qmp: qmp-events.txt: add missing doc for the SUSPEND event
[qemu/ar7.git] / target-arm / helper.c
blobdceaa95c80272217ad94649134e3f586f35191f4
1 #include "cpu.h"
2 #include "gdbstub.h"
3 #include "helper.h"
4 #include "host-utils.h"
5 #include "sysemu.h"
6 #include "bitops.h"
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 target_phys_addr_t *phys_ptr, int *prot,
12 target_ulong *page_size);
13 #endif
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
17 int nregs;
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
39 return 0;
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
44 int nregs;
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
64 return 0;
67 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
69 env->cp15.c3 = value;
70 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
71 return 0;
74 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
76 if (env->cp15.c13_fcse != value) {
77 /* Unlike real hardware the qemu TLB uses virtual addresses,
78 * not modified virtual addresses, so this causes a TLB flush.
80 tlb_flush(env, 1);
81 env->cp15.c13_fcse = value;
83 return 0;
85 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
86 uint64_t value)
88 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
89 /* For VMSA (when not using the LPAE long descriptor page table
90 * format) this register includes the ASID, so do a TLB flush.
91 * For PMSA it is purely a process ID and no action is needed.
93 tlb_flush(env, 1);
95 env->cp15.c13_context = value;
96 return 0;
99 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
100 uint64_t value)
102 /* Invalidate all (TLBIALL) */
103 tlb_flush(env, 1);
104 return 0;
107 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
108 uint64_t value)
110 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
111 tlb_flush_page(env, value & TARGET_PAGE_MASK);
112 return 0;
115 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
116 uint64_t value)
118 /* Invalidate by ASID (TLBIASID) */
119 tlb_flush(env, value == 0);
120 return 0;
123 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
124 uint64_t value)
126 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
127 tlb_flush_page(env, value & TARGET_PAGE_MASK);
128 return 0;
131 static const ARMCPRegInfo cp_reginfo[] = {
132 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
133 * version" bits will read as a reserved value, which should cause
134 * Linux to not try to use the debug hardware.
136 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
137 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
138 /* MMU Domain access control / MPU write buffer control */
139 { .name = "DACR", .cp = 15,
140 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
141 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
142 .resetvalue = 0, .writefn = dacr_write },
143 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
144 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
145 .resetvalue = 0, .writefn = fcse_write },
146 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
147 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
148 .resetvalue = 0, .writefn = contextidr_write },
149 /* ??? This covers not just the impdef TLB lockdown registers but also
150 * some v7VMSA registers relating to TEX remap, so it is overly broad.
152 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
153 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
154 /* MMU TLB control. Note that the wildcarding means we cover not just
155 * the unified TLB ops but also the dside/iside/inner-shareable variants.
157 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
158 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
159 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
160 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
161 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
162 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
163 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
164 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
165 /* Cache maintenance ops; some of this space may be overridden later. */
166 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
167 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
168 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
169 REGINFO_SENTINEL
172 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
173 /* Not all pre-v6 cores implemented this WFI, so this is slightly
174 * over-broad.
176 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
177 .access = PL1_W, .type = ARM_CP_WFI },
178 REGINFO_SENTINEL
181 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
182 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
183 * is UNPREDICTABLE; we choose to NOP as most implementations do).
185 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
186 .access = PL1_W, .type = ARM_CP_WFI },
187 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
188 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
189 * OMAPCP will override this space.
191 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
192 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
193 .resetvalue = 0 },
194 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
195 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
196 .resetvalue = 0 },
197 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
198 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
200 REGINFO_SENTINEL
203 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
205 if (env->cp15.c1_coproc != value) {
206 env->cp15.c1_coproc = value;
207 /* ??? Is this safe when called from within a TB? */
208 tb_flush(env);
210 return 0;
213 static const ARMCPRegInfo v6_cp_reginfo[] = {
214 /* prefetch by MVA in v6, NOP in v7 */
215 { .name = "MVA_prefetch",
216 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
217 .access = PL1_W, .type = ARM_CP_NOP },
218 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
219 .access = PL0_W, .type = ARM_CP_NOP },
220 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
221 .access = PL0_W, .type = ARM_CP_NOP },
222 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
223 .access = PL0_W, .type = ARM_CP_NOP },
224 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
226 .resetvalue = 0, },
227 /* Watchpoint Fault Address Register : should actually only be present
228 * for 1136, 1176, 11MPCore.
230 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
231 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
232 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
233 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
234 .resetvalue = 0, .writefn = cpacr_write },
235 REGINFO_SENTINEL
238 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
239 uint64_t *value)
241 /* Generic performance monitor register read function for where
242 * user access may be allowed by PMUSERENR.
244 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
245 return EXCP_UDEF;
247 *value = CPREG_FIELD32(env, ri);
248 return 0;
251 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
252 uint64_t value)
254 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
255 return EXCP_UDEF;
257 /* only the DP, X, D and E bits are writable */
258 env->cp15.c9_pmcr &= ~0x39;
259 env->cp15.c9_pmcr |= (value & 0x39);
260 return 0;
263 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
264 uint64_t value)
266 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
267 return EXCP_UDEF;
269 value &= (1 << 31);
270 env->cp15.c9_pmcnten |= value;
271 return 0;
274 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
275 uint64_t value)
277 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
278 return EXCP_UDEF;
280 value &= (1 << 31);
281 env->cp15.c9_pmcnten &= ~value;
282 return 0;
285 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
286 uint64_t value)
288 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
289 return EXCP_UDEF;
291 env->cp15.c9_pmovsr &= ~value;
292 return 0;
295 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
298 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
299 return EXCP_UDEF;
301 env->cp15.c9_pmxevtyper = value & 0xff;
302 return 0;
305 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
306 uint64_t value)
308 env->cp15.c9_pmuserenr = value & 1;
309 return 0;
312 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
313 uint64_t value)
315 /* We have no event counters so only the C bit can be changed */
316 value &= (1 << 31);
317 env->cp15.c9_pminten |= value;
318 return 0;
321 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 uint64_t value)
324 value &= (1 << 31);
325 env->cp15.c9_pminten &= ~value;
326 return 0;
329 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
330 uint64_t *value)
332 ARMCPU *cpu = arm_env_get_cpu(env);
333 *value = cpu->ccsidr[env->cp15.c0_cssel];
334 return 0;
337 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
338 uint64_t value)
340 env->cp15.c0_cssel = value & 0xf;
341 return 0;
344 static const ARMCPRegInfo v7_cp_reginfo[] = {
345 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
346 * debug components
348 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
349 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
350 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
351 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
352 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
353 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
354 .access = PL1_W, .type = ARM_CP_NOP },
355 /* Performance monitors are implementation defined in v7,
356 * but with an ARM recommended set of registers, which we
357 * follow (although we don't actually implement any counters)
359 * Performance registers fall into three categories:
360 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
361 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
362 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
363 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
364 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
366 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
367 .access = PL0_RW, .resetvalue = 0,
368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
369 .readfn = pmreg_read, .writefn = pmcntenset_write },
370 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
371 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
372 .readfn = pmreg_read, .writefn = pmcntenclr_write },
373 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
374 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
375 .readfn = pmreg_read, .writefn = pmovsr_write },
376 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
377 * respect PMUSERENR.
379 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
380 .access = PL0_W, .type = ARM_CP_NOP },
381 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
382 * We choose to RAZ/WI. XXX should respect PMUSERENR.
384 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
385 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
386 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
387 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
388 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
389 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
390 .access = PL0_RW,
391 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
392 .readfn = pmreg_read, .writefn = pmxevtyper_write },
393 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
394 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
395 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
396 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R | PL1_RW,
398 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
399 .resetvalue = 0,
400 .writefn = pmuserenr_write },
401 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
402 .access = PL1_RW,
403 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
404 .resetvalue = 0,
405 .writefn = pmintenset_write },
406 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
407 .access = PL1_RW,
408 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
409 .resetvalue = 0,
410 .writefn = pmintenclr_write },
411 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
413 .resetvalue = 0, },
414 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
415 .access = PL1_R, .readfn = ccsidr_read },
416 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
418 .writefn = csselr_write, .resetvalue = 0 },
419 /* Auxiliary ID register: this actually has an IMPDEF value but for now
420 * just RAZ for all cores:
422 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
424 REGINFO_SENTINEL
427 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
429 value &= 1;
430 env->teecr = value;
431 return 0;
434 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
435 uint64_t *value)
437 /* This is a helper function because the user access rights
438 * depend on the value of the TEECR.
440 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
441 return EXCP_UDEF;
443 *value = env->teehbr;
444 return 0;
447 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 uint64_t value)
450 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
451 return EXCP_UDEF;
453 env->teehbr = value;
454 return 0;
457 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
458 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
459 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
460 .resetvalue = 0,
461 .writefn = teecr_write },
462 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
463 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
464 .resetvalue = 0,
465 .readfn = teehbr_read, .writefn = teehbr_write },
466 REGINFO_SENTINEL
469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
470 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
471 .access = PL0_RW,
472 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
473 .resetvalue = 0 },
474 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
475 .access = PL0_R|PL1_W,
476 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
477 .resetvalue = 0 },
478 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
479 .access = PL1_RW,
480 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
481 .resetvalue = 0 },
482 REGINFO_SENTINEL
485 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
486 /* Dummy implementation: RAZ/WI the whole crn=14 space */
487 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
488 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
489 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
490 REGINFO_SENTINEL
493 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
495 if (arm_feature(env, ARM_FEATURE_LPAE)) {
496 env->cp15.c7_par = value;
497 } else if (arm_feature(env, ARM_FEATURE_V7)) {
498 env->cp15.c7_par = value & 0xfffff6ff;
499 } else {
500 env->cp15.c7_par = value & 0xfffff1ff;
502 return 0;
505 #ifndef CONFIG_USER_ONLY
506 /* get_phys_addr() isn't present for user-mode-only targets */
508 /* Return true if extended addresses are enabled, ie this is an
509 * LPAE implementation and we are using the long-descriptor translation
510 * table format because the TTBCR EAE bit is set.
512 static inline bool extended_addresses_enabled(CPUARMState *env)
514 return arm_feature(env, ARM_FEATURE_LPAE)
515 && (env->cp15.c2_control & (1 << 31));
518 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
520 target_phys_addr_t phys_addr;
521 target_ulong page_size;
522 int prot;
523 int ret, is_user = ri->opc2 & 2;
524 int access_type = ri->opc2 & 1;
526 if (ri->opc2 & 4) {
527 /* Other states are only available with TrustZone */
528 return EXCP_UDEF;
530 ret = get_phys_addr(env, value, access_type, is_user,
531 &phys_addr, &prot, &page_size);
532 if (extended_addresses_enabled(env)) {
533 /* ret is a DFSR/IFSR value for the long descriptor
534 * translation table format, but with WnR always clear.
535 * Convert it to a 64-bit PAR.
