hw/arm/boot: Further improve initrd positioning code
[qemu/ar7.git] / hw / arm / boot.c
blobc2b89b3bb9b6b92b0293d859712e68bf0a32bc0b
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/hw.h"
16 #include "hw/arm/boot.h"
17 #include "hw/arm/linux-boot-if.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "hw/boards.h"
22 #include "hw/loader.h"
23 #include "elf.h"
24 #include "sysemu/device_tree.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "exec/address-spaces.h"
28 #include "qemu/units.h"
30 /* Kernel boot protocol is specified in the kernel docs
31  * Documentation/arm/Booting and Documentation/arm64/booting.txt
32  * They have different preferred image load offsets from system RAM base.
33  */
34 #define KERNEL_ARGS_ADDR   0x100
35 #define KERNEL_NOLOAD_ADDR 0x02000000
36 #define KERNEL_LOAD_ADDR   0x00010000
37 #define KERNEL64_LOAD_ADDR 0x00080000
39 #define ARM64_TEXT_OFFSET_OFFSET    8
40 #define ARM64_MAGIC_OFFSET          56
42 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
44 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
45                                      const struct arm_boot_info *info)
47     /* Return the address space to use for bootloader reads and writes.
48      * We prefer the secure address space if the CPU has it and we're
49      * going to boot the guest into it.
50      */
51     int asidx;
52     CPUState *cs = CPU(cpu);
54     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
55         asidx = ARMASIdx_S;
56     } else {
57         asidx = ARMASIdx_NS;
58     }
60     return cpu_get_address_space(cs, asidx);
63 typedef enum {
64     FIXUP_NONE = 0,     /* do nothing */
65     FIXUP_TERMINATOR,   /* end of insns */
66     FIXUP_BOARDID,      /* overwrite with board ID number */
67     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
68     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
69     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
70     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
71     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
72     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
73     FIXUP_BOOTREG,      /* overwrite with boot register address */
74     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
75     FIXUP_MAX,
76 } FixupType;
78 typedef struct ARMInsnFixup {
79     uint32_t insn;
80     FixupType fixup;
81 } ARMInsnFixup;
83 static const ARMInsnFixup bootloader_aarch64[] = {
84     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
85     { 0xaa1f03e1 }, /* mov x1, xzr */
86     { 0xaa1f03e2 }, /* mov x2, xzr */
87     { 0xaa1f03e3 }, /* mov x3, xzr */
88     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
89     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
90     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
91     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
92     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
93     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
94     { 0, FIXUP_TERMINATOR }
97 /* A very small bootloader: call the board-setup code (if needed),
98  * set r0-r2, then jump to the kernel.
99  * If we're not calling boot setup code then we don't copy across
100  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
101  */
103 static const ARMInsnFixup bootloader[] = {
104     { 0xe28fe004 }, /* add     lr, pc, #4 */
105     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
106     { 0, FIXUP_BOARD_SETUP },
107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
108     { 0xe3a00000 }, /* mov     r0, #0 */
109     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
110     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
111     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
112     { 0, FIXUP_BOARDID },
113     { 0, FIXUP_ARGPTR_LO },
114     { 0, FIXUP_ENTRYPOINT_LO },
115     { 0, FIXUP_TERMINATOR }
118 /* Handling for secondary CPU boot in a multicore system.
119  * Unlike the uniprocessor/primary CPU boot, this is platform
120  * dependent. The default code here is based on the secondary
121  * CPU boot protocol used on realview/vexpress boards, with
122  * some parameterisation to increase its flexibility.
123  * QEMU platform models for which this code is not appropriate
124  * should override write_secondary_boot and secondary_cpu_reset_hook
125  * instead.
127  * This code enables the interrupt controllers for the secondary
128  * CPUs and then puts all the secondary CPUs into a loop waiting
129  * for an interprocessor interrupt and polling a configurable
130  * location for the kernel secondary CPU entry point.
131  */
132 #define DSB_INSN 0xf57ff04f
133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
135 static const ARMInsnFixup smpboot[] = {
136     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
137     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
138     { 0xe3a01001 }, /* mov r1, #1 */
139     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
140     { 0xe3a010ff }, /* mov r1, #0xff */
141     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
142     { 0, FIXUP_DSB },   /* dsb */
143     { 0xe320f003 }, /* wfi */
144     { 0xe5901000 }, /* ldr     r1, [r0] */
145     { 0xe1110001 }, /* tst     r1, r1 */
146     { 0x0afffffb }, /* beq     <wfi> */
147     { 0xe12fff11 }, /* bx      r1 */
148     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
149     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
150     { 0, FIXUP_TERMINATOR }
153 static void write_bootloader(const char *name, hwaddr addr,
154                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
155                              AddressSpace *as)
157     /* Fix up the specified bootloader fragment and write it into
158      * guest memory using rom_add_blob_fixed(). fixupcontext is
159      * an array giving the values to write in for the fixup types
160      * which write a value into the code array.
