configure: Drop CONFIG_ATFILE test
[qemu/ar7.git] / exec.c
blob5b8b40d0905d6f52b94d337955adc2db6dc3906f
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66 DMAContext dma_context_memory;
68 MemoryRegion io_mem_rom, io_mem_notdirty;
69 static MemoryRegion io_mem_unassigned, io_mem_subpage_ram;
71 #endif
73 CPUArchState *first_cpu;
74 /* current CPU in the current thread. It is only valid inside
75 cpu_exec() */
76 DEFINE_TLS(CPUArchState *,cpu_single_env);
77 /* 0 = Do not count executed instructions.
78 1 = Precise instruction counting.
79 2 = Adaptive rate instruction counting. */
80 int use_icount;
82 #if !defined(CONFIG_USER_ONLY)
84 static MemoryRegionSection *phys_sections;
85 static unsigned phys_sections_nb, phys_sections_nb_alloc;
86 static uint16_t phys_section_unassigned;
87 static uint16_t phys_section_notdirty;
88 static uint16_t phys_section_rom;
89 static uint16_t phys_section_watch;
91 /* Simple allocator for PhysPageEntry nodes */
92 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
93 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
95 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
97 static void io_mem_init(void);
98 static void memory_map_init(void);
99 static void *qemu_safe_ram_ptr(ram_addr_t addr);
101 static MemoryRegion io_mem_watch;
102 #endif
104 #if !defined(CONFIG_USER_ONLY)
106 static void phys_map_node_reserve(unsigned nodes)
108 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
109 typedef PhysPageEntry Node[L2_SIZE];
110 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
111 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
112 phys_map_nodes_nb + nodes);
113 phys_map_nodes = g_renew(Node, phys_map_nodes,
114 phys_map_nodes_nb_alloc);
118 static uint16_t phys_map_node_alloc(void)
120 unsigned i;
121 uint16_t ret;
123 ret = phys_map_nodes_nb++;
124 assert(ret != PHYS_MAP_NODE_NIL);
125 assert(ret != phys_map_nodes_nb_alloc);
126 for (i = 0; i < L2_SIZE; ++i) {
127 phys_map_nodes[ret][i].is_leaf = 0;
128 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
130 return ret;
133 static void phys_map_nodes_reset(void)
135 phys_map_nodes_nb = 0;
139 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
140 hwaddr *nb, uint16_t leaf,
141 int level)
143 PhysPageEntry *p;
144 int i;
145 hwaddr step = (hwaddr)1 << (level * L2_BITS);
147 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
148 lp->ptr = phys_map_node_alloc();
149 p = phys_map_nodes[lp->ptr];
150 if (level == 0) {
151 for (i = 0; i < L2_SIZE; i++) {
152 p[i].is_leaf = 1;
153 p[i].ptr = phys_section_unassigned;
156 } else {
157 p = phys_map_nodes[lp->ptr];
159 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
161 while (*nb && lp < &p[L2_SIZE]) {
162 if ((*index & (step - 1)) == 0 && *nb >= step) {
163 lp->is_leaf = true;
164 lp->ptr = leaf;
165 *index += step;
166 *nb -= step;
167 } else {
168 phys_page_set_level(lp, index, nb, leaf, level - 1);
170 ++lp;
174 static void phys_page_set(AddressSpaceDispatch *d,
175 hwaddr index, hwaddr nb,
176 uint16_t leaf)
178 /* Wildly overreserve - it doesn't matter much. */
179 phys_map_node_reserve(3 * P_L2_LEVELS);
181 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
184 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
186 PhysPageEntry lp = d->phys_map;
187 PhysPageEntry *p;
188 int i;
190 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
191 if (lp.ptr == PHYS_MAP_NODE_NIL) {
192 return &phys_sections[phys_section_unassigned];
194 p = phys_map_nodes[lp.ptr];
195 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
197 return &phys_sections[lp.ptr];
200 bool memory_region_is_unassigned(MemoryRegion *mr)
202 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
203 && mr != &io_mem_watch;
206 MemoryRegionSection *address_space_translate(AddressSpace *as, hwaddr addr,
207 hwaddr *xlat, hwaddr *plen,
208 bool is_write)
210 MemoryRegionSection *section;
211 Int128 diff;
213 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
214 /* Compute offset within MemoryRegionSection */
215 addr -= section->offset_within_address_space;
217 /* Compute offset within MemoryRegion */
218 *xlat = addr + section->offset_within_region;
220 diff = int128_sub(section->mr->size, int128_make64(addr));
221 *plen = MIN(int128_get64(diff), *plen);
222 return section;
224 #endif
226 void cpu_exec_init_all(void)
228 #if !defined(CONFIG_USER_ONLY)
229 qemu_mutex_init(&ram_list.mutex);
230 memory_map_init();
231 io_mem_init();
232 #endif
235 #if !defined(CONFIG_USER_ONLY)
237 static int cpu_common_post_load(void *opaque, int version_id)
239 CPUState *cpu = opaque;
241 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
242 version_id is increased. */
243 cpu->interrupt_request &= ~0x01;
244 tlb_flush(cpu->env_ptr, 1);
246 return 0;
249 static const VMStateDescription vmstate_cpu_common = {
250 .name = "cpu_common",
251 .version_id = 1,
252 .minimum_version_id = 1,
253 .minimum_version_id_old = 1,
254 .post_load = cpu_common_post_load,
255 .fields = (VMStateField []) {
256 VMSTATE_UINT32(halted, CPUState),
257 VMSTATE_UINT32(interrupt_request, CPUState),
258 VMSTATE_END_OF_LIST()
261 #else
262 #define vmstate_cpu_common vmstate_dummy
263 #endif
265 CPUState *qemu_get_cpu(int index)
267 CPUArchState *env = first_cpu;
268 CPUState *cpu = NULL;
270 while (env) {
271 cpu = ENV_GET_CPU(env);
272 if (cpu->cpu_index == index) {
273 break;
275 env = env->next_cpu;
278 return env ? cpu : NULL;
281 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
283 CPUArchState *env = first_cpu;
285 while (env) {
286 func(ENV_GET_CPU(env), data);
287 env = env->next_cpu;
291 void cpu_exec_init(CPUArchState *env)
293 CPUState *cpu = ENV_GET_CPU(env);
294 CPUClass *cc = CPU_GET_CLASS(cpu);
295 CPUArchState **penv;
296 int cpu_index;
298 #if defined(CONFIG_USER_ONLY)
299 cpu_list_lock();
300 #endif
301 env->next_cpu = NULL;
302 penv = &first_cpu;
303 cpu_index = 0;
304 while (*penv != NULL) {
305 penv = &(*penv)->next_cpu;
306 cpu_index++;
308 cpu->cpu_index = cpu_index;
309 cpu->numa_node = 0;
310 QTAILQ_INIT(&env->breakpoints);
311 QTAILQ_INIT(&env->watchpoints);
312 #ifndef CONFIG_USER_ONLY
313 cpu->thread_id = qemu_get_thread_id();
314 #endif
315 *penv = env;
316 #if defined(CONFIG_USER_ONLY)
317 cpu_list_unlock();
318 #endif
319 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
320 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
321 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
322 cpu_save, cpu_load, env);
323 assert(cc->vmsd == NULL);
324 #endif
325 if (cc->vmsd != NULL) {
326 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
330 #if defined(TARGET_HAS_ICE)
331 #if defined(CONFIG_USER_ONLY)
332 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
334 tb_invalidate_phys_page_range(pc, pc + 1, 0);
336 #else
337 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
339 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
340 (pc & ~TARGET_PAGE_MASK));
342 #endif
343 #endif /* TARGET_HAS_ICE */
345 #if defined(CONFIG_USER_ONLY)
346 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
351 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
352 int flags, CPUWatchpoint **watchpoint)
354 return -ENOSYS;
356 #else
357 /* Add a watchpoint. */
358 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
359 int flags, CPUWatchpoint **watchpoint)
361 target_ulong len_mask = ~(len - 1);
362 CPUWatchpoint *wp;
364 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
365 if ((len & (len - 1)) || (addr & ~len_mask) ||
366 len == 0 || len > TARGET_PAGE_SIZE) {
367 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
368 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
369 return -EINVAL;
371 wp = g_malloc(sizeof(*wp));
373 wp->vaddr = addr;
374 wp->len_mask = len_mask;
375 wp->flags = flags;
377 /* keep all GDB-injected watchpoints in front */
378 if (flags & BP_GDB)
379 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
380 else
381 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
383 tlb_flush_page(env, addr);
385 if (watchpoint)
386 *watchpoint = wp;
387 return 0;
390 /* Remove a specific watchpoint. */
391 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
392 int flags)
394 target_ulong len_mask = ~(len - 1);
395 CPUWatchpoint *wp;
397 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
398 if (addr == wp->vaddr && len_mask == wp->len_mask
399 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
400 cpu_watchpoint_remove_by_ref(env, wp);
401 return 0;
404 return -ENOENT;
407 /* Remove a specific watchpoint by reference. */
408 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
410 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
412 tlb_flush_page(env, watchpoint->vaddr);
414 g_free(watchpoint);
417 /* Remove all matching watchpoints. */
418 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
420 CPUWatchpoint *wp, *next;
422 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
423 if (wp->flags & mask)
424 cpu_watchpoint_remove_by_ref(env, wp);
427 #endif
429 /* Add a breakpoint. */
430 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
431 CPUBreakpoint **breakpoint)
433 #if defined(TARGET_HAS_ICE)
434 CPUBreakpoint *bp;
436 bp = g_malloc(sizeof(*bp));
438 bp->pc = pc;
439 bp->flags = flags;
441 /* keep all GDB-injected breakpoints in front */
442 if (flags & BP_GDB)
443 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
444 else
445 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
447 breakpoint_invalidate(env, pc);
449 if (breakpoint)
450 *breakpoint = bp;
451 return 0;
452 #else
453 return -ENOSYS;
454 #endif
457 /* Remove a specific breakpoint. */
458 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
460 #if defined(TARGET_HAS_ICE)
461 CPUBreakpoint *bp;
463 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
464 if (bp->pc == pc && bp->flags == flags) {
465 cpu_breakpoint_remove_by_ref(env, bp);
466 return 0;
469 return -ENOENT;
470 #else
471 return -ENOSYS;
472 #endif
475 /* Remove a specific breakpoint by reference. */
476 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
478 #if defined(TARGET_HAS_ICE)
479 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
481 breakpoint_invalidate(env, breakpoint->pc);
483 g_free(breakpoint);
484 #endif
487 /* Remove all matching breakpoints. */
488 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
490 #if defined(TARGET_HAS_ICE)
491 CPUBreakpoint *bp, *next;
493 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
494 if (bp->flags & mask)
495 cpu_breakpoint_remove_by_ref(env, bp);
497 #endif
500 /* enable or disable single step mode. EXCP_DEBUG is returned by the
501 CPU loop after each instruction */
502 void cpu_single_step(CPUArchState *env, int enabled)
504 #if defined(TARGET_HAS_ICE)
505 if (env->singlestep_enabled != enabled) {
506 env->singlestep_enabled = enabled;
507 if (kvm_enabled())
508 kvm_update_guest_debug(env, 0);
509 else {
510 /* must flush all the translated code to avoid inconsistencies */
511 /* XXX: only flush what is necessary */
512 tb_flush(env);
515 #endif
518 void cpu_exit(CPUArchState *env)
520 CPUState *cpu = ENV_GET_CPU(env);
522 cpu->exit_request = 1;
523 cpu->tcg_exit_req = 1;
526 void cpu_abort(CPUArchState *env, const char *fmt, ...)
528 va_list ap;
529 va_list ap2;
531 va_start(ap, fmt);
532 va_copy(ap2, ap);
533 fprintf(stderr, "qemu: fatal: ");
534 vfprintf(stderr, fmt, ap);
535 fprintf(stderr, "\n");
536 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
537 if (qemu_log_enabled()) {
538 qemu_log("qemu: fatal: ");
539 qemu_log_vprintf(fmt, ap2);
540 qemu_log("\n");
541 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
542 qemu_log_flush();
543 qemu_log_close();
545 va_end(ap2);
546 va_end(ap);
547 #if defined(CONFIG_USER_ONLY)
549 struct sigaction act;
550 sigfillset(&act.sa_mask);
551 act.sa_handler = SIG_DFL;
552 sigaction(SIGABRT, &act, NULL);
554 #endif
555 abort();
558 CPUArchState *cpu_copy(CPUArchState *env)
560 CPUArchState *new_env = cpu_init(env->cpu_model_str);
561 CPUArchState *next_cpu = new_env->next_cpu;
562 #if defined(TARGET_HAS_ICE)
563 CPUBreakpoint *bp;
564 CPUWatchpoint *wp;
565 #endif
567 memcpy(new_env, env, sizeof(CPUArchState));
569 /* Preserve chaining. */
570 new_env->next_cpu = next_cpu;
572 /* Clone all break/watchpoints.
573 Note: Once we support ptrace with hw-debug register access, make sure
574 BP_CPU break/watchpoints are handled correctly on clone. */
575 QTAILQ_INIT(&env->breakpoints);
576 QTAILQ_INIT(&env->watchpoints);
577 #if defined(TARGET_HