure bank of a cp register. When EL3 is
1446 * operating in AArch32 state, the NS-bit determines whether the secure
1447 * instance of a cp register should be used. When EL3 is AArch64 (or if
1448 * it doesn't exist at all) then there is no register banking, and all
1449 * accesses are to the non-secure version.
1451 static inline bool access_secure_reg(CPUARMState *env)
1453 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1454 !arm_el_is_aa64(env, 3) &&
1455 !(env->cp15.scr_el3 & SCR_NS));
1457 return ret;
1460 /* Macros for accessing a specified CP register bank */
1461 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1462 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1464 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1465 do { \
1466 if (_secure) { \
1467 (_env)->cp15._regname##_s = (_val); \
1468 } else { \
1469 (_env)->cp15._regname##_ns = (_val); \
1471 } while (0)
1473 /* Macros for automatically accessing a specific CP register bank depending on
1474 * the current secure state of the system. These macros are not intended for
1475 * supporting instruction translation reads/writes as these are dependent
1476 * solely on the SCR.NS bit and not the mode.
1478 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1479 A32_BANKED_REG_GET((_env), _regname, \
1480 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1482 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1483 A32_BANKED_REG_SET((_env), _regname, \
1484 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1485 (_val))
1487 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1488 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1489 uint32_t cur_el, bool secure);
1491 /* Interface between CPU and Interrupt controller. */
1492 #ifndef CONFIG_USER_ONLY
1493 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1494 #else
1495 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1497 return true;
1499 #endif
1501 * armv7m_nvic_set_pending: mark the specified exception as pending
1502 * @opaque: the NVIC
1503 * @irq: the exception number to mark pending
1504 * @secure: false for non-banked exceptions or for the nonsecure
1505 * version of a banked exception, true for the secure version of a banked
1506 * exception.
1508 * Marks the specified exception as pending. Note that we will assert()
1509 * if @secure is true and @irq does not specify one of the fixed set
1510 * of architecturally banked exceptions.
1512 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1514 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1515 * @opaque: the NVIC
1517 * Move the current highest priority pending exception from the pending
1518 * state to the active state, and update v7m.exception to indicate that
1519 * it is the exception currently being handled.
1521 * Returns: true if exception should be taken to Secure state, false for NS
1523 bool armv7m_nvic_acknowledge_irq(void *opaque);
1525 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1526 * @opaque: the NVIC
1527 * @irq: the exception number to complete
1528 * @secure: true if this exception was secure
1530 * Returns: -1 if the irq was not active
1531 * 1 if completing this irq brought us back to base (no active irqs)
1532 * 0 if there is still an irq active after this one was completed
1533 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1535 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1537 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1538 * @opaque: the NVIC
1540 * Returns: the raw execution priority as defined by the v8M architecture.
1541 * This is the execution priority minus the effects of AIRCR.PRIS,
1542 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1543 * (v8M ARM ARM I_PKLD.)
1545 int armv7m_nvic_raw_execution_priority(void *opaque);
1547 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1548 * priority is negative for the specified security state.
1549 * @opaque: the NVIC
1550 * @secure: the security state to test
1551 * This corresponds to the pseudocode IsReqExecPriNeg().
1553 #ifndef CONFIG_USER_ONLY
1554 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1555 #else
1556 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1558 return false;
1560 #endif
1562 /* Interface for defining coprocessor registers.
1563 * Registers are defined in tables of arm_cp_reginfo structs
1564 * which are passed to define_arm_cp_regs().
1567 /* When looking up a coprocessor register we look for it
1568 * via an integer which encodes all of:
1569 * coprocessor number
1570 * Crn, Crm, opc1, opc2 fields
1571 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1572 * or via MRRC/MCRR?)
1573 * non-secure/secure bank (AArch32 only)
1574 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1575 * (In this case crn and opc2 should be zero.)
1576 * For AArch64, there is no 32/64 bit size distinction;
1577 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1578 * and 4 bit CRn and CRm. The encoding patterns are chosen
1579 * to be easy to convert to and from the KVM encodings, and also
1580 * so that the hashtable can contain both AArch32 and AArch64
1581 * registers (to allow for interprocessing where we might run
1582 * 32 bit code on a 64 bit core).
1584 /* This bit is private to our hashtable cpreg; in KVM register
1585 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1586 * in the upper bits of the 64 bit ID.
1588 #define CP_REG_AA64_SHIFT 28
1589 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1591 /* To enable banking of coprocessor registers depending on ns-bit we
1592 * add a bit to distinguish between secure and non-secure cpregs in the
1593 * hashtable.
1595 #define CP_REG_NS_SHIFT 29
1596 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1598 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1599 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1600 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1602 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1603 (CP_REG_AA64_MASK | \
1604 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1605 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1606 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1607 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1608 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1609 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1611 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1612 * version used as a key for the coprocessor register hashtable
1614 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1616 uint32_t cpregid = kvmid;
1617 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1618 cpregid |= CP_REG_AA64_MASK;
1619 } else {
1620 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1621 cpregid |= (1 << 15);
1624 /* KVM is always non-secure so add the NS flag on AArch32 register
1625 * entries.
1627 cpregid |= 1 << CP_REG_NS_SHIFT;
1629 return cpregid;
1632 /* Convert a truncated 32 bit hashtable key into the full
1633 * 64 bit KVM register ID.