161      */
162     int i, len;
163     uint32_t *code;
165     len = 0;
166     while (insns[len].fixup != FIXUP_TERMINATOR) {
167         len++;
168     }
170     code = g_new0(uint32_t, len);
172     for (i = 0; i < len; i++) {
173         uint32_t insn = insns[i].insn;
174         FixupType fixup = insns[i].fixup;
176         switch (fixup) {
177         case FIXUP_NONE:
178             break;
179         case FIXUP_BOARDID:
180         case FIXUP_BOARD_SETUP:
181         case FIXUP_ARGPTR_LO:
182         case FIXUP_ARGPTR_HI:
183         case FIXUP_ENTRYPOINT_LO:
184         case FIXUP_ENTRYPOINT_HI:
185         case FIXUP_GIC_CPU_IF:
186         case FIXUP_BOOTREG:
187         case FIXUP_DSB:
188             insn = fixupcontext[fixup];
189             break;
190         default:
191             abort();
192         }
193         code[i] = tswap32(insn);
194     }
196     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
198     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
200     g_free(code);
203 static void default_write_secondary(ARMCPU *cpu,
204                                     const struct arm_boot_info *info)
206     uint32_t fixupcontext[FIXUP_MAX];
207     AddressSpace *as = arm_boot_address_space(cpu, info);
209     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
210     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
211     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
212         fixupcontext[FIXUP_DSB] = DSB_INSN;
213     } else {
214         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
215     }
217     write_bootloader("smpboot", info->smp_loader_start,
218                      smpboot, fixupcontext, as);
221 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
222                                             const struct arm_boot_info *info,
223                                             hwaddr mvbar_addr)
225     AddressSpace *as = arm_boot_address_space(cpu, info);
226     int n;
227     uint32_t mvbar_blob[] = {
228         /* mvbar_addr: secure monitor vectors
229          * Default unimplemented and unused vectors to spin. Makes it
230          * easier to debug (as opposed to the CPU running away).
231          */
232         0xeafffffe, /* (spin) */
233         0xeafffffe, /* (spin) */
234         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
235         0xeafffffe, /* (spin) */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238         0xeafffffe, /* (spin) */
239         0xeafffffe, /* (spin) */
240     };
241     uint32_t board_setup_blob[] = {
242         /* board setup addr */
243         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
244         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
245         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
246         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
247         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
248         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
249         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
250         0xe1a0f001, /* mov     pc, r1                 ;return */
251     };
253     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
254     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
256     /* check that these blobs don't overlap */
257     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
258           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
260     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
261         mvbar_blob[n] = tswap32(mvbar_blob[n]);
262     }
263     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
264                           mvbar_addr, as);
266     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
267         board_setup_blob[n] = tswap32(board_setup_blob[n]);
268     }
269     rom_add_blob_fixed_as("board-setup", board_setup_blob,
270                           sizeof(board_setup_blob), info->board_setup_addr, as);
273 static void default_reset_secondary(ARMCPU *cpu,
274                                     const struct arm_boot_info *info)
276     AddressSpace *as = arm_boot_address_space(cpu, info);
277     CPUState *cs = CPU(cpu);
279     address_space_stl_notdirty(as, info->smp_bootreg_addr,
280                                0, MEMTXATTRS_UNSPECIFIED, NULL);
281     cpu_set_pc(cs, info->smp_loader_start);
284 static inline bool have_dtb(const struct arm_boot_info *info)
286     return info->dtb_filename || info->get_dtb;
289 #define WRITE_WORD(p, value) do { \
290     address_space_stl_notdirty(as, p, value, \
291                                MEMTXATTRS_UNSPECIFIED, NULL);  \
292     p += 4;                       \
293 } while (0)
295 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
297     int initrd_size = info->initrd_size;
298     hwaddr base = info->loader_start;
299     hwaddr p;
301     p = base + KERNEL_ARGS_ADDR;
302     /* ATAG_CORE */
303     WRITE_WORD(p, 5);
304     WRITE_WORD(p, 0x54410001);
305     WRITE_WORD(p, 1);
306     WRITE_WORD(p, 0x1000);
307     WRITE_WORD(p, 0);
308     /* ATAG_MEM */
309     /* TODO: handle multiple chips on one ATAG list */
310     WRITE_WORD(p, 4);
311     WRITE_WORD(p, 0x54410002);
312     WRITE_WORD(p, info->ram_size);
313     WRITE_WORD(p, info->loader_start);
314     if (initrd_size) {
315         /* ATAG_INITRD2 */
316         WRITE_WORD(p, 4);
317         WRITE_WORD(p, 0x54420005);
318         WRITE_WORD(p, info->initrd_start);
319         WRITE_WORD(p, initrd_size);
320     }
321     if (info->kernel_cmdline && *info->kernel_cmdline) {
322         /* ATAG_CMDLINE */
323         int cmdline_size;
325         cmdline_size = strlen(info->kernel_cmdline);
326         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
327                             (const uint8_t *)info->kernel_cmdline,
328                             cmdline_size + 1);
329         cmdline_size = (cmdline_size >> 2) + 1;
330         WRITE_WORD(p, cmdline_size + 2);
331         WRITE_WORD(p, 0x54410009);
332         p += cmdline_size * 4;
