xen/Makefile.objs: simplify
[qemu/ar7.git] / hw / ppc / spapr.c
blob6bfb908da7e9c5db3e99aaef70c8b6bb0c375c43
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "hw/hw.h"
30 #include "hw/fw-path-provider.h"
31 #include "elf.h"
32 #include "net/net.h"
33 #include "sysemu/device_tree.h"
34 #include "sysemu/block-backend.h"
35 #include "sysemu/cpus.h"
36 #include "sysemu/kvm.h"
37 #include "sysemu/device_tree.h"
38 #include "kvm_ppc.h"
39 #include "migration/migration.h"
40 #include "mmu-hash64.h"
41 #include "qom/cpu.h"
43 #include "hw/boards.h"
44 #include "hw/ppc/ppc.h"
45 #include "hw/loader.h"
47 #include "hw/ppc/spapr.h"
48 #include "hw/ppc/spapr_vio.h"
49 #include "hw/pci-host/spapr.h"
50 #include "hw/ppc/xics.h"
51 #include "hw/pci/msi.h"
53 #include "hw/pci/pci.h"
54 #include "hw/scsi/scsi.h"
55 #include "hw/virtio/virtio-scsi.h"
57 #include "exec/address-spaces.h"
58 #include "hw/usb.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "trace.h"
62 #include "hw/nmi.h"
64 #include "hw/compat.h"
65 #include "qemu-common.h"
67 #include <libfdt.h>
69 /* SLOF memory layout:
71 * SLOF raw image loaded at 0, copies its romfs right below the flat
72 * device-tree, then position SLOF itself 31M below that
74 * So we set FW_OVERHEAD to 40MB which should account for all of that
75 * and more
77 * We load our kernel at 4M, leaving space for SLOF initial image
79 #define FDT_MAX_SIZE 0x100000
80 #define RTAS_MAX_SIZE 0x10000
81 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
82 #define FW_MAX_SIZE 0x400000
83 #define FW_FILE_NAME "slof.bin"
84 #define FW_OVERHEAD 0x2800000
85 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
87 #define MIN_RMA_SLOF 128UL
89 #define TIMEBASE_FREQ 512000000ULL
91 #define PHANDLE_XICP 0x00001111
93 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
95 static XICSState *try_create_xics(const char *type, int nr_servers,
96 int nr_irqs, Error **errp)
98 Error *err = NULL;
99 DeviceState *dev;
101 dev = qdev_create(NULL, type);
102 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
103 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
104 object_property_set_bool(OBJECT(dev), true, "realized", &err);
105 if (err) {
106 error_propagate(errp, err);
107 object_unparent(OBJECT(dev));
108 return NULL;
110 return XICS_COMMON(dev);
113 static XICSState *xics_system_init(MachineState *machine,
114 int nr_servers, int nr_irqs)
116 XICSState *icp = NULL;
118 if (kvm_enabled()) {
119 Error *err = NULL;
121 if (machine_kernel_irqchip_allowed(machine)) {
122 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
124 if (machine_kernel_irqchip_required(machine) && !icp) {
125 error_report("kernel_irqchip requested but unavailable: %s",
126 error_get_pretty(err));
128 error_free(err);
131 if (!icp) {
132 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
135 return icp;
138 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
139 int smt_threads)
141 int i, ret = 0;
142 uint32_t servers_prop[smt_threads];
143 uint32_t gservers_prop[smt_threads * 2];
144 int index = ppc_get_vcpu_dt_id(cpu);
146 if (cpu->cpu_version) {
147 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
148 if (ret < 0) {
149 return ret;
153 /* Build interrupt servers and gservers properties */
154 for (i = 0; i < smt_threads; i++) {
155 servers_prop[i] = cpu_to_be32(index + i);
156 /* Hack, direct the group queues back to cpu 0 */
157 gservers_prop[i*2] = cpu_to_be32(index + i);
158 gservers_prop[i*2 + 1] = 0;
160 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
161 servers_prop, sizeof(servers_prop));
162 if (ret < 0) {
163 return ret;
165 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
166 gservers_prop, sizeof(gservers_prop));
168 return ret;
171 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
173 int ret = 0;
174 PowerPCCPU *cpu = POWERPC_CPU(cs);
175 int index = ppc_get_vcpu_dt_id(cpu);
176 uint32_t associativity[] = {cpu_to_be32(0x5),
177 cpu_to_be32(0x0),
178 cpu_to_be32(0x0),
179 cpu_to_be32(0x0),
180 cpu_to_be32(cs->numa_node),
181 cpu_to_be32(index)};
183 /* Advertise NUMA via ibm,associativity */
184 if (nb_numa_nodes > 1) {
185 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
186 sizeof(associativity));
189 return ret;
192 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
194 int ret = 0, offset, cpus_offset;
195 CPUState *cs;
196 char cpu_model[32];
197 int smt = kvmppc_smt_threads();
198 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
200 CPU_FOREACH(cs) {
201 PowerPCCPU *cpu = POWERPC_CPU(cs);
202 DeviceClass *dc = DEVICE_GET_CLASS(cs);
203 int index = ppc_get_vcpu_dt_id(cpu);
205 if ((index % smt) != 0) {
206 continue;
209 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
211 cpus_offset = fdt_path_offset(fdt, "/cpus");
212 if (cpus_offset < 0) {
213 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
214 "cpus");
215 if (cpus_offset < 0) {
216 return cpus_offset;
219 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
220 if (offset < 0) {
221 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
222 if (offset < 0) {
223 return offset;
227 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
228 pft_size_prop, sizeof(pft_size_prop));
229 if (ret < 0) {
230 return ret;
233 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
234 if (ret < 0) {
235 return ret;
238 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
239 ppc_get_compat_smt_threads(cpu));
240 if (ret < 0) {
241 return ret;
244 return ret;
248 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
249 size_t maxsize)
251 size_t maxcells = maxsize / sizeof(uint32_t);
252 int i, j, count;
253 uint32_t *p = prop;
255 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
256 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
258 if (!sps->page_shift) {
259 break;
261 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
262 if (sps->enc[count].page_shift == 0) {
263 break;
266 if ((p - prop) >= (maxcells - 3 - count * 2)) {
267 break;
269 *(p++) = cpu_to_be32(sps->page_shift);
270 *(p++) = cpu_to_be32(sps->slb_enc);
271 *(p++) = cpu_to_be32(count);
272 for (j = 0; j < count; j++) {
273 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
274 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
278 return (p - prop) * sizeof(uint32_t);
281 static hwaddr spapr_node0_size(void)
283 MachineState *machine = MACHINE(qdev_get_machine());
285 if (nb_numa_nodes) {
286 int i;
287 for (i = 0; i < nb_numa_nodes; ++i) {
288 if (numa_info[i].node_mem) {
289 return MIN(pow2floor(numa_info[i].node_mem),
290 machine->ram_size);
294 return machine->ram_size;
297 #define _FDT(exp) \
298 do { \
299 int ret = (exp); \
300 if (ret < 0) { \
301 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
302 #exp, fdt_strerror(ret)); \
303 exit(1); \
305 } while (0)
307 static void add_str(GString *s, const gchar *s1)
309 g_string_append_len(s, s1, strlen(s1) + 1);
312 static void *spapr_create_fdt_skel(hwaddr initrd_base,
313 hwaddr initrd_size,
314 hwaddr kernel_size,
315 bool little_endian,
316 const char *kernel_cmdline,
317 uint32_t epow_irq)
319 void *fdt;
320 uint32_t start_prop = cpu_to_be32(initrd_base);
321 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
322 GString *hypertas = g_string_sized_new(256);
323 GString *qemu_hypertas = g_string_sized_new(256);
324 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
325 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
326 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
327 char *buf;
329 add_str(hypertas, "hcall-pft");
330 add_str(hypertas, "hcall-term");
331 add_str(hypertas, "hcall-dabr");
332 add_str(hypertas, "hcall-interrupt");
333 add_str(hypertas, "hcall-tce");
334 add_str(hypertas, "hcall-vio");
335 add_str(hypertas, "hcall-splpar");
336 add_str(hypertas, "hcall-bulk");
337 add_str(hypertas, "hcall-set-mode");
338 add_str(qemu_hypertas, "hcall-memop1");
340 fdt = g_malloc0(FDT_MAX_SIZE);
341 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
343 if (kernel_size) {
344 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