1635 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1637 uint64_t kvmid;
1639 if (cpregid & CP_REG_AA64_MASK) {
1640 kvmid = cpregid & ~CP_REG_AA64_MASK;
1641 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1642 } else {
1643 kvmid = cpregid & ~(1 << 15);
1644 if (cpregid & (1 << 15)) {
1645 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1646 } else {
1647 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1650 return kvmid;
1653 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1654 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1655 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1656 * TCG can assume the value to be constant (ie load at translate time)
1657 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1658 * indicates that the TB should not be ended after a write to this register
1659 * (the default is that the TB ends after cp writes). OVERRIDE permits
1660 * a register definition to override a previous definition for the
1661 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1662 * old must have the OVERRIDE bit set.
1663 * ALIAS indicates that this register is an alias view of some underlying
1664 * state which is also visible via another register, and that the other
1665 * register is handling migration and reset; registers marked ALIAS will not be
1666 * migrated but may have their state set by syncing of register state from KVM.
1667 * NO_RAW indicates that this register has no underlying state and does not
1668 * support raw access for state saving/loading; it will not be used for either
1669 * migration or KVM state synchronization. (Typically this is for "registers"
1670 * which are actually used as instructions for cache maintenance and so on.)
1671 * IO indicates that this register does I/O and therefore its accesses
1672 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1673 * registers which implement clocks or timers require this.
1675 #define ARM_CP_SPECIAL 1
1676 #define ARM_CP_CONST 2
1677 #define ARM_CP_64BIT 4
1678 #define ARM_CP_SUPPRESS_TB_END 8
1679 #define ARM_CP_OVERRIDE 16
1680 #define ARM_CP_ALIAS 32
1681 #define ARM_CP_IO 64
1682 #define ARM_CP_NO_RAW 128
1683 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1684 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1685 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1686 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1687 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1688 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1689 /* Used only as a terminator for ARMCPRegInfo lists */
1690 #define ARM_CP_SENTINEL 0xffff
1691 /* Mask of only the flag bits in a type field */
1692 #define ARM_CP_FLAG_MASK 0xff
1694 /* Valid values for ARMCPRegInfo state field, indicating which of
1695 * the AArch32 and AArch64 execution states this register is visible in.
1696 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1697 * If the reginfo is declared to be visible in both states then a second
1698 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1699 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1700 * Note that we rely on the values of these enums as we iterate through
1701 * the various states in some places.
1703 enum {
1704 ARM_CP_STATE_AA32 = 0,
1705 ARM_CP_STATE_AA64 = 1,
1706 ARM_CP_STATE_BOTH = 2,
1709 /* ARM CP register secure state flags. These flags identify security state
1710 * attributes for a given CP register entry.
1711 * The existence of both or neither secure and non-secure flags indicates that
1712 * the register has both a secure and non-secure hash entry. A single one of
1713 * these flags causes the register to only be hashed for the specified
1714 * security state.
1715 * Although definitions may have any combination of the S/NS bits, each
1716 * registered entry will only have one to identify whether the entry is secure
1717 * or non-secure.
1719 enum {
1720 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1721 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1724 /* Return true if cptype is a valid type field. This is used to try to
1725 * catch errors where the sentinel has been accidentally left off the end
1726 * of a list of registers.
1728 static inline bool cptype_valid(int cptype)
1730 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1731 || ((cptype & ARM_CP_SPECIAL) &&
1732 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1735 /* Access rights:
1736 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1737 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1738 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1739 * (ie any of the privileged modes in Secure state, or Monitor mode).
1740 * If a register is accessible in one privilege level it's always accessible
1741 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1742 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1743 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1744 * terminology a little and call this PL3.
1745 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1746 * with the ELx exception levels.
1748 * If access permissions for a register are more complex than can be
1749 * described with these bits, then use a laxer set of restrictions, and
1750 * do the more restrictive/complex check inside a helper function.
1752 #define PL3_R 0x80
1753 #define PL3_W 0x40
1754 #define PL2_R (0x20 | PL3_R)
1755 #define PL2_W (0x10 | PL3_W)
1756 #define PL1_R (0x08 | PL2_R)
1757 #define PL1_W (0x04 | PL2_W)
1758 #define PL0_R (0x02 | PL1_R)
1759 #define PL0_W (0x01 | PL1_W)
1761 #define PL3_RW (PL3_R | PL3_W)
1762 #define PL2_RW (PL2_R | PL2_W)
1763 #define PL1_RW (PL1_R | PL1_W)
1764 #define PL0_RW (PL0_R | PL0_W)
1766 /* Return the highest implemented Exception Level */
1767 static inline int arm_highest_el(CPUARMState *env)
1769 if (arm_feature(env, ARM_FEATURE_EL3)) {
1770 return 3;
1772 if (arm_feature(env, ARM_FEATURE_EL2)) {
1773 return 2;
1775 return 1;
1778 /* Return true if a v7M CPU is in Handler mode */
1779 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1781 return env->v7m.exception != 0;
1784 /* Return the current Exception Level (as per ARMv8; note that this differs
1785 * from the ARMv7 Privilege Level).