333     }
334     if (info->atag_board) {
335         /* ATAG_BOARD */
336         int atag_board_len;
337         uint8_t atag_board_buf[0x1000];
339         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
340         WRITE_WORD(p, (atag_board_len + 8) >> 2);
341         WRITE_WORD(p, 0x414f4d50);
342         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
343                             atag_board_buf, atag_board_len);
344         p += atag_board_len;
345     }
346     /* ATAG_END */
347     WRITE_WORD(p, 0);
348     WRITE_WORD(p, 0);
351 static void set_kernel_args_old(const struct arm_boot_info *info,
352                                 AddressSpace *as)
354     hwaddr p;
355     const char *s;
356     int initrd_size = info->initrd_size;
357     hwaddr base = info->loader_start;
359     /* see linux/include/asm-arm/setup.h */
360     p = base + KERNEL_ARGS_ADDR;
361     /* page_size */
362     WRITE_WORD(p, 4096);
363     /* nr_pages */
364     WRITE_WORD(p, info->ram_size / 4096);
365     /* ramdisk_size */
366     WRITE_WORD(p, 0);
367 #define FLAG_READONLY   1
368 #define FLAG_RDLOAD     4
369 #define FLAG_RDPROMPT   8
370     /* flags */
371     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
372     /* rootdev */
373     WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
374     /* video_num_cols */
375     WRITE_WORD(p, 0);
376     /* video_num_rows */
377     WRITE_WORD(p, 0);
378     /* video_x */
379     WRITE_WORD(p, 0);
380     /* video_y */
381     WRITE_WORD(p, 0);
382     /* memc_control_reg */
383     WRITE_WORD(p, 0);
384     /* unsigned char sounddefault */
385     /* unsigned char adfsdrives */
386     /* unsigned char bytes_per_char_h */
387     /* unsigned char bytes_per_char_v */
388     WRITE_WORD(p, 0);
389     /* pages_in_bank[4] */
390     WRITE_WORD(p, 0);
391     WRITE_WORD(p, 0);
392     WRITE_WORD(p, 0);
393     WRITE_WORD(p, 0);
394     /* pages_in_vram */
395     WRITE_WORD(p, 0);
396     /* initrd_start */
397     if (initrd_size) {
398         WRITE_WORD(p, info->initrd_start);
399     } else {
400         WRITE_WORD(p, 0);
401     }
402     /* initrd_size */
403     WRITE_WORD(p, initrd_size);
404     /* rd_start */
405     WRITE_WORD(p, 0);
406     /* system_rev */
407     WRITE_WORD(p, 0);
408     /* system_serial_low */
409     WRITE_WORD(p, 0);
410     /* system_serial_high */
411     WRITE_WORD(p, 0);
412     /* mem_fclk_21285 */
413     WRITE_WORD(p, 0);
414     /* zero unused fields */
415     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
416         WRITE_WORD(p, 0);
417     }
418     s = info->kernel_cmdline;
419     if (s) {
420         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
421                             (const uint8_t *)s, strlen(s) + 1);
422     } else {
423         WRITE_WORD(p, 0);
424     }
427 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
428                                uint32_t scells, hwaddr mem_len,
429                                int numa_node_id)
431     char *nodename;
432     int ret;
434     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
435     qemu_fdt_add_subnode(fdt, nodename);
436     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
437     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
438                                        scells, mem_len);
439     if (ret < 0) {
440         goto out;
441     }
443     /* only set the NUMA ID if it is specified */
444     if (numa_node_id >= 0) {
445         ret = qemu_fdt_setprop_cell(fdt, nodename,
446                                     "numa-node-id", numa_node_id);
447     }
448 out:
449     g_free(nodename);
450     return ret;
453 static void fdt_add_psci_node(void *fdt)
455     uint32_t cpu_suspend_fn;
456     uint32_t cpu_off_fn;
457     uint32_t cpu_on_fn;
458     uint32_t migrate_fn;
459     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
460     const char *psci_method;
461     int64_t psci_conduit;
462     int rc;
464     psci_conduit = object_property_get_int(OBJECT(armcpu),
465                                            "psci-conduit",
466                                            &error_abort);
467     switch (psci_conduit) {
468     case QEMU_PSCI_CONDUIT_DISABLED:
469         return;
470     case QEMU_PSCI_CONDUIT_HVC:
471         psci_method = "hvc";
472         break;
473     case QEMU_PSCI_CONDUIT_SMC:
474         psci_method = "smc";
475         break;
476     default:
477         g_assert_not_reached();
478     }
480     /*
481      * If /psci node is present in provided DTB, assume that no fixup
482      * is necessary and all PSCI configuration should be taken as-is
483      */
484     rc = fdt_path_offset(fdt, "/psci");
485     if (rc >= 0) {
486         return;
487     }
489     qemu_fdt_add_subnode(fdt, "/psci");
490     if (armcpu->psci_version == 2) {
491         const char comp[] = "arm,psci-0.2\0arm,psci";
492         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
494         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
495         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
496             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
497             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
498             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
499         } else {
500             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
501             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
502             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
503         }
504     } else {
505         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
507         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
508         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
509         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
510         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
511     }
513     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
514      * to the instruction that should be used to invoke PSCI functions.