537 uint64_t par64 = (1 << 11); /* LPAE bit always set */
538 if (ret == 0) {
539 par64 |= phys_addr & ~0xfffULL;
540 /* We don't set the ATTR or SH fields in the PAR. */
541 } else {
542 par64 |= 1; /* F */
543 par64 |= (ret & 0x3f) << 1; /* FS */
544 /* Note that S2WLK and FSTAGE are always zero, because we don't
545 * implement virtualization and therefore there can't be a stage 2
546 * fault.
549 env->cp15.c7_par = par64;
550 env->cp15.c7_par_hi = par64 >> 32;
551 } else {
552 /* ret is a DFSR/IFSR value for the short descriptor
553 * translation table format (with WnR always clear).
554 * Convert it to a 32-bit PAR.
556 if (ret == 0) {
557 /* We do not set any attribute bits in the PAR */
558 if (page_size == (1 << 24)
559 && arm_feature(env, ARM_FEATURE_V7)) {
560 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
561 } else {
562 env->cp15.c7_par = phys_addr & 0xfffff000;
564 } else {
565 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
566 ((ret & (12 << 1)) >> 6) |
567 ((ret & 0xf) << 1) | 1;
569 env->cp15.c7_par_hi = 0;
571 return 0;
573 #endif
575 static const ARMCPRegInfo vapa_cp_reginfo[] = {
576 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
577 .access = PL1_RW, .resetvalue = 0,
578 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
579 .writefn = par_write },
580 #ifndef CONFIG_USER_ONLY
581 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
582 .access = PL1_W, .writefn = ats_write },
583 #endif
584 REGINFO_SENTINEL
587 /* Return basic MPU access permission bits. */
588 static uint32_t simple_mpu_ap_bits(uint32_t val)
590 uint32_t ret;
591 uint32_t mask;
592 int i;
593 ret = 0;
594 mask = 3;
595 for (i = 0; i < 16; i += 2) {
596 ret |= (val >> i) & mask;
597 mask <<= 2;
599 return ret;
602 /* Pad basic MPU access permission bits to extended format. */
603 static uint32_t extended_mpu_ap_bits(uint32_t val)
605 uint32_t ret;
606 uint32_t mask;
607 int i;
608 ret = 0;
609 mask = 3;
610 for (i = 0; i < 16; i += 2) {
611 ret |= (val & mask) << i;
612 mask <<= 2;
614 return ret;
617 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
620 env->cp15.c5_data = extended_mpu_ap_bits(value);
621 return 0;
624 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t *value)
627 *value = simple_mpu_ap_bits(env->cp15.c5_data);
628 return 0;
631 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
634 env->cp15.c5_insn = extended_mpu_ap_bits(value);
635 return 0;
638 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
639 uint64_t *value)
641 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
642 return 0;
645 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
646 uint64_t *value)
648 if (ri->crm > 8) {
649 return EXCP_UDEF;
651 *value = env->cp15.c6_region[ri->crm];
652 return 0;
655 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
658 if (ri->crm > 8) {
659 return EXCP_UDEF;
661 env->cp15.c6_region[ri->crm] = value;
662 return 0;
665 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
666 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
667 .access = PL1_RW,
668 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
669 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
670 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
671 .access = PL1_RW,
672 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
673 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
674 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
675 .access = PL1_RW,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
677 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
678 .access = PL1_RW,
679 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
680 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
681 .access = PL1_RW,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
683 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
684 .access = PL1_RW,
685 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
686 /* Protection region base and size registers */
687 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
688 .opc2 = CP_ANY, .access = PL1_RW,
689 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
690 REGINFO_SENTINEL
693 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 if (arm_feature(env, ARM_FEATURE_LPAE)) {
697 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
698 /* With LPAE the TTBCR could result in a change of ASID
699 * via the TTBCR.A1 bit, so do a TLB flush.
701 tlb_flush(env, 1);
702 } else {
703 value &= 7;
705 /* Note that we always calculate c2_mask and c2_base_mask, but
706 * they are only used for short-descriptor tables (ie if EAE is 0);
707 * for long-descriptor tables the TTBCR fields are used differently
708 * and the c2_mask and c2_base_mask values are meaningless.
710 env->cp15.c2_control = value;
711 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
712 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
713 return 0;
716 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
718 env->cp15.c2_base_mask = 0xffffc000u;
719 env->cp15.c2_control = 0;
720 env->cp15.c2_mask = 0;
723 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
724 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
725 .access = PL1_RW,
726 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
727 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
728 .access = PL1_RW,
729 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
730 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL1_RW,
732 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
733 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
734 .access = PL1_RW,
735 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
736 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
737 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
738 .resetfn = vmsa_ttbcr_reset,
739 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
740 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
741 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
742 .resetvalue = 0, },
743 REGINFO_SENTINEL
746 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
747 uint64_t value)
749 env->cp15.c15_ticonfig = value & 0xe7;
750 /* The OS_TYPE bit in this register changes the reported CPUID! */
751 env->cp15.c0_cpuid = (value & (1 << 5)) ?
752 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
753 return 0;
756 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
759 env->cp15.c15_threadid = value & 0xffff;
760 return 0;
763 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t value)
766 /* Wait-for-interrupt (deprecated) */
767 cpu_interrupt(env, CPU_INTERRUPT_HALT);
768 return 0;
771 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
774 /* On OMAP there are registers indicating the max/min index of dcache lines
775 * containing a dirty line; cache flush operations have to reset these.
777 env->cp15.c15_i_max = 0x000;
778 env->cp15.c15_i_min = 0xff0;
779 return 0;
782 static const ARMCPRegInfo omap_cp_reginfo[] = {
783 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
784 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
785 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
786 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
787 .access = PL1_RW, .type = ARM_CP_NOP },
788 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
789 .access = PL1_RW,
790 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
791 .writefn = omap_ticonfig_write },
792 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
793 .access = PL1_RW,
794 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
795 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
796 .access = PL1_RW, .resetvalue = 0xff0,
797 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
798 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
799 .access = PL1_RW,
800 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
801 .writefn = omap_threadid_write },
802 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
803 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
804 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
805 /* TODO: Peripheral port remap register:
806 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
807 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
808 * when MMU is off.
810 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
811 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
812 .writefn = omap_cachemaint_write },
813 { .name = "C9", .cp = 15, .crn = 9,
814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
815 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
816 REGINFO_SENTINEL
819 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 uint64_t value)
822 value &= 0x3fff;
823 if (env->cp15.c15_cpar != value) {
824 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
825 tb_flush(env);
826 env->cp15.c15_cpar = value;
828 return 0;
831 static const ARMCPRegInfo xscale_cp_reginfo[] = {
832 { .name = "XSCALE_CPAR",
833 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
834 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
835 .writefn = xscale_cpar_write, },
836 { .name = "XSCALE_AUXCR",
837 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
838 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
839 .resetvalue = 0, },
840 REGINFO_SENTINEL
843 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
844 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
845 * implementation of this implementation-defined space.
846 * Ideally this should eventually disappear in favour of actually
847 * implementing the correct behaviour for all cores.
849 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
850 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
851 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
852 REGINFO_SENTINEL
855 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
856 /* Cache status: RAZ because we have no cache so it's always clean */
857 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
859 REGINFO_SENTINEL
862 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
863 /* We never have a a block transfer operation in progress */
864 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
865 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
866 /* The cache ops themselves: these all NOP for QEMU */
867 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
868 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
869 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
870 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
871 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
872 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
873 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
874 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
875 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
876 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
877 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
878 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
879 REGINFO_SENTINEL
882 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
883 /* The cache test-and-clean instructions always return (1 << 30)
884 * to indicate that there are no dirty cache lines.
886 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
887 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
888 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
889 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
890 REGINFO_SENTINEL
893 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
894 /* Ignore ReadBuffer accesses */
895 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
897 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
898 .resetvalue = 0 },
899 REGINFO_SENTINEL
902 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t *value)
905 uint32_t mpidr = env->cpu_index;
906 /* We don't support setting cluster ID ([8..11])
907 * so these bits always RAZ.
909 if (arm_feature(env, ARM_FEATURE_V7MP)) {
910 mpidr |= (1 << 31);
911 /* Cores which are uniprocessor (non-coherent)
912 * but still implement the MP extensions set
913 * bit 30. (For instance, A9UP.) However we do
914 * not currently model any of those cores.
917 *value = mpidr;
918 return 0;
921 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
922 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
923 .access = PL1_R, .readfn = mpidr_read },
924 REGINFO_SENTINEL
927 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
929 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
930 return 0;
933 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
935 env->cp15.c7_par_hi = value >> 32;
936 env->cp15.c7_par = value;
937 return 0;
940 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
942 env->cp15.c7_par_hi = 0;
943 env->cp15.c7_par = 0;
946 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
947 uint64_t *value)
949 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
950 return 0;
953 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
954 uint64_t value)
956 env->cp15.c2_base0_hi = value >> 32;
957 env->cp15.c2_base0 = value;
958 /* Writes to the 64 bit format TTBRs may change the ASID */
959 tlb_flush(env, 1);
960 return 0;
963 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
965 env->cp15.c2_base0_hi = 0;
966 env->cp15.c2_base0 = 0;
969 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
970 uint64_t *value)
972 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
973 return 0;
976 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
977 uint64_t value)
979 env->cp15.c2_base1_hi = value >> 32;
980 env->cp15.c2_base1 = value;
981 return 0;
984 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
986 env->cp15.c2_base1_hi = 0;
987 env->cp15.c2_base1 = 0;
990 static const ARMCPRegInfo lpae_cp_reginfo[] = {
991 /* NOP AMAIR0/1: the override is because these clash with the rather
992 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
994 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
995 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
996 .resetvalue = 0 },
997 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
998 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
999 .resetvalue = 0 },
1000 /* 64 bit access versions of the (dummy) debug registers */
1001 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1002 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1003 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1004 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1005 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1006 .access = PL1_RW, .type = ARM_CP_64BIT,
1007 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1008 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1009 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1010 .writefn = ttbr064_write, .resetfn = ttbr064_reset },
1011 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1012 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1013 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1014 REGINFO_SENTINEL
1017 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1019 env->cp15.c1_sys = value;
1020 /* ??? Lots of these bits are not implemented. */
1021 /* This may enable/disable the MMU, so do a TLB flush. */
1022 tlb_flush(env, 1);
1023 return 0;
1026 void register_cp_regs_for_features(ARMCPU *cpu)
1028 /* Register all the coprocessor registers based on feature bits */
1029 CPUARMState *env = &cpu->env;
1030 if (arm_feature(env, ARM_FEATURE_M)) {
1031 /* M profile has no coprocessor registers */
1032 return;
1035 define_arm_cp_regs(cpu, cp_reginfo);
1036 if (arm_feature(env, ARM_FEATURE_V6)) {
1037 /* The ID registers all have impdef reset values */
1038 ARMCPRegInfo v6_idregs[] = {
1039 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1040 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1041 .resetvalue = cpu->id_pfr0 },
1042 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1043 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1044 .resetvalue = cpu->id_pfr1 },
1045 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1046 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1047 .resetvalue = cpu->id_dfr0 },
1048 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1049 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1050 .resetvalue = cpu->id_afr0 },
1051 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1052 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1053 .resetvalue = cpu->id_mmfr0 },
1054 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1055 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1056 .resetvalue = cpu->id_mmfr1 },
1057 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1058 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1059 .resetvalue = cpu->id_mmfr2 },
1060 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1061 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1062 .resetvalue = cpu->id_mmfr3 },
1063 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1064 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1065 .resetvalue = cpu->id_isar0 },
1066 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1067 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1068 .resetvalue = cpu->id_isar1 },
1069 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1070 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1071 .resetvalue = cpu->id_isar2 },
1072 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1073 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1074 .resetvalue = cpu->id_isar3 },
1075 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1076 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1077 .resetvalue = cpu->id_isar4 },
1078 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1079 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1080 .resetvalue = cpu->id_isar5 },
1081 /* 6..7 are as yet unallocated and must RAZ */
1082 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1083 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1084 .resetvalue = 0 },
1085 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1086 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1087 .resetvalue = 0 },
1088 REGINFO_SENTINEL
1090 define_arm_cp_regs(cpu, v6_idregs);
1091 define_arm_cp_regs(cpu, v6_cp_reginfo);
1092 } else {
1093 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1095 if (arm_feature(env, ARM_FEATURE_V6K)) {
1096 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1098 if (arm_feature(env, ARM_FEATURE_V7)) {
1099 /* v7 performance monitor control register: same implementor
1100 * field as main ID register, and we implement no event counters.
1102 ARMCPRegInfo pmcr = {
1103 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1104 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1105 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1106 .readfn = pmreg_read, .writefn = pmcr_write
1108 ARMCPRegInfo clidr = {
1109 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1110 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1112 define_one_arm_cp_reg(cpu, &pmcr);
1113 define_one_arm_cp_reg(cpu, &clidr);
1114 define_arm_cp_regs(cpu, v7_cp_reginfo);
1115 } else {
1116 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1118 if (arm_feature(env, ARM_FEATURE_MPU)) {
1119 /* These are the MPU registers prior to PMSAv6. Any new
1120 * PMSA core later than the ARM946 will require that we
1121 * implement the PMSAv6 or PMSAv7 registers, which are
1122 * completely different.
1124 assert(!arm_feature(env, ARM_FEATURE_V6));
1125 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1126 } else {
1127 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1129 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1130 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1132 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1133 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1135 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1136 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1138 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1139 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1141 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1142 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1144 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1145 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1147 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1148 define_arm_cp_regs(cpu, omap_cp_reginfo);
1150 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1151 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1153 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1154 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1156 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1157 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1159 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1160 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1162 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1163 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1165 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1166 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1167 * be read-only (ie write causes UNDEF exception).
1170 ARMCPRegInfo id_cp_reginfo[] = {
1171 /* Note that the MIDR isn't a simple constant register because
1172 * of the TI925 behaviour where writes to another register can
1173 * cause the MIDR value to change.
1175 { .name = "MIDR",
1176 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1177 .access = PL1_R, .resetvalue = cpu->midr,
1178 .writefn = arm_cp_write_ignore,
1179 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1180 { .name = "CTR",
1181 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1182 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1183 { .name = "TCMTR",
1184 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1185 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1186 { .name = "TLBTR",
1187 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1188 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1189 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1190 { .name = "DUMMY",
1191 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1192 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1193 { .name = "DUMMY",
1194 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1195 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1196 { .name = "DUMMY",
1197 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1198 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1199 { .name = "DUMMY",
1200 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1201 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1202 { .name = "DUMMY",
1203 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1204 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1205 REGINFO_SENTINEL
1207 ARMCPRegInfo crn0_wi_reginfo = {
1208 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1209 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1210 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1212 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1213 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1214 ARMCPRegInfo *r;
1215 /* Register the blanket "writes ignored" value first to cover the
1216 * whole space. Then define the specific ID registers, but update
1217 * their access field to allow write access, so that they ignore
1218 * writes rather than causing them to UNDEF.
1220 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1221 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1222 r->access = PL1_RW;
1223 define_one_arm_cp_reg(cpu, r);
1225 } else {
1226 /* Just register the standard ID registers (read-only, meaning
1227 * that writes will UNDEF).
1229 define_arm_cp_regs(cpu, id_cp_reginfo);
1233 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1234 ARMCPRegInfo auxcr = {
1235 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1236 .access = PL1_RW, .type = ARM_CP_CONST,
1237 .resetvalue = cpu->reset_auxcr
1239 define_one_arm_cp_reg(cpu, &auxcr);
1242 /* Generic registers whose values depend on the implementation */
1244 ARMCPRegInfo sctlr = {
1245 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1246 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1247 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1249 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1250 /* Normally we would always end the TB on an SCTLR write, but Linux
1251 * arch/arm/mach-pxa/sleep.S expects two instructions following
1252 * an MMU enable to execute from cache. Imitate this behaviour.
1254 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1256 define_one_arm_cp_reg(cpu, &sctlr);
1260 ARMCPU *cpu_arm_init(const char *cpu_model)
1262 ARMCPU *cpu;
1263 CPUARMState *env;
1264 static int inited = 0;
1266 if (!object_class_by_name(cpu_model)) {
1267 return NULL;
1269 cpu = ARM_CPU(object_new(cpu_model));
1270 env = &cpu->env;
1271 env->cpu_model_str = cpu_model;
1272 arm_cpu_realize(cpu);
1274 if (tcg_enabled() && !inited) {
1275 inited = 1;
1276 arm_translate_init();
1279 cpu_reset(CPU(cpu));
1280 if (arm_feature(env, ARM_FEATURE_NEON)) {
1281 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1282 51, "arm-neon.xml", 0);
1283 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1284 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1285 35, "arm-vfp3.xml", 0);
1286 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1287 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1288 19, "arm-vfp.xml", 0);
1290 qemu_init_vcpu(env);
1291 return cpu;
1294 typedef struct ARMCPUListState {
1295 fprintf_function cpu_fprintf;
1296 FILE *file;
1297 } ARMCPUListState;
1299 /* Sort alphabetically by type name, except for "any". */
1300 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1302 ObjectClass *class_a = (ObjectClass *)a;
1303 ObjectClass *class_b = (ObjectClass *)b;
1304 const char *name_a, *name_b;
1306 name_a = object_class_get_name(class_a);
1307 name_b = object_class_get_name(class_b);
1308 if (strcmp(name_a, "any") == 0) {
1309 return 1;
1310 } else if (strcmp(name_b, "any") == 0) {
1311 return -1;
1312 } else {
1313 return strcmp(name_a, name_b);
1317 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1319 ObjectClass *oc = data;
1320 ARMCPUListState *s = user_data;
1322 (*s->cpu_fprintf)(s->file, " %s\n",
1323 object_class_get_name(oc));
1326 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1328 ARMCPUListState s = {
1329 .file = f,
1330 .cpu_fprintf = cpu_fprintf,
1332 GSList *list;
1334 list = object_class_get_list(TYPE_ARM_CPU, false);
1335 list = g_slist_sort(list, arm_cpu_list_compare);
1336 (*cpu_fprintf)(f, "Available CPUs:\n");
1337 g_slist_foreach(list, arm_cpu_list_entry, &s);
1338 g_slist_free(list);
1341 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1342 const ARMCPRegInfo *r, void *opaque)
1344 /* Define implementations of coprocessor registers.
1345 * We store these in a hashtable because typically
1346 * there are less than 150 registers in a space which
1347 * is 16*16*16*8*8 = 262144 in size.
1348 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1349 * If a register is defined twice then the second definition is
1350 * used, so this can be used to define some generic registers and
1351 * then override them with implementation specific variations.
1352 * At least one of the original and the second definition should
1353 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1354 * against accidental use.
1356 int crm, opc1, opc2;
1357 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1358 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1359 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1360 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1361 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1362 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1363 /* 64 bit registers have only CRm and Opc1 fields */
1364 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1365 /* Check that the register definition has enough info to handle
1366 * reads and writes if they are permitted.
1368 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1369 if (r->access & PL3_R) {
1370 assert(r->fieldoffset || r->readfn);
1372 if (r->access & PL3_W) {
1373 assert(r->fieldoffset || r->writefn);
1376 /* Bad type field probably means missing sentinel at end of reg list */
1377 assert(cptype_valid(r->type));
1378 for (crm = crmmin; crm <= crmmax; crm++) {
1379 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1380 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1381 uint32_t *key = g_new(uint32_t, 1);
1382 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1383 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1384 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1385 r2->opaque = opaque;
1386 /* Make sure reginfo passed to helpers for wildcarded regs
1387 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1389 r2->crm = crm;
1390 r2->opc1 = opc1;
1391 r2->opc2 = opc2;
1392 /* Overriding of an existing definition must be explicitly
1393 * requested.
1395 if (!(r->type & ARM_CP_OVERRIDE)) {
1396 ARMCPRegInfo *oldreg;
1397 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1398 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1399 fprintf(stderr, "Register redefined: cp=%d %d bit "
1400 "crn=%d crm=%d opc1=%d opc2=%d, "
1401 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1402 r2->crn, r2->crm, r2->opc1, r2->opc2,
1403 oldreg->name, r2->name);
1404 assert(0);
1407 g_hash_table_insert(cpu->cp_regs, key, r2);
1413 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1414 const ARMCPRegInfo *regs, void *opaque)
1416 /* Define a whole list of registers */
1417 const ARMCPRegInfo *r;
1418 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1419 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1423 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1425 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1428 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1429 uint64_t value)
1431 /* Helper coprocessor write function for write-ignore registers */
1432 return 0;
1435 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1437 /* Helper coprocessor write function for read-as-zero registers */
1438 *value = 0;
1439 return 0;
1442 static int bad_mode_switch(CPUARMState *env, int mode)
1444 /* Return true if it is not valid for us to switch to
1445 * this CPU mode (ie all the UNPREDICTABLE cases in
1446 * the ARM ARM CPSRWriteByInstr pseudocode).
1448 switch (mode) {
1449 case ARM_CPU_MODE_USR:
1450 case ARM_CPU_MODE_SYS:
1451 case ARM_CPU_MODE_SVC:
1452 case ARM_CPU_MODE_ABT:
1453 case ARM_CPU_MODE_UND:
1454 case ARM_CPU_MODE_IRQ:
1455 case ARM_CPU_MODE_FIQ:
1456 return 0;
1457 default:
1458 return 1;
1462 uint32_t cpsr_read(CPUARMState *env)
1464 int ZF;
1465 ZF = (env->ZF == 0);
1466 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1467 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1468 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1469 | ((env->condexec_bits & 0xfc) << 8)
1470 | (env->GE << 16);
1473 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1475 if (mask & CPSR_NZCV) {
1476 env->ZF = (~val) & CPSR_Z;
1477 env->NF = val;
1478 env->CF = (val >> 29) & 1;
1479 env->VF = (val << 3) & 0x80000000;
1481 if (mask & CPSR_Q)
1482 env->QF = ((val & CPSR_Q) != 0);
1483 if (mask & CPSR_T)
1484 env->thumb = ((val & CPSR_T) != 0);
1485 if (mask & CPSR_IT_0_1) {
1486 env->condexec_bits &= ~3;
1487 env->condexec_bits |= (val >> 25) & 3;
1489 if (mask & CPSR_IT_2_7) {
1490 env->condexec_bits &= 3;
1491 env->condexec_bits |= (val >> 8) & 0xfc;
1493 if (mask & CPSR_GE) {
1494 env->GE = (val >> 16) & 0xf;
1497 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1498 if (bad_mode_switch(env, val & CPSR_M)) {
1499 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1500 * We choose to ignore the attempt and leave the CPSR M field
1501 * untouched.
1503 mask &= ~CPSR_M;
1504 } else {
1505 switch_mode(env, val & CPSR_M);
1508 mask &= ~CACHED_CPSR_BITS;
1509 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1512 /* Sign/zero extend */
1513 uint32_t HELPER(sxtb16)(uint32_t x)
1515 uint32_t res;
1516 res = (uint16_t)(int8_t)x;
1517 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1518 return res;
1521 uint32_t HELPER(uxtb16)(uint32_t x)
1523 uint32_t res;
1524 res = (uint16_t)(uint8_t)x;
1525 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1526 return res;
1529 uint32_t HELPER(clz)(uint32_t x)
1531 return clz32(x);
1534 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1536 if (den == 0)
1537 return 0;
1538 if (num == INT_MIN && den == -1)
1539 return INT_MIN;
1540 return num / den;
1543 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1545 if (den == 0)
1546 return 0;
1547 return num / den;
1550 uint32_t HELPER(rbit)(uint32_t x)
1552 x = ((x & 0xff000000) >> 24)
1553 | ((x & 0x00ff0000) >> 8)
1554 | ((x & 0x0000ff00) << 8)
1555 | ((x & 0x000000ff) << 24);
1556 x = ((x & 0xf0f0f0f0) >> 4)
1557 | ((x & 0x0f0f0f0f) << 4);
1558 x = ((x & 0x88888888) >> 3)
1559 | ((x & 0x44444444) >> 1)
1560 | ((x & 0x22222222) << 1)
1561 | ((x & 0x11111111) << 3);
1562 return x;
1565 uint32_t HELPER(abs)(uint32_t x)
1567 return ((int32_t)x < 0) ? -x : x;
1570 #if defined(CONFIG_USER_ONLY)
1572 void do_interrupt (CPUARMState *env)
1574 env->exception_index = -1;
1577 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1578 int mmu_idx)
1580 if (rw == 2) {
1581 env->exception_index = EXCP_PREFETCH_ABORT;
1582 env->cp15.c6_insn = address;
1583 } else {
1584 env->exception_index = EXCP_DATA_ABORT;
1585 env->cp15.c6_data = address;
1587 return 1;
1590 /* These should probably raise undefined insn exceptions. */
1591 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1593 cpu_abort(env, "v7m_mrs %d\n", reg);
1596 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1598 cpu_abort(env, "v7m_mrs %d\n", reg);
1599 return 0;
1602 void switch_mode(CPUARMState *env, int mode)
1604 if (mode != ARM_CPU_MODE_USR)
1605 cpu_abort(env, "Tried to switch out of user mode\n");
1608 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1610 cpu_abort(env, "banked r13 write\n");
1613 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1615 cpu_abort(env, "banked r13 read\n");
1616 return 0;
1619 #else
1621 /* Map CPU modes onto saved register banks. */
1622 static inline int bank_number(CPUARMState *env, int mode)
1624 switch (mode) {
1625 case ARM_CPU_MODE_USR:
1626 case ARM_CPU_MODE_SYS:
1627 return 0;
1628 case ARM_CPU_MODE_SVC:
1629 return 1;
1630 case ARM_CPU_MODE_ABT:
1631 return 2;
1632 case ARM_CPU_MODE_UND:
1633 return 3;
1634 case ARM_CPU_MODE_IRQ:
1635 return 4;
1636 case ARM_CPU_MODE_FIQ:
1637 return 5;
1639 cpu_abort(env, "Bad mode %x\n", mode);
1640 return -1;
1643 void switch_mode(CPUARMState *env, int mode)
1645 int old_mode;
1646 int i;
1648 old_mode = env->uncached_cpsr & CPSR_M;
1649 if (mode == old_mode)
1650 return;
1652 if (old_mode == ARM_CPU_MODE_FIQ) {
1653 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1654 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1655 } else if (mode == ARM_CPU_MODE_FIQ) {
1656 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1657 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1660 i = bank_number(env, old_mode);
1661 env->banked_r13[i] = env->regs[13];
1662 env->banked_r14[i] = env->regs[14];
1663 env->banked_spsr[i] = env->spsr;
1665 i = bank_number(env, mode);
1666 env->regs[13] = env->banked_r13[i];
1667 env->regs[14] = env->banked_r14[i];
1668 env->spsr = env->banked_spsr[i];
1671 static void v7m_push(CPUARMState *env, uint32_t val)
1673 env->regs[13] -= 4;
1674 stl_phys(env->regs[13], val);
1677 static uint32_t v7m_pop(CPUARMState *env)
1679 uint32_t val;
1680 val = ldl_phys(env->regs[13]);
1681 env->regs[13] += 4;
1682 return val;
1685 /* Switch to V7M main or process stack pointer. */
1686 static void switch_v7m_sp(CPUARMState *env, int process)
1688 uint32_t tmp;
1689 if (env->v7m.current_sp != process) {
1690 tmp = env->v7m.other_sp;
1691 env->v7m.other_sp = env->regs[13];
1692 env->regs[13] = tmp;
1693 env->v7m.current_sp = process;
1697 static void do_v7m_exception_exit(CPUARMState *env)
1699 uint32_t type;
1700 uint32_t xpsr;
1702 type = env->regs[15];
1703 if (env->v7m.exception != 0)
1704 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1706 /* Switch to the target stack. */
1707 switch_v7m_sp(env, (type & 4) != 0);
1708 /* Pop registers. */
1709 env->regs[0] = v7m_pop(env);
1710 env->regs[1] = v7m_pop(env);
1711 env->regs[2] = v7m_pop(env);
1712 env->regs[3] = v7m_pop(env);
1713 env->regs[12] = v7m_pop(env);
1714 env->regs[14] = v7m_pop(env);
1715 env->regs[15] = v7m_pop(env);
1716 xpsr = v7m_pop(env);
1717 xpsr_write(env, xpsr, 0xfffffdff);
1718 /* Undo stack alignment. */
1719 if (xpsr & 0x200)
1720 env->regs[13] |= 4;
1721 /* ??? The exception return type specifies Thread/Handler mode. However
1722 this is also implied by the xPSR value. Not sure what to do
1723 if there is a mismatch. */
1724 /* ??? Likewise for mismatches between the CONTROL register and the stack
1725 pointer. */
1728 static void do_interrupt_v7m(CPUARMState *env)
1730 uint32_t xpsr = xpsr_read(env);
1731 uint32_t lr;
1732 uint32_t addr;
1734 lr = 0xfffffff1;
1735 if (env->v7m.current_sp)
1736 lr |= 4;
1737 if (env->v7m.exception == 0)
1738 lr |= 8;
1740 /* For exceptions we just mark as pending on the NVIC, and let that
1741 handle it. */
1742 /* TODO: Need to escalate if the current priority is higher than the
1743 one we're raising. */
1744 switch (env->exception_index) {
1745 case EXCP_UDEF:
1746 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1747 return;
1748 case EXCP_SWI:
1749 env->regs[15] += 2;
1750 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1751 return;
1752 case EXCP_PREFETCH_ABORT:
1753 case EXCP_DATA_ABORT:
1754 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1755 return;
1756 case EXCP_BKPT:
1757 if (semihosting_enabled) {
1758 int nr;
1759 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1760 if (nr == 0xab) {
1761 env->regs[15] += 2;
1762 env->regs[0] = do_arm_semihosting(env);
1763 return;
1766 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1767 return;
1768 case EXCP_IRQ:
1769 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1770 break;
1771 case EXCP_EXCEPTION_EXIT:
1772 do_v7m_exception_exit(env);
1773 return;
1774 default:
1775 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1776 return; /* Never happens. Keep compiler happy. */
1779 /* Align stack pointer. */
1780 /* ??? Should only do this if Configuration Control Register
1781 STACKALIGN bit is set. */
1782 if (env->regs[13] & 4) {
1783 env->regs[13] -= 4;
1784 xpsr |= 0x200;
1786 /* Switch to the handler mode. */
1787 v7m_push(env, xpsr);
1788 v7m_push(env, env->regs[15]);
1789 v7m_push(env, env->regs[14]);
1790 v7m_push(env, env->regs[12]);
1791 v7m_push(env, env->regs[3]);
1792 v7m_push(env, env->regs[2]);
1793 v7m_push(env, env->regs[1]);
1794 v7m_push(env, env->regs[0]);
1795 switch_v7m_sp(env, 0);
1796 /* Clear IT bits */
1797 env->condexec_bits = 0;
1798 env->regs[14] = lr;
1799 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1800 env->regs[15] = addr & 0xfffffffe;
1801 env->thumb = addr & 1;
1804 /* Handle a CPU exception. */
1805 void do_interrupt(CPUARMState *env)
1807 uint32_t addr;
1808 uint32_t mask;
1809 int new_mode;
1810 uint32_t offset;
1812 if (IS_M(env)) {
1813 do_interrupt_v7m(env);
1814 return;
1816 /* TODO: Vectored interrupt controller. */
1817 switch (env->exception_index) {
1818 case EXCP_UDEF:
1819 new_mode = ARM_CPU_MODE_UND;
1820 addr = 0x04;
1821 mask = CPSR_I;
1822 if (env->thumb)
1823 offset = 2;
1824 else
1825 offset = 4;
1826 break;
1827 case EXCP_SWI:
1828 if (semihosting_enabled) {
1829 /* Check for semihosting interrupt. */
1830 if (env->thumb) {
1831 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
1832 } else {
1833 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
1834 & 0xffffff;
1836 /* Only intercept calls from privileged modes, to provide some
1837 semblance of security. */
1838 if (((mask == 0x123456 && !env->thumb)
1839 || (mask == 0xab && env->thumb))
1840 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1841 env->regs[0] = do_arm_semihosting(env);
1842 return;
1845 new_mode = ARM_CPU_MODE_SVC;
1846 addr = 0x08;
1847 mask = CPSR_I;
1848 /* The PC already points to the next instruction. */
1849 offset = 0;
1850 break;
1851 case EXCP_BKPT:
1852 /* See if this is a semihosting syscall. */
1853 if (env->thumb && semihosting_enabled) {
1854 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1855 if (mask == 0xab
1856 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1857 env->regs[15] += 2;
1858 env->regs[0] = do_arm_semihosting(env);
1859 return;
1862 env->cp15.c5_insn = 2;
1863 /* Fall through to prefetch abort. */
1864 case EXCP_PREFETCH_ABORT:
1865 new_mode = ARM_CPU_MODE_ABT;
1866 addr = 0x0c;
1867 mask = CPSR_A | CPSR_I;
1868 offset = 4;
1869 break;
1870 case EXCP_DATA_ABORT:
1871 new_mode = ARM_CPU_MODE_ABT;
1872 addr = 0x10;
1873 mask = CPSR_A | CPSR_I;
1874 offset = 8;
1875 break;
1876 case EXCP_IRQ:
1877 new_mode = ARM_CPU_MODE_IRQ;
1878 addr = 0x18;
1879 /* Disable IRQ and imprecise data aborts. */
1880 mask = CPSR_A | CPSR_I;
1881 offset = 4;
1882 break;
1883 case EXCP_FIQ:
1884 new_mode = ARM_CPU_MODE_FIQ;
1885 addr = 0x1c;
1886 /* Disable FIQ, IRQ and imprecise data aborts. */
1887 mask = CPSR_A | CPSR_I | CPSR_F;
1888 offset = 4;
1889 break;
1890 default:
1891 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1892 return; /* Never happens. Keep compiler happy. */
1894 /* High vectors. */
1895 if (env->cp15.c1_sys & (1 << 13)) {
1896 addr += 0xffff0000;
1898 switch_mode (env, new_mode);
1899 env->spsr = cpsr_read(env);
1900 /* Clear IT bits. */
1901 env->condexec_bits = 0;
1902 /* Switch to the new mode, and to the correct instruction set. */
1903 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1904 env->uncached_cpsr |= mask;
1905 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1906 * and we should just guard the thumb mode on V4 */
1907 if (arm_feature(env, ARM_FEATURE_V4T)) {
1908 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1910 env->regs[14] = env->regs[15] + offset;
1911 env->regs[15] = addr;
1912 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1915 /* Check section/page access permissions.
1916 Returns the page protection flags, or zero if the access is not
1917 permitted. */
1918 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1919 int access_type, int is_user)
1921 int prot_ro;
1923 if (domain_prot == 3) {
1924 return PAGE_READ | PAGE_WRITE;
1927 if (access_type == 1)
1928 prot_ro = 0;
1929 else
1930 prot_ro = PAGE_READ;
1932 switch (ap) {
1933 case 0:
1934 if (access_type == 1)
1935 return 0;
1936 switch ((env->cp15.c1_sys >> 8) & 3) {
1937 case 1:
1938 return is_user ? 0 : PAGE_READ;
1939 case 2:
1940 return PAGE_READ;
1941 default:
1942 return 0;
1944 case 1:
1945 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1946 case 2:
1947 if (is_user)
1948 return prot_ro;
1949 else
1950 return PAGE_READ | PAGE_WRITE;
1951 case 3:
1952 return PAGE_READ | PAGE_WRITE;
1953 case 4: /* Reserved. */
1954 return 0;
1955 case 5:
1956 return is_user ? 0 : prot_ro;
1957 case 6:
1958 return prot_ro;
1959 case 7:
1960 if (!arm_feature (env, ARM_FEATURE_V6K))
1961 return 0;
1962 return prot_ro;
1963 default:
1964 abort();
1968 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1970 uint32_t table;
1972 if (address & env->cp15.c2_mask)
1973 table = env->cp15.c2_base1 & 0xffffc000;
1974 else
1975 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1977 table |= (address >> 18) & 0x3ffc;
1978 return table;
1981 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1982 int is_user, target_phys_addr_t *phys_ptr,
1983 int *prot, target_ulong *page_size)
1985 int code;
1986 uint32_t table;
1987 uint32_t desc;
1988 int type;
1989 int ap;
1990 int domain;
1991 int domain_prot;
1992 target_phys_addr_t phys_addr;
1994 /* Pagetable walk. */
1995 /* Lookup l1 descriptor. */
1996 table = get_level1_table_address(env, address);
1997 desc = ldl_phys(table);
1998 type = (desc & 3);
1999 domain = (desc >> 5) & 0x0f;
2000 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2001 if (type == 0) {
2002 /* Section translation fault. */
2003 code = 5;
2004 goto do_fault;
2006 if (domain_prot == 0 || domain_prot == 2) {
2007 if (type == 2)
2008 code = 9; /* Section domain fault. */
2009 else
2010 code = 11; /* Page domain fault. */
2011 goto do_fault;
2013 if (type == 2) {
2014 /* 1Mb section. */
2015 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2016 ap = (desc >> 10) & 3;
2017 code = 13;
2018 *page_size = 1024 * 1024;
2019 } else {
2020 /* Lookup l2 entry. */
2021 if (type == 1) {
2022 /* Coarse pagetable. */
2023 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2024 } else {
2025 /* Fine pagetable. */
2026 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2028 desc = ldl_phys(table);
2029 switch (desc & 3) {
2030 case 0: /* Page translation fault. */
2031 code = 7;
2032 goto do_fault;
2033 case 1: /* 64k page. */
2034 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2035 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2036 *page_size = 0x10000;
2037 break;
2038 case 2: /* 4k page. */
2039 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2040 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2041 *page_size = 0x1000;
2042 break;
2043 case 3: /* 1k page. */
2044 if (type == 1) {
2045 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2046 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2047 } else {
2048 /* Page translation fault. */
2049 code = 7;
2050 goto do_fault;
2052 } else {
2053 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2055 ap = (desc >> 4) & 3;
2056 *page_size = 0x400;
2057 break;
2058 default:
2059 /* Never happens, but compiler isn't smart enough to tell. */
2060 abort();
2062 code = 15;
2064 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2065 if (!*prot) {
2066 /* Access permission fault. */
2067 goto do_fault;
2069 *prot |= PAGE_EXEC;
2070 *phys_ptr = phys_addr;
2071 return 0;
2072 do_fault:
2073 return code | (domain << 4);
2076 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2077 int is_user, target_phys_addr_t *phys_ptr,
2078 int *prot, target_ulong *page_size)
2080 int code;
2081 uint32_t table;
2082 uint32_t desc;
2083 uint32_t xn;
2084 uint32_t pxn = 0;
2085 int type;
2086 int ap;
2087 int domain = 0;
2088 int domain_prot;
2089 target_phys_addr_t phys_addr;
2091 /* Pagetable walk. */
2092 /* Lookup l1 descriptor. */
2093 table = get_level1_table_address(env, address);
2094 desc = ldl_phys(table);
2095 type = (desc & 3);
2096 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2097 /* Section translation fault, or attempt to use the encoding
2098 * which is Reserved on implementations without PXN.
2100 code = 5;
2101 goto do_fault;
2103 if ((type == 1) || !(desc & (1 << 18))) {
2104 /* Page or Section. */
2105 domain = (desc >> 5) & 0x0f;
2107 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2108 if (domain_prot == 0 || domain_prot == 2) {
2109 if (type != 1) {
2110 code = 9; /* Section domain fault. */
2111 } else {
2112 code = 11; /* Page domain fault. */
2114 goto do_fault;
2116 if (type != 1) {
2117 if (desc & (1 << 18)) {
2118 /* Supersection. */
2119 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2120 *page_size = 0x1000000;
2121 } else {
2122 /* Section. */
2123 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2124 *page_size = 0x100000;
2126 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2127 xn = desc & (1 << 4);
2128 pxn = desc & 1;
2129 code = 13;
2130 } else {
2131 if (arm_feature(env, ARM_FEATURE_PXN)) {
2132 pxn = (desc >> 2) & 1;
2134 /* Lookup l2 entry. */
2135 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2136 desc = ldl_phys(table);
2137 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2138 switch (desc & 3) {
2139 case 0: /* Page translation fault. */
2140 code = 7;
2141 goto do_fault;
2142 case 1: /* 64k page. */
2143 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2144 xn = desc & (1 << 15);
2145 *page_size = 0x10000;
2146 break;
2147 case 2: case 3: /* 4k page. */
2148 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2149 xn = desc & 1;
2150 *page_size = 0x1000;
2151 break;
2152 default:
2153 /* Never happens, but compiler isn't smart enough to tell. */
2154 abort();
2156 code = 15;
2158 if (domain_prot == 3) {
2159 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2160 } else {
2161 if (pxn && !is_user) {
2162 xn = 1;
2164 if (xn && access_type == 2)
2165 goto do_fault;
2167 /* The simplified model uses AP[0] as an access control bit. */
2168 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2169 /* Access flag fault. */
2170 code = (code == 15) ? 6 : 3;
2171 goto do_fault;
2173 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2174 if (!*prot) {
2175 /* Access permission fault. */
2176 goto do_fault;
2178 if (!xn) {
2179 *prot |= PAGE_EXEC;
2182 *phys_ptr = phys_addr;
2183 return 0;
2184 do_fault:
2185 return code | (domain << 4);
2188 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2189 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2191 typedef enum {
2192 translation_fault = 1,
2193 access_fault = 2,
2194 permission_fault = 3,
2195 } MMUFaultType;
2197 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2198 int access_type, int is_user,
2199 target_phys_addr_t *phys_ptr, int *prot,
2200 target_ulong *page_size_ptr)
2202 /* Read an LPAE long-descriptor translation table. */
2203 MMUFaultType fault_type = translation_fault;
2204 uint32_t level = 1;
2205 uint32_t epd;
2206 uint32_t tsz;
2207 uint64_t ttbr;
2208 int ttbr_select;
2209 int n;
2210 target_phys_addr_t descaddr;
2211 uint32_t tableattrs;
2212 target_ulong page_size;
2213 uint32_t attrs;
2215 /* Determine whether this address is in the region controlled by
2216 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2217 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2218 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2220 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2221 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2222 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2223 /* there is a ttbr0 region and we are in it (high bits all zero) */
2224 ttbr_select = 0;
2225 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2226 /* there is a ttbr1 region and we are in it (high bits all one) */
2227 ttbr_select = 1;
2228 } else if (!t0sz) {
2229 /* ttbr0 region is "everything not in the ttbr1 region" */
2230 ttbr_select = 0;
2231 } else if (!t1sz) {
2232 /* ttbr1 region is "everything not in the ttbr0 region" */
2233 ttbr_select = 1;
2234 } else {
2235 /* in the gap between the two regions, this is a Translation fault */
2236 fault_type = translation_fault;
2237 goto do_fault;
2240 /* Note that QEMU ignores shareability and cacheability attributes,
2241 * so we don't need to do anything with the SH, ORGN, IRGN fields
2242 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2243 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2244 * implement any ASID-like capability so we can ignore it (instead
2245 * we will always flush the TLB any time the ASID is changed).
2247 if (ttbr_select == 0) {
2248 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2249 epd = extract32(env->cp15.c2_control, 7, 1);
2250 tsz = t0sz;
2251 } else {
2252 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2253 epd = extract32(env->cp15.c2_control, 23, 1);
2254 tsz = t1sz;
2257 if (epd) {
2258 /* Translation table walk disabled => Translation fault on TLB miss */
2259 goto do_fault;
2262 /* If the region is small enough we will skip straight to a 2nd level
2263 * lookup. This affects the number of bits of the address used in
2264 * combination with the TTBR to find the first descriptor. ('n' here
2265 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2266 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2268 if (tsz > 1) {
2269 level = 2;
2270 n = 14 - tsz;
2271 } else {
2272 n = 5 - tsz;
2275 /* Clear the vaddr bits which aren't part of the within-region address,
2276 * so that we don't have to special case things when calculating the
2277 * first descriptor address.
2279 address &= (0xffffffffU >> tsz);
2281 /* Now we can extract the actual base address from the TTBR */
2282 descaddr = extract64(ttbr, 0, 40);
2283 descaddr &= ~((1ULL << n) - 1);
2285 tableattrs = 0;
2286 for (;;) {
2287 uint64_t descriptor;
2289 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2290 descriptor = ldq_phys(descaddr);
2291 if (!(descriptor & 1) ||
2292 (!(descriptor & 2) && (level == 3))) {
2293 /* Invalid, or the Reserved level 3 encoding */
2294 goto do_fault;
2296 descaddr = descriptor & 0xfffffff000ULL;
2298 if ((descriptor & 2) && (level < 3)) {
2299 /* Table entry. The top five bits are attributes which may
2300 * propagate down through lower levels of the table (and
2301 * which are all arranged so that 0 means "no effect", so
2302 * we can gather them up by ORing in the bits at each level).
2304 tableattrs |= extract64(descriptor, 59, 5);
2305 level++;
2306 continue;
2308 /* Block entry at level 1 or 2, or page entry at level 3.
2309 * These are basically the same thing, although the number
2310 * of bits we pull in from the vaddr varies.
2312 page_size = (1 << (39 - (9 * level)));
2313 descaddr |= (address & (page_size - 1));
2314 /* Extract attributes from the descriptor and merge with table attrs */
2315 attrs = extract64(descriptor, 2, 10)
2316 | (extract64(descriptor, 52, 12) << 10);
2317 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2318 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2319 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2320 * means "force PL1 access only", which means forcing AP[1] to 0.
2322 if (extract32(tableattrs, 2, 1)) {
2323 attrs &= ~(1 << 4);
2325 /* Since we're always in the Non-secure state, NSTable is ignored. */
2326 break;
2328 /* Here descaddr is the final physical address, and attributes
2329 * are all in attrs.
2331 fault_type = access_fault;
2332 if ((attrs & (1 << 8)) == 0) {
2333 /* Access flag */
2334 goto do_fault;
2336 fault_type = permission_fault;
2337 if (is_user && !(attrs & (1 << 4))) {
2338 /* Unprivileged access not enabled */
2339 goto do_fault;
2341 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2342 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2343 /* XN or PXN */
2344 if (access_type == 2) {
2345 goto do_fault;
2347 *prot &= ~PAGE_EXEC;
2349 if (attrs & (1 << 5)) {
2350 /* Write access forbidden */
2351 if (access_type == 1) {
2352 goto do_fault;
2354 *prot &= ~PAGE_WRITE;
2357 *phys_ptr = descaddr;
2358 *page_size_ptr = page_size;
2359 return 0;
2361 do_fault:
2362 /* Long-descriptor format IFSR/DFSR value */
2363 return (1 << 9) | (fault_type << 2) | level;
2366 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2367 int access_type, int is_user,
2368 target_phys_addr_t *phys_ptr, int *prot)
2370 int n;
2371 uint32_t mask;
2372 uint32_t base;
2374 *phys_ptr = address;
2375 for (n = 7; n >= 0; n--) {
2376 base = env->cp15.c6_region[n];
2377 if ((base & 1) == 0)
2378 continue;
2379 mask = 1 << ((base >> 1) & 0x1f);
2380 /* Keep this shift separate from the above to avoid an
2381 (undefined) << 32. */
2382 mask = (mask << 1) - 1;
2383 if (((base ^ address) & ~mask) == 0)
2384 break;
2386 if (n < 0)
2387 return 2;
2389 if (access_type == 2) {
2390 mask = env->cp15.c5_insn;
2391 } else {
2392 mask = env->cp15.c5_data;
2394 mask = (mask >> (n * 4)) & 0xf;
2395 switch (mask) {
2396 case 0:
2397 return 1;
2398 case 1:
2399 if (is_user)
2400 return 1;
2401 *prot = PAGE_READ | PAGE_WRITE;
2402 break;
2403 case 2:
2404 *prot = PAGE_READ;
2405 if (!is_user)
2406 *prot |= PAGE_WRITE;
2407 break;
2408 case 3:
2409 *prot = PAGE_READ | PAGE_WRITE;
2410 break;
2411 case 5:
2412 if (is_user)
2413 return 1;
2414 *prot = PAGE_READ;
2415 break;
2416 case 6:
2417 *prot = PAGE_READ;
2418 break;
2419 default:
2420 /* Bad permission. */
2421 return 1;
2423 *prot |= PAGE_EXEC;
2424 return 0;
2427 /* get_phys_addr - get the physical address for this virtual address
2429 * Find the physical address corresponding to the given virtual address,
2430 * by doing a translation table walk on MMU based systems or using the
2431 * MPU state on MPU based systems.
2433 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2434 * prot and page_size are not filled in, and the return value provides
2435 * information on why the translation aborted, in the format of a
2436 * DFSR/IFSR fault register, with the following caveats:
2437 * * we honour the short vs long DFSR format differences.
2438 * * the WnR bit is never set (the caller must do this).
2439 * * for MPU based systems we don't bother to return a full FSR format
2440 * value.
2442 * @env: CPUARMState
2443 * @address: virtual address to get physical address for
2444 * @access_type: 0 for read, 1 for write, 2 for execute
2445 * @is_user: 0 for privileged access, 1 for user
2446 * @phys_ptr: set to the physical address corresponding to the virtual address
2447 * @prot: set to the permissions for the page containing phys_ptr
2448 * @page_size: set to the size of the page containing phys_ptr
2450 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2451 int access_type, int is_user,
2452 target_phys_addr_t *phys_ptr, int *prot,
2453 target_ulong *page_size)
2455 /* Fast Context Switch Extension. */
2456 if (address < 0x02000000)
2457 address += env->cp15.c13_fcse;
2459 if ((env->cp15.c1_sys & 1) == 0) {
2460 /* MMU/MPU disabled. */
2461 *phys_ptr = address;
2462 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2463 *page_size = TARGET_PAGE_SIZE;
2464 return 0;
2465 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2466 *page_size = TARGET_PAGE_SIZE;
2467 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2468 prot);
2469 } else if (extended_addresses_enabled(env)) {
2470 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2471 prot, page_size);
2472 } else if (env->cp15.c1_sys & (1 << 23)) {
2473 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2474 prot, page_size);
2475 } else {
2476 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2477 prot, page_size);
2481 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2482 int access_type, int mmu_idx)
2484 target_phys_addr_t phys_addr;
2485 target_ulong page_size;
2486 int prot;
2487 int ret, is_user;
2489 is_user = mmu_idx == MMU_USER_IDX;
2490 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2491 &page_size);
2492 if (ret == 0) {
2493 /* Map a single [sub]page. */
2494 phys_addr &= ~(target_phys_addr_t)0x3ff;
2495 address &= ~(uint32_t)0x3ff;
2496 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2497 return 0;
2500 if (access_type == 2) {
2501 env->cp15.c5_insn = ret;
2502 env->cp15.c6_insn = address;
2503 env->exception_index = EXCP_PREFETCH_ABORT;
2504 } else {
2505 env->cp15.c5_data = ret;
2506 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2507 env->cp15.c5_data |= (1 << 11);
2508 env->cp15.c6_data = address;
2509 env->exception_index = EXCP_DATA_ABORT;
2511 return 1;
2514 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2516 target_phys_addr_t phys_addr;
2517 target_ulong page_size;
2518 int prot;
2519 int ret;
2521 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2523 if (ret != 0)
2524 return -1;
2526 return phys_addr;
2529 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2531 if ((env->uncached_cpsr & CPSR_M) == mode) {
2532 env->regs[13] = val;
2533 } else {
2534 env->banked_r13[bank_number(env, mode)] = val;
2538 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2540 if ((env->uncached_cpsr & CPSR_M) == mode) {
2541 return env->regs[13];
2542 } else {
2543 return env->banked_r13[bank_number(env, mode)];
2547 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2549 switch (reg) {
2550 case 0: /* APSR */
2551 return xpsr_read(env) & 0xf8000000;
2552 case 1: /* IAPSR */
2553 return xpsr_read(env) & 0xf80001ff;
2554 case 2: /* EAPSR */
2555 return xpsr_read(env) & 0xff00fc00;
2556 case 3: /* xPSR */
2557 return xpsr_read(env) & 0xff00fdff;
2558 case 5: /* IPSR */
2559 return xpsr_read(env) & 0x000001ff;
2560 case 6: /* EPSR */
2561 return xpsr_read(env) & 0x0700fc00;
2562 case 7: /* IEPSR */
2563 return xpsr_read(env) & 0x0700edff;
2564 case 8: /* MSP */
2565 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2566 case 9: /* PSP */
2567 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2568 case 16: /* PRIMASK */
2569 return (env->uncached_cpsr & CPSR_I) != 0;
2570 case 17: /* BASEPRI */
2571 case 18: /* BASEPRI_MAX */
2572 return env->v7m.basepri;
2573 case 19: /* FAULTMASK */
2574 return (env->uncached_cpsr & CPSR_F) != 0;
2575 case 20: /* CONTROL */
2576 return env->v7m.control;
2577 default:
2578 /* ??? For debugging only. */
2579 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2580 return 0;
2584 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2586 switch (reg) {
2587 case 0: /* APSR */
2588 xpsr_write(env, val, 0xf8000000);
2589 break;
2590 case 1: /* IAPSR */
2591 xpsr_write(env, val, 0xf8000000);
2592 break;
2593 case 2: /* EAPSR */
2594 xpsr_write(env, val, 0xfe00fc00);
2595 break;
2596 case 3: /* xPSR */
2597 xpsr_write(env, val, 0xfe00fc00);
2598 break;
2599 case 5: /* IPSR */
2600 /* IPSR bits are readonly. */
2601 break;
2602 case 6: /* EPSR */
2603 xpsr_write(env, val, 0x0600fc00);
2604 break;
2605 case 7: /* IEPSR */
2606 xpsr_write(env, val, 0x0600fc00);
2607 break;
2608 case 8: /* MSP */
2609 if (env->v7m.current_sp)
2610 env->v7m.other_sp = val;
2611 else
2612 env->regs[13] = val;
2613 break;
2614 case 9: /* PSP */
2615 if (env->v7m.current_sp)
2616 env->regs[13] = val;
2617 else
2618 env->v7m.other_sp = val;
2619 break;
2620 case 16: /* PRIMASK */
2621 if (val & 1)
2622 env->uncached_cpsr |= CPSR_I;
2623 else
2624 env->uncached_cpsr &= ~CPSR_I;
2625 break;
2626 case 17: /* BASEPRI */
2627 env->v7m.basepri = val & 0xff;
2628 break;
2629 case 18: /* BASEPRI_MAX */
2630 val &= 0xff;
2631 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2632 env->v7m.basepri = val;
2633 break;
2634 case 19: /* FAULTMASK */
2635 if (val & 1)
2636 env->uncached_cpsr |= CPSR_F;
2637 else
2638 env->uncached_cpsr &= ~CPSR_F;
2639 break;
2640 case 20: /* CONTROL */
2641 env->v7m.control = val & 3;
2642 switch_v7m_sp(env, (val & 2) != 0);
2643 break;
2644 default:
2645 /* ??? For debugging only. */
2646 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2647 return;
2651 #endif
2653 /* Note that signed overflow is undefined in C. The following routines are
2654 careful to use unsigned types where modulo arithmetic is required.
2655 Failure to do so _will_ break on newer gcc. */
2657 /* Signed saturating arithmetic. */
2659 /* Perform 16-bit signed saturating addition. */
2660 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2662 uint16_t res;
2664 res = a + b;
2665 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2666 if (a & 0x8000)
2667 res = 0x8000;
2668 else
2669 res = 0x7fff;
2671 return res;
2674 /* Perform 8-bit signed saturating addition. */
2675 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2677 uint8_t res;
2679 res = a + b;
2680 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2681 if (a & 0x80)
2682 res = 0x80;
2683 else
2684 res = 0x7f;
2686 return res;
2689 /* Perform 16-bit signed saturating subtraction. */
2690 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2692 uint16_t res;
2694 res = a - b;
2695 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2696 if (a & 0x8000)
2697 res = 0x8000;
2698 else
2699 res = 0x7fff;
2701 return res;
2704 /* Perform 8-bit signed saturating subtraction. */
2705 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2707 uint8_t res;
2709 res = a - b;
2710 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2711 if (a & 0x80)
2712 res = 0x80;
2713 else
2714 res = 0x7f;
2716 return res;
2719 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2720 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2721 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2722 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2723 #define PFX q
2725 #include "op_addsub.h"
2727 /* Unsigned saturating arithmetic. */
2728 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2730 uint16_t res;
2731 res = a + b;
2732 if (res < a)
2733 res = 0xffff;
2734 return res;
2737 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2739 if (a > b)
2740 return a - b;
2741 else
2742 return 0;
2745 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2747 uint8_t res;
2748 res = a + b;
2749 if (res < a)
2750 res = 0xff;
2751 return res;
2754 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2756 if (a > b)
2757 return a - b;
2758 else
2759 return 0;
2762 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2763 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2764 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2765 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2766 #define PFX uq
2768 #include "op_addsub.h"
2770 /* Signed modulo arithmetic. */
2771 #define SARITH16(a, b, n, op) do { \
2772 int32_t sum; \
2773 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2774 RESULT(sum, n, 16); \
2775 if (sum >= 0) \
2776 ge |= 3 << (n * 2); \
2777 } while(0)
2779 #define SARITH8(a, b, n, op) do { \
2780 int32_t sum; \
2781 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2782 RESULT(sum, n, 8); \
2783 if (sum >= 0) \
2784 ge |= 1 << n; \
2785 } while(0)
2788 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2789 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2790 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2791 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2792 #define PFX s
2793 #define ARITH_GE
2795 #include "op_addsub.h"
2797 /* Unsigned modulo arithmetic. */
2798 #define ADD16(a, b, n) do { \
2799 uint32_t sum; \
2800 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2801 RESULT(sum, n, 16); \
2802 if ((sum >> 16) == 1) \
2803 ge |= 3 << (n * 2); \
2804 } while(0)
2806 #define ADD8(a, b, n) do { \
2807 uint32_t sum; \
2808 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2809 RESULT(sum, n, 8); \
2810 if ((sum >> 8) == 1) \
2811 ge |= 1 << n; \
2812 } while(0)
2814 #define SUB16(a, b, n) do { \
2815 uint32_t sum; \
2816 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2817 RESULT(sum, n, 16); \
2818 if ((sum >> 16) == 0) \
2819 ge |= 3 << (n * 2); \
2820 } while(0)
2822 #define SUB8(a, b, n) do { \
2823 uint32_t sum; \
2824 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2825 RESULT(sum, n, 8); \
2826 if ((sum >> 8) == 0) \
2827 ge |= 1 << n; \
2828 } while(0)
2830 #define PFX u
2831 #define ARITH_GE
2833 #include "op_addsub.h"
2835 /* Halved signed arithmetic. */
2836 #define ADD16(a, b, n) \
2837 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2838 #define SUB16(a, b, n) \
2839 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2840 #define ADD8(a, b, n) \
2841 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2842 #define SUB8(a, b, n) \
2843 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2844 #define PFX sh
2846 #include "op_addsub.h"
2848 /* Halved unsigned arithmetic. */
2849 #define ADD16(a, b, n) \
2850 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2851 #define SUB16(a, b, n) \
2852 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2853 #define ADD8(a, b, n) \
2854 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2855 #define SUB8(a, b, n) \
2856 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2857 #define PFX uh
2859 #include "op_addsub.h"
2861 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2863 if (a > b)
2864 return a - b;
2865 else
2866 return b - a;
2869 /* Unsigned sum of absolute byte differences. */
2870 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2872 uint32_t sum;
2873 sum = do_usad(a, b);
2874 sum += do_usad(a >> 8, b >> 8);
2875 sum += do_usad(a >> 16, b >>16);
2876 sum += do_usad(a >> 24, b >> 24);
2877 return sum;
2880 /* For ARMv6 SEL instruction. */
2881 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2883 uint32_t mask;
2885 mask = 0;
2886 if (flags & 1)
2887 mask |= 0xff;
2888 if (flags & 2)
2889 mask |= 0xff00;
2890 if (flags & 4)
2891 mask |= 0xff0000;
2892 if (flags & 8)
2893 mask |= 0xff000000;
2894 return (a & mask) | (b & ~mask);
2897 uint32_t HELPER(logicq_cc)(uint64_t val)
2899 return (val >> 32) | (val != 0);
2902 /* VFP support. We follow the convention used for VFP instructions:
2903 Single precision routines have a "s" suffix, double precision a
2904 "d" suffix. */
2906 /* Convert host exception flags to vfp form. */
2907 static inline int vfp_exceptbits_from_host(int host_bits)
2909 int target_bits = 0;
2911 if (host_bits & float_flag_invalid)
2912 target_bits |= 1;
2913 if (host_bits & float_flag_divbyzero)
2914 target_bits |= 2;
2915 if (host_bits & float_flag_overflow)
2916 target_bits |= 4;
2917 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2918 target_bits |= 8;
2919 if (host_bits & float_flag_inexact)
2920 target_bits |= 0x10;
2921 if (host_bits & float_flag_input_denormal)
2922 target_bits |= 0x80;
2923 return target_bits;
2926 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2928 int i;
2929 uint32_t fpscr;
2931 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2932 | (env->vfp.vec_len << 16)
2933 | (env->vfp.vec_stride << 20);
2934 i = get_float_exception_flags(&env->vfp.fp_status);
2935 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2936 fpscr |= vfp_exceptbits_from_host(i);
2937 return fpscr;
2940 uint32_t vfp_get_fpscr(CPUARMState *env)
2942 return HELPER(vfp_get_fpscr)(env);
2945 /* Convert vfp exception flags to target form. */
2946 static inline int vfp_exceptbits_to_host(int target_bits)
2948 int host_bits = 0;
2950 if (target_bits & 1)
2951 host_bits |= float_flag_invalid;
2952 if (target_bits & 2)
2953 host_bits |= float_flag_divbyzero;
2954 if (target_bits & 4)
2955 host_bits |= float_flag_overflow;
2956 if (target_bits & 8)
2957 host_bits |= float_flag_underflow;
2958 if (target_bits & 0x10)
2959 host_bits |= float_flag_inexact;
2960 if (target_bits & 0x80)
2961 host_bits |= float_flag_input_denormal;
2962 return host_bits;
2965 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2967 int i;
2968 uint32_t changed;
2970 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2971 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2972 env->vfp.vec_len = (val >> 16) & 7;
2973 env->vfp.vec_stride = (val >> 20) & 3;
2975 changed ^= val;
2976 if (changed & (3 << 22)) {
2977 i = (val >> 22) & 3;
2978 switch (i) {
2979 case 0:
2980 i = float_round_nearest_even;
2981 break;
2982 case 1:
2983 i = float_round_up;
2984 break;
2985 case 2:
2986 i = float_round_down;
2987 break;
2988 case 3:
2989 i = float_round_to_zero;
2990 break;
2992 set_float_rounding_mode(i, &env->vfp.fp_status);
2994 if (changed & (1 << 24)) {
2995 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2996 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2998 if (changed & (1 << 25))
2999 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3001 i = vfp_exceptbits_to_host(val);
3002 set_float_exception_flags(i, &env->vfp.fp_status);
3003 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3006 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3008 HELPER(vfp_set_fpscr)(env, val);
3011 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3013 #define VFP_BINOP(name) \
3014 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3016 float_status *fpst = fpstp; \
3017 return float32_ ## name(a, b, fpst); \
3019 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3021 float_status *fpst = fpstp; \
3022 return float64_ ## name(a, b, fpst); \
3024 VFP_BINOP(add)
3025 VFP_BINOP(sub)
3026 VFP_BINOP(mul)
3027 VFP_BINOP(div)
3028 #undef VFP_BINOP
3030 float32 VFP_HELPER(neg, s)(float32 a)
3032 return float32_chs(a);
3035 float64 VFP_HELPER(neg, d)(float64 a)
3037 return float64_chs(a);
3040 float32 VFP_HELPER(abs, s)(float32 a)
3042 return float32_abs(a);
3045 float64 VFP_HELPER(abs, d)(float64 a)
3047 return float64_abs(a);
3050 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3052 return float32_sqrt(a, &env->vfp.fp_status);
3055 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3057 return float64_sqrt(a, &env->vfp.fp_status);
3060 /* XXX: check quiet/signaling case */
3061 #define DO_VFP_cmp(p, type) \
3062 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3064 uint32_t flags; \
3065 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3066 case 0: flags = 0x6; break; \
3067 case -1: flags = 0x8; break; \
3068 case 1: flags = 0x2; break; \
3069 default: case 2: flags = 0x3; break; \
3071 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3072 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3074 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3076 uint32_t flags; \
3077 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3078 case 0: flags = 0x6; break; \
3079 case -1: flags = 0x8; break; \
3080 case 1: flags = 0x2; break; \
3081 default: case 2: flags = 0x3; break; \
3083 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3084 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3086 DO_VFP_cmp(s, float32)
3087 DO_VFP_cmp(d, float64)
3088 #undef DO_VFP_cmp
3090 /* Integer to float and float to integer conversions */
3092 #define CONV_ITOF(name, fsz, sign) \
3093 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3095 float_status *fpst = fpstp; \
3096 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3099 #define CONV_FTOI(name, fsz, sign, round) \
3100 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3102 float_status *fpst = fpstp; \
3103 if (float##fsz##_is_any_nan(x)) { \
3104 float_raise(float_flag_invalid, fpst); \
3105 return 0; \
3107 return float##fsz##_to_##sign##int32##round(x, fpst); \
3110 #define FLOAT_CONVS(name, p, fsz, sign) \
3111 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3112 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3113 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3115 FLOAT_CONVS(si, s, 32, )
3116 FLOAT_CONVS(si, d, 64, )
3117 FLOAT_CONVS(ui, s, 32, u)
3118 FLOAT_CONVS(ui, d, 64, u)
3120 #undef CONV_ITOF
3121 #undef CONV_FTOI
3122 #undef FLOAT_CONVS
3124 /* floating point conversion */
3125 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3127 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3128 /* ARM requires that S<->D conversion of any kind of NaN generates
3129 * a quiet NaN by forcing the most significant frac bit to 1.
3131 return float64_maybe_silence_nan(r);
3134 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3136 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3137 /* ARM requires that S<->D conversion of any kind of NaN generates
3138 * a quiet NaN by forcing the most significant frac bit to 1.
3140 return float32_maybe_silence_nan(r);
3143 /* VFP3 fixed point conversion. */
3144 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3145 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3146 void *fpstp) \
3148 float_status *fpst = fpstp; \
3149 float##fsz tmp; \
3150 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3151 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3153 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3154 void *fpstp) \
3156 float_status *fpst = fpstp; \
3157 float##fsz tmp; \
3158 if (float##fsz##_is_any_nan(x)) { \
3159 float_raise(float_flag_invalid, fpst); \
3160 return 0; \
3162 tmp = float##fsz##_scalbn(x, shift, fpst); \
3163 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3166 VFP_CONV_FIX(sh, d, 64, int16, )
3167 VFP_CONV_FIX(sl, d, 64, int32, )
3168 VFP_CONV_FIX(uh, d, 64, uint16, u)
3169 VFP_CONV_FIX(ul, d, 64, uint32, u)
3170 VFP_CONV_FIX(sh, s, 32, int16, )
3171 VFP_CONV_FIX(sl, s, 32, int32, )
3172 VFP_CONV_FIX(uh, s, 32, uint16, u)
3173 VFP_CONV_FIX(ul, s, 32, uint32, u)
3174 #undef VFP_CONV_FIX
3176 /* Half precision conversions. */
3177 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3179 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3180 float32 r = float16_to_float32(make_float16(a), ieee, s);
3181 if (ieee) {
3182 return float32_maybe_silence_nan(r);
3184 return r;
3187 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3189 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3190 float16 r = float32_to_float16(a, ieee, s);
3191 if (ieee) {
3192 r = float16_maybe_silence_nan(r);
3194 return float16_val(r);
3197 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3199 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3202 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3204 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3207 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3209 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3212 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3214 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3217 #define float32_two make_float32(0x40000000)
3218 #define float32_three make_float32(0x40400000)
3219 #define float32_one_point_five make_float32(0x3fc00000)
3221 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3223 float_status *s = &env->vfp.standard_fp_status;
3224 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3225 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3226 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3227 float_raise(float_flag_input_denormal, s);
3229 return float32_two;
3231 return float32_sub(float32_two, float32_mul(a, b, s), s);
3234 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3236 float_status *s = &env->vfp.standard_fp_status;
3237 float32 product;
3238 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3239 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3240 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3241 float_raise(float_flag_input_denormal, s);
3243 return float32_one_point_five;
3245 product = float32_mul(a, b, s);
3246 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3249 /* NEON helpers. */
3251 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3252 * int->float conversions at run-time. */
3253 #define float64_256 make_float64(0x4070000000000000LL)
3254 #define float64_512 make_float64(0x4080000000000000LL)
3256 /* The algorithm that must be used to calculate the estimate
3257 * is specified by the ARM ARM.
3259 static float64 recip_estimate(float64 a, CPUARMState *env)
3261 /* These calculations mustn't set any fp exception flags,
3262 * so we use a local copy of the fp_status.
3264 float_status dummy_status = env->vfp.standard_fp_status;
3265 float_status *s = &dummy_status;
3266 /* q = (int)(a * 512.0) */
3267 float64 q = float64_mul(float64_512, a, s);
3268 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3270 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3271 q = int64_to_float64(q_int, s);
3272 q = float64_add(q, float64_half, s);
3273 q = float64_div(q, float64_512, s);
3274 q = float64_div(float64_one, q, s);
3276 /* s = (int)(256.0 * r + 0.5) */
3277 q = float64_mul(q, float64_256, s);
3278 q = float64_add(q, float64_half, s);
3279 q_int = float64_to_int64_round_to_zero(q, s);
3281 /* return (double)s / 256.0 */
3282 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3285 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3287 float_status *s = &env->vfp.standard_fp_status;
3288 float64 f64;
3289 uint32_t val32 = float32_val(a);
3291 int result_exp;
3292 int a_exp = (val32 & 0x7f800000) >> 23;
3293 int sign = val32 & 0x80000000;
3295 if (float32_is_any_nan(a)) {
3296 if (float32_is_signaling_nan(a)) {
3297 float_raise(float_flag_invalid, s);
3299 return float32_default_nan;
3300 } else if (float32_is_infinity(a)) {
3301 return float32_set_sign(float32_zero, float32_is_neg(a));
3302 } else if (float32_is_zero_or_denormal(a)) {
3303 if (!float32_is_zero(a)) {
3304 float_raise(float_flag_input_denormal, s);
3306 float_raise(float_flag_divbyzero, s);
3307 return float32_set_sign(float32_infinity, float32_is_neg(a));
3308 } else if (a_exp >= 253) {
3309 float_raise(float_flag_underflow, s);
3310 return float32_set_sign(float32_zero, float32_is_neg(a));
3313 f64 = make_float64((0x3feULL << 52)
3314 | ((int64_t)(val32 & 0x7fffff) << 29));
3316 result_exp = 253 - a_exp;
3318 f64 = recip_estimate(f64, env);
3320 val32 = sign
3321 | ((result_exp & 0xff) << 23)
3322 | ((float64_val(f64) >> 29) & 0x7fffff);
3323 return make_float32(val32);
3326 /* The algorithm that must be used to calculate the estimate
3327 * is specified by the ARM ARM.
3329 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3331 /* These calculations mustn't set any fp exception flags,
3332 * so we use a local copy of the fp_status.
3334 float_status dummy_status = env->vfp.standard_fp_status;
3335 float_status *s = &dummy_status;
3336 float64 q;
3337 int64_t q_int;
3339 if (float64_lt(a, float64_half, s)) {
3340 /* range 0.25 <= a < 0.5 */
3342 /* a in units of 1/512 rounded down */
3343 /* q0 = (int)(a * 512.0); */
3344 q = float64_mul(float64_512, a, s);
3345 q_int = float64_to_int64_round_to_zero(q, s);
3347 /* reciprocal root r */
3348 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3349 q = int64_to_float64(q_int, s);
3350 q = float64_add(q, float64_half, s);
3351 q = float64_div(q, float64_512, s);
3352 q = float64_sqrt(q, s);
3353 q = float64_div(float64_one, q, s);
3354 } else {
3355 /* range 0.5 <= a < 1.0 */
3357 /* a in units of 1/256 rounded down */
3358 /* q1 = (int)(a * 256.0); */
3359 q = float64_mul(float64_256, a, s);
3360 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3362 /* reciprocal root r */
3363 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3364 q = int64_to_float64(q_int, s);
3365 q = float64_add(q, float64_half, s);
3366 q = float64_div(q, float64_256, s);
3367 q = float64_sqrt(q, s);
3368 q = float64_div(float64_one, q, s);
3370 /* r in units of 1/256 rounded to nearest */
3371 /* s = (int)(256.0 * r + 0.5); */
3373 q = float64_mul(q, float64_256,s );
3374 q = float64_add(q, float64_half, s);
3375 q_int = float64_to_int64_round_to_zero(q, s);
3377 /* return (double)s / 256.0;*/
3378 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3381 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3383 float_status *s = &env->vfp.standard_fp_status;
3384 int result_exp;
3385 float64 f64;
3386 uint32_t val;
3387 uint64_t val64;
3389 val = float32_val(a);
3391 if (float32_is_any_nan(a)) {
3392 if (float32_is_signaling_nan(a)) {
3393 float_raise(float_flag_invalid, s);
3395 return float32_default_nan;
3396 } else if (float32_is_zero_or_denormal(a)) {
3397 if (!float32_is_zero(a)) {
3398 float_raise(float_flag_input_denormal, s);
3400 float_raise(float_flag_divbyzero, s);
3401 return float32_set_sign(float32_infinity, float32_is_neg(a));
3402 } else if (float32_is_neg(a)) {
3403 float_raise(float_flag_invalid, s);
3404 return float32_default_nan;
3405 } else if (float32_is_infinity(a)) {
3406 return float32_zero;
3409 /* Normalize to a double-precision value between 0.25 and 1.0,
3410 * preserving the parity of the exponent. */
3411 if ((val & 0x800000) == 0) {
3412 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3413 | (0x3feULL << 52)
3414 | ((uint64_t)(val & 0x7fffff) << 29));
3415 } else {
3416 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3417 | (0x3fdULL << 52)
3418 | ((uint64_t)(val & 0x7fffff) << 29));
3421 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3423 f64 = recip_sqrt_estimate(f64, env);
3425 val64 = float64_val(f64);
3427 val = ((result_exp & 0xff) << 23)
3428 | ((val64 >> 29) & 0x7fffff);
3429 return make_float32(val);
3432 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3434 float64 f64;
3436 if ((a & 0x80000000) == 0) {
3437 return 0xffffffff;
3440 f64 = make_float64((0x3feULL << 52)
3441 | ((int64_t)(a & 0x7fffffff) << 21));
3443 f64 = recip_estimate (f64, env);
3445 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3448 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3450 float64 f64;
3452 if ((a & 0xc0000000) == 0) {
3453 return 0xffffffff;
3456 if (a & 0x80000000) {
3457 f64 = make_float64((0x3feULL << 52)
3458 | ((uint64_t)(a & 0x7fffffff) << 21));
3459 } else { /* bits 31-30 == '01' */
3460 f64 = make_float64((0x3fdULL << 52)
3461 | ((uint64_t)(a & 0x3fffffff) << 22));
3464 f64 = recip_sqrt_estimate(f64, env);
3466 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3469 /* VFPv4 fused multiply-accumulate */
3470 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3472 float_status *fpst = fpstp;
3473 return float32_muladd(a, b, c, 0, fpst);
3476 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3478 float_status *fpst = fpstp;
3479 return float64_muladd(a, b, c, 0, fpst);