1787 static inline int arm_current_el(CPUARMState *env)
1789 if (arm_feature(env, ARM_FEATURE_M)) {
1790 return arm_v7m_is_handler_mode(env) ||
1791 !(env->v7m.control[env->v7m.secure] & 1);
1794 if (is_a64(env)) {
1795 return extract32(env->pstate, 2, 2);
1798 switch (env->uncached_cpsr & 0x1f) {
1799 case ARM_CPU_MODE_USR:
1800 return 0;
1801 case ARM_CPU_MODE_HYP:
1802 return 2;
1803 case ARM_CPU_MODE_MON:
1804 return 3;
1805 default:
1806 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1807 /* If EL3 is 32-bit then all secure privileged modes run in
1808 * EL3
1810 return 3;
1813 return 1;
1817 typedef struct ARMCPRegInfo ARMCPRegInfo;
1819 typedef enum CPAccessResult {
1820 /* Access is permitted */
1821 CP_ACCESS_OK = 0,
1822 /* Access fails due to a configurable trap or enable which would
1823 * result in a categorized exception syndrome giving information about
1824 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1825 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1826 * PL1 if in EL0, otherwise to the current EL).
1828 CP_ACCESS_TRAP = 1,
1829 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1830 * Note that this is not a catch-all case -- the set of cases which may
1831 * result in this failure is specifically defined by the architecture.
1833 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1834 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1835 CP_ACCESS_TRAP_EL2 = 3,
1836 CP_ACCESS_TRAP_EL3 = 4,
1837 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1838 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1839 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1840 /* Access fails and results in an exception syndrome for an FP access,
1841 * trapped directly to EL2 or EL3
1843 CP_ACCESS_TRAP_FP_EL2 = 7,
1844 CP_ACCESS_TRAP_FP_EL3 = 8,
1845 } CPAccessResult;
1847 /* Access functions for coprocessor registers. These cannot fail and
1848 * may not raise exceptions.
1850 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1851 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1852 uint64_t value);
1853 /* Access permission check functions for coprocessor registers. */
1854 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1855 const ARMCPRegInfo *opaque,
1856 bool isread);
1857 /* Hook function for register reset */
1858 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1860 #define CP_ANY 0xff
1862 /* Definition of an ARM coprocessor register */
1863 struct ARMCPRegInfo {
1864 /* Name of register (useful mainly for debugging, need not be unique) */
1865 const char *name;
1866 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1867 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1868 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1869 * will be decoded to this register. The register read and write
1870 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1871 * used by the program, so it is possible to register a wildcard and
1872 * then behave differently on read/write if necessary.
1873 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1874 * must both be zero.
1875 * For AArch64-visible registers, opc0 is also used.
1876 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1877 * way to distinguish (for KVM's benefit) guest-visible system registers
1878 * from demuxed ones provided to preserve the "no side effects on
1879 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1880 * visible (to match KVM's encoding); cp==0 will be converted to
1881 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1883 uint8_t cp;
1884 uint8_t crn;
1885 uint8_t crm;
1886 uint8_t opc0;
1887 uint8_t opc1;
1888 uint8_t opc2;
1889 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1890 int state;
1891 /* Register type: ARM_CP_* bits/values */
1892 int type;
1893 /* Access rights: PL*_[RW] */
1894 int access;
1895 /* Security state: ARM_CP_SECSTATE_* bits/values */
1896 int secure;
1897 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1898 * this register was defined: can be used to hand data through to the
1899 * register read/write functions, since they are passed the ARMCPRegInfo*.
1901 void *opaque;
1902 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1903 * fieldoffset is non-zero, the reset value of the register.
1905 uint64_t resetvalue;
1906 /* Offset of the field in CPUARMState for this register.
1908 * This is not needed if either:
1909 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1910 * 2. both readfn and writefn are specified
1912 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1914 /* Offsets of the secure and non-secure fields in CPUARMState for the
1915 * register if it is banked. These fields are only used during the static
1916 * registration of a register. During hashing the bank associated
1917 * with a given security state is copied to fieldoffset which is used from
1918 * there on out.
1920 * It is expected that register definitions use either fieldoffset or
1921 * bank_fieldoffsets in the definition but not both. It is also expected
1922 * that both bank offsets are set when defining a banked register. This
1923 * use indicates that a register is banked.
1925 ptrdiff_t bank_fieldoffsets[2];
1927 /* Function for making any access checks for this register in addition to
1928 * those specified by the 'access' permissions bits. If NULL, no extra
1929 * checks required. The access check is performed at runtime, not at
1930 * translate time.
1932 CPAccessFn *accessfn;
1933 /* Function for handling reads of this register. If NULL, then reads
1934 * will be done by loading from the offset into CPUARMState specified
1935 * by fieldoffset.
1937 CPReadFn *readfn;
1938 /* Function for handling writes of this register. If NULL, then writes
1939 * will be done by writing to the offset into CPUARMState specified
1940 * by fieldoffset.
1942 CPWriteFn *writefn;
1943 /* Function for doing a "raw" read; used when we need to copy
1944 * coprocessor state to the kernel for KVM or out for
1945 * migration. This only needs to be provided if there is also a
1946 * readfn and it has side effects (for instance clear-on-read bits).
1948 CPReadFn *raw_readfn;
1949 /* Function for doing a "raw" write; used when we need to copy KVM
1950 * kernel coprocessor state into userspace, or for inbound
1951 * migration. This only needs to be provided if there is also a
1952 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1953 * or similar behaviour.