515      * However, the device tree binding uses 'method' instead, so that is
516      * what we should use here.
517      */
518     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
520     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
521     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
522     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
523     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
526 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
527                  hwaddr addr_limit, AddressSpace *as)
529     void *fdt = NULL;
530     int size, rc, n = 0;
531     uint32_t acells, scells;
532     unsigned int i;
533     hwaddr mem_base, mem_len;
534     char **node_path;
535     Error *err = NULL;
537     if (binfo->dtb_filename) {
538         char *filename;
539         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
540         if (!filename) {
541             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
542             goto fail;
543         }
545         fdt = load_device_tree(filename, &size);
546         if (!fdt) {
547             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
548             g_free(filename);
549             goto fail;
550         }
551         g_free(filename);
552     } else {
553         fdt = binfo->get_dtb(binfo, &size);
554         if (!fdt) {
555             fprintf(stderr, "Board was unable to create a dtb blob\n");
556             goto fail;
557         }
558     }
560     if (addr_limit > addr && size > (addr_limit - addr)) {
561         /* Installing the device tree blob at addr would exceed addr_limit.
562          * Whether this constitutes failure is up to the caller to decide,
563          * so just return 0 as size, i.e., no error.
564          */
565         g_free(fdt);
566         return 0;
567     }
569     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
570                                    NULL, &error_fatal);
571     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
572                                    NULL, &error_fatal);
573     if (acells == 0 || scells == 0) {
574         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
575         goto fail;
576     }
578     if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
579         /* This is user error so deserves a friendlier error message
580          * than the failure of setprop_sized_cells would provide
581          */
582         fprintf(stderr, "qemu: dtb file not compatible with "
583                 "RAM size > 4GB\n");
584         goto fail;
585     }
587     /* nop all root nodes matching /memory or /memory@unit-address */
588     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
589     if (err) {
590         error_report_err(err);
591         goto fail;
592     }
593     while (node_path[n]) {
594         if (g_str_has_prefix(node_path[n], "/memory")) {
595             qemu_fdt_nop_node(fdt, node_path[n]);
596         }
597         n++;
598     }
599     g_strfreev(node_path);
601     if (nb_numa_nodes > 0) {
602         mem_base = binfo->loader_start;
603         for (i = 0; i < nb_numa_nodes; i++) {
604             mem_len = numa_info[i].node_mem;
605             rc = fdt_add_memory_node(fdt, acells, mem_base,
606                                      scells, mem_len, i);
607             if (rc < 0) {
608                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
609                         mem_base);
610                 goto fail;
611             }
613             mem_base += mem_len;
614         }
615     } else {
616         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
617                                  scells, binfo->ram_size, -1);
618         if (rc < 0) {
619             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
620                     binfo->loader_start);
621             goto fail;
622         }
623     }
625     rc = fdt_path_offset(fdt, "/chosen");
626     if (rc < 0) {
627         qemu_fdt_add_subnode(fdt, "/chosen");
628     }
630     if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
631         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
632                                      binfo->kernel_cmdline);
633         if (rc < 0) {
634             fprintf(stderr, "couldn't set /chosen/bootargs\n");
635             goto fail;
636         }
637     }
639     if (binfo->initrd_size) {
640         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
641                                    binfo->initrd_start);
642         if (rc < 0) {
643             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
644             goto fail;
645         }
647         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
648                                    binfo->initrd_start + binfo->initrd_size);
649         if (rc < 0) {
650             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
651             goto fail;
652         }
653     }
655     fdt_add_psci_node(fdt);
657     if (binfo->modify_dtb) {
658         binfo->modify_dtb(binfo, fdt);
659     }
661     qemu_fdt_dumpdtb(fdt, size);
663     /* Put the DTB into the memory map as a ROM image: this will ensure
664      * the DTB is copied again upon reset, even if addr points into RAM.
