hw/pci: add PCI resource reserve capability to legacy PCI bridge
[qemu/ar7.git] / linux-user / elfload.c
blob8638612aec5b8515610bcdd4908aa55039d85ed0
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 int info_is_fdpic(struct image_info *info)
83 return info->personality == PER_LINUX_FDPIC;
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
98 #else
99 #define ELF_DATA ELFDATA2LSB
100 #endif
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t;
104 #define tswapreg(ptr) tswap64(ptr)
105 #else
106 typedef abi_ulong target_elf_greg_t;
107 #define tswapreg(ptr) tswapal(ptr)
108 #endif
110 #ifdef USE_UID16
111 typedef abi_ushort target_uid_t;
112 typedef abi_ushort target_gid_t;
113 #else
114 typedef abi_uint target_uid_t;
115 typedef abi_uint target_gid_t;
116 #endif
117 typedef abi_int target_pid_t;
119 #ifdef TARGET_I386
121 #define ELF_PLATFORM get_elf_platform()
123 static const char *get_elf_platform(void)
125 static char elf_platform[] = "i386";
126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
134 #define ELF_HWCAP get_elf_hwcap()
136 static uint32_t get_elf_hwcap(void)
138 X86CPU *cpu = X86_CPU(thread_cpu);
140 return cpu->env.features[FEAT_1_EDX];
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
156 #define ELF_NREG 27
157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
164 * See linux kernel: arch/x86/include/asm/elf.h
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 #else
199 #define ELF_START_MMAP 0x80000000
202 * This is used to ensure we don't load something for the wrong architecture.
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 * These are used to set parameters in the core dumps.
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
212 static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
228 #define ELF_NREG 17
229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
236 * See linux kernel: arch/x86/include/asm/elf.h
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
258 #endif
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
263 #endif
265 #ifdef TARGET_ARM
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
270 #define ELF_START_MMAP 0x80000000
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
275 static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
278 abi_long stack = infop->start_stack;
279 memset(regs, 0, sizeof(*regs));
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
291 regs->uregs[0] = 0;
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs->uregs[10] = infop->start_data;
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
316 #define ELF_NREG 18
317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
345 enum
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
371 enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
379 /* The commpage only exists for 32 bit kernels */
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
389 static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
392 unsigned long real_start, test_page_addr;
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
407 if (test_page_addr >= guest_base
408 && test_page_addr < (guest_base + guest_size)) {
409 return -1;
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
442 return 1; /* All good */
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
448 static uint32_t get_elf_hwcap(void)
450 ARMCPU *cpu = ARM_CPU(thread_cpu);
451 uint32_t hwcaps = 0;
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
480 return hwcaps;
483 static uint32_t get_elf_hwcap2(void)
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
496 #undef GET_FEATURE
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
502 #define ELF_ARCH EM_AARCH64
503 #define ELF_CLASS ELFCLASS64
504 #define ELF_PLATFORM "aarch64"
506 static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
516 #define ELF_NREG 34
517 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
522 int i;
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE 4096
534 enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
560 #define ELF_HWCAP get_elf_hwcap()
562 static uint32_t get_elf_hwcap(void)
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
570 /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
589 #undef GET_FEATURE
591 return hwcaps;
594 #endif /* not TARGET_AARCH64 */
595 #endif /* TARGET_ARM */
597 #ifdef TARGET_SPARC
598 #ifdef TARGET_SPARC64
600 #define ELF_START_MMAP 0x80000000
601 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
603 #ifndef TARGET_ABI32
604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
605 #else
606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607 #endif
609 #define ELF_CLASS ELFCLASS64
610 #define ELF_ARCH EM_SPARCV9
612 #define STACK_BIAS 2047
614 static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
617 #ifndef TARGET_ABI32
618 regs->tstate = 0;
619 #endif
620 regs->pc = infop->entry;
621 regs->npc = regs->pc + 4;
622 regs->y = 0;
623 #ifdef TARGET_ABI32
624 regs->u_regs[14] = infop->start_stack - 16 * 4;
625 #else
626 if (personality(infop->personality) == PER_LINUX32)
627 regs->u_regs[14] = infop->start_stack - 16 * 4;
628 else
629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
630 #endif
633 #else
634 #define ELF_START_MMAP 0x80000000
635 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636 | HWCAP_SPARC_MULDIV)
638 #define ELF_CLASS ELFCLASS32
639 #define ELF_ARCH EM_SPARC
641 static inline void init_thread(struct target_pt_regs *regs,
642 struct image_info *infop)
644 regs->psr = 0;
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
648 regs->u_regs[14] = infop->start_stack - 16 * 4;
651 #endif
652 #endif
654 #ifdef TARGET_PPC
656 #define ELF_MACHINE PPC_ELF_MACHINE
657 #define ELF_START_MMAP 0x80000000
659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
661 #define elf_check_arch(x) ( (x) == EM_PPC64 )
663 #define ELF_CLASS ELFCLASS64
665 #else
667 #define ELF_CLASS ELFCLASS32
669 #endif
671 #define ELF_ARCH EM_PPC
673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674 See arch/powerpc/include/asm/cputable.h. */
675 enum {
676 QEMU_PPC_FEATURE_32 = 0x80000000,
677 QEMU_PPC_FEATURE_64 = 0x40000000,
678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691 QEMU_PPC_FEATURE_CELL = 0x00010000,
692 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693 QEMU_PPC_FEATURE_SMT = 0x00004000,
694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696 QEMU_PPC_FEATURE_PA6T = 0x00000800,
697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
706 /* Feature definitions in AT_HWCAP2. */
707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
715 #define ELF_HWCAP get_elf_hwcap()
717 static uint32_t get_elf_hwcap(void)
719 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
720 uint32_t features = 0;
722 /* We don't have to be terribly complete here; the high points are
723 Altivec/FP/SPE support. Anything else is just a bonus. */
724 #define GET_FEATURE(flag, feature) \
725 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
726 #define GET_FEATURE2(flags, feature) \
727 do { \
728 if ((cpu->env.insns_flags2 & flags) == flags) { \
729 features |= feature; \
731 } while (0)
732 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
733 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
734 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
735 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
736 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
737 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
738 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
739 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
740 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
741 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
742 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
743 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
744 QEMU_PPC_FEATURE_ARCH_2_06);
745 #undef GET_FEATURE
746 #undef GET_FEATURE2
748 return features;
751 #define ELF_HWCAP2 get_elf_hwcap2()
753 static uint32_t get_elf_hwcap2(void)
755 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
756 uint32_t features = 0;
758 #define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
763 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
764 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
765 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
766 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
768 #undef GET_FEATURE
769 #undef GET_FEATURE2
771 return features;
775 * The requirements here are:
776 * - keep the final alignment of sp (sp & 0xf)
777 * - make sure the 32-bit value at the first 16 byte aligned position of
778 * AUXV is greater than 16 for glibc compatibility.
779 * AT_IGNOREPPC is used for that.
780 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
781 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
783 #define DLINFO_ARCH_ITEMS 5
784 #define ARCH_DLINFO \
785 do { \
786 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
787 /* \
788 * Handle glibc compatibility: these magic entries must \
789 * be at the lowest addresses in the final auxv. \
790 */ \
791 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
792 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
793 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
794 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
795 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
796 } while (0)
798 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
800 _regs->gpr[1] = infop->start_stack;
801 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
802 if (get_ppc64_abi(infop) < 2) {
803 uint64_t val;
804 get_user_u64(val, infop->entry + 8);
805 _regs->gpr[2] = val + infop->load_bias;
806 get_user_u64(val, infop->entry);
807 infop->entry = val + infop->load_bias;
808 } else {
809 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
811 #endif
812 _regs->nip = infop->entry;
815 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
816 #define ELF_NREG 48
817 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
819 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
821 int i;
822 target_ulong ccr = 0;
824 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
825 (*regs)[i] = tswapreg(env->gpr[i]);
828 (*regs)[32] = tswapreg(env->nip);
829 (*regs)[33] = tswapreg(env->msr);
830 (*regs)[35] = tswapreg(env->ctr);
831 (*regs)[36] = tswapreg(env->lr);
832 (*regs)[37] = tswapreg(env->xer);
834 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
835 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
837 (*regs)[38] = tswapreg(ccr);
840 #define USE_ELF_CORE_DUMP
841 #define ELF_EXEC_PAGESIZE 4096
843 #endif
845 #ifdef TARGET_MIPS
847 #define ELF_START_MMAP 0x80000000
849 #ifdef TARGET_MIPS64
850 #define ELF_CLASS ELFCLASS64
851 #else
852 #define ELF_CLASS ELFCLASS32
853 #endif
854 #define ELF_ARCH EM_MIPS
856 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
858 static inline void init_thread(struct target_pt_regs *regs,
859 struct image_info *infop)
861 regs->cp0_status = 2 << CP0St_KSU;
862 regs->cp0_epc = infop->entry;
863 regs->regs[29] = infop->start_stack;
866 /* See linux kernel: arch/mips/include/asm/elf.h. */
867 #define ELF_NREG 45
868 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
870 /* See linux kernel: arch/mips/include/asm/reg.h. */
871 enum {
872 #ifdef TARGET_MIPS64
873 TARGET_EF_R0 = 0,
874 #else
875 TARGET_EF_R0 = 6,
876 #endif
877 TARGET_EF_R26 = TARGET_EF_R0 + 26,
878 TARGET_EF_R27 = TARGET_EF_R0 + 27,
879 TARGET_EF_LO = TARGET_EF_R0 + 32,
880 TARGET_EF_HI = TARGET_EF_R0 + 33,
881 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
882 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
883 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
884 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
887 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
888 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
890 int i;
892 for (i = 0; i < TARGET_EF_R0; i++) {
893 (*regs)[i] = 0;
895 (*regs)[TARGET_EF_R0] = 0;
897 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
898 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
901 (*regs)[TARGET_EF_R26] = 0;
902 (*regs)[TARGET_EF_R27] = 0;
903 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
904 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
905 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
906 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
907 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
908 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
911 #define USE_ELF_CORE_DUMP
912 #define ELF_EXEC_PAGESIZE 4096
914 /* See arch/mips/include/uapi/asm/hwcap.h. */
915 enum {
916 HWCAP_MIPS_R6 = (1 << 0),
917 HWCAP_MIPS_MSA = (1 << 1),
920 #define ELF_HWCAP get_elf_hwcap()
922 static uint32_t get_elf_hwcap(void)
924 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
925 uint32_t hwcaps = 0;
927 #define GET_FEATURE(flag, hwcap) \
928 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
930 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
931 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
933 #undef GET_FEATURE
935 return hwcaps;
938 #endif /* TARGET_MIPS */
940 #ifdef TARGET_MICROBLAZE
942 #define ELF_START_MMAP 0x80000000
944 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
946 #define ELF_CLASS ELFCLASS32
947 #define ELF_ARCH EM_MICROBLAZE
949 static inline void init_thread(struct target_pt_regs *regs,
950 struct image_info *infop)
952 regs->pc = infop->entry;
953 regs->r1 = infop->start_stack;
957 #define ELF_EXEC_PAGESIZE 4096
959 #define USE_ELF_CORE_DUMP
960 #define ELF_NREG 38
961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
966 int i, pos = 0;
968 for (i = 0; i < 32; i++) {
969 (*regs)[pos++] = tswapreg(env->regs[i]);
972 for (i = 0; i < 6; i++) {
973 (*regs)[pos++] = tswapreg(env->sregs[i]);
977 #endif /* TARGET_MICROBLAZE */
979 #ifdef TARGET_NIOS2
981 #define ELF_START_MMAP 0x80000000
983 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
985 #define ELF_CLASS ELFCLASS32
986 #define ELF_ARCH EM_ALTERA_NIOS2
988 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
990 regs->ea = infop->entry;
991 regs->sp = infop->start_stack;
992 regs->estatus = 0x3;
995 #define ELF_EXEC_PAGESIZE 4096
997 #define USE_ELF_CORE_DUMP
998 #define ELF_NREG 49
999 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1001 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1002 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1003 const CPUNios2State *env)
1005 int i;
1007 (*regs)[0] = -1;
1008 for (i = 1; i < 8; i++) /* r0-r7 */
1009 (*regs)[i] = tswapreg(env->regs[i + 7]);
1011 for (i = 8; i < 16; i++) /* r8-r15 */
1012 (*regs)[i] = tswapreg(env->regs[i - 8]);
1014 for (i = 16; i < 24; i++) /* r16-r23 */
1015 (*regs)[i] = tswapreg(env->regs[i + 7]);
1016 (*regs)[24] = -1; /* R_ET */
1017 (*regs)[25] = -1; /* R_BT */
1018 (*regs)[26] = tswapreg(env->regs[R_GP]);
1019 (*regs)[27] = tswapreg(env->regs[R_SP]);
1020 (*regs)[28] = tswapreg(env->regs[R_FP]);
1021 (*regs)[29] = tswapreg(env->regs[R_EA]);
1022 (*regs)[30] = -1; /* R_SSTATUS */
1023 (*regs)[31] = tswapreg(env->regs[R_RA]);
1025 (*regs)[32] = tswapreg(env->regs[R_PC]);
1027 (*regs)[33] = -1; /* R_STATUS */
1028 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1030 for (i = 35; i < 49; i++) /* ... */
1031 (*regs)[i] = -1;
1034 #endif /* TARGET_NIOS2 */
1036 #ifdef TARGET_OPENRISC
1038 #define ELF_START_MMAP 0x08000000
1040 #define ELF_ARCH EM_OPENRISC
1041 #define ELF_CLASS ELFCLASS32
1042 #define ELF_DATA ELFDATA2MSB
1044 static inline void init_thread(struct target_pt_regs *regs,
1045 struct image_info *infop)
1047 regs->pc = infop->entry;
1048 regs->gpr[1] = infop->start_stack;
1051 #define USE_ELF_CORE_DUMP
1052 #define ELF_EXEC_PAGESIZE 8192
1054 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1055 #define ELF_NREG 34 /* gprs and pc, sr */
1056 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1058 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1059 const CPUOpenRISCState *env)
1061 int i;
1063 for (i = 0; i < 32; i++) {
1064 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1066 (*regs)[32] = tswapreg(env->pc);
1067 (*regs)[33] = tswapreg(cpu_get_sr(env));
1069 #define ELF_HWCAP 0
1070 #define ELF_PLATFORM NULL
1072 #endif /* TARGET_OPENRISC */
1074 #ifdef TARGET_SH4
1076 #define ELF_START_MMAP 0x80000000
1078 #define ELF_CLASS ELFCLASS32
1079 #define ELF_ARCH EM_SH
1081 static inline void init_thread(struct target_pt_regs *regs,
1082 struct image_info *infop)
1084 /* Check other registers XXXXX */
1085 regs->pc = infop->entry;
1086 regs->regs[15] = infop->start_stack;
1089 /* See linux kernel: arch/sh/include/asm/elf.h. */
1090 #define ELF_NREG 23
1091 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1093 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1094 enum {
1095 TARGET_REG_PC = 16,
1096 TARGET_REG_PR = 17,
1097 TARGET_REG_SR = 18,
1098 TARGET_REG_GBR = 19,
1099 TARGET_REG_MACH = 20,
1100 TARGET_REG_MACL = 21,
1101 TARGET_REG_SYSCALL = 22
1104 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1105 const CPUSH4State *env)
1107 int i;
1109 for (i = 0; i < 16; i++) {
1110 (*regs)[i] = tswapreg(env->gregs[i]);
1113 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1114 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1115 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1116 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1117 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1118 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1119 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1122 #define USE_ELF_CORE_DUMP
1123 #define ELF_EXEC_PAGESIZE 4096
1125 enum {
1126 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1127 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1128 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1129 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1130 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1131 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1132 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1133 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1134 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1135 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1138 #define ELF_HWCAP get_elf_hwcap()
1140 static uint32_t get_elf_hwcap(void)
1142 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1143 uint32_t hwcap = 0;
1145 hwcap |= SH_CPU_HAS_FPU;
1147 if (cpu->env.features & SH_FEATURE_SH4A) {
1148 hwcap |= SH_CPU_HAS_LLSC;
1151 return hwcap;
1154 #endif
1156 #ifdef TARGET_CRIS
1158 #define ELF_START_MMAP 0x80000000
1160 #define ELF_CLASS ELFCLASS32
1161 #define ELF_ARCH EM_CRIS
1163 static inline void init_thread(struct target_pt_regs *regs,
1164 struct image_info *infop)
1166 regs->erp = infop->entry;
1169 #define ELF_EXEC_PAGESIZE 8192
1171 #endif
1173 #ifdef TARGET_M68K
1175 #define ELF_START_MMAP 0x80000000
1177 #define ELF_CLASS ELFCLASS32
1178 #define ELF_ARCH EM_68K
1180 /* ??? Does this need to do anything?
1181 #define ELF_PLAT_INIT(_r) */
1183 static inline void init_thread(struct target_pt_regs *regs,
1184 struct image_info *infop)
1186 regs->usp = infop->start_stack;
1187 regs->sr = 0;
1188 regs->pc = infop->entry;
1191 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1192 #define ELF_NREG 20
1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1195 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1197 (*regs)[0] = tswapreg(env->dregs[1]);
1198 (*regs)[1] = tswapreg(env->dregs[2]);
1199 (*regs)[2] = tswapreg(env->dregs[3]);
1200 (*regs)[3] = tswapreg(env->dregs[4]);
1201 (*regs)[4] = tswapreg(env->dregs[5]);
1202 (*regs)[5] = tswapreg(env->dregs[6]);
1203 (*regs)[6] = tswapreg(env->dregs[7]);
1204 (*regs)[7] = tswapreg(env->aregs[0]);
1205 (*regs)[8] = tswapreg(env->aregs[1]);
1206 (*regs)[9] = tswapreg(env->aregs[2]);
1207 (*regs)[10] = tswapreg(env->aregs[3]);
1208 (*regs)[11] = tswapreg(env->aregs[4]);
1209 (*regs)[12] = tswapreg(env->aregs[5]);
1210 (*regs)[13] = tswapreg(env->aregs[6]);
1211 (*regs)[14] = tswapreg(env->dregs[0]);
1212 (*regs)[15] = tswapreg(env->aregs[7]);
1213 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1214 (*regs)[17] = tswapreg(env->sr);
1215 (*regs)[18] = tswapreg(env->pc);
1216 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1219 #define USE_ELF_CORE_DUMP
1220 #define ELF_EXEC_PAGESIZE 8192
1222 #endif
1224 #ifdef TARGET_ALPHA
1226 #define ELF_START_MMAP (0x30000000000ULL)
1228 #define ELF_CLASS ELFCLASS64
1229 #define ELF_ARCH EM_ALPHA
1231 static inline void init_thread(struct target_pt_regs *regs,
1232 struct image_info *infop)
1234 regs->pc = infop->entry;
1235 regs->ps = 8;
1236 regs->usp = infop->start_stack;
1239 #define ELF_EXEC_PAGESIZE 8192
1241 #endif /* TARGET_ALPHA */
1243 #ifdef TARGET_S390X
1245 #define ELF_START_MMAP (0x20000000000ULL)
1247 #define ELF_CLASS ELFCLASS64
1248 #define ELF_DATA ELFDATA2MSB
1249 #define ELF_ARCH EM_S390
1251 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1253 regs->psw.addr = infop->entry;
1254 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1255 regs->gprs[15] = infop->start_stack;
1258 #endif /* TARGET_S390X */
1260 #ifdef TARGET_TILEGX
1262 /* 42 bits real used address, a half for user mode */
1263 #define ELF_START_MMAP (0x00000020000000000ULL)
1265 #define elf_check_arch(x) ((x) == EM_TILEGX)
1267 #define ELF_CLASS ELFCLASS64
1268 #define ELF_DATA ELFDATA2LSB
1269 #define ELF_ARCH EM_TILEGX
1271 static inline void init_thread(struct target_pt_regs *regs,
1272 struct image_info *infop)
1274 regs->pc = infop->entry;
1275 regs->sp = infop->start_stack;
1279 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1281 #endif /* TARGET_TILEGX */
1283 #ifdef TARGET_RISCV
1285 #define ELF_START_MMAP 0x80000000
1286 #define ELF_ARCH EM_RISCV
1288 #ifdef TARGET_RISCV32
1289 #define ELF_CLASS ELFCLASS32
1290 #else
1291 #define ELF_CLASS ELFCLASS64
1292 #endif
1294 static inline void init_thread(struct target_pt_regs *regs,
1295 struct image_info *infop)
1297 regs->sepc = infop->entry;
1298 regs->sp = infop->start_stack;
1301 #define ELF_EXEC_PAGESIZE 4096
1303 #endif /* TARGET_RISCV */
1305 #ifdef TARGET_HPPA
1307 #define ELF_START_MMAP 0x80000000
1308 #define ELF_CLASS ELFCLASS32
1309 #define ELF_ARCH EM_PARISC
1310 #define ELF_PLATFORM "PARISC"
1311 #define STACK_GROWS_DOWN 0
1312 #define STACK_ALIGNMENT 64
1314 static inline void init_thread(struct target_pt_regs *regs,
1315 struct image_info *infop)
1317 regs->iaoq[0] = infop->entry;
1318 regs->iaoq[1] = infop->entry + 4;
1319 regs->gr[23] = 0;
1320 regs->gr[24] = infop->arg_start;
1321 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1322 /* The top-of-stack contains a linkage buffer. */
1323 regs->gr[30] = infop->start_stack + 64;
1324 regs->gr[31] = infop->entry;
1327 #endif /* TARGET_HPPA */
1329 #ifdef TARGET_XTENSA
1331 #define ELF_START_MMAP 0x20000000
1333 #define ELF_CLASS ELFCLASS32
1334 #define ELF_ARCH EM_XTENSA
1336 static inline void init_thread(struct target_pt_regs *regs,
1337 struct image_info *infop)
1339 regs->windowbase = 0;
1340 regs->windowstart = 1;
1341 regs->areg[1] = infop->start_stack;
1342 regs->pc = infop->entry;
1345 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1346 #define ELF_NREG 128
1347 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1349 enum {
1350 TARGET_REG_PC,
1351 TARGET_REG_PS,
1352 TARGET_REG_LBEG,
1353 TARGET_REG_LEND,
1354 TARGET_REG_LCOUNT,
1355 TARGET_REG_SAR,
1356 TARGET_REG_WINDOWSTART,
1357 TARGET_REG_WINDOWBASE,
1358 TARGET_REG_THREADPTR,
1359 TARGET_REG_AR0 = 64,
1362 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1363 const CPUXtensaState *env)
1365 unsigned i;
1367 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1368 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1369 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1370 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1371 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1372 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1373 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1374 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1375 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1376 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1377 for (i = 0; i < env->config->nareg; ++i) {
1378 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1382 #define USE_ELF_CORE_DUMP
1383 #define ELF_EXEC_PAGESIZE 4096
1385 #endif /* TARGET_XTENSA */
1387 #ifndef ELF_PLATFORM
1388 #define ELF_PLATFORM (NULL)
1389 #endif
1391 #ifndef ELF_MACHINE
1392 #define ELF_MACHINE ELF_ARCH
1393 #endif
1395 #ifndef elf_check_arch
1396 #define elf_check_arch(x) ((x) == ELF_ARCH)
1397 #endif
1399 #ifndef ELF_HWCAP
1400 #define ELF_HWCAP 0
1401 #endif
1403 #ifndef STACK_GROWS_DOWN
1404 #define STACK_GROWS_DOWN 1
1405 #endif
1407 #ifndef STACK_ALIGNMENT
1408 #define STACK_ALIGNMENT 16
1409 #endif
1411 #ifdef TARGET_ABI32
1412 #undef ELF_CLASS
1413 #define ELF_CLASS ELFCLASS32
1414 #undef bswaptls
1415 #define bswaptls(ptr) bswap32s(ptr)
1416 #endif
1418 #include "elf.h"
1420 struct exec
1422 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1423 unsigned int a_text; /* length of text, in bytes */
1424 unsigned int a_data; /* length of data, in bytes */
1425 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1426 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1427 unsigned int a_entry; /* start address */
1428 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1429 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1433 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1434 #define OMAGIC 0407
1435 #define NMAGIC 0410
1436 #define ZMAGIC 0413
1437 #define QMAGIC 0314
1439 /* Necessary parameters */
1440 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1441 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1442 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1443 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1445 #define DLINFO_ITEMS 15
1447 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1449 memcpy(to, from, n);
1452 #ifdef BSWAP_NEEDED
1453 static void bswap_ehdr(struct elfhdr *ehdr)
1455 bswap16s(&ehdr->e_type); /* Object file type */
1456 bswap16s(&ehdr->e_machine); /* Architecture */
1457 bswap32s(&ehdr->e_version); /* Object file version */
1458 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1459 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1460 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1461 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1462 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1463 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1464 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1465 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1466 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1467 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1470 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1472 int i;
1473 for (i = 0; i < phnum; ++i, ++phdr) {
1474 bswap32s(&phdr->p_type); /* Segment type */
1475 bswap32s(&phdr->p_flags); /* Segment flags */
1476 bswaptls(&phdr->p_offset); /* Segment file offset */
1477 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1478 bswaptls(&phdr->p_paddr); /* Segment physical address */
1479 bswaptls(&phdr->p_filesz); /* Segment size in file */
1480 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1481 bswaptls(&phdr->p_align); /* Segment alignment */
1485 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1487 int i;
1488 for (i = 0; i < shnum; ++i, ++shdr) {
1489 bswap32s(&shdr->sh_name);
1490 bswap32s(&shdr->sh_type);
1491 bswaptls(&shdr->sh_flags);
1492 bswaptls(&shdr->sh_addr);
1493 bswaptls(&shdr->sh_offset);
1494 bswaptls(&shdr->sh_size);
1495 bswap32s(&shdr->sh_link);
1496 bswap32s(&shdr->sh_info);
1497 bswaptls(&shdr->sh_addralign);
1498 bswaptls(&shdr->sh_entsize);
1502 static void bswap_sym(struct elf_sym *sym)
1504 bswap32s(&sym->st_name);
1505 bswaptls(&sym->st_value);
1506 bswaptls(&sym->st_size);
1507 bswap16s(&sym->st_shndx);
1509 #else
1510 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1511 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1512 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1513 static inline void bswap_sym(struct elf_sym *sym) { }
1514 #endif
1516 #ifdef USE_ELF_CORE_DUMP
1517 static int elf_core_dump(int, const CPUArchState *);
1518 #endif /* USE_ELF_CORE_DUMP */
1519 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1521 /* Verify the portions of EHDR within E_IDENT for the target.
1522 This can be performed before bswapping the entire header. */
1523 static bool elf_check_ident(struct elfhdr *ehdr)
1525 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1526 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1527 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1528 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1529 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1530 && ehdr->e_ident[EI_DATA] == ELF_DATA
1531 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1534 /* Verify the portions of EHDR outside of E_IDENT for the target.
1535 This has to wait until after bswapping the header. */
1536 static bool elf_check_ehdr(struct elfhdr *ehdr)
1538 return (elf_check_arch(ehdr->e_machine)
1539 && ehdr->e_ehsize == sizeof(struct elfhdr)
1540 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1541 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1545 * 'copy_elf_strings()' copies argument/envelope strings from user
1546 * memory to free pages in kernel mem. These are in a format ready
1547 * to be put directly into the top of new user memory.
1550 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1551 abi_ulong p, abi_ulong stack_limit)
1553 char *tmp;
1554 int len, i;
1555 abi_ulong top = p;
1557 if (!p) {
1558 return 0; /* bullet-proofing */
1561 if (STACK_GROWS_DOWN) {
1562 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1563 for (i = argc - 1; i >= 0; --i) {
1564 tmp = argv[i];
1565 if (!tmp) {
1566 fprintf(stderr, "VFS: argc is wrong");
1567 exit(-1);
1569 len = strlen(tmp) + 1;
1570 tmp += len;
1572 if (len > (p - stack_limit)) {
1573 return 0;
1575 while (len) {
1576 int bytes_to_copy = (len > offset) ? offset : len;
1577 tmp -= bytes_to_copy;
1578 p -= bytes_to_copy;
1579 offset -= bytes_to_copy;
1580 len -= bytes_to_copy;
1582 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1584 if (offset == 0) {
1585 memcpy_to_target(p, scratch, top - p);
1586 top = p;
1587 offset = TARGET_PAGE_SIZE;
1591 if (p != top) {
1592 memcpy_to_target(p, scratch + offset, top - p);
1594 } else {
1595 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1596 for (i = 0; i < argc; ++i) {
1597 tmp = argv[i];
1598 if (!tmp) {
1599 fprintf(stderr, "VFS: argc is wrong");
1600 exit(-1);
1602 len = strlen(tmp) + 1;
1603 if (len > (stack_limit - p)) {
1604 return 0;
1606 while (len) {
1607 int bytes_to_copy = (len > remaining) ? remaining : len;
1609 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1611 tmp += bytes_to_copy;
1612 remaining -= bytes_to_copy;
1613 p += bytes_to_copy;
1614 len -= bytes_to_copy;
1616 if (remaining == 0) {
1617 memcpy_to_target(top, scratch, p - top);
1618 top = p;
1619 remaining = TARGET_PAGE_SIZE;
1623 if (p != top) {
1624 memcpy_to_target(top, scratch, p - top);
1628 return p;
1631 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1632 * argument/environment space. Newer kernels (>2.6.33) allow more,
1633 * dependent on stack size, but guarantee at least 32 pages for
1634 * backwards compatibility.
1636 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1638 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1639 struct image_info *info)
1641 abi_ulong size, error, guard;
1643 size = guest_stack_size;
1644 if (size < STACK_LOWER_LIMIT) {
1645 size = STACK_LOWER_LIMIT;
1647 guard = TARGET_PAGE_SIZE;
1648 if (guard < qemu_real_host_page_size) {
1649 guard = qemu_real_host_page_size;
1652 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1653 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1654 if (error == -1) {
1655 perror("mmap stack");
1656 exit(-1);
1659 /* We reserve one extra page at the top of the stack as guard. */
1660 if (STACK_GROWS_DOWN) {
1661 target_mprotect(error, guard, PROT_NONE);
1662 info->stack_limit = error + guard;
1663 return info->stack_limit + size - sizeof(void *);
1664 } else {
1665 target_mprotect(error + size, guard, PROT_NONE);
1666 info->stack_limit = error + size;
1667 return error;
1671 /* Map and zero the bss. We need to explicitly zero any fractional pages
1672 after the data section (i.e. bss). */
1673 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1675 uintptr_t host_start, host_map_start, host_end;
1677 last_bss = TARGET_PAGE_ALIGN(last_bss);
1679 /* ??? There is confusion between qemu_real_host_page_size and
1680 qemu_host_page_size here and elsewhere in target_mmap, which
1681 may lead to the end of the data section mapping from the file
1682 not being mapped. At least there was an explicit test and
1683 comment for that here, suggesting that "the file size must
1684 be known". The comment probably pre-dates the introduction
1685 of the fstat system call in target_mmap which does in fact
1686 find out the size. What isn't clear is if the workaround
1687 here is still actually needed. For now, continue with it,
1688 but merge it with the "normal" mmap that would allocate the bss. */
1690 host_start = (uintptr_t) g2h(elf_bss);
1691 host_end = (uintptr_t) g2h(last_bss);
1692 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1694 if (host_map_start < host_end) {
1695 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1696 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1697 if (p == MAP_FAILED) {
1698 perror("cannot mmap brk");
1699 exit(-1);
1703 /* Ensure that the bss page(s) are valid */
1704 if ((page_get_flags(last_bss-1) & prot) != prot) {
1705 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1708 if (host_start < host_map_start) {
1709 memset((void *)host_start, 0, host_map_start - host_start);
1713 #ifdef TARGET_ARM
1714 static int elf_is_fdpic(struct elfhdr *exec)
1716 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1718 #else
1719 /* Default implementation, always false. */
1720 static int elf_is_fdpic(struct elfhdr *exec)
1722 return 0;
1724 #endif
1726 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1728 uint16_t n;
1729 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1731 /* elf32_fdpic_loadseg */
1732 n = info->nsegs;
1733 while (n--) {
1734 sp -= 12;
1735 put_user_u32(loadsegs[n].addr, sp+0);
1736 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1737 put_user_u32(loadsegs[n].p_memsz, sp+8);
1740 /* elf32_fdpic_loadmap */
1741 sp -= 4;
1742 put_user_u16(0, sp+0); /* version */
1743 put_user_u16(info->nsegs, sp+2); /* nsegs */
1745 info->personality = PER_LINUX_FDPIC;
1746 info->loadmap_addr = sp;
1748 return sp;
1751 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1752 struct elfhdr *exec,
1753 struct image_info *info,
1754 struct image_info *interp_info)
1756 abi_ulong sp;
1757 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1758 int size;
1759 int i;
1760 abi_ulong u_rand_bytes;
1761 uint8_t k_rand_bytes[16];
1762 abi_ulong u_platform;
1763 const char *k_platform;
1764 const int n = sizeof(elf_addr_t);
1766 sp = p;
1768 /* Needs to be before we load the env/argc/... */
1769 if (elf_is_fdpic(exec)) {
1770 /* Need 4 byte alignment for these structs */
1771 sp &= ~3;
1772 sp = loader_build_fdpic_loadmap(info, sp);
1773 info->other_info = interp_info;
1774 if (interp_info) {
1775 interp_info->other_info = info;
1776 sp = loader_build_fdpic_loadmap(interp_info, sp);
1777 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1778 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1779 } else {
1780 info->interpreter_loadmap_addr = 0;
1781 info->interpreter_pt_dynamic_addr = 0;
1785 u_platform = 0;
1786 k_platform = ELF_PLATFORM;
1787 if (k_platform) {
1788 size_t len = strlen(k_platform) + 1;
1789 if (STACK_GROWS_DOWN) {
1790 sp -= (len + n - 1) & ~(n - 1);
1791 u_platform = sp;
1792 /* FIXME - check return value of memcpy_to_target() for failure */
1793 memcpy_to_target(sp, k_platform, len);
1794 } else {
1795 memcpy_to_target(sp, k_platform, len);
1796 u_platform = sp;
1797 sp += len + 1;
1801 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1802 * the argv and envp pointers.
1804 if (STACK_GROWS_DOWN) {
1805 sp = QEMU_ALIGN_DOWN(sp, 16);
1806 } else {
1807 sp = QEMU_ALIGN_UP(sp, 16);
1811 * Generate 16 random bytes for userspace PRNG seeding (not
1812 * cryptically secure but it's not the aim of QEMU).
1814 for (i = 0; i < 16; i++) {
1815 k_rand_bytes[i] = rand();
1817 if (STACK_GROWS_DOWN) {
1818 sp -= 16;
1819 u_rand_bytes = sp;
1820 /* FIXME - check return value of memcpy_to_target() for failure */
1821 memcpy_to_target(sp, k_rand_bytes, 16);
1822 } else {
1823 memcpy_to_target(sp, k_rand_bytes, 16);
1824 u_rand_bytes = sp;
1825 sp += 16;
1828 size = (DLINFO_ITEMS + 1) * 2;
1829 if (k_platform)
1830 size += 2;
1831 #ifdef DLINFO_ARCH_ITEMS
1832 size += DLINFO_ARCH_ITEMS * 2;
1833 #endif
1834 #ifdef ELF_HWCAP2
1835 size += 2;
1836 #endif
1837 info->auxv_len = size * n;
1839 size += envc + argc + 2;
1840 size += 1; /* argc itself */
1841 size *= n;
1843 /* Allocate space and finalize stack alignment for entry now. */
1844 if (STACK_GROWS_DOWN) {
1845 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1846 sp = u_argc;
1847 } else {
1848 u_argc = sp;
1849 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1852 u_argv = u_argc + n;
1853 u_envp = u_argv + (argc + 1) * n;
1854 u_auxv = u_envp + (envc + 1) * n;
1855 info->saved_auxv = u_auxv;
1856 info->arg_start = u_argv;
1857 info->arg_end = u_argv + argc * n;
1859 /* This is correct because Linux defines
1860 * elf_addr_t as Elf32_Off / Elf64_Off
1862 #define NEW_AUX_ENT(id, val) do { \
1863 put_user_ual(id, u_auxv); u_auxv += n; \
1864 put_user_ual(val, u_auxv); u_auxv += n; \
1865 } while(0)
1867 #ifdef ARCH_DLINFO
1869 * ARCH_DLINFO must come first so platform specific code can enforce
1870 * special alignment requirements on the AUXV if necessary (eg. PPC).
1872 ARCH_DLINFO;
1873 #endif
1874 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1875 * on info->auxv_len will trigger.
1877 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1878 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1879 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1880 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1881 /* Target doesn't support host page size alignment */
1882 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1883 } else {
1884 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1885 qemu_host_page_size)));
1887 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1888 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1889 NEW_AUX_ENT(AT_ENTRY, info->entry);
1890 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1891 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1892 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1893 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1894 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1895 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1896 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1897 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1899 #ifdef ELF_HWCAP2
1900 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1901 #endif
1903 if (u_platform) {
1904 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1906 NEW_AUX_ENT (AT_NULL, 0);
1907 #undef NEW_AUX_ENT
1909 /* Check that our initial calculation of the auxv length matches how much
1910 * we actually put into it.
1912 assert(info->auxv_len == u_auxv - info->saved_auxv);
1914 put_user_ual(argc, u_argc);
1916 p = info->arg_strings;
1917 for (i = 0; i < argc; ++i) {
1918 put_user_ual(p, u_argv);
1919 u_argv += n;
1920 p += target_strlen(p) + 1;
1922 put_user_ual(0, u_argv);
1924 p = info->env_strings;
1925 for (i = 0; i < envc; ++i) {
1926 put_user_ual(p, u_envp);
1927 u_envp += n;
1928 p += target_strlen(p) + 1;
1930 put_user_ual(0, u_envp);
1932 return sp;
1935 unsigned long init_guest_space(unsigned long host_start,
1936 unsigned long host_size,
1937 unsigned long guest_start,
1938 bool fixed)
1940 unsigned long current_start, aligned_start;
1941 int flags;
1943 assert(host_start || host_size);
1945 /* If just a starting address is given, then just verify that
1946 * address. */
1947 if (host_start && !host_size) {
1948 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1949 if (init_guest_commpage(host_start, host_size) != 1) {
1950 return (unsigned long)-1;
1952 #endif
1953 return host_start;
1956 /* Setup the initial flags and start address. */
1957 current_start = host_start & qemu_host_page_mask;
1958 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1959 if (fixed) {
1960 flags |= MAP_FIXED;
1963 /* Otherwise, a non-zero size region of memory needs to be mapped
1964 * and validated. */
1966 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1967 /* On 32-bit ARM, we need to map not just the usable memory, but
1968 * also the commpage. Try to find a suitable place by allocating
1969 * a big chunk for all of it. If host_start, then the naive
1970 * strategy probably does good enough.
1972 if (!host_start) {
1973 unsigned long guest_full_size, host_full_size, real_start;
1975 guest_full_size =
1976 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1977 host_full_size = guest_full_size - guest_start;
1978 real_start = (unsigned long)
1979 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1980 if (real_start == (unsigned long)-1) {
1981 if (host_size < host_full_size - qemu_host_page_size) {
1982 /* We failed to map a continous segment, but we're
1983 * allowed to have a gap between the usable memory and
1984 * the commpage where other things can be mapped.
1985 * This sparseness gives us more flexibility to find
1986 * an address range.
1988 goto naive;
1990 return (unsigned long)-1;
1992 munmap((void *)real_start, host_full_size);
1993 if (real_start & ~qemu_host_page_mask) {
1994 /* The same thing again, but with an extra qemu_host_page_size
1995 * so that we can shift around alignment.
1997 unsigned long real_size = host_full_size + qemu_host_page_size;
1998 real_start = (unsigned long)
1999 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2000 if (real_start == (unsigned long)-1) {
2001 if (host_size < host_full_size - qemu_host_page_size) {
2002 goto naive;
2004 return (unsigned long)-1;
2006 munmap((void *)real_start, real_size);
2007 real_start = HOST_PAGE_ALIGN(real_start);
2009 current_start = real_start;
2011 naive:
2012 #endif
2014 while (1) {
2015 unsigned long real_start, real_size, aligned_size;
2016 aligned_size = real_size = host_size;
2018 /* Do not use mmap_find_vma here because that is limited to the
2019 * guest address space. We are going to make the
2020 * guest address space fit whatever we're given.
2022 real_start = (unsigned long)
2023 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2024 if (real_start == (unsigned long)-1) {
2025 return (unsigned long)-1;
2028 /* Check to see if the address is valid. */
2029 if (host_start && real_start != current_start) {
2030 goto try_again;
2033 /* Ensure the address is properly aligned. */
2034 if (real_start & ~qemu_host_page_mask) {
2035 /* Ideally, we adjust like
2037 * pages: [ ][ ][ ][ ][ ]
2038 * old: [ real ]
2039 * [ aligned ]
2040 * new: [ real ]
2041 * [ aligned ]
2043 * But if there is something else mapped right after it,
2044 * then obviously it won't have room to grow, and the
2045 * kernel will put the new larger real someplace else with
2046 * unknown alignment (if we made it to here, then
2047 * fixed=false). Which is why we grow real by a full page
2048 * size, instead of by part of one; so that even if we get
2049 * moved, we can still guarantee alignment. But this does
2050 * mean that there is a padding of < 1 page both before
2051 * and after the aligned range; the "after" could could
2052 * cause problems for ARM emulation where it could butt in
2053 * to where we need to put the commpage.
2055 munmap((void *)real_start, host_size);
2056 real_size = aligned_size + qemu_host_page_size;
2057 real_start = (unsigned long)
2058 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2059 if (real_start == (unsigned long)-1) {
2060 return (unsigned long)-1;
2062 aligned_start = HOST_PAGE_ALIGN(real_start);
2063 } else {
2064 aligned_start = real_start;
2067 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2068 /* On 32-bit ARM, we need to also be able to map the commpage. */
2069 int valid = init_guest_commpage(aligned_start - guest_start,
2070 aligned_size + guest_start);
2071 if (valid == -1) {
2072 munmap((void *)real_start, real_size);
2073 return (unsigned long)-1;
2074 } else if (valid == 0) {
2075 goto try_again;
2077 #endif
2079 /* If nothing has said `return -1` or `goto try_again` yet,
2080 * then the address we have is good.
2082 break;
2084 try_again:
2085 /* That address didn't work. Unmap and try a different one.
2086 * The address the host picked because is typically right at
2087 * the top of the host address space and leaves the guest with
2088 * no usable address space. Resort to a linear search. We
2089 * already compensated for mmap_min_addr, so this should not
2090 * happen often. Probably means we got unlucky and host
2091 * address space randomization put a shared library somewhere
2092 * inconvenient.
2094 * This is probably a good strategy if host_start, but is
2095 * probably a bad strategy if not, which means we got here
2096 * because of trouble with ARM commpage setup.
2098 munmap((void *)real_start, real_size);
2099 current_start += qemu_host_page_size;
2100 if (host_start == current_start) {
2101 /* Theoretically possible if host doesn't have any suitably
2102 * aligned areas. Normally the first mmap will fail.
2104 return (unsigned long)-1;
2108 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2110 return aligned_start;
2113 static void probe_guest_base(const char *image_name,
2114 abi_ulong loaddr, abi_ulong hiaddr)
2116 /* Probe for a suitable guest base address, if the user has not set
2117 * it explicitly, and set guest_base appropriately.
2118 * In case of error we will print a suitable message and exit.
2120 const char *errmsg;
2121 if (!have_guest_base && !reserved_va) {
2122 unsigned long host_start, real_start, host_size;
2124 /* Round addresses to page boundaries. */
2125 loaddr &= qemu_host_page_mask;
2126 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2128 if (loaddr < mmap_min_addr) {
2129 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2130 } else {
2131 host_start = loaddr;
2132 if (host_start != loaddr) {
2133 errmsg = "Address overflow loading ELF binary";
2134 goto exit_errmsg;
2137 host_size = hiaddr - loaddr;
2139 /* Setup the initial guest memory space with ranges gleaned from
2140 * the ELF image that is being loaded.
2142 real_start = init_guest_space(host_start, host_size, loaddr, false);
2143 if (real_start == (unsigned long)-1) {
2144 errmsg = "Unable to find space for application";
2145 goto exit_errmsg;
2147 guest_base = real_start - loaddr;
2149 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2150 TARGET_ABI_FMT_lx " to 0x%lx\n",
2151 loaddr, real_start);
2153 return;
2155 exit_errmsg:
2156 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2157 exit(-1);
2161 /* Load an ELF image into the address space.
2163 IMAGE_NAME is the filename of the image, to use in error messages.
2164 IMAGE_FD is the open file descriptor for the image.
2166 BPRM_BUF is a copy of the beginning of the file; this of course
2167 contains the elf file header at offset 0. It is assumed that this
2168 buffer is sufficiently aligned to present no problems to the host
2169 in accessing data at aligned offsets within the buffer.
2171 On return: INFO values will be filled in, as necessary or available. */
2173 static void load_elf_image(const char *image_name, int image_fd,
2174 struct image_info *info, char **pinterp_name,
2175 char bprm_buf[BPRM_BUF_SIZE])
2177 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2178 struct elf_phdr *phdr;
2179 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2180 int i, retval;
2181 const char *errmsg;
2183 /* First of all, some simple consistency checks */
2184 errmsg = "Invalid ELF image for this architecture";
2185 if (!elf_check_ident(ehdr)) {
2186 goto exit_errmsg;
2188 bswap_ehdr(ehdr);
2189 if (!elf_check_ehdr(ehdr)) {
2190 goto exit_errmsg;
2193 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2194 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2195 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2196 } else {
2197 phdr = (struct elf_phdr *) alloca(i);
2198 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2199 if (retval != i) {
2200 goto exit_read;
2203 bswap_phdr(phdr, ehdr->e_phnum);
2205 info->nsegs = 0;
2206 info->pt_dynamic_addr = 0;
2208 mmap_lock();
2210 /* Find the maximum size of the image and allocate an appropriate
2211 amount of memory to handle that. */
2212 loaddr = -1, hiaddr = 0;
2213 info->alignment = 0;
2214 for (i = 0; i < ehdr->e_phnum; ++i) {
2215 if (phdr[i].p_type == PT_LOAD) {
2216 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2217 if (a < loaddr) {
2218 loaddr = a;
2220 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2221 if (a > hiaddr) {
2222 hiaddr = a;
2224 ++info->nsegs;
2225 info->alignment |= phdr[i].p_align;
2229 load_addr = loaddr;
2230 if (ehdr->e_type == ET_DYN) {
2231 /* The image indicates that it can be loaded anywhere. Find a
2232 location that can hold the memory space required. If the
2233 image is pre-linked, LOADDR will be non-zero. Since we do
2234 not supply MAP_FIXED here we'll use that address if and
2235 only if it remains available. */
2236 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2237 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2238 -1, 0);
2239 if (load_addr == -1) {
2240 goto exit_perror;
2242 } else if (pinterp_name != NULL) {
2243 /* This is the main executable. Make sure that the low
2244 address does not conflict with MMAP_MIN_ADDR or the
2245 QEMU application itself. */
2246 probe_guest_base(image_name, loaddr, hiaddr);
2248 load_bias = load_addr - loaddr;
2250 if (elf_is_fdpic(ehdr)) {
2251 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2252 g_malloc(sizeof(*loadsegs) * info->nsegs);
2254 for (i = 0; i < ehdr->e_phnum; ++i) {
2255 switch (phdr[i].p_type) {
2256 case PT_DYNAMIC:
2257 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2258 break;
2259 case PT_LOAD:
2260 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2261 loadsegs->p_vaddr = phdr[i].p_vaddr;
2262 loadsegs->p_memsz = phdr[i].p_memsz;
2263 ++loadsegs;
2264 break;
2269 info->load_bias = load_bias;
2270 info->load_addr = load_addr;
2271 info->entry = ehdr->e_entry + load_bias;
2272 info->start_code = -1;
2273 info->end_code = 0;
2274 info->start_data = -1;
2275 info->end_data = 0;
2276 info->brk = 0;
2277 info->elf_flags = ehdr->e_flags;
2279 for (i = 0; i < ehdr->e_phnum; i++) {
2280 struct elf_phdr *eppnt = phdr + i;
2281 if (eppnt->p_type == PT_LOAD) {
2282 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2283 int elf_prot = 0;
2285 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2286 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2287 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2289 vaddr = load_bias + eppnt->p_vaddr;
2290 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2291 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2293 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2294 elf_prot, MAP_PRIVATE | MAP_FIXED,
2295 image_fd, eppnt->p_offset - vaddr_po);
2296 if (error == -1) {
2297 goto exit_perror;
2300 vaddr_ef = vaddr + eppnt->p_filesz;
2301 vaddr_em = vaddr + eppnt->p_memsz;
2303 /* If the load segment requests extra zeros (e.g. bss), map it. */
2304 if (vaddr_ef < vaddr_em) {
2305 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2308 /* Find the full program boundaries. */
2309 if (elf_prot & PROT_EXEC) {
2310 if (vaddr < info->start_code) {
2311 info->start_code = vaddr;
2313 if (vaddr_ef > info->end_code) {
2314 info->end_code = vaddr_ef;
2317 if (elf_prot & PROT_WRITE) {
2318 if (vaddr < info->start_data) {
2319 info->start_data = vaddr;
2321 if (vaddr_ef > info->end_data) {
2322 info->end_data = vaddr_ef;
2324 if (vaddr_em > info->brk) {
2325 info->brk = vaddr_em;
2328 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2329 char *interp_name;
2331 if (*pinterp_name) {
2332 errmsg = "Multiple PT_INTERP entries";
2333 goto exit_errmsg;
2335 interp_name = malloc(eppnt->p_filesz);
2336 if (!interp_name) {
2337 goto exit_perror;
2340 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2341 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2342 eppnt->p_filesz);
2343 } else {
2344 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2345 eppnt->p_offset);
2346 if (retval != eppnt->p_filesz) {
2347 goto exit_perror;
2350 if (interp_name[eppnt->p_filesz - 1] != 0) {
2351 errmsg = "Invalid PT_INTERP entry";
2352 goto exit_errmsg;
2354 *pinterp_name = interp_name;
2358 if (info->end_data == 0) {
2359 info->start_data = info->end_code;
2360 info->end_data = info->end_code;
2361 info->brk = info->end_code;
2364 if (qemu_log_enabled()) {
2365 load_symbols(ehdr, image_fd, load_bias);
2368 mmap_unlock();
2370 close(image_fd);
2371 return;
2373 exit_read:
2374 if (retval >= 0) {
2375 errmsg = "Incomplete read of file header";
2376 goto exit_errmsg;
2378 exit_perror:
2379 errmsg = strerror(errno);
2380 exit_errmsg:
2381 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2382 exit(-1);
2385 static void load_elf_interp(const char *filename, struct image_info *info,
2386 char bprm_buf[BPRM_BUF_SIZE])
2388 int fd, retval;
2390 fd = open(path(filename), O_RDONLY);
2391 if (fd < 0) {
2392 goto exit_perror;
2395 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2396 if (retval < 0) {
2397 goto exit_perror;
2399 if (retval < BPRM_BUF_SIZE) {
2400 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2403 load_elf_image(filename, fd, info, NULL, bprm_buf);
2404 return;
2406 exit_perror:
2407 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2408 exit(-1);
2411 static int symfind(const void *s0, const void *s1)
2413 target_ulong addr = *(target_ulong *)s0;
2414 struct elf_sym *sym = (struct elf_sym *)s1;
2415 int result = 0;
2416 if (addr < sym->st_value) {
2417 result = -1;
2418 } else if (addr >= sym->st_value + sym->st_size) {
2419 result = 1;
2421 return result;
2424 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2426 #if ELF_CLASS == ELFCLASS32
2427 struct elf_sym *syms = s->disas_symtab.elf32;
2428 #else
2429 struct elf_sym *syms = s->disas_symtab.elf64;
2430 #endif
2432 // binary search
2433 struct elf_sym *sym;
2435 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2436 if (sym != NULL) {
2437 return s->disas_strtab + sym->st_name;
2440 return "";
2443 /* FIXME: This should use elf_ops.h */
2444 static int symcmp(const void *s0, const void *s1)
2446 struct elf_sym *sym0 = (struct elf_sym *)s0;
2447 struct elf_sym *sym1 = (struct elf_sym *)s1;
2448 return (sym0->st_value < sym1->st_value)
2449 ? -1
2450 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2453 /* Best attempt to load symbols from this ELF object. */
2454 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2456 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2457 uint64_t segsz;
2458 struct elf_shdr *shdr;
2459 char *strings = NULL;
2460 struct syminfo *s = NULL;
2461 struct elf_sym *new_syms, *syms = NULL;
2463 shnum = hdr->e_shnum;
2464 i = shnum * sizeof(struct elf_shdr);
2465 shdr = (struct elf_shdr *)alloca(i);
2466 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2467 return;
2470 bswap_shdr(shdr, shnum);
2471 for (i = 0; i < shnum; ++i) {
2472 if (shdr[i].sh_type == SHT_SYMTAB) {
2473 sym_idx = i;
2474 str_idx = shdr[i].sh_link;
2475 goto found;
2479 /* There will be no symbol table if the file was stripped. */
2480 return;
2482 found:
2483 /* Now know where the strtab and symtab are. Snarf them. */
2484 s = g_try_new(struct syminfo, 1);
2485 if (!s) {
2486 goto give_up;
2489 segsz = shdr[str_idx].sh_size;
2490 s->disas_strtab = strings = g_try_malloc(segsz);
2491 if (!strings ||
2492 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2493 goto give_up;
2496 segsz = shdr[sym_idx].sh_size;
2497 syms = g_try_malloc(segsz);
2498 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2499 goto give_up;
2502 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2503 /* Implausibly large symbol table: give up rather than ploughing
2504 * on with the number of symbols calculation overflowing
2506 goto give_up;
2508 nsyms = segsz / sizeof(struct elf_sym);
2509 for (i = 0; i < nsyms; ) {
2510 bswap_sym(syms + i);
2511 /* Throw away entries which we do not need. */
2512 if (syms[i].st_shndx == SHN_UNDEF
2513 || syms[i].st_shndx >= SHN_LORESERVE
2514 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2515 if (i < --nsyms) {
2516 syms[i] = syms[nsyms];
2518 } else {
2519 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2520 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2521 syms[i].st_value &= ~(target_ulong)1;
2522 #endif
2523 syms[i].st_value += load_bias;
2524 i++;
2528 /* No "useful" symbol. */
2529 if (nsyms == 0) {
2530 goto give_up;
2533 /* Attempt to free the storage associated with the local symbols
2534 that we threw away. Whether or not this has any effect on the
2535 memory allocation depends on the malloc implementation and how
2536 many symbols we managed to discard. */
2537 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2538 if (new_syms == NULL) {
2539 goto give_up;
2541 syms = new_syms;
2543 qsort(syms, nsyms, sizeof(*syms), symcmp);
2545 s->disas_num_syms = nsyms;
2546 #if ELF_CLASS == ELFCLASS32
2547 s->disas_symtab.elf32 = syms;
2548 #else
2549 s->disas_symtab.elf64 = syms;
2550 #endif
2551 s->lookup_symbol = lookup_symbolxx;
2552 s->next = syminfos;
2553 syminfos = s;
2555 return;
2557 give_up:
2558 g_free(s);
2559 g_free(strings);
2560 g_free(syms);
2563 uint32_t get_elf_eflags(int fd)
2565 struct elfhdr ehdr;
2566 off_t offset;
2567 int ret;
2569 /* Read ELF header */
2570 offset = lseek(fd, 0, SEEK_SET);
2571 if (offset == (off_t) -1) {
2572 return 0;
2574 ret = read(fd, &ehdr, sizeof(ehdr));
2575 if (ret < sizeof(ehdr)) {
2576 return 0;
2578 offset = lseek(fd, offset, SEEK_SET);
2579 if (offset == (off_t) -1) {
2580 return 0;
2583 /* Check ELF signature */
2584 if (!elf_check_ident(&ehdr)) {
2585 return 0;
2588 /* check header */
2589 bswap_ehdr(&ehdr);
2590 if (!elf_check_ehdr(&ehdr)) {
2591 return 0;
2594 /* return architecture id */
2595 return ehdr.e_flags;
2598 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2600 struct image_info interp_info;
2601 struct elfhdr elf_ex;
2602 char *elf_interpreter = NULL;
2603 char *scratch;
2605 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2607 load_elf_image(bprm->filename, bprm->fd, info,
2608 &elf_interpreter, bprm->buf);
2610 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2611 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2612 when we load the interpreter. */
2613 elf_ex = *(struct elfhdr *)bprm->buf;
2615 /* Do this so that we can load the interpreter, if need be. We will
2616 change some of these later */
2617 bprm->p = setup_arg_pages(bprm, info);
2619 scratch = g_new0(char, TARGET_PAGE_SIZE);
2620 if (STACK_GROWS_DOWN) {
2621 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2622 bprm->p, info->stack_limit);
2623 info->file_string = bprm->p;
2624 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2625 bprm->p, info->stack_limit);
2626 info->env_strings = bprm->p;
2627 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2628 bprm->p, info->stack_limit);
2629 info->arg_strings = bprm->p;
2630 } else {
2631 info->arg_strings = bprm->p;
2632 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2633 bprm->p, info->stack_limit);
2634 info->env_strings = bprm->p;
2635 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2636 bprm->p, info->stack_limit);
2637 info->file_string = bprm->p;
2638 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2639 bprm->p, info->stack_limit);
2642 g_free(scratch);
2644 if (!bprm->p) {
2645 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2646 exit(-1);
2649 if (elf_interpreter) {
2650 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2652 /* If the program interpreter is one of these two, then assume
2653 an iBCS2 image. Otherwise assume a native linux image. */
2655 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2656 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2657 info->personality = PER_SVR4;
2659 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2660 and some applications "depend" upon this behavior. Since
2661 we do not have the power to recompile these, we emulate
2662 the SVr4 behavior. Sigh. */
2663 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2664 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2668 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2669 info, (elf_interpreter ? &interp_info : NULL));
2670 info->start_stack = bprm->p;
2672 /* If we have an interpreter, set that as the program's entry point.
2673 Copy the load_bias as well, to help PPC64 interpret the entry
2674 point as a function descriptor. Do this after creating elf tables
2675 so that we copy the original program entry point into the AUXV. */
2676 if (elf_interpreter) {
2677 info->load_bias = interp_info.load_bias;
2678 info->entry = interp_info.entry;
2679 free(elf_interpreter);
2682 #ifdef USE_ELF_CORE_DUMP
2683 bprm->core_dump = &elf_core_dump;
2684 #endif
2686 return 0;
2689 #ifdef USE_ELF_CORE_DUMP
2691 * Definitions to generate Intel SVR4-like core files.
2692 * These mostly have the same names as the SVR4 types with "target_elf_"
2693 * tacked on the front to prevent clashes with linux definitions,
2694 * and the typedef forms have been avoided. This is mostly like
2695 * the SVR4 structure, but more Linuxy, with things that Linux does
2696 * not support and which gdb doesn't really use excluded.
2698 * Fields we don't dump (their contents is zero) in linux-user qemu
2699 * are marked with XXX.
2701 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2703 * Porting ELF coredump for target is (quite) simple process. First you
2704 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2705 * the target resides):
2707 * #define USE_ELF_CORE_DUMP
2709 * Next you define type of register set used for dumping. ELF specification
2710 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2712 * typedef <target_regtype> target_elf_greg_t;
2713 * #define ELF_NREG <number of registers>
2714 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2716 * Last step is to implement target specific function that copies registers
2717 * from given cpu into just specified register set. Prototype is:
2719 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2720 * const CPUArchState *env);
2722 * Parameters:
2723 * regs - copy register values into here (allocated and zeroed by caller)
2724 * env - copy registers from here
2726 * Example for ARM target is provided in this file.
2729 /* An ELF note in memory */
2730 struct memelfnote {
2731 const char *name;
2732 size_t namesz;
2733 size_t namesz_rounded;
2734 int type;
2735 size_t datasz;
2736 size_t datasz_rounded;
2737 void *data;
2738 size_t notesz;
2741 struct target_elf_siginfo {
2742 abi_int si_signo; /* signal number */
2743 abi_int si_code; /* extra code */
2744 abi_int si_errno; /* errno */
2747 struct target_elf_prstatus {
2748 struct target_elf_siginfo pr_info; /* Info associated with signal */
2749 abi_short pr_cursig; /* Current signal */
2750 abi_ulong pr_sigpend; /* XXX */
2751 abi_ulong pr_sighold; /* XXX */
2752 target_pid_t pr_pid;
2753 target_pid_t pr_ppid;
2754 target_pid_t pr_pgrp;
2755 target_pid_t pr_sid;
2756 struct target_timeval pr_utime; /* XXX User time */
2757 struct target_timeval pr_stime; /* XXX System time */
2758 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2759 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2760 target_elf_gregset_t pr_reg; /* GP registers */
2761 abi_int pr_fpvalid; /* XXX */
2764 #define ELF_PRARGSZ (80) /* Number of chars for args */
2766 struct target_elf_prpsinfo {
2767 char pr_state; /* numeric process state */
2768 char pr_sname; /* char for pr_state */
2769 char pr_zomb; /* zombie */
2770 char pr_nice; /* nice val */
2771 abi_ulong pr_flag; /* flags */
2772 target_uid_t pr_uid;
2773 target_gid_t pr_gid;
2774 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2775 /* Lots missing */
2776 char pr_fname[16]; /* filename of executable */
2777 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2780 /* Here is the structure in which status of each thread is captured. */
2781 struct elf_thread_status {
2782 QTAILQ_ENTRY(elf_thread_status) ets_link;
2783 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2784 #if 0
2785 elf_fpregset_t fpu; /* NT_PRFPREG */
2786 struct task_struct *thread;
2787 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2788 #endif
2789 struct memelfnote notes[1];
2790 int num_notes;
2793 struct elf_note_info {
2794 struct memelfnote *notes;
2795 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2796 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2798 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2799 #if 0
2801 * Current version of ELF coredump doesn't support
2802 * dumping fp regs etc.
2804 elf_fpregset_t *fpu;
2805 elf_fpxregset_t *xfpu;
2806 int thread_status_size;
2807 #endif
2808 int notes_size;
2809 int numnote;
2812 struct vm_area_struct {
2813 target_ulong vma_start; /* start vaddr of memory region */
2814 target_ulong vma_end; /* end vaddr of memory region */
2815 abi_ulong vma_flags; /* protection etc. flags for the region */
2816 QTAILQ_ENTRY(vm_area_struct) vma_link;
2819 struct mm_struct {
2820 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2821 int mm_count; /* number of mappings */
2824 static struct mm_struct *vma_init(void);
2825 static void vma_delete(struct mm_struct *);
2826 static int vma_add_mapping(struct mm_struct *, target_ulong,
2827 target_ulong, abi_ulong);
2828 static int vma_get_mapping_count(const struct mm_struct *);
2829 static struct vm_area_struct *vma_first(const struct mm_struct *);
2830 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2831 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2832 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2833 unsigned long flags);
2835 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2836 static void fill_note(struct memelfnote *, const char *, int,
2837 unsigned int, void *);
2838 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2839 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2840 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2841 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2842 static size_t note_size(const struct memelfnote *);
2843 static void free_note_info(struct elf_note_info *);
2844 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2845 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2846 static int core_dump_filename(const TaskState *, char *, size_t);
2848 static int dump_write(int, const void *, size_t);
2849 static int write_note(struct memelfnote *, int);
2850 static int write_note_info(struct elf_note_info *, int);
2852 #ifdef BSWAP_NEEDED
2853 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2855 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2856 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2857 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2858 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2859 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2860 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2861 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2862 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2863 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2864 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2865 /* cpu times are not filled, so we skip them */
2866 /* regs should be in correct format already */
2867 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2870 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2872 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2873 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2874 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2875 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2876 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2877 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2878 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2881 static void bswap_note(struct elf_note *en)
2883 bswap32s(&en->n_namesz);
2884 bswap32s(&en->n_descsz);
2885 bswap32s(&en->n_type);
2887 #else
2888 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2889 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2890 static inline void bswap_note(struct elf_note *en) { }
2891 #endif /* BSWAP_NEEDED */
2894 * Minimal support for linux memory regions. These are needed
2895 * when we are finding out what memory exactly belongs to
2896 * emulated process. No locks needed here, as long as
2897 * thread that received the signal is stopped.
2900 static struct mm_struct *vma_init(void)
2902 struct mm_struct *mm;
2904 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2905 return (NULL);
2907 mm->mm_count = 0;
2908 QTAILQ_INIT(&mm->mm_mmap);
2910 return (mm);
2913 static void vma_delete(struct mm_struct *mm)
2915 struct vm_area_struct *vma;
2917 while ((vma = vma_first(mm)) != NULL) {
2918 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2919 g_free(vma);
2921 g_free(mm);
2924 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2925 target_ulong end, abi_ulong flags)
2927 struct vm_area_struct *vma;
2929 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2930 return (-1);
2932 vma->vma_start = start;
2933 vma->vma_end = end;
2934 vma->vma_flags = flags;
2936 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2937 mm->mm_count++;
2939 return (0);
2942 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2944 return (QTAILQ_FIRST(&mm->mm_mmap));
2947 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2949 return (QTAILQ_NEXT(vma, vma_link));
2952 static int vma_get_mapping_count(const struct mm_struct *mm)
2954 return (mm->mm_count);
2958 * Calculate file (dump) size of given memory region.
2960 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2962 /* if we cannot even read the first page, skip it */
2963 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2964 return (0);
2967 * Usually we don't dump executable pages as they contain
2968 * non-writable code that debugger can read directly from
2969 * target library etc. However, thread stacks are marked
2970 * also executable so we read in first page of given region
2971 * and check whether it contains elf header. If there is
2972 * no elf header, we dump it.
2974 if (vma->vma_flags & PROT_EXEC) {
2975 char page[TARGET_PAGE_SIZE];
2977 copy_from_user(page, vma->vma_start, sizeof (page));
2978 if ((page[EI_MAG0] == ELFMAG0) &&
2979 (page[EI_MAG1] == ELFMAG1) &&
2980 (page[EI_MAG2] == ELFMAG2) &&
2981 (page[EI_MAG3] == ELFMAG3)) {
2983 * Mappings are possibly from ELF binary. Don't dump
2984 * them.
2986 return (0);
2990 return (vma->vma_end - vma->vma_start);
2993 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2994 unsigned long flags)
2996 struct mm_struct *mm = (struct mm_struct *)priv;
2998 vma_add_mapping(mm, start, end, flags);
2999 return (0);
3002 static void fill_note(struct memelfnote *note, const char *name, int type,
3003 unsigned int sz, void *data)
3005 unsigned int namesz;
3007 namesz = strlen(name) + 1;
3008 note->name = name;
3009 note->namesz = namesz;
3010 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3011 note->type = type;
3012 note->datasz = sz;
3013 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3015 note->data = data;
3018 * We calculate rounded up note size here as specified by
3019 * ELF document.
3021 note->notesz = sizeof (struct elf_note) +
3022 note->namesz_rounded + note->datasz_rounded;
3025 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3026 uint32_t flags)
3028 (void) memset(elf, 0, sizeof(*elf));
3030 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3031 elf->e_ident[EI_CLASS] = ELF_CLASS;
3032 elf->e_ident[EI_DATA] = ELF_DATA;
3033 elf->e_ident[EI_VERSION] = EV_CURRENT;
3034 elf->e_ident[EI_OSABI] = ELF_OSABI;
3036 elf->e_type = ET_CORE;
3037 elf->e_machine = machine;
3038 elf->e_version = EV_CURRENT;
3039 elf->e_phoff = sizeof(struct elfhdr);
3040 elf->e_flags = flags;
3041 elf->e_ehsize = sizeof(struct elfhdr);
3042 elf->e_phentsize = sizeof(struct elf_phdr);
3043 elf->e_phnum = segs;
3045 bswap_ehdr(elf);
3048 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3050 phdr->p_type = PT_NOTE;
3051 phdr->p_offset = offset;
3052 phdr->p_vaddr = 0;
3053 phdr->p_paddr = 0;
3054 phdr->p_filesz = sz;
3055 phdr->p_memsz = 0;
3056 phdr->p_flags = 0;
3057 phdr->p_align = 0;
3059 bswap_phdr(phdr, 1);
3062 static size_t note_size(const struct memelfnote *note)
3064 return (note->notesz);
3067 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3068 const TaskState *ts, int signr)
3070 (void) memset(prstatus, 0, sizeof (*prstatus));
3071 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3072 prstatus->pr_pid = ts->ts_tid;
3073 prstatus->pr_ppid = getppid();
3074 prstatus->pr_pgrp = getpgrp();
3075 prstatus->pr_sid = getsid(0);
3077 bswap_prstatus(prstatus);
3080 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3082 char *base_filename;
3083 unsigned int i, len;
3085 (void) memset(psinfo, 0, sizeof (*psinfo));
3087 len = ts->info->arg_end - ts->info->arg_start;
3088 if (len >= ELF_PRARGSZ)
3089 len = ELF_PRARGSZ - 1;
3090 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3091 return -EFAULT;
3092 for (i = 0; i < len; i++)
3093 if (psinfo->pr_psargs[i] == 0)
3094 psinfo->pr_psargs[i] = ' ';
3095 psinfo->pr_psargs[len] = 0;
3097 psinfo->pr_pid = getpid();
3098 psinfo->pr_ppid = getppid();
3099 psinfo->pr_pgrp = getpgrp();
3100 psinfo->pr_sid = getsid(0);
3101 psinfo->pr_uid = getuid();
3102 psinfo->pr_gid = getgid();
3104 base_filename = g_path_get_basename(ts->bprm->filename);
3106 * Using strncpy here is fine: at max-length,
3107 * this field is not NUL-terminated.
3109 (void) strncpy(psinfo->pr_fname, base_filename,
3110 sizeof(psinfo->pr_fname));
3112 g_free(base_filename);
3113 bswap_psinfo(psinfo);
3114 return (0);
3117 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3119 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3120 elf_addr_t orig_auxv = auxv;
3121 void *ptr;
3122 int len = ts->info->auxv_len;
3125 * Auxiliary vector is stored in target process stack. It contains
3126 * {type, value} pairs that we need to dump into note. This is not
3127 * strictly necessary but we do it here for sake of completeness.
3130 /* read in whole auxv vector and copy it to memelfnote */
3131 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3132 if (ptr != NULL) {
3133 fill_note(note, "CORE", NT_AUXV, len, ptr);
3134 unlock_user(ptr, auxv, len);
3139 * Constructs name of coredump file. We have following convention
3140 * for the name:
3141 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3143 * Returns 0 in case of success, -1 otherwise (errno is set).
3145 static int core_dump_filename(const TaskState *ts, char *buf,
3146 size_t bufsize)
3148 char timestamp[64];
3149 char *base_filename = NULL;
3150 struct timeval tv;
3151 struct tm tm;
3153 assert(bufsize >= PATH_MAX);
3155 if (gettimeofday(&tv, NULL) < 0) {
3156 (void) fprintf(stderr, "unable to get current timestamp: %s",
3157 strerror(errno));
3158 return (-1);
3161 base_filename = g_path_get_basename(ts->bprm->filename);
3162 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3163 localtime_r(&tv.tv_sec, &tm));
3164 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3165 base_filename, timestamp, (int)getpid());
3166 g_free(base_filename);
3168 return (0);
3171 static int dump_write(int fd, const void *ptr, size_t size)
3173 const char *bufp = (const char *)ptr;
3174 ssize_t bytes_written, bytes_left;
3175 struct rlimit dumpsize;
3176 off_t pos;
3178 bytes_written = 0;
3179 getrlimit(RLIMIT_CORE, &dumpsize);
3180 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3181 if (errno == ESPIPE) { /* not a seekable stream */
3182 bytes_left = size;
3183 } else {
3184 return pos;
3186 } else {
3187 if (dumpsize.rlim_cur <= pos) {
3188 return -1;
3189 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3190 bytes_left = size;
3191 } else {
3192 size_t limit_left=dumpsize.rlim_cur - pos;
3193 bytes_left = limit_left >= size ? size : limit_left ;
3198 * In normal conditions, single write(2) should do but
3199 * in case of socket etc. this mechanism is more portable.
3201 do {
3202 bytes_written = write(fd, bufp, bytes_left);
3203 if (bytes_written < 0) {
3204 if (errno == EINTR)
3205 continue;
3206 return (-1);
3207 } else if (bytes_written == 0) { /* eof */
3208 return (-1);
3210 bufp += bytes_written;
3211 bytes_left -= bytes_written;
3212 } while (bytes_left > 0);
3214 return (0);
3217 static int write_note(struct memelfnote *men, int fd)
3219 struct elf_note en;
3221 en.n_namesz = men->namesz;
3222 en.n_type = men->type;
3223 en.n_descsz = men->datasz;
3225 bswap_note(&en);
3227 if (dump_write(fd, &en, sizeof(en)) != 0)
3228 return (-1);
3229 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3230 return (-1);
3231 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3232 return (-1);
3234 return (0);
3237 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3239 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3240 TaskState *ts = (TaskState *)cpu->opaque;
3241 struct elf_thread_status *ets;
3243 ets = g_malloc0(sizeof (*ets));
3244 ets->num_notes = 1; /* only prstatus is dumped */
3245 fill_prstatus(&ets->prstatus, ts, 0);
3246 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3247 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3248 &ets->prstatus);
3250 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3252 info->notes_size += note_size(&ets->notes[0]);
3255 static void init_note_info(struct elf_note_info *info)
3257 /* Initialize the elf_note_info structure so that it is at
3258 * least safe to call free_note_info() on it. Must be
3259 * called before calling fill_note_info().
3261 memset(info, 0, sizeof (*info));
3262 QTAILQ_INIT(&info->thread_list);
3265 static int fill_note_info(struct elf_note_info *info,
3266 long signr, const CPUArchState *env)
3268 #define NUMNOTES 3
3269 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3270 TaskState *ts = (TaskState *)cpu->opaque;
3271 int i;
3273 info->notes = g_new0(struct memelfnote, NUMNOTES);
3274 if (info->notes == NULL)
3275 return (-ENOMEM);
3276 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3277 if (info->prstatus == NULL)
3278 return (-ENOMEM);
3279 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3280 if (info->prstatus == NULL)
3281 return (-ENOMEM);
3284 * First fill in status (and registers) of current thread
3285 * including process info & aux vector.
3287 fill_prstatus(info->prstatus, ts, signr);
3288 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3289 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3290 sizeof (*info->prstatus), info->prstatus);
3291 fill_psinfo(info->psinfo, ts);
3292 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3293 sizeof (*info->psinfo), info->psinfo);
3294 fill_auxv_note(&info->notes[2], ts);
3295 info->numnote = 3;
3297 info->notes_size = 0;
3298 for (i = 0; i < info->numnote; i++)
3299 info->notes_size += note_size(&info->notes[i]);
3301 /* read and fill status of all threads */
3302 cpu_list_lock();
3303 CPU_FOREACH(cpu) {
3304 if (cpu == thread_cpu) {
3305 continue;
3307 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3309 cpu_list_unlock();
3311 return (0);
3314 static void free_note_info(struct elf_note_info *info)
3316 struct elf_thread_status *ets;
3318 while (!QTAILQ_EMPTY(&info->thread_list)) {
3319 ets = QTAILQ_FIRST(&info->thread_list);
3320 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3321 g_free(ets);
3324 g_free(info->prstatus);
3325 g_free(info->psinfo);
3326 g_free(info->notes);
3329 static int write_note_info(struct elf_note_info *info, int fd)
3331 struct elf_thread_status *ets;
3332 int i, error = 0;
3334 /* write prstatus, psinfo and auxv for current thread */
3335 for (i = 0; i < info->numnote; i++)
3336 if ((error = write_note(&info->notes[i], fd)) != 0)
3337 return (error);
3339 /* write prstatus for each thread */
3340 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3341 if ((error = write_note(&ets->notes[0], fd)) != 0)
3342 return (error);
3345 return (0);
3349 * Write out ELF coredump.
3351 * See documentation of ELF object file format in:
3352 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3354 * Coredump format in linux is following:
3356 * 0 +----------------------+ \
3357 * | ELF header | ET_CORE |
3358 * +----------------------+ |
3359 * | ELF program headers | |--- headers
3360 * | - NOTE section | |
3361 * | - PT_LOAD sections | |
3362 * +----------------------+ /
3363 * | NOTEs: |
3364 * | - NT_PRSTATUS |
3365 * | - NT_PRSINFO |
3366 * | - NT_AUXV |
3367 * +----------------------+ <-- aligned to target page
3368 * | Process memory dump |
3369 * : :
3370 * . .
3371 * : :
3372 * | |
3373 * +----------------------+
3375 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3376 * NT_PRSINFO -> struct elf_prpsinfo
3377 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3379 * Format follows System V format as close as possible. Current
3380 * version limitations are as follows:
3381 * - no floating point registers are dumped
3383 * Function returns 0 in case of success, negative errno otherwise.
3385 * TODO: make this work also during runtime: it should be
3386 * possible to force coredump from running process and then
3387 * continue processing. For example qemu could set up SIGUSR2
3388 * handler (provided that target process haven't registered
3389 * handler for that) that does the dump when signal is received.
3391 static int elf_core_dump(int signr, const CPUArchState *env)
3393 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3394 const TaskState *ts = (const TaskState *)cpu->opaque;
3395 struct vm_area_struct *vma = NULL;
3396 char corefile[PATH_MAX];
3397 struct elf_note_info info;
3398 struct elfhdr elf;
3399 struct elf_phdr phdr;
3400 struct rlimit dumpsize;
3401 struct mm_struct *mm = NULL;
3402 off_t offset = 0, data_offset = 0;
3403 int segs = 0;
3404 int fd = -1;
3406 init_note_info(&info);
3408 errno = 0;
3409 getrlimit(RLIMIT_CORE, &dumpsize);
3410 if (dumpsize.rlim_cur == 0)
3411 return 0;
3413 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3414 return (-errno);
3416 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3417 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3418 return (-errno);
3421 * Walk through target process memory mappings and
3422 * set up structure containing this information. After
3423 * this point vma_xxx functions can be used.
3425 if ((mm = vma_init()) == NULL)
3426 goto out;
3428 walk_memory_regions(mm, vma_walker);
3429 segs = vma_get_mapping_count(mm);
3432 * Construct valid coredump ELF header. We also
3433 * add one more segment for notes.
3435 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3436 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3437 goto out;
3439 /* fill in the in-memory version of notes */
3440 if (fill_note_info(&info, signr, env) < 0)
3441 goto out;
3443 offset += sizeof (elf); /* elf header */
3444 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3446 /* write out notes program header */
3447 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3449 offset += info.notes_size;
3450 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3451 goto out;
3454 * ELF specification wants data to start at page boundary so
3455 * we align it here.
3457 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3460 * Write program headers for memory regions mapped in
3461 * the target process.
3463 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3464 (void) memset(&phdr, 0, sizeof (phdr));
3466 phdr.p_type = PT_LOAD;
3467 phdr.p_offset = offset;
3468 phdr.p_vaddr = vma->vma_start;
3469 phdr.p_paddr = 0;
3470 phdr.p_filesz = vma_dump_size(vma);
3471 offset += phdr.p_filesz;
3472 phdr.p_memsz = vma->vma_end - vma->vma_start;
3473 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3474 if (vma->vma_flags & PROT_WRITE)
3475 phdr.p_flags |= PF_W;
3476 if (vma->vma_flags & PROT_EXEC)
3477 phdr.p_flags |= PF_X;
3478 phdr.p_align = ELF_EXEC_PAGESIZE;
3480 bswap_phdr(&phdr, 1);
3481 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3482 goto out;
3487 * Next we write notes just after program headers. No
3488 * alignment needed here.
3490 if (write_note_info(&info, fd) < 0)
3491 goto out;
3493 /* align data to page boundary */
3494 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3495 goto out;
3498 * Finally we can dump process memory into corefile as well.
3500 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3501 abi_ulong addr;
3502 abi_ulong end;
3504 end = vma->vma_start + vma_dump_size(vma);
3506 for (addr = vma->vma_start; addr < end;
3507 addr += TARGET_PAGE_SIZE) {
3508 char page[TARGET_PAGE_SIZE];
3509 int error;
3512 * Read in page from target process memory and
3513 * write it to coredump file.
3515 error = copy_from_user(page, addr, sizeof (page));
3516 if (error != 0) {
3517 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3518 addr);
3519 errno = -error;
3520 goto out;
3522 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3523 goto out;
3527 out:
3528 free_note_info(&info);
3529 if (mm != NULL)
3530 vma_delete(mm);
3531 (void) close(fd);
3533 if (errno != 0)
3534 return (-errno);
3535 return (0);
3537 #endif /* USE_ELF_CORE_DUMP */
3539 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3541 init_thread(regs, infop);