1955 CPWriteFn *raw_writefn;
1956 /* Function for resetting the register. If NULL, then reset will be done
1957 * by writing resetvalue to the field specified in fieldoffset. If
1958 * fieldoffset is 0 then no reset will be done.
1960 CPResetFn *resetfn;
1963 /* Macros which are lvalues for the field in CPUARMState for the
1964 * ARMCPRegInfo *ri.
1966 #define CPREG_FIELD32(env, ri) \
1967 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1968 #define CPREG_FIELD64(env, ri) \
1969 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1971 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1973 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1974 const ARMCPRegInfo *regs, void *opaque);
1975 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1976 const ARMCPRegInfo *regs, void *opaque);
1977 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1979 define_arm_cp_regs_with_opaque(cpu, regs, NULL);
1981 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1983 define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
1985 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1987 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1988 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1989 uint64_t value);
1990 /* CPReadFn that can be used for read-as-zero behaviour */
1991 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1993 /* CPResetFn that does nothing, for use if no reset is required even
1994 * if fieldoffset is non zero.
1996 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1998 /* Return true if this reginfo struct's field in the cpu state struct
1999 * is 64 bits wide.
2001 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2003 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2006 static inline bool cp_access_ok(int current_el,
2007 const ARMCPRegInfo *ri, int isread)
2009 return (ri->access >> ((current_el * 2) + isread)) & 1;
2012 /* Raw read of a coprocessor register (as needed for migration, etc) */
2013 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2016 * write_list_to_cpustate
2017 * @cpu: ARMCPU
2019 * For each register listed in the ARMCPU cpreg_indexes list, write
2020 * its value from the cpreg_values list into the ARMCPUState structure.
2021 * This updates TCG's working data structures from KVM data or
2022 * from incoming migration state.
2024 * Returns: true if all register values were updated correctly,
2025 * false if some register was unknown or could not be written.
2026 * Note that we do not stop early on failure -- we will attempt
2027 * writing all registers in the list.
2029 bool write_list_to_cpustate(ARMCPU *cpu);
2032 * write_cpustate_to_list:
2033 * @cpu: ARMCPU
2035 * For each register listed in the ARMCPU cpreg_indexes list, write
2036 * its value from the ARMCPUState structure into the cpreg_values list.
2037 * This is used to copy info from TCG's working data structures into
2038 * KVM or for outbound migration.
2040 * Returns: true if all register values were read correctly,
2041 * false if some register was unknown or could not be read.
2042 * Note that we do not stop early on failure -- we will attempt
2043 * reading all registers in the list.
2045 bool write_cpustate_to_list(ARMCPU *cpu);
2047 #define ARM_CPUID_TI915T 0x54029152
2048 #define ARM_CPUID_TI925T 0x54029252
2050 #if defined(CONFIG_USER_ONLY)
2051 #define TARGET_PAGE_BITS 12
2052 #else
2053 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2054 * have to support 1K tiny pages.
2056 #define TARGET_PAGE_BITS_VARY
2057 #define TARGET_PAGE_BITS_MIN 10
2058 #endif
2060 #if defined(TARGET_AARCH64)
2061 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2062 # define TARGET_VIRT_ADDR_SPACE_BITS 64
2063 #else
2064 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2065 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2066 #endif
2068 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2069 unsigned int target_el)
2071 CPUARMState *env = cs->env_ptr;
2072 unsigned int cur_el = arm_current_el(env);
2073 bool secure = arm_is_secure(env);
2074 bool pstate_unmasked;
2075 int8_t unmasked = 0;
2077 /* Don't take exceptions if they target a lower EL.
2078 * This check should catch any exceptions that would not be taken but left
2079 * pending.
2081 if (cur_el > target_el) {
2082 return false;
2085 switch (excp_idx) {
2086 case EXCP_FIQ:
2087 pstate_unmasked = !(env->daif & PSTATE_F);
2088 break;
2090 case EXCP_IRQ:
2091 pstate_unmasked = !(env->daif & PSTATE_I);
2092 break;
2094 case EXCP_VFIQ:
2095 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2096 /* VFIQs are only taken when hypervized and non-secure. */
2097 return false;
2099 return !(env->daif & PSTATE_F);
2100 case EXCP_VIRQ:
2101 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2102 /* VIRQs are only taken when hypervized and non-secure. */
2103 return false;
2105 return !(env->daif & PSTATE_I);
2106 default:
2107 g_assert_not_reached();
2110 /* Use the target EL, current execution state and SCR/HCR settings to
2111 * determine whether the corresponding CPSR bit is used to mask the
2112 * interrupt.
2114 if ((target_el > cur_el) && (target_el != 1)) {
2115 /* Exceptions targeting a higher EL may not be maskable */
2116 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2117 /* 64-bit masking rules are simple: exceptions to EL3
2118 * can't be masked, and exceptions to EL2 can only be
2119 * masked from Secure state. The HCR and SCR settings
2120 * don't affect the masking logic, only the interrupt routing.
2122 if (target_el == 3 || !secure) {
2123 unmasked = 1;
2125 } else {
2126 /* The old 32-bit-only environment has a more complicated
2127 * masking setup. HCR and SCR bits not only affect interrupt
2128 * routing but also change the behaviour of masking.
2130 bool hcr, scr;
2132 switch (excp_idx) {
2133 case EXCP_FIQ:
2134 /* If FIQs are routed to EL3 or EL2 then there are cases where
2135 * we override the CPSR.F in determining if the exception is
2136 * masked or not. If neither of these are set then we fall back
2137 * to the CPSR.F setting otherwise we further assess the state
2138 * below.
2140 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2141 scr = (env->cp15.scr_el3 & SCR_FIQ);
2143 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2144 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2145 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2146 * when non-secure but only when FIQs are only routed to EL3.
2148 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2149 break;
2150 case EXCP_IRQ:
2151 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2152 * we may override the CPSR.I masking when in non-secure state.
2153 * The SCR.IRQ setting has already been taken into consideration
2154 * when setting the target EL, so it does not have a further
2155 * affect here.
2157 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2158 scr = false;
2159 break;
2160 default:
2161 g_assert_not_reached();
2164 if ((scr || hcr) && !secure) {
2165 unmasked = 1;
2170 /* The PSTATE bits only mask the interrupt if we have not overriden the
2171 * ability above.
2173 return unmasked || pstate_unmasked;
2176 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2178 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2179 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2181 #define cpu_signal_handler cpu_arm_signal_handler
2182 #define cpu_list arm_cpu_list
2184 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2186 * If EL3 is 64-bit:
2187 * + NonSecure EL1 & 0 stage 1
2188 * + NonSecure EL1 & 0 stage 2
2189 * + NonSecure EL2
2190 * + Secure EL1 & EL0
2191 * + Secure EL3
2192 * If EL3 is 32-bit:
2193 * + NonSecure PL1 & 0 stage 1
2194 * + NonSecure PL1 & 0 stage 2
2195 * + NonSecure PL2
2196 * + Secure PL0 & PL1
2197 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2199 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2200 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2201 * may differ in access permissions even if the VA->PA map is the same
2202 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2203 * translation, which means that we have one mmu_idx that deals with two
2204 * concatenated translation regimes [this sort of combined s1+2 TLB is
2205 * architecturally permitted]
2206 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2207 * handling via the TLB. The only way to do a stage 1 translation without
2208 * the immediate stage 2 translation is via the ATS or AT system insns,
2209 * which can be slow-pathed and always do a page table walk.
2210 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2211 * translation regimes, because they map reasonably well to each other
2212 * and they can't both be active at the same time.
2213 * This gives us the following list of mmu_idx values:
2215 * NS EL0 (aka NS PL0) stage 1+2
2216 * NS EL1 (aka NS PL1) stage 1+2
2217 * NS EL2 (aka NS PL2)
2218 * S EL3 (aka S PL1)
2219 * S EL0 (aka S PL0)
2220 * S EL1 (not used if EL3 is 32 bit)
2221 * NS EL0+1 stage 2
2223 * (The last of these is an mmu_idx because we want to be able to use the TLB
2224 * for the accesses done as part of a stage 1 page table walk, rather than
2225 * having to walk the stage 2 page table over and over.)
2227 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2228 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2229 * NS EL2 if we ever model a Cortex-R52).
2231 * M profile CPUs are rather different as they do not have a true MMU.
2232 * They have the following different MMU indexes:
2233 * User
2234 * Privileged
2235 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2236 * Privileged, execution priority negative (ditto)
2237 * If the CPU supports the v8M Security Extension then there are also:
2238 * Secure User
2239 * Secure Privileged
2240 * Secure User, execution priority negative
2241 * Secure Privileged, execution priority negative
2243 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2244 * are not quite the same -- different CPU types (most notably M profile
2245 * vs A/R profile) would like to use MMU indexes with different semantics,
2246 * but since we don't ever need to use all of those in a single CPU we
2247 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2248 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2249 * the same for any particular CPU.
2250 * Variables of type ARMMUIdx are always full values, and the core
2251 * index values are in variables of type 'int'.
2253 * Our enumeration includes at the end some entries which are not "true"
2254 * mmu_idx values in that they don't have corresponding TLBs and are only
2255 * valid for doing slow path page table walks.
2257 * The constant names here are patterned after the general style of the names
2258 * of the AT/ATS operations.
2259 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2260 * For M profile we arrange them to have a bit for priv, a bit for negpri
2261 * and a bit for secure.
2263 #define ARM_MMU_IDX_A 0x10 /* A profile */
2264 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2265 #define ARM_MMU_IDX_M 0x40 /* M profile */
2267 /* meanings of the bits for M profile mmu idx values */
2268 #define ARM_MMU_IDX_M_PRIV 0x1
2269 #define ARM_MMU_IDX_M_NEGPRI 0x2
2270 #define ARM_MMU_IDX_M_S 0x4
2272 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2273 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2275 typedef enum ARMMMUIdx {
2276 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2277 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2278 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2279 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2280 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2281 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2282 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2283 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2284 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2285 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2286 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2287 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2288 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2289 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2290 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2291 /* Indexes below here don't have TLBs and are used only for AT system
2292 * instructions or for the first stage of an S12 page table walk.
2294 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2295 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2296 } ARMMMUIdx;
2298 /* Bit macros for the core-mmu-index values for each index,
2299 * for use when calling tlb_flush_by_mmuidx() and friends.