665      */
666     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
668     g_free(fdt);
670     return size;
672 fail:
673     g_free(fdt);
674     return -1;
677 static void do_cpu_reset(void *opaque)
679     ARMCPU *cpu = opaque;
680     CPUState *cs = CPU(cpu);
681     CPUARMState *env = &cpu->env;
682     const struct arm_boot_info *info = env->boot_info;
684     cpu_reset(cs);
685     if (info) {
686         if (!info->is_linux) {
687             int i;
688             /* Jump to the entry point.  */
689             uint64_t entry = info->entry;
691             switch (info->endianness) {
692             case ARM_ENDIANNESS_LE:
693                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
694                 for (i = 1; i < 4; ++i) {
695                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
696                 }
697                 env->uncached_cpsr &= ~CPSR_E;
698                 break;
699             case ARM_ENDIANNESS_BE8:
700                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
701                 for (i = 1; i < 4; ++i) {
702                     env->cp15.sctlr_el[i] |= SCTLR_EE;
703                 }
704                 env->uncached_cpsr |= CPSR_E;
705                 break;
706             case ARM_ENDIANNESS_BE32:
707                 env->cp15.sctlr_el[1] |= SCTLR_B;
708                 break;
709             case ARM_ENDIANNESS_UNKNOWN:
710                 break; /* Board's decision */
711             default:
712                 g_assert_not_reached();
713             }
715             cpu_set_pc(cs, entry);
716         } else {
717             /* If we are booting Linux then we need to check whether we are
718              * booting into secure or non-secure state and adjust the state
719              * accordingly.  Out of reset, ARM is defined to be in secure state
720              * (SCR.NS = 0), we change that here if non-secure boot has been
721              * requested.
722              */
723             if (arm_feature(env, ARM_FEATURE_EL3)) {
724                 /* AArch64 is defined to come out of reset into EL3 if enabled.
725                  * If we are booting Linux then we need to adjust our EL as
726                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
727                  * SVC, which Linux expects, so no privilege/exception level to
728                  * adjust.
729                  */
730                 if (env->aarch64) {
731                     env->cp15.scr_el3 |= SCR_RW;
732                     if (arm_feature(env, ARM_FEATURE_EL2)) {
733                         env->cp15.hcr_el2 |= HCR_RW;
734                         env->pstate = PSTATE_MODE_EL2h;
735                     } else {
736                         env->pstate = PSTATE_MODE_EL1h;
737                     }
738                     /* AArch64 kernels never boot in secure mode */
739                     assert(!info->secure_boot);
740                     /* This hook is only supported for AArch32 currently:
741                      * bootloader_aarch64[] will not call the hook, and
742                      * the code above has already dropped us into EL2 or EL1.
743                      */
744                     assert(!info->secure_board_setup);
745                 }
747                 if (arm_feature(env, ARM_FEATURE_EL2)) {
748                     /* If we have EL2 then Linux expects the HVC insn to work */
749                     env->cp15.scr_el3 |= SCR_HCE;
750                 }
752                 /* Set to non-secure if not a secure boot */
753                 if (!info->secure_boot &&
754                     (cs != first_cpu || !info->secure_board_setup)) {
755                     /* Linux expects non-secure state */
756                     env->cp15.scr_el3 |= SCR_NS;
757                 }
758             }
760             if (!env->aarch64 && !info->secure_boot &&
761                 arm_feature(env, ARM_FEATURE_EL2)) {
762                 /*
763                  * This is an AArch32 boot not to Secure state, and
764                  * we have Hyp mode available, so boot the kernel into
765                  * Hyp mode. This is not how the CPU comes out of reset,
766                  * so we need to manually put it there.
767                  */
768                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
769             }
771             if (cs == first_cpu) {
772                 AddressSpace *as = arm_boot_address_space(cpu, info);
774                 cpu_set_pc(cs, info->loader_start);
776                 if (!have_dtb(info)) {
777                     if (old_param) {
778                         set_kernel_args_old(info, as);
779                     } else {
780                         set_kernel_args(info, as);
781                     }
782                 }
783             } else {
784                 info->secondary_cpu_reset_hook(cpu, info);
785             }
786         }
787     }
791  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
792  *                          by key.
793  * @fw_cfg:         The firmware config instance to store the data in.
794  * @size_key:       The firmware config key to store the size of the loaded
795  *                  data under, with fw_cfg_add_i32().
796  * @data_key:       The firmware config key to store the loaded data under,
797  *                  with fw_cfg_add_bytes().
798  * @image_name:     The name of the image file to load. If it is NULL, the
799  *                  function returns without doing anything.
800  * @try_decompress: Whether the image should be decompressed (gunzipped) before
801  *                  adding it to fw_cfg. If decompression fails, the image is
802  *                  loaded as-is.
804  * In case of failure, the function prints an error message to stderr and the
805  * process exits with status 1.