346 if (initrd_size) {
347 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
349 _FDT((fdt_finish_reservemap(fdt)));
351 /* Root node */
352 _FDT((fdt_begin_node(fdt, "")));
353 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
354 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
355 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
358 * Add info to guest to indentify which host is it being run on
359 * and what is the uuid of the guest
361 if (kvmppc_get_host_model(&buf)) {
362 _FDT((fdt_property_string(fdt, "host-model", buf)));
363 g_free(buf);
365 if (kvmppc_get_host_serial(&buf)) {
366 _FDT((fdt_property_string(fdt, "host-serial", buf)));
367 g_free(buf);
370 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
371 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
372 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
373 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
374 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
375 qemu_uuid[14], qemu_uuid[15]);
377 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
378 g_free(buf);
380 if (qemu_get_vm_name()) {
381 _FDT((fdt_property_string(fdt, "ibm,partition-name",
382 qemu_get_vm_name())));
385 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
386 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
388 /* /chosen */
389 _FDT((fdt_begin_node(fdt, "chosen")));
391 /* Set Form1_affinity */
392 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
394 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
395 _FDT((fdt_property(fdt, "linux,initrd-start",
396 &start_prop, sizeof(start_prop))));
397 _FDT((fdt_property(fdt, "linux,initrd-end",
398 &end_prop, sizeof(end_prop))));
399 if (kernel_size) {
400 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
401 cpu_to_be64(kernel_size) };
403 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
404 if (little_endian) {
405 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
408 if (boot_menu) {
409 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
411 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
412 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
413 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
415 _FDT((fdt_end_node(fdt)));
417 /* RTAS */
418 _FDT((fdt_begin_node(fdt, "rtas")));
420 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
421 add_str(hypertas, "hcall-multi-tce");
423 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
424 hypertas->len)));
425 g_string_free(hypertas, TRUE);
426 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
427 qemu_hypertas->len)));
428 g_string_free(qemu_hypertas, TRUE);
430 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
431 refpoints, sizeof(refpoints))));
433 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
434 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
435 RTAS_EVENT_SCAN_RATE)));
437 if (msi_supported) {
438 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
442 * According to PAPR, rtas ibm,os-term does not guarantee a return
443 * back to the guest cpu.
445 * While an additional ibm,extended-os-term property indicates that
446 * rtas call return will always occur. Set this property.
448 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
450 _FDT((fdt_end_node(fdt)));
452 /* interrupt controller */
453 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
455 _FDT((fdt_property_string(fdt, "device_type",
456 "PowerPC-External-Interrupt-Presentation")));
457 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
458 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
459 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
460 interrupt_server_ranges_prop,
461 sizeof(interrupt_server_ranges_prop))));
462 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
463 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
464 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
466 _FDT((fdt_end_node(fdt)));
468 /* vdevice */
469 _FDT((fdt_begin_node(fdt, "vdevice")));
471 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
472 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
473 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
474 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
475 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
476 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
478 _FDT((fdt_end_node(fdt)));
480 /* event-sources */
481 spapr_events_fdt_skel(fdt, epow_irq);
483 /* /hypervisor node */
484 if (kvm_enabled()) {
485 uint8_t hypercall[16];
487 /* indicate KVM hypercall interface */
488 _FDT((fdt_begin_node(fdt, "hypervisor")));
489 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
490 if (kvmppc_has_cap_fixup_hcalls()) {
492 * Older KVM versions with older guest kernels were broken with the
493 * magic page, don't allow the guest to map it.
495 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
496 sizeof(hypercall));
497 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
498 sizeof(hypercall))));
500 _FDT((fdt_end_node(fdt)));
503 _FDT((fdt_end_node(fdt))); /* close root node */
504 _FDT((fdt_finish(fdt)));
506 return fdt;
509 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
510 hwaddr size)
512 uint32_t associativity[] = {
513 cpu_to_be32(0x4), /* length */
514 cpu_to_be32(0x0), cpu_to_be32(0x0),
515 cpu_to_be32(0x0), cpu_to_be32(nodeid)
517 char mem_name[32];
518 uint64_t mem_reg_property[2];
519 int off;
521 mem_reg_property[0] = cpu_to_be64(start);
522 mem_reg_property[1] = cpu_to_be64(size);
524 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
525 off = fdt_add_subnode(fdt, 0, mem_name);
526 _FDT(off);
527 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
528 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
529 sizeof(mem_reg_property))));
530 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
531 sizeof(associativity))));
532 return off;
535 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
537 MachineState *machine = MACHINE(spapr);
538 hwaddr mem_start, node_size;
539 int i, nb_nodes = nb_numa_nodes;
540 NodeInfo *nodes = numa_info;
541 NodeInfo ramnode;
543 /* No NUMA nodes, assume there is just one node with whole RAM */
544 if (!nb_numa_nodes) {
545 nb_nodes = 1;
546 ramnode.node_mem = machine->ram_size;
547 nodes = &ramnode;
550 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
551 if (!nodes[i].node_mem) {
552 continue;
554 if (mem_start >= machine->ram_size) {
555 node_size = 0;
556 } else {
557 node_size = nodes[i].node_mem;
558 if (node_size > machine->ram_size - mem_start) {
559 node_size = machine->ram_size - mem_start;
562 if (!mem_start) {
563 /* ppc_spapr_init() checks for rma_size <= node0_size already */
564 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
565 mem_start += spapr->rma_size;
566 node_size -= spapr->rma_size;
568 for ( ; node_size; ) {
569 hwaddr sizetmp = pow2floor(node_size);
571 /* mem_start != 0 here */
572 if (ctzl(mem_start) < ctzl(sizetmp)) {
573 sizetmp = 1ULL << ctzl(mem_start);
576 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
577 node_size -= sizetmp;
578 mem_start += sizetmp;
582 return 0;
585 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
586 sPAPRMachineState *spapr)
588 PowerPCCPU *cpu = POWERPC_CPU(cs);
589 CPUPPCState *env = &cpu->env;
590 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
591 int index = ppc_get_vcpu_dt_id(cpu);
592 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
593 0xffffffff, 0xffffffff};
594 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
595 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
596 uint32_t page_sizes_prop[64];
597 size_t page_sizes_prop_size;
598 uint32_t vcpus_per_socket = smp_threads * smp_cores;
599 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
601 /* Note: we keep CI large pages off for now because a 64K capable guest
602 * provisioned with large pages might otherwise try to map a qemu
603 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
604 * even if that qemu runs on a 4k host.
606 * We can later add this bit back when we are confident this is not
607 * an issue (!HV KVM or 64K host)
609 uint8_t pa_features_206[] = { 6, 0,
610 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
611 uint8_t pa_features_207[] = { 24, 0,
612 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
613 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
614 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
615 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
616 uint8_t *pa_features;
617 size_t pa_size;
619 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
620 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
622 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
623 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
624 env->dcache_line_size)));
625 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
626 env->dcache_line_size)));
627 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
628 env->icache_line_size)));
629 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
630 env->icache_line_size)));
632 if (pcc->l1_dcache_size) {
633 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
634 pcc->l1_dcache_size)));
635 } else {
636 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
638 if (pcc->l1_icache_size) {
639 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
640 pcc->l1_icache_size)));
641 } else {
642 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
645 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
646 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
647 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
648 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
649 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
650 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
652 if (env->spr_cb[SPR_PURR].oea_read) {
653 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
656 if (env->mmu_model & POWERPC_MMU_1TSEG) {
657 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
658 segs, sizeof(segs))));
661 /* Advertise VMX/VSX (vector extensions) if available
662 * 0 / no property == no vector extensions
663 * 1 == VMX / Altivec available
664 * 2 == VSX available */
665 if (env->insns_flags & PPC_ALTIVEC) {
666 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
668 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
671 /* Advertise DFP (Decimal Floating Point) if available
672 * 0 / no property == no DFP
673 * 1 == DFP available */
674 if (env->insns_flags2 & PPC2_DFP) {
675 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
678 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
679 sizeof(page_sizes_prop));
680 if (page_sizes_prop_size) {
681 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
682 page_sizes_prop, page_sizes_prop_size)));
685 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
686 if (env->mmu_model == POWERPC_MMU_2_06) {
687 pa_features = pa_features_206;
688 pa_size = sizeof(pa_features_206);
689 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
690 pa_features = pa_features_207;
691 pa_size = sizeof(pa_features_207);
693 if (env->ci_large_pages) {
694 pa_features[3] |= 0x20;
696 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
698 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
699 cs->cpu_index / vcpus_per_socket)));
701 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
702 pft_size_prop, sizeof(pft_size_prop))));
704 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
706 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
707 ppc_get_compat_smt_threads(cpu)));
710 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
712 CPUState *cs;
713 int cpus_offset;
714 char *nodename;
715 int smt = kvmppc_smt_threads();
717 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
718 _FDT(cpus_offset);
719 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
720 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
723 * We walk the CPUs in reverse order to ensure that CPU DT nodes
724 * created by fdt_add_subnode() end up in the right order in FDT
725 * for the guest kernel the enumerate the CPUs correctly.
727 CPU_FOREACH_REVERSE(cs) {
728 PowerPCCPU *cpu = POWERPC_CPU(cs);
729 int index = ppc_get_vcpu_dt_id(cpu);
730 DeviceClass *dc = DEVICE_GET_CLASS(cs);
731 int offset;
733 if ((index % smt) != 0) {
734 continue;
737 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
738 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
739 g_free(nodename);
740 _FDT(offset);
741 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
747 * Adds ibm,dynamic-reconfiguration-memory node.
748 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
749 * of this device tree node.
751 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
753 MachineState *machine = MACHINE(spapr);
754 int ret, i, offset;
755 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
756 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
757 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
758 uint32_t *int_buf, *cur_index, buf_len;
759 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
762 * Allocate enough buffer size to fit in ibm,dynamic-memory
763 * or ibm,associativity-lookup-arrays
765 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
766 * sizeof(uint32_t);
767 cur_index = int_buf = g_malloc0(buf_len);
769 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
771 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
772 sizeof(prop_lmb_size));
773 if (ret < 0) {
774 goto out;
777 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
778 if (ret < 0) {
779 goto out;
782 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
783 if (ret < 0) {
784 goto out;
787 /* ibm,dynamic-memory */
788 int_buf[0] = cpu_to_be32(nr_lmbs);
789 cur_index++;
790 for (i = 0; i < nr_lmbs; i++) {
791 sPAPRDRConnector *drc;
792 sPAPRDRConnectorClass *drck;
793 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
794 uint32_t *dynamic_memory = cur_index;
796 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
797 addr/lmb_size);
798 g_assert(drc);
799 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
801 dynamic_memory[0] = cpu_to_be32(addr >> 32);
802 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
803 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
804 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
805 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
806 if (addr < machine->ram_size ||
807 memory_region_present(get_system_memory(), addr)) {
808 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
809 } else {
810 dynamic_memory[5] = cpu_to_be32(0);
813 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
815 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
816 if (ret < 0) {
817 goto out;
820 /* ibm,associativity-lookup-arrays */
821 cur_index = int_buf;
822 int_buf[0] = cpu_to_be32(nr_nodes);
823 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
824 cur_index += 2;
825 for (i = 0; i < nr_nodes; i++) {
826 uint32_t associativity[] = {
827 cpu_to_be32(0x0),
828 cpu_to_be32(0x0),
829 cpu_to_be32(0x0),
830 cpu_to_be32(i)
832 memcpy(cur_index, associativity, sizeof(associativity));
833 cur_index += 4;
835 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
836 (cur_index - int_buf) * sizeof(uint32_t));
837 out:
838 g_free(int_buf);
839 return ret;
842 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
843 target_ulong addr, target_ulong size,
844 bool cpu_update, bool memory_update)
846 void *fdt, *fdt_skel;
847 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
848 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
850 size -= sizeof(hdr);
852 /* Create sceleton */
853 fdt_skel = g_malloc0(size);
854 _FDT((fdt_create(fdt_skel, size)));
855 _FDT((fdt_begin_node(fdt_skel, "")));
856 _FDT((fdt_end_node(fdt_skel)));
857 _FDT((fdt_finish(fdt_skel)));
858 fdt = g_malloc0(size);
859 _FDT((fdt_open_into(fdt_skel, fdt, size)));
860 g_free(fdt_skel);
862 /* Fixup cpu nodes */
863 if (cpu_update) {
864 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
867 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
868 if (memory_update && smc->dr_lmb_enabled) {
869 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
872 /* Pack resulting tree */
873 _FDT((fdt_pack(fdt)));
875 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
876 trace_spapr_cas_failed(size);
877 return -1;
880 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
881 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
882 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
883 g_free(fdt);
885 return 0;
888 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
889 hwaddr fdt_addr,
890 hwaddr rtas_addr,
891 hwaddr rtas_size)
893 MachineState *machine = MACHINE(qdev_get_machine());
894 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
895 const char *boot_device = machine->boot_order;
896 int ret, i;
897 size_t cb = 0;
898 char *bootlist;
899 void *fdt;
900 sPAPRPHBState *phb;
902 fdt = g_malloc(FDT_MAX_SIZE);
904 /* open out the base tree into a temp buffer for the final tweaks */
905 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
907 ret = spapr_populate_memory(spapr, fdt);
908 if (ret < 0) {
909 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
910 exit(1);
913 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
914 if (ret < 0) {
915 fprintf(stderr, "couldn't setup vio devices in fdt\n");
916 exit(1);
919 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
920 ret = spapr_rng_populate_dt(fdt);
921 if (ret < 0) {
922 fprintf(stderr, "could not set up rng device in the fdt\n");
923 exit(1);
927 QLIST_FOREACH(phb, &spapr->phbs, list) {
928 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
931 if (ret < 0) {
932 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
933 exit(1);
936 /* RTAS */
937 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
938 if (ret < 0) {
939 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
942 /* cpus */
943 spapr_populate_cpus_dt_node(fdt, spapr);
945 bootlist = get_boot_devices_list(&cb, true);
946 if (cb && bootlist) {
947 int offset = fdt_path_offset(fdt, "/chosen");
948 if (offset < 0) {
949 exit(1);
951 for (i = 0; i < cb; i++) {
952 if (bootlist[i] == '\n') {
953 bootlist[i] = ' ';
957 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
960 if (boot_device && strlen(boot_device)) {
961 int offset = fdt_path_offset(fdt, "/chosen");
963 if (offset < 0) {
964 exit(1);
966 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
969 if (!spapr->has_graphics) {
970 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
973 if (smc->dr_lmb_enabled) {
974 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
977 _FDT((fdt_pack(fdt)));
979 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
980 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
981 fdt_totalsize(fdt), FDT_MAX_SIZE);
982 exit(1);
985 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
986 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
988 g_free(bootlist);
989 g_free(fdt);
992 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
994 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
997 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
999 CPUPPCState *env = &cpu->env;
1001 if (msr_pr) {
1002 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1003 env->gpr[3] = H_PRIVILEGE;
1004 } else {
1005 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1009 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1010 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1011 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1012 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1013 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1015 static void spapr_alloc_htab(sPAPRMachineState *spapr)
1017 long shift;
1018 int index;
1020 /* allocate hash page table. For now we always make this 16mb,
1021 * later we should probably make it scale to the size of guest
1022 * RAM */
1024 shift = kvmppc_reset_htab(spapr->htab_shift);
1025 if (shift < 0) {
1027 * For HV KVM, host kernel will return -ENOMEM when requested
1028 * HTAB size can't be allocated.
1030 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1031 } else if (shift > 0) {
1033 * Kernel handles htab, we don't need to allocate one
1035 * Older kernels can fall back to lower HTAB shift values,
1036 * but we don't allow booting of such guests.
1038 if (shift != spapr->htab_shift) {
1039 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1042 spapr->htab_shift = shift;
1043 kvmppc_kern_htab = true;
1044 } else {
1045 /* Allocate htab */
1046 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1048 /* And clear it */
1049 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1051 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1052 DIRTY_HPTE(HPTE(spapr->htab, index));
1058 * Clear HTAB entries during reset.
1060 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1061 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1063 static void spapr_reset_htab(sPAPRMachineState *spapr)
1065 long shift;
1066 int index;
1068 shift = kvmppc_reset_htab(spapr->htab_shift);
1069 if (shift < 0) {
1070 error_setg(&error_abort, "Failed to reset HTAB");
1071 } else if (shift > 0) {
1072 if (shift != spapr->htab_shift) {
1073 error_setg(&error_abort, "Requested HTAB allocation failed during reset");
1076 /* Tell readers to update their file descriptor */
1077 if (spapr->htab_fd >= 0) {
1078 spapr->htab_fd_stale = true;
1080 } else {
1081 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1083 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1084 DIRTY_HPTE(HPTE(spapr->htab, index));
1088 /* Update the RMA size if necessary */
1089 if (spapr->vrma_adjust) {
1090 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1091 spapr->htab_shift);
1095 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1097 bool matched = false;
1099 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1100 matched = true;
1103 if (!matched) {
1104 error_report("Device %s is not supported by this machine yet.",
1105 qdev_fw_name(DEVICE(sbdev)));
1106 exit(1);
1109 return 0;
1113 * A guest reset will cause spapr->htab_fd to become stale if being used.
1114 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1116 static int spapr_check_htab_fd(sPAPRMachineState *spapr)
1118 int rc = 0;
1120 if (spapr->htab_fd_stale) {
1121 close(spapr->htab_fd);
1122 spapr->htab_fd = kvmppc_get_htab_fd(false);
1123 if (spapr->htab_fd < 0) {
1124 error_report("Unable to open fd for reading hash table from KVM: "
1125 "%s", strerror(errno));
1126 rc = -1;
1128 spapr->htab_fd_stale = false;
1131 return rc;
1134 static void ppc_spapr_reset(void)
1136 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1137 PowerPCCPU *first_ppc_cpu;
1138 uint32_t rtas_limit;
1140 /* Check for unknown sysbus devices */
1141 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1143 /* Reset the hash table & recalc the RMA */
1144 spapr_reset_htab(spapr);
1146 qemu_devices_reset();
1149 * We place the device tree and RTAS just below either the top of the RMA,
1150 * or just below 2GB, whichever is lowere, so that it can be
1151 * processed with 32-bit real mode code if necessary
1153 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1154 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1155 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1157 /* Load the fdt */
1158 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1159 spapr->rtas_size);
1161 /* Copy RTAS over */
1162 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1163 spapr->rtas_size);
1165 /* Set up the entry state */
1166 first_ppc_cpu = POWERPC_CPU(first_cpu);
1167 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1168 first_ppc_cpu->env.gpr[5] = 0;
1169 first_cpu->halted = 0;
1170 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1174 static void spapr_cpu_reset(void *opaque)
1176 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1177 PowerPCCPU *cpu = opaque;
1178 CPUState *cs = CPU(cpu);
1179 CPUPPCState *env = &cpu->env;
1181 cpu_reset(cs);
1183 /* All CPUs start halted. CPU0 is unhalted from the machine level
1184 * reset code and the rest are explicitly started up by the guest
1185 * using an RTAS call */
1186 cs->halted = 1;
1188 env->spr[SPR_HIOR] = 0;
1190 env->external_htab = (uint8_t *)spapr->htab;
1191 if (kvm_enabled() && !env->external_htab) {
1193 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1194 * functions do the right thing.
1196 env->external_htab = (void *)1;
1198 env->htab_base = -1;
1200 * htab_mask is the mask used to normalize hash value to PTEG index.
1201 * htab_shift is log2 of hash table size.
1202 * We have 8 hpte per group, and each hpte is 16 bytes.
1203 * ie have 128 bytes per hpte entry.
1205 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1206 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1207 (spapr->htab_shift - 18);
1210 static void spapr_create_nvram(sPAPRMachineState *spapr)
1212 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1213 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1215 if (dinfo) {
1216 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
1219 qdev_init_nofail(dev);
1221 spapr->nvram = (struct sPAPRNVRAM *)dev;
1224 static void spapr_rtc_create(sPAPRMachineState *spapr)
1226 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1228 qdev_init_nofail(dev);
1229 spapr->rtc = dev;
1231 object_property_add_alias(qdev_get_machine(), "rtc-time",
1232 OBJECT(spapr->rtc), "date", NULL);
1235 /* Returns whether we want to use VGA or not */
1236 static int spapr_vga_init(PCIBus *pci_bus)
1238 switch (vga_interface_type) {
1239 case VGA_NONE:
1240 return false;
1241 case VGA_DEVICE:
1242 return true;
1243 case VGA_STD:
1244 case VGA_VIRTIO:
1245 return pci_vga_init(pci_bus) != NULL;
1246 default:
1247 fprintf(stderr, "This vga model is not supported,"
1248 "currently it only supports -vga std\n");
1249 exit(0);
1253 static int spapr_post_load(void *opaque, int version_id)
1255 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1256 int err = 0;
1258 /* In earlier versions, there was no separate qdev for the PAPR
1259 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1260 * So when migrating from those versions, poke the incoming offset
1261 * value into the RTC device */
1262 if (version_id < 3) {
1263 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1266 return err;
1269 static bool version_before_3(void *opaque, int version_id)
1271 return version_id < 3;
1274 static const VMStateDescription vmstate_spapr = {
1275 .name = "spapr",
1276 .version_id = 3,
1277 .minimum_version_id = 1,
1278 .post_load = spapr_post_load,
1279 .fields = (VMStateField[]) {
1280 /* used to be @next_irq */
1281 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1283 /* RTC offset */
1284 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1286 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1287 VMSTATE_END_OF_LIST()
1291 static int htab_save_setup(QEMUFile *f, void *opaque)
1293 sPAPRMachineState *spapr = opaque;
1295 /* "Iteration" header */
1296 qemu_put_be32(f, spapr->htab_shift);
1298 if (spapr->htab) {
1299 spapr->htab_save_index = 0;
1300 spapr->htab_first_pass = true;
1301 } else {
1302 assert(kvm_enabled());
1304 spapr->htab_fd = kvmppc_get_htab_fd(false);
1305 spapr->htab_fd_stale = false;
1306 if (spapr->htab_fd < 0) {
1307 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1308 strerror(errno));
1309 return -1;
1314 return 0;
1317 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1318 int64_t max_ns)
1320 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1321 int index = spapr->htab_save_index;
1322 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1324 assert(spapr->htab_first_pass);
1326 do {
1327 int chunkstart;
1329 /* Consume invalid HPTEs */
1330 while ((index < htabslots)
1331 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1332 index++;
1333 CLEAN_HPTE(HPTE(spapr->htab, index));
1336 /* Consume valid HPTEs */
1337 chunkstart = index;
1338 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1339 && HPTE_VALID(HPTE(spapr->htab, index))) {
1340 index++;
1341 CLEAN_HPTE(HPTE(spapr->htab, index));
1344 if (index > chunkstart) {
1345 int n_valid = index - chunkstart;
1347 qemu_put_be32(f, chunkstart);
1348 qemu_put_be16(f, n_valid);
1349 qemu_put_be16(f, 0);
1350 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1351 HASH_PTE_SIZE_64 * n_valid);
1353 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1354 break;
1357 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1359 if (index >= htabslots) {
1360 assert(index == htabslots);
1361 index = 0;
1362 spapr->htab_first_pass = false;
1364 spapr->htab_save_index = index;
1367 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1368 int64_t max_ns)
1370 bool final = max_ns < 0;
1371 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1372 int examined = 0, sent = 0;
1373 int index = spapr->htab_save_index;
1374 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1376 assert(!spapr->htab_first_pass);
1378 do {
1379 int chunkstart, invalidstart;
1381 /* Consume non-dirty HPTEs */
1382 while ((index < htabslots)
1383 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1384 index++;
1385 examined++;
1388 chunkstart = index;
1389 /* Consume valid dirty HPTEs */
1390 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1391 && HPTE_DIRTY(HPTE(spapr->htab, index))
1392 && HPTE_VALID(HPTE(spapr->htab, index))) {
1393 CLEAN_HPTE(HPTE(spapr->htab, index));
1394 index++;
1395 examined++;
1398 invalidstart = index;
1399 /* Consume invalid dirty HPTEs */
1400 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1401 && HPTE_DIRTY(HPTE(spapr->htab, index))
1402 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1403 CLEAN_HPTE(HPTE(spapr->htab, index));
1404 index++;
1405 examined++;
1408 if (index > chunkstart) {
1409 int n_valid = invalidstart - chunkstart;
1410 int n_invalid = index - invalidstart;
1412 qemu_put_be32(f, chunkstart);
1413 qemu_put_be16(f, n_valid);
1414 qemu_put_be16(f, n_invalid);
1415 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1416 HASH_PTE_SIZE_64 * n_valid);
1417 sent += index - chunkstart;
1419 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1420 break;
1424 if (examined >= htabslots) {
1425 break;
1428 if (index >= htabslots) {
1429 assert(index == htabslots);
1430 index = 0;
1432 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1434 if (index >= htabslots) {
1435 assert(index == htabslots);
1436 index = 0;
1439 spapr->htab_save_index = index;
1441 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1444 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1445 #define MAX_KVM_BUF_SIZE 2048
1447 static int htab_save_iterate(QEMUFile *f, void *opaque)
1449 sPAPRMachineState *spapr = opaque;
1450 int rc = 0;
1452 /* Iteration header */
1453 qemu_put_be32(f, 0);
1455 if (!spapr->htab) {
1456 assert(kvm_enabled());
1458 rc = spapr_check_htab_fd(spapr);
1459 if (rc < 0) {
1460 return rc;
1463 rc = kvmppc_save_htab(f, spapr->htab_fd,
1464 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1465 if (rc < 0) {
1466 return rc;
1468 } else if (spapr->htab_first_pass) {
1469 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1470 } else {
1471 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1474 /* End marker */
1475 qemu_put_be32(f, 0);
1476 qemu_put_be16(f, 0);
1477 qemu_put_be16(f, 0);
1479 return rc;
1482 static int htab_save_complete(QEMUFile *f, void *opaque)
1484 sPAPRMachineState *spapr = opaque;
1486 /* Iteration header */
1487 qemu_put_be32(f, 0);
1489 if (!spapr->htab) {
1490 int rc;
1492 assert(kvm_enabled());
1494 rc = spapr_check_htab_fd(spapr);
1495 if (rc < 0) {
1496 return rc;
1499 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1500 if (rc < 0) {
1501 return rc;
1503 close(spapr->htab_fd);
1504 spapr->htab_fd = -1;
1505 } else {
1506 htab_save_later_pass(f, spapr, -1);
1509 /* End marker */
1510 qemu_put_be32(f, 0);
1511 qemu_put_be16(f, 0);
1512 qemu_put_be16(f, 0);
1514 return 0;
1517 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1519 sPAPRMachineState *spapr = opaque;
1520 uint32_t section_hdr;
1521 int fd = -1;
1523 if (version_id < 1 || version_id > 1) {
1524 fprintf(stderr, "htab_load() bad version\n");
1525 return -EINVAL;
1528 section_hdr = qemu_get_be32(f);
1530 if (section_hdr) {
1531 /* First section, just the hash shift */
1532 if (spapr->htab_shift != section_hdr) {
1533 error_report("htab_shift mismatch: source %d target %d",
1534 section_hdr, spapr->htab_shift);
1535 return -EINVAL;
1537 return 0;
1540 if (!spapr->htab) {
1541 assert(kvm_enabled());
1543 fd = kvmppc_get_htab_fd(true);
1544 if (fd < 0) {
1545 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1546 strerror(errno));
1550 while (true) {
1551 uint32_t index;
1552 uint16_t n_valid, n_invalid;
1554 index = qemu_get_be32(f);
1555 n_valid = qemu_get_be16(f);
1556 n_invalid = qemu_get_be16(f);
1558 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1559 /* End of Stream */
1560 break;
1563 if ((index + n_valid + n_invalid) >
1564 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1565 /* Bad index in stream */
1566 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1567 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1568 spapr->htab_shift);
1569 return -EINVAL;
1572 if (spapr->htab) {
1573 if (n_valid) {
1574 qemu_get_buffer(f, HPTE(spapr->htab, index),
1575 HASH_PTE_SIZE_64 * n_valid);
1577 if (n_invalid) {
1578 memset(HPTE(spapr->htab, index + n_valid), 0,
1579 HASH_PTE_SIZE_64 * n_invalid);
1581 } else {
1582 int rc;
1584 assert(fd >= 0);
1586 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1587 if (rc < 0) {
1588 return rc;
1593 if (!spapr->htab) {
1594 assert(fd >= 0);
1595 close(fd);
1598 return 0;
1601 static SaveVMHandlers savevm_htab_handlers = {
1602 .save_live_setup = htab_save_setup,
1603 .save_live_iterate = htab_save_iterate,
1604 .save_live_complete_precopy = htab_save_complete,
1605 .load_state = htab_load,
1608 static void spapr_boot_set(void *opaque, const char *boot_device,
1609 Error **errp)
1611 MachineState *machine = MACHINE(qdev_get_machine());
1612 machine->boot_order = g_strdup(boot_device);
1615 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1617 CPUPPCState *env = &cpu->env;
1619 /* Set time-base frequency to 512 MHz */
1620 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1622 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1623 * MSR[IP] should never be set.
1625 env->msr_mask &= ~(1 << 6);
1627 /* Tell KVM that we're in PAPR mode */
1628 if (kvm_enabled()) {
1629 kvmppc_set_papr(cpu);
1632 if (cpu->max_compat) {
1633 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1634 exit(1);
1638 xics_cpu_setup(spapr->icp, cpu);
1640 qemu_register_reset(spapr_cpu_reset, cpu);
1644 * Reset routine for LMB DR devices.
1646 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1647 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1648 * when it walks all its children devices. LMB devices reset occurs
1649 * as part of spapr_ppc_reset().
1651 static void spapr_drc_reset(void *opaque)
1653 sPAPRDRConnector *drc = opaque;
1654 DeviceState *d = DEVICE(drc);
1656 if (d) {
1657 device_reset(d);
1661 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1663 MachineState *machine = MACHINE(spapr);
1664 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1665 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1666 int i;
1668 for (i = 0; i < nr_lmbs; i++) {
1669 sPAPRDRConnector *drc;
1670 uint64_t addr;
1672 addr = i * lmb_size + spapr->hotplug_memory.base;
1673 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1674 addr/lmb_size);
1675 qemu_register_reset(spapr_drc_reset, drc);
1680 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1681 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1682 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1684 static void spapr_validate_node_memory(MachineState *machine)
1686 int i;
1688 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1689 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1690 error_report("Can't support memory configuration where RAM size "
1691 "0x" RAM_ADDR_FMT " or maxmem size "
1692 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1693 machine->ram_size, machine->maxram_size,
1694 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1695 exit(EXIT_FAILURE);
1698 for (i = 0; i < nb_numa_nodes; i++) {
1699 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1700 error_report("Can't support memory configuration where memory size"
1701 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1702 numa_info[i].node_mem, i,
1703 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1704 exit(EXIT_FAILURE);
1709 /* pSeries LPAR / sPAPR hardware init */
1710 static void ppc_spapr_init(MachineState *machine)
1712 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1713 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1714 const char *kernel_filename = machine->kernel_filename;
1715 const char *kernel_cmdline = machine->kernel_cmdline;
1716 const char *initrd_filename = machine->initrd_filename;
1717 PowerPCCPU *cpu;
1718 PCIHostState *phb;
1719 int i;
1720 MemoryRegion *sysmem = get_system_memory();
1721 MemoryRegion *ram = g_new(MemoryRegion, 1);
1722 MemoryRegion *rma_region;
1723 void *rma = NULL;
1724 hwaddr rma_alloc_size;
1725 hwaddr node0_size = spapr_node0_size();
1726 uint32_t initrd_base = 0;
1727 long kernel_size = 0, initrd_size = 0;
1728 long load_limit, fw_size;
1729 bool kernel_le = false;
1730 char *filename;
1732 msi_supported = true;
1734 QLIST_INIT(&spapr->phbs);
1736 cpu_ppc_hypercall = emulate_spapr_hypercall;
1738 /* Allocate RMA if necessary */
1739 rma_alloc_size = kvmppc_alloc_rma(&rma);
1741 if (rma_alloc_size == -1) {
1742 error_report("Unable to create RMA");
1743 exit(1);
1746 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1747 spapr->rma_size = rma_alloc_size;
1748 } else {
1749 spapr->rma_size = node0_size;
1751 /* With KVM, we don't actually know whether KVM supports an
1752 * unbounded RMA (PR KVM) or is limited by the hash table size
1753 * (HV KVM using VRMA), so we always assume the latter
1755 * In that case, we also limit the initial allocations for RTAS
1756 * etc... to 256M since we have no way to know what the VRMA size
1757 * is going to be as it depends on the size of the hash table
1758 * isn't determined yet.
1760 if (kvm_enabled()) {
1761 spapr->vrma_adjust = 1;
1762 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1766 if (spapr->rma_size > node0_size) {
1767 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1768 spapr->rma_size);
1769 exit(1);
1772 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1773 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1775 /* We aim for a hash table of size 1/128 the size of RAM. The
1776 * normal rule of thumb is 1/64 the size of RAM, but that's much
1777 * more than needed for the Linux guests we support. */
1778 spapr->htab_shift = 18; /* Minimum architected size */
1779 while (spapr->htab_shift <= 46) {
1780 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
1781 break;
1783 spapr->htab_shift++;
1785 spapr_alloc_htab(spapr);
1787 /* Set up Interrupt Controller before we create the VCPUs */
1788 spapr->icp = xics_system_init(machine,
1789 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1790 smp_threads),
1791 XICS_IRQS);
1793 if (smc->dr_lmb_enabled) {
1794 spapr_validate_node_memory(machine);
1797 /* init CPUs */
1798 if (machine->cpu_model == NULL) {
1799 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1801 for (i = 0; i < smp_cpus; i++) {
1802 cpu = cpu_ppc_init(machine->cpu_model);
1803 if (cpu == NULL) {
1804 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1805 exit(1);
1807 spapr_cpu_init(spapr, cpu);
1810 if (kvm_enabled()) {
1811 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1812 kvmppc_enable_logical_ci_hcalls();
1813 kvmppc_enable_set_mode_hcall();
1816 /* allocate RAM */
1817 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1818 machine->ram_size);
1819 memory_region_add_subregion(sysmem, 0, ram);
1821 if (rma_alloc_size && rma) {
1822 rma_region = g_new(MemoryRegion, 1);
1823 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1824 rma_alloc_size, rma);
1825 vmstate_register_ram_global(rma_region);
1826 memory_region_add_subregion(sysmem, 0, rma_region);
1829 /* initialize hotplug memory address space */
1830 if (machine->ram_size < machine->maxram_size) {
1831 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1833 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1834 error_report("Specified number of memory slots %"PRIu64" exceeds max supported %d\n",
1835 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1836 exit(EXIT_FAILURE);
1839 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1840 SPAPR_HOTPLUG_MEM_ALIGN);
1841 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1842 "hotplug-memory", hotplug_mem_size);
1843 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1844 &spapr->hotplug_memory.mr);
1847 if (smc->dr_lmb_enabled) {
1848 spapr_create_lmb_dr_connectors(spapr);
1851 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1852 if (!filename) {
1853 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1854 exit(1);
1856 spapr->rtas_size = get_image_size(filename);
1857 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1858 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1859 error_report("Could not load LPAR rtas '%s'", filename);
1860 exit(1);
1862 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1863 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1864 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1865 exit(1);
1867 g_free(filename);
1869 /* Set up EPOW events infrastructure */
1870 spapr_events_init(spapr);
1872 /* Set up the RTC RTAS interfaces */
1873 spapr_rtc_create(spapr);
1875 /* Set up VIO bus */
1876 spapr->vio_bus = spapr_vio_bus_init();
1878 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1879 if (serial_hds[i]) {
1880 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1884 /* We always have at least the nvram device on VIO */
1885 spapr_create_nvram(spapr);
1887 /* Set up PCI */
1888 spapr_pci_rtas_init();
1890 phb = spapr_create_phb(spapr, 0);
1892 for (i = 0; i < nb_nics; i++) {
1893 NICInfo *nd = &nd_table[i];
1895 if (!nd->model) {
1896 nd->model = g_strdup("ibmveth");
1899 if (strcmp(nd->model, "ibmveth") == 0) {
1900 spapr_vlan_create(spapr->vio_bus, nd);
1901 } else {
1902 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1906 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1907 spapr_vscsi_create(spapr->vio_bus);
1910 /* Graphics */
1911 if (spapr_vga_init(phb->bus)) {
1912 spapr->has_graphics = true;
1913 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1916 if (machine->usb) {
1917 pci_create_simple(phb->bus, -1, "pci-ohci");
1919 if (spapr->has_graphics) {
1920 USBBus *usb_bus = usb_bus_find(-1);
1922 usb_create_simple(usb_bus, "usb-kbd");
1923 usb_create_simple(usb_bus, "usb-mouse");
1927 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1928 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1929 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1930 exit(1);
1933 if (kernel_filename) {
1934 uint64_t lowaddr = 0;
1936 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1937 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
1938 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1939 kernel_size = load_elf(kernel_filename,
1940 translate_kernel_address, NULL,
1941 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
1942 kernel_le = kernel_size > 0;
1944 if (kernel_size < 0) {
1945 fprintf(stderr, "qemu: error loading %s: %s\n",
1946 kernel_filename, load_elf_strerror(kernel_size));
1947 exit(1);
1950 /* load initrd */
1951 if (initrd_filename) {
1952 /* Try to locate the initrd in the gap between the kernel
1953 * and the firmware. Add a bit of space just in case
1955 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1956 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1957 load_limit - initrd_base);
1958 if (initrd_size < 0) {
1959 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1960 initrd_filename);
1961 exit(1);
1963 } else {
1964 initrd_base = 0;
1965 initrd_size = 0;
1969 if (bios_name == NULL) {
1970 bios_name = FW_FILE_NAME;
1972 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1973 if (!filename) {
1974 error_report("Could not find LPAR firmware '%s'", bios_name);
1975 exit(1);
1977 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1978 if (fw_size <= 0) {
1979 error_report("Could not load LPAR firmware '%s'", filename);
1980 exit(1);
1982 g_free(filename);
1984 /* FIXME: Should register things through the MachineState's qdev
1985 * interface, this is a legacy from the sPAPREnvironment structure
1986 * which predated MachineState but had a similar function */
1987 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1988 register_savevm_live(NULL, "spapr/htab", -1, 1,
1989 &savevm_htab_handlers, spapr);
1991 /* Prepare the device tree */
1992 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1993 kernel_size, kernel_le,
1994 kernel_cmdline,
1995 spapr->check_exception_irq);
1996 assert(spapr->fdt_skel != NULL);
1998 /* used by RTAS */
1999 QTAILQ_INIT(&spapr->ccs_list);
2000 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2002 qemu_register_boot_set(spapr_boot_set, spapr);
2005 static int spapr_kvm_type(const char *vm_type)
2007 if (!vm_type) {
2008 return 0;
2011 if (!strcmp(vm_type, "HV")) {
2012 return 1;
2015 if (!strcmp(vm_type, "PR")) {
2016 return 2;
2019 error_report("Unknown kvm-type specified '%s'", vm_type);
2020 exit(1);
2024 * Implementation of an interface to adjust firmware path
2025 * for the bootindex property handling.
2027 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2028 DeviceState *dev)
2030 #define CAST(type, obj, name) \
2031 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2032 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2033 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2035 if (d) {
2036 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2037 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2038 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2040 if (spapr) {
2042 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2043 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2044 * in the top 16 bits of the 64-bit LUN
2046 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2047 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2048 (uint64_t)id << 48);
2049 } else if (virtio) {
2051 * We use SRP luns of the form 01000000 | (target << 8) | lun
2052 * in the top 32 bits of the 64-bit LUN
2053 * Note: the quote above is from SLOF and it is wrong,
2054 * the actual binding is:
2055 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2057 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2058 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2059 (uint64_t)id << 32);
2060 } else if (usb) {
2062 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2063 * in the top 32 bits of the 64-bit LUN
2065 unsigned usb_port = atoi(usb->port->path);
2066 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2067 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2068 (uint64_t)id << 32);
2072 if (phb) {
2073 /* Replace "pci" with "pci@800000020000000" */
2074 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2077 return NULL;
2080 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2082 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2084 return g_strdup(spapr->kvm_type);
2087 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2089 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2091 g_free(spapr->kvm_type);
2092 spapr->kvm_type = g_strdup(value);
2095 static void spapr_machine_initfn(Object *obj)
2097 object_property_add_str(obj, "kvm-type",
2098 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2099 object_property_set_description(obj, "kvm-type",
2100 "Specifies the KVM virtualization mode (HV, PR)",
2101 NULL);
2104 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2106 CPUState *cs = arg;
2108 cpu_synchronize_state(cs);
2109 ppc_cpu_do_system_reset(cs);
2112 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2114 CPUState *cs;
2116 CPU_FOREACH(cs) {
2117 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2121 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2122 uint32_t node, Error **errp)
2124 sPAPRDRConnector *drc;
2125 sPAPRDRConnectorClass *drck;
2126 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2127 int i, fdt_offset, fdt_size;
2128 void *fdt;
2131 * Check for DRC connectors and send hotplug notification to the
2132 * guest only in case of hotplugged memory. This allows cold plugged
2133 * memory to be specified at boot time.
2135 if (!dev->hotplugged) {
2136 return;
2139 for (i = 0; i < nr_lmbs; i++) {
2140 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2141 addr/SPAPR_MEMORY_BLOCK_SIZE);
2142 g_assert(drc);
2144 fdt = create_device_tree(&fdt_size);
2145 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2146 SPAPR_MEMORY_BLOCK_SIZE);
2148 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2149 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2150 addr += SPAPR_MEMORY_BLOCK_SIZE;
2152 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2155 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2156 uint32_t node, Error **errp)
2158 Error *local_err = NULL;
2159 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2160 PCDIMMDevice *dimm = PC_DIMM(dev);
2161 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2162 MemoryRegion *mr = ddc->get_memory_region(dimm);
2163 uint64_t align = memory_region_get_alignment(mr);
2164 uint64_t size = memory_region_size(mr);
2165 uint64_t addr;
2167 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2168 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2169 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2170 goto out;
2173 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2174 if (local_err) {
2175 goto out;
2178 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2179 if (local_err) {
2180 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2181 goto out;
2184 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2186 out:
2187 error_propagate(errp, local_err);
2190 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2191 DeviceState *dev, Error **errp)
2193 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2195 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2196 int node;
2198 if (!smc->dr_lmb_enabled) {
2199 error_setg(errp, "Memory hotplug not supported for this machine");
2200 return;
2202 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2203 if (*errp) {
2204 return;
2208 * Currently PowerPC kernel doesn't allow hot-adding memory to
2209 * memory-less node, but instead will silently add the memory
2210 * to the first node that has some memory. This causes two
2211 * unexpected behaviours for the user.
2213 * - Memory gets hotplugged to a different node than what the user
2214 * specified.
2215 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2216 * to memory-less node, a reboot will set things accordingly
2217 * and the previously hotplugged memory now ends in the right node.
2218 * This appears as if some memory moved from one node to another.
2220 * So until kernel starts supporting memory hotplug to memory-less
2221 * nodes, just prevent such attempts upfront in QEMU.
2223 if (nb_numa_nodes && !numa_info[node].node_mem) {
2224 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2225 node);
2226 return;
2229 spapr_memory_plug(hotplug_dev, dev, node, errp);
2233 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2234 DeviceState *dev, Error **errp)
2236 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2237 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2241 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2242 DeviceState *dev)
2244 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2245 return HOTPLUG_HANDLER(machine);
2247 return NULL;
2250 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2252 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2253 * socket means much for the paravirtualized PAPR platform) */
2254 return cpu_index / smp_threads / smp_cores;
2257 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2259 MachineClass *mc = MACHINE_CLASS(oc);
2260 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2261 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2262 NMIClass *nc = NMI_CLASS(oc);
2263 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2265 mc->init = ppc_spapr_init;
2266 mc->reset = ppc_spapr_reset;
2267 mc->block_default_type = IF_SCSI;
2268 mc->max_cpus = MAX_CPUMASK_BITS;
2269 mc->no_parallel = 1;
2270 mc->default_boot_order = "";
2271 mc->default_ram_size = 512 * M_BYTE;
2272 mc->kvm_type = spapr_kvm_type;
2273 mc->has_dynamic_sysbus = true;
2274 mc->pci_allow_0_address = true;
2275 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2276 hc->plug = spapr_machine_device_plug;
2277 hc->unplug = spapr_machine_device_unplug;
2278 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2280 smc->dr_lmb_enabled = false;
2281 fwc->get_dev_path = spapr_get_fw_dev_path;
2282 nc->nmi_monitor_handler = spapr_nmi;
2285 static const TypeInfo spapr_machine_info = {
2286 .name = TYPE_SPAPR_MACHINE,
2287 .parent = TYPE_MACHINE,
2288 .abstract = true,
2289 .instance_size = sizeof(sPAPRMachineState),
2290 .instance_init = spapr_machine_initfn,
2291 .class_size = sizeof(sPAPRMachineClass),
2292 .class_init = spapr_machine_class_init,
2293 .interfaces = (InterfaceInfo[]) {
2294 { TYPE_FW_PATH_PROVIDER },
2295 { TYPE_NMI },
2296 { TYPE_HOTPLUG_HANDLER },
2301 #define SPAPR_COMPAT_2_4 \
2302 HW_COMPAT_2_4
2304 #define SPAPR_COMPAT_2_3 \
2305 SPAPR_COMPAT_2_4 \
2306 HW_COMPAT_2_3 \
2308 .driver = "spapr-pci-host-bridge",\
2309 .property = "dynamic-reconfiguration",\
2310 .value = "off",\
2313 #define SPAPR_COMPAT_2_2 \
2314 SPAPR_COMPAT_2_3 \
2315 HW_COMPAT_2_2 \
2317 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2318 .property = "mem_win_size",\
2319 .value = "0x20000000",\
2322 #define SPAPR_COMPAT_2_1 \
2323 SPAPR_COMPAT_2_2 \
2324 HW_COMPAT_2_1
2326 static void spapr_compat_2_3(Object *obj)
2328 savevm_skip_section_footers();
2329 global_state_set_optional();
2332 static void spapr_compat_2_2(Object *obj)
2334 spapr_compat_2_3(obj);
2337 static void spapr_compat_2_1(Object *obj)
2339 spapr_compat_2_2(obj);
2342 static void spapr_machine_2_3_instance_init(Object *obj)
2344 spapr_compat_2_3(obj);
2345 spapr_machine_initfn(obj);
2348 static void spapr_machine_2_2_instance_init(Object *obj)
2350 spapr_compat_2_2(obj);
2351 spapr_machine_initfn(obj);
2354 static void spapr_machine_2_1_instance_init(Object *obj)
2356 spapr_compat_2_1(obj);
2357 spapr_machine_initfn(obj);
2360 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
2362 MachineClass *mc = MACHINE_CLASS(oc);
2363 static GlobalProperty compat_props[] = {
2364 SPAPR_COMPAT_2_1
2365 { /* end of list */ }
2368 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
2369 mc->compat_props = compat_props;
2372 static const TypeInfo spapr_machine_2_1_info = {
2373 .name = MACHINE_TYPE_NAME("pseries-2.1"),
2374 .parent = TYPE_SPAPR_MACHINE,
2375 .class_init = spapr_machine_2_1_class_init,
2376 .instance_init = spapr_machine_2_1_instance_init,
2379 static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
2381 static GlobalProperty compat_props[] = {
2382 SPAPR_COMPAT_2_2
2383 { /* end of list */ }
2385 MachineClass *mc = MACHINE_CLASS(oc);
2387 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
2388 mc->compat_props = compat_props;
2391 static const TypeInfo spapr_machine_2_2_info = {
2392 .name = MACHINE_TYPE_NAME("pseries-2.2"),
2393 .parent = TYPE_SPAPR_MACHINE,
2394 .class_init = spapr_machine_2_2_class_init,
2395 .instance_init = spapr_machine_2_2_instance_init,
2398 static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
2400 static GlobalProperty compat_props[] = {
2401 SPAPR_COMPAT_2_3
2402 { /* end of list */ }
2404 MachineClass *mc = MACHINE_CLASS(oc);
2406 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
2407 mc->compat_props = compat_props;
2410 static const TypeInfo spapr_machine_2_3_info = {
2411 .name = MACHINE_TYPE_NAME("pseries-2.3"),
2412 .parent = TYPE_SPAPR_MACHINE,
2413 .class_init = spapr_machine_2_3_class_init,
2414 .instance_init = spapr_machine_2_3_instance_init,
2417 static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
2419 static GlobalProperty compat_props[] = {
2420 SPAPR_COMPAT_2_4
2421 { /* end of list */ }
2423 MachineClass *mc = MACHINE_CLASS(oc);
2425 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
2426 mc->compat_props = compat_props;
2429 static const TypeInfo spapr_machine_2_4_info = {
2430 .name = MACHINE_TYPE_NAME("pseries-2.4"),
2431 .parent = TYPE_SPAPR_MACHINE,
2432 .class_init = spapr_machine_2_4_class_init,
2435 static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
2437 MachineClass *mc = MACHINE_CLASS(oc);
2438 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2440 mc->name = "pseries-2.5";
2441 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
2442 mc->alias = "pseries";
2443 mc->is_default = 1;
2444 smc->dr_lmb_enabled = true;
2447 static const TypeInfo spapr_machine_2_5_info = {
2448 .name = MACHINE_TYPE_NAME("pseries-2.5"),
2449 .parent = TYPE_SPAPR_MACHINE,
2450 .class_init = spapr_machine_2_5_class_init,
2453 static void spapr_machine_register_types(void)
2455 type_register_static(&spapr_machine_info);
2456 type_register_static(&spapr_machine_2_1_info);
2457 type_register_static(&spapr_machine_2_2_info);
2458 type_register_static(&spapr_machine_2_3_info);
2459 type_register_static(&spapr_machine_2_4_info);
2460 type_register_static(&spapr_machine_2_5_info);
2463 type_init(spapr_machine_register_types)