2301 typedef enum ARMMMUIdxBit {
2302 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2303 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2304 ARMMMUIdxBit_S1E2 = 1 << 2,
2305 ARMMMUIdxBit_S1E3 = 1 << 3,
2306 ARMMMUIdxBit_S1SE0 = 1 << 4,
2307 ARMMMUIdxBit_S1SE1 = 1 << 5,
2308 ARMMMUIdxBit_S2NS = 1 << 6,
2309 ARMMMUIdxBit_MUser = 1 << 0,
2310 ARMMMUIdxBit_MPriv = 1 << 1,
2311 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2312 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2313 ARMMMUIdxBit_MSUser = 1 << 4,
2314 ARMMMUIdxBit_MSPriv = 1 << 5,
2315 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2316 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2317 } ARMMMUIdxBit;
2319 #define MMU_USER_IDX 0
2321 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2323 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2326 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2328 if (arm_feature(env, ARM_FEATURE_M)) {
2329 return mmu_idx | ARM_MMU_IDX_M;
2330 } else {
2331 return mmu_idx | ARM_MMU_IDX_A;
2335 /* Return the exception level we're running at if this is our mmu_idx */
2336 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2338 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2339 case ARM_MMU_IDX_A:
2340 return mmu_idx & 3;
2341 case ARM_MMU_IDX_M:
2342 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2343 default:
2344 g_assert_not_reached();
2348 /* Return the MMU index for a v7M CPU in the specified security and
2349 * privilege state
2351 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2352 bool secstate,
2353 bool priv)
2355 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2357 if (priv) {
2358 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2361 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2362 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2365 if (secstate) {
2366 mmu_idx |= ARM_MMU_IDX_M_S;
2369 return mmu_idx;
2372 /* Return the MMU index for a v7M CPU in the specified security state */
2373 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2374 bool secstate)
2376 bool priv = arm_current_el(env) != 0;
2378 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2381 /* Determine the current mmu_idx to use for normal loads/stores */
2382 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2384 int el = arm_current_el(env);
2386 if (arm_feature(env, ARM_FEATURE_M)) {
2387 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2389 return arm_to_core_mmu_idx(mmu_idx);
2392 if (el < 2 && arm_is_secure_below_el3(env)) {
2393 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2395 return el;
2398 /* Indexes used when registering address spaces with cpu_address_space_init */
2399 typedef enum ARMASIdx {
2400 ARMASIdx_NS = 0,
2401 ARMASIdx_S = 1,
2402 } ARMASIdx;
2404 /* Return the Exception Level targeted by debug exceptions. */
2405 static inline int arm_debug_target_el(CPUARMState *env)
2407 bool secure = arm_is_secure(env);
2408 bool route_to_el2 = false;
2410 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2411 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2412 env->cp15.mdcr_el2 & (1 << 8);
2415 if (route_to_el2) {
2416 return 2;
2417 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2418 !arm_el_is_aa64(env, 3) && secure) {
2419 return 3;
2420 } else {
2421 return 1;
2425 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2427 if (arm_is_secure(env)) {
2428 /* MDCR_EL3.SDD disables debug events from Secure state */
2429 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2430 || arm_current_el(env) == 3) {
2431 return false;
2435 if (arm_current_el(env) == arm_debug_target_el(env)) {
2436 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2437 || (env->daif & PSTATE_D)) {
2438 return false;
2441 return true;
2444 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2446 int el = arm_current_el(env);
2448 if (el == 0 && arm_el_is_aa64(env, 1)) {
2449 return aa64_generate_debug_exceptions(env);
2452 if (arm_is_secure(env)) {
2453 int spd;
2455 if (el == 0 && (env->cp15.sder & 1)) {
2456 /* SDER.SUIDEN means debug exceptions from Secure EL0
2457 * are always enabled. Otherwise they are controlled by
2458 * SDCR.SPD like those from other Secure ELs.
2460 return true;
2463 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2464 switch (spd) {
2465 case 1:
2466 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2467 case 0:
2468 /* For 0b00 we return true if external secure invasive debug
2469 * is enabled. On real hardware this is controlled by external
2470 * signals to the core. QEMU always permits debug, and behaves
2471 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2473 return true;
2474 case 2:
2475 return false;
2476 case 3:
2477 return true;
2481 return el != 2;
2484 /* Return true if debugging exceptions are currently enabled.
2485 * This corresponds to what in ARM ARM pseudocode would be
2486 * if UsingAArch32() then
2487 * return AArch32.GenerateDebugExceptions()
2488 * else
2489 * return AArch64.GenerateDebugExceptions()
2490 * We choose to push the if() down into this function for clarity,
2491 * since the pseudocode has it at all callsites except for the one in
2492 * CheckSoftwareStep(), where it is elided because both branches would
2493 * always return the same value.
2495 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2496 * don't yet implement those exception levels or their associated trap bits.
2498 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2500 if (env->aarch64) {
2501 return aa64_generate_debug_exceptions(env);
2502 } else {
2503 return aa32_generate_debug_exceptions(env);
2507 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2508 * implicitly means this always returns false in pre-v8 CPUs.)
2510 static inline bool arm_singlestep_active(CPUARMState *env)
2512 return extract32(env->cp15.mdscr_el1, 0, 1)
2513 && arm_el_is_aa64(env, arm_debug_target_el(env))
2514 && arm_generate_debug_exceptions(env);
2517 static inline bool arm_sctlr_b(CPUARMState *env)
2519 return
2520 /* We need not implement SCTLR.ITD in user-mode emulation, so
2521 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2522 * This lets people run BE32 binaries with "-cpu any".
2524 #ifndef CONFIG_USER_ONLY
2525 !arm_feature(env, ARM_FEATURE_V7) &&
2526 #endif
2527 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2530 /* Return true if the processor is in big-endian mode. */
2531 static bool arm_cpu_data_is_big_endian(CPUARMState *env)
2533 int cur_el;
2535 /* In 32bit endianness is determined by looking at CPSR's E bit */
2536 if (!is_a64(env)) {
2537 return
2538 #ifdef CONFIG_USER_ONLY
2539 /* In system mode, BE32 is modelled in line with the
2540 * architecture (as word-invariant big-endianness), where loads
2541 * and stores are done little endian but from addresses which
2542 * are adjusted by XORing with the appropriate constant. So the
2543 * endianness to use for the raw data access is not affected by
2544 * SCTLR.B.
2545 * In user mode, however, we model BE32 as byte-invariant
2546 * big-endianness (because user-only code cannot tell the
2547 * difference), and so we need to use a data access endianness
2548 * that depends on SCTLR.B.
2550 arm_sctlr_b(env) ||
2551 #endif
2552 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2555 cur_el = arm_current_el(env);
2557 if (cur_el == 0) {
2558 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2561 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2564 #include "exec/cpu-all.h"
2566 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2567 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2568 * We put flags which are shared between 32 and 64 bit mode at the top
2569 * of the word, and flags which apply to only one mode at the bottom.
2571 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2572 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2573 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2574 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2575 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2576 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2577 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2578 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2579 /* Target EL if we take a floating-point-disabled exception */
2580 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2581 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2583 /* Bit usage when in AArch32 state: */
2584 #define ARM_TBFLAG_THUMB_SHIFT 0
2585 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2586 #define ARM_TBFLAG_VECLEN_SHIFT 1
2587 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2588 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2589 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2590 #define ARM_TBFLAG_VFPEN_SHIFT 7
2591 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2592 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2593 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2594 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2595 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2596 /* We store the bottom two bits of the CPAR as TB flags and handle
2597 * checks on the other bits at runtime
2599 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2600 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2601 /* Indicates whether cp register reads and writes by guest code should access
2602 * the secure or nonsecure bank of banked registers; note that this is not
2603 * the same thing as the current security state of the processor!
2605 #define ARM_TBFLAG_NS_SHIFT 19
2606 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2607 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2608 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2609 /* For M profile only, Handler (ie not Thread) mode */
2610 #define ARM_TBFLAG_HANDLER_SHIFT 21
2611 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2613 /* Bit usage when in AArch64 state */
2614 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2615 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2616 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2617 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2619 /* some convenience accessor macros */
2620 #define ARM_TBFLAG_AARCH64_STATE(F) \
2621 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2622 #define ARM_TBFLAG_MMUIDX(F) \
2623 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2624 #define ARM_TBFLAG_SS_ACTIVE(F) \
2625 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2626 #define ARM_TBFLAG_PSTATE_SS(F) \
2627 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2628 #define ARM_TBFLAG_FPEXC_EL(F) \
2629 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2630 #define ARM_TBFLAG_THUMB(F) \
2631 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2632 #define ARM_TBFLAG_VECLEN(F) \
2633 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2634 #define ARM_TBFLAG_VECSTRIDE(F) \
2635 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2636 #define ARM_TBFLAG_VFPEN(F) \
2637 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2638 #define ARM_TBFLAG_CONDEXEC(F) \
2639 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2640 #define ARM_TBFLAG_SCTLR_B(F) \
2641 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2642 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2643 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2644 #define ARM_TBFLAG_NS(F) \
2645 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2646 #define ARM_TBFLAG_BE_DATA(F) \
2647 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2648 #define ARM_TBFLAG_HANDLER(F) \
2649 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2650 #define ARM_TBFLAG_TBI0(F) \
2651 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2652 #define ARM_TBFLAG_TBI1(F) \
2653 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2655 static inline bool bswap_code(bool sctlr_b)
2657 #ifdef CONFIG_USER_ONLY
2658 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2659 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2660 * would also end up as a mixed-endian mode with BE code, LE data.
2662 return
2663 #ifdef TARGET_WORDS_BIGENDIAN
2665 #endif
2666 sctlr_b;
2667 #else
2668 /* All code access in ARM is little endian, and there are no loaders
2669 * doing swaps that need to be reversed
2671 return 0;
2672 #endif
2675 /* Return the exception level to which FP-disabled exceptions should
2676 * be taken, or 0 if FP is enabled.
2678 static inline int fp_exception_el(CPUARMState *env)
2680 int fpen;
2681 int cur_el = arm_current_el(env);
2683 /* CPACR and the CPTR registers don't exist before v6, so FP is
2684 * always accessible
2686 if (!arm_feature(env, ARM_FEATURE_V6)) {
2687 return 0;
2690 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2691 * 0, 2 : trap EL0 and EL1/PL1 accesses
2692 * 1 : trap only EL0 accesses
2693 * 3 : trap no accesses
2695 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2696 switch (fpen) {
2697 case 0:
2698 case 2:
2699 if (cur_el == 0 || cur_el == 1) {
2700 /* Trap to PL1, which might be EL1 or EL3 */
2701 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2702 return 3;
2704 return 1;
2706 if (cur_el == 3 && !is_a64(env)) {
2707 /* Secure PL1 running at EL3 */
2708 return 3;
2710 break;
2711 case 1:
2712 if (cur_el == 0) {
2713 return 1;
2715 break;
2716 case 3:
2717 break;
2720 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2721 * check because zero bits in the registers mean "don't trap".
2724 /* CPTR_EL2 : present in v7VE or v8 */
2725 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2726 && !arm_is_secure_below_el3(env)) {
2727 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2728 return 2;
2731 /* CPTR_EL3 : present in v8 */
2732 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2733 /* Trap all FP ops to EL3 */
2734 return 3;
2737 return 0;
2740 #ifdef CONFIG_USER_ONLY
2741 /* get_user and put_user respectively return and expect data according
2742 * to TARGET_WORDS_BIGENDIAN, but ldrex/strex emulation needs to take
2743 * into account CPSR.E.
2745 * TARGET_WORDS_BIGENDIAN CPSR.E need swap?
2746 * LE/LE no 0 no
2747 * LE/BE no 1 yes
2748 * BE8/LE yes 0 yes
2749 * BE8/BE yes 1 no
2750 * BE32/BE yes 1 0 no
2751 * (BE32/LE) yes 1 1 yes
2753 * Officially, BE32 with CPSR.E=1 has "unpredictable" results. We
2754 * implement it as big-endian code, little-endian data.
2756 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2758 return
2759 #ifdef TARGET_WORDS_BIGENDIAN
2761 #endif
2762 arm_sctlr_b(env) ^
2763 arm_cpu_data_is_big_endian(env);
2765 #endif
2767 #ifndef CONFIG_USER_ONLY
2769 * arm_regime_tbi0:
2770 * @env: CPUARMState
2771 * @mmu_idx: MMU index indicating required translation regime
2773 * Extracts the TBI0 value from the appropriate TCR for the current EL
2775 * Returns: the TBI0 value.
2777 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2780 * arm_regime_tbi1:
2781 * @env: CPUARMState
2782 * @mmu_idx: MMU index indicating required translation regime
2784 * Extracts the TBI1 value from the appropriate TCR for the current EL
2786 * Returns: the TBI1 value.
2788 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2789 #else
2790 /* We can't handle tagged addresses properly in user-only mode */
2791 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2793 return 0;
2796 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2798 return 0;
2800 #endif
2802 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2803 target_ulong *cs_base, uint32_t *flags)
2805 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2806 if (is_a64(env)) {
2807 *pc = env->pc;
2808 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2809 /* Get control bits for tagged addresses */
2810 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2811 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2812 } else {
2813 *pc = env->regs[15];
2814 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2815 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2816 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2817 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2818 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2819 if (!(access_secure_reg(env))) {
2820 *flags |= ARM_TBFLAG_NS_MASK;
2822 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2823 || arm_el_is_aa64(env, 1)) {
2824 *flags |= ARM_TBFLAG_VFPEN_MASK;
2826 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2827 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2830 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2832 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2833 * states defined in the ARM ARM for software singlestep:
2834 * SS_ACTIVE PSTATE.SS State
2835 * 0 x Inactive (the TB flag for SS is always 0)
2836 * 1 0 Active-pending
2837 * 1 1 Active-not-pending
2839 if (arm_singlestep_active(env)) {
2840 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2841 if (is_a64(env)) {
2842 if (env->pstate & PSTATE_SS) {
2843 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2845 } else {
2846 if (env->uncached_cpsr & PSTATE_SS) {
2847 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2851 if (arm_cpu_data_is_big_endian(env)) {
2852 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2854 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2856 if (arm_v7m_is_handler_mode(env)) {
2857 *flags |= ARM_TBFLAG_HANDLER_MASK;
2860 *cs_base = 0;
2863 enum {
2864 QEMU_PSCI_CONDUIT_DISABLED = 0,
2865 QEMU_PSCI_CONDUIT_SMC = 1,
2866 QEMU_PSCI_CONDUIT_HVC = 2,
2869 #ifndef CONFIG_USER_ONLY
2870 /* Return the address space index to use for a memory access */
2871 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2873 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2876 /* Return the AddressSpace to use for a memory access
2877 * (which depends on whether the access is S or NS, and whether
2878 * the board gave us a separate AddressSpace for S accesses).
2880 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2882 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2884 #endif
2887 * arm_register_el_change_hook:
2888 * Register a hook function which will be called back whenever this
2889 * CPU changes exception level or mode. The hook function will be
2890 * passed a pointer to the ARMCPU and the opaque data pointer passed
2891 * to this function when the hook was registered.
2893 * Note that we currently only support registering a single hook function,
2894 * and will assert if this function is called twice.
2895 * This facility is intended for the use of the GICv3 emulation.
2897 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2898 void *opaque);
2901 * arm_get_el_change_hook_opaque:
2902 * Return the opaque data that will be used by the el_change_hook
2903 * for this CPU.
2905 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2907 return cpu->el_change_hook_opaque;
2910 #endif