806  */
807 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
808                                  uint16_t data_key, const char *image_name,
809                                  bool try_decompress)
811     size_t size = -1;
812     uint8_t *data;
814     if (image_name == NULL) {
815         return;
816     }
818     if (try_decompress) {
819         size = load_image_gzipped_buffer(image_name,
820                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
821     }
823     if (size == (size_t)-1) {
824         gchar *contents;
825         gsize length;
827         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
828             error_report("failed to load \"%s\"", image_name);
829             exit(1);
830         }
831         size = length;
832         data = (uint8_t *)contents;
833     }
835     fw_cfg_add_i32(fw_cfg, size_key, size);
836     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
839 static int do_arm_linux_init(Object *obj, void *opaque)
841     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
842         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
843         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
844         struct arm_boot_info *info = opaque;
846         if (albifc->arm_linux_init) {
847             albifc->arm_linux_init(albif, info->secure_boot);
848         }
849     }
850     return 0;
853 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
854                             uint64_t *lowaddr, uint64_t *highaddr,
855                             int elf_machine, AddressSpace *as)
857     bool elf_is64;
858     union {
859         Elf32_Ehdr h32;
860         Elf64_Ehdr h64;
861     } elf_header;
862     int data_swab = 0;
863     bool big_endian;
864     int64_t ret = -1;
865     Error *err = NULL;
868     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
869     if (err) {
870         error_free(err);
871         return ret;
872     }
874     if (elf_is64) {
875         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
876         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
877                                       : ARM_ENDIANNESS_LE;
878     } else {
879         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
880         if (big_endian) {
881             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
882                 info->endianness = ARM_ENDIANNESS_BE8;
883             } else {
884                 info->endianness = ARM_ENDIANNESS_BE32;
885                 /* In BE32, the CPU has a different view of the per-byte
886                  * address map than the rest of the system. BE32 ELF files
887                  * are organised such that they can be programmed through
888                  * the CPU's per-word byte-reversed view of the world. QEMU
889                  * however loads ELF files independently of the CPU. So
890                  * tell the ELF loader to byte reverse the data for us.
891                  */
892                 data_swab = 2;
893             }
894         } else {
895             info->endianness = ARM_ENDIANNESS_LE;
896         }
897     }
899     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
900                       pentry, lowaddr, highaddr, big_endian, elf_machine,
901                       1, data_swab, as);
902     if (ret <= 0) {
903         /* The header loaded but the image didn't */
904         exit(1);
905     }
907     return ret;
910 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
911                                    hwaddr *entry, AddressSpace *as)
913     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
914     uint64_t kernel_size = 0;
915     uint8_t *buffer;
916     int size;
918     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
919     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
920                                      &buffer);
922     if (size < 0) {
923         gsize len;
925         /* Load as raw file otherwise */
926         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
927             return -1;
928         }
929         size = len;
930     }
932     /* check the arm64 magic header value -- very old kernels may not have it */
933     if (size > ARM64_MAGIC_OFFSET + 4 &&
934         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
935         uint64_t hdrvals[2];
937         /* The arm64 Image header has text_offset and image_size fields at 8 and
938          * 16 bytes into the Image header, respectively. The text_offset field
939          * is only valid if the image_size is non-zero.
940          */
941         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
943         kernel_size = le64_to_cpu(hdrvals[1]);
945         if (kernel_size != 0) {
946             kernel_load_offset = le64_to_cpu(hdrvals[0]);
948             /*
949              * We write our startup "bootloader" at the very bottom of RAM,
950              * so that bit can't be used for the image. Luckily the Image
951              * format specification is that the image requests only an offset
952              * from a 2MB boundary, not an absolute load address. So if the
953              * image requests an offset that might mean it overlaps with the
954              * bootloader, we can just load it starting at 2MB+offset rather
955              * than 0MB + offset.
956              */
957             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
958                 kernel_load_offset += 2 * MiB;
959             }
960         }
961     }
963     /*
964      * Kernels before v3.17 don't populate the image_size field, and
965      * raw images have no header. For those our best guess at the size
966      * is the size of the Image file itself.
967      */
968     if (kernel_size == 0) {
969         kernel_size = size;
970     }
972     *entry = mem_base + kernel_load_offset;
973     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
975     g_free(buffer);
977     return kernel_size;
980 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
981                                          struct arm_boot_info *info)
983     /* Set up for a direct boot of a kernel image file. */
984     CPUState *cs;
985     AddressSpace *as = arm_boot_address_space(cpu, info);
986     int kernel_size;
987     int initrd_size;
988     int is_linux = 0;
989     uint64_t elf_entry;
990     /* Addresses of first byte used and first byte not used by the image */
991     uint64_t image_low_addr = 0, image_high_addr = 0;
992     int elf_machine;
993     hwaddr entry;
994     static const ARMInsnFixup *primary_loader;
995     uint64_t ram_end = info->loader_start + info->ram_size;
997     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
998         primary_loader = bootloader_aarch64;
999         elf_machine = EM_AARCH64;
1000     } else {
1001         primary_loader = bootloader;
1002         if (!info->write_board_setup) {
1003             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1004         }
1005         elf_machine = EM_ARM;
1006     }
1008     if (!info->secondary_cpu_reset_hook) {
1009         info->secondary_cpu_reset_hook = default_reset_secondary;
1010     }
1011     if (!info->write_secondary_boot) {
1012         info->write_secondary_boot = default_write_secondary;
1013     }
1015     if (info->nb_cpus == 0)
1016         info->nb_cpus = 1;
1018     /* Assume that raw images are linux kernels, and ELF images are not.  */
1019     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1020                                &image_high_addr, elf_machine, as);
1021     if (kernel_size > 0 && have_dtb(info)) {
1022         /*
1023          * If there is still some room left at the base of RAM, try and put
1024          * the DTB there like we do for images loaded with -bios or -pflash.
1025          */
1026         if (image_low_addr > info->loader_start
1027             || image_high_addr < info->loader_start) {
1028             /*
1029              * Set image_low_addr as address limit for arm_load_dtb if it may be
1030              * pointing into RAM, otherwise pass '0' (no limit)
1031              */
1032             if (image_low_addr < info->loader_start) {
1033                 image_low_addr = 0;
1034             }
1035             info->dtb_start = info->loader_start;
1036             info->dtb_limit = image_low_addr;
1037         }
1038     }
1039     entry = elf_entry;
1040     if (kernel_size < 0) {
1041         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1042         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1043                                      &is_linux, NULL, NULL, as);
1044         if (kernel_size >= 0) {
1045             image_low_addr = loadaddr;
1046             image_high_addr = image_low_addr + kernel_size;
1047         }
1048     }
1049     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1050         kernel_size = load_aarch64_image(info->kernel_filename,
1051                                          info->loader_start, &entry, as);
1052         is_linux = 1;
1053         if (kernel_size >= 0) {
1054             image_low_addr = entry;
1055             image_high_addr = image_low_addr + kernel_size;
1056         }
1057     } else if (kernel_size < 0) {
1058         /* 32-bit ARM */
1059         entry = info->loader_start + KERNEL_LOAD_ADDR;
1060         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1061                                              ram_end - KERNEL_LOAD_ADDR, as);
1062         is_linux = 1;
1063         if (kernel_size >= 0) {
1064             image_low_addr = entry;
1065             image_high_addr = image_low_addr + kernel_size;
1066         }
1067     }
1068     if (kernel_size < 0) {
1069         error_report("could not load kernel '%s'", info->kernel_filename);
1070         exit(1);
1071     }
1073     if (kernel_size > info->ram_size) {
1074         error_report("kernel '%s' is too large to fit in RAM "
1075                      "(kernel size %d, RAM size %" PRId64 ")",
1076                      info->kernel_filename, kernel_size, info->ram_size);
1077         exit(1);
1078     }
1080     info->entry = entry;
1082     /*
1083      * We want to put the initrd far enough into RAM that when the
1084      * kernel is uncompressed it will not clobber the initrd. However
1085      * on boards without much RAM we must ensure that we still leave
1086      * enough room for a decent sized initrd, and on boards with large
1087      * amounts of RAM we must avoid the initrd being so far up in RAM
1088      * that it is outside lowmem and inaccessible to the kernel.
1089      * So for boards with less  than 256MB of RAM we put the initrd
1090      * halfway into RAM, and for boards with 256MB of RAM or more we put
1091      * the initrd at 128MB.
1092      * We also refuse to put the initrd somewhere that will definitely
1093      * overlay the kernel we just loaded, though for kernel formats which
1094      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1095      * we might still make a bad choice here.
1096      */
1097     info->initrd_start = info->loader_start +
1098         MIN(info->ram_size / 2, 128 * 1024 * 1024);
1099     if (image_high_addr) {
1100         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1101     }
1102     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1104     if (is_linux) {
1105         uint32_t fixupcontext[FIXUP_MAX];
1107         if (info->initrd_filename) {
1109             if (info->initrd_start >= ram_end) {
1110                 error_report("not enough space after kernel to load initrd");
1111                 exit(1);
1112             }
1114             initrd_size = load_ramdisk_as(info->initrd_filename,
1115                                           info->initrd_start,
1116                                           ram_end - info->initrd_start, as);
1117             if (initrd_size < 0) {
1118                 initrd_size = load_image_targphys_as(info->initrd_filename,
1119                                                      info->initrd_start,
1120                                                      ram_end -
1121                                                      info->initrd_start,
1122                                                      as);
1123             }
1124             if (initrd_size < 0) {
1125                 error_report("could not load initrd '%s'",
1126                              info->initrd_filename);
1127                 exit(1);
1128             }
1129             if (info->initrd_start + initrd_size > ram_end) {
1130                 error_report("could not load initrd '%s': "
1131                              "too big to fit into RAM after the kernel",
1132                              info->initrd_filename);
1133                 exit(1);
1134             }
1135         } else {
1136             initrd_size = 0;
1137         }
1138         info->initrd_size = initrd_size;
1140         fixupcontext[FIXUP_BOARDID] = info->board_id;
1141         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1143         /*
1144          * for device tree boot, we pass the DTB directly in r2. Otherwise
1145          * we point to the kernel args.
1146          */
1147         if (have_dtb(info)) {
1148             hwaddr align;
1150             if (elf_machine == EM_AARCH64) {
1151                 /*
1152                  * Some AArch64 kernels on early bootup map the fdt region as
1153                  *
1154                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1155                  *
1156                  * Let's play safe and prealign it to 2MB to give us some space.
1157                  */
1158                 align = 2 * 1024 * 1024;
1159             } else {
1160                 /*
1161                  * Some 32bit kernels will trash anything in the 4K page the
1162                  * initrd ends in, so make sure the DTB isn't caught up in that.
1163                  */
1164                 align = 4096;
1165             }
1167             /* Place the DTB after the initrd in memory with alignment. */
1168             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1169                                            align);
1170             if (info->dtb_start >= ram_end) {
1171                 error_report("Not enough space for DTB after kernel/initrd");
1172                 exit(1);
1173             }
1174             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1175             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1176         } else {
1177             fixupcontext[FIXUP_ARGPTR_LO] =
1178                 info->loader_start + KERNEL_ARGS_ADDR;
1179             fixupcontext[FIXUP_ARGPTR_HI] =
1180                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1181             if (info->ram_size >= (1ULL << 32)) {
1182                 error_report("RAM size must be less than 4GB to boot"
1183                              " Linux kernel using ATAGS (try passing a device tree"
1184                              " using -dtb)");
1185                 exit(1);
1186             }
1187         }
1188         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1189         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1191         write_bootloader("bootloader", info->loader_start,
1192                          primary_loader, fixupcontext, as);
1194         if (info->nb_cpus > 1) {
1195             info->write_secondary_boot(cpu, info);
1196         }
1197         if (info->write_board_setup) {
1198             info->write_board_setup(cpu, info);
1199         }
1201         /*
1202          * Notify devices which need to fake up firmware initialization
1203          * that we're doing a direct kernel boot.
1204          */
1205         object_child_foreach_recursive(object_get_root(),
1206                                        do_arm_linux_init, info);
1207     }
1208     info->is_linux = is_linux;
1210     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1211         ARM_CPU(cs)->env.boot_info = info;
1212     }
1215 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1217     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1219     if (have_dtb(info)) {
1220         /*
1221          * If we have a device tree blob, but no kernel to supply it to (or
1222          * the kernel is supposed to be loaded by the bootloader), copy the
1223          * DTB to the base of RAM for the bootloader to pick up.
1224          */
1225         info->dtb_start = info->loader_start;
1226     }
1228     if (info->kernel_filename) {
1229         FWCfgState *fw_cfg;
1230         bool try_decompressing_kernel;
1232         fw_cfg = fw_cfg_find();
1233         try_decompressing_kernel = arm_feature(&cpu->env,
1234                                                ARM_FEATURE_AARCH64);
1236         /*
1237          * Expose the kernel, the command line, and the initrd in fw_cfg.
1238          * We don't process them here at all, it's all left to the
1239          * firmware.
1240          */
1241         load_image_to_fw_cfg(fw_cfg,
1242                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1243                              info->kernel_filename,
1244                              try_decompressing_kernel);
1245         load_image_to_fw_cfg(fw_cfg,
1246                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1247                              info->initrd_filename, false);
1249         if (info->kernel_cmdline) {
1250             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1251                            strlen(info->kernel_cmdline) + 1);
1252             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1253                               info->kernel_cmdline);
1254         }
1255     }
1257     /*
1258      * We will start from address 0 (typically a boot ROM image) in the
1259      * same way as hardware. Leave env->boot_info NULL, so that
1260      * do_cpu_reset() knows it does not need to alter the PC on reset.
1261      */
1264 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1266     CPUState *cs;
1267     AddressSpace *as = arm_boot_address_space(cpu, info);
1269     /*
1270      * CPU objects (unlike devices) are not automatically reset on system
1271      * reset, so we must always register a handler to do so. If we're
1272      * actually loading a kernel, the handler is also responsible for
1273      * arranging that we start it correctly.
1274      */
1275     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1276         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1277     }
1279     /*
1280      * The board code is not supposed to set secure_board_setup unless
1281      * running its code in secure mode is actually possible, and KVM
1282      * doesn't support secure.
1283      */
1284     assert(!(info->secure_board_setup && kvm_enabled()));
1286     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1287     info->dtb_limit = 0;
1289     /* Load the kernel.  */
1290     if (!info->kernel_filename || info->firmware_loaded) {
1291         arm_setup_firmware_boot(cpu, info);
1292     } else {
1293         arm_setup_direct_kernel_boot(cpu, info);
1294     }
1296     if (!info->skip_dtb_autoload && have_dtb(info)) {
1297         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1298             exit(1);
1299         }
1300     }
1303 static const TypeInfo arm_linux_boot_if_info = {
1304     .name = TYPE_ARM_LINUX_BOOT_IF,
1305     .parent = TYPE_INTERFACE,
1306     .class_size = sizeof(ARMLinuxBootIfClass),
1309 static void arm_linux_boot_register_types(void)
1311     type_register_static(&arm_linux_boot_if_info);
1314 type_init(arm_linux_boot_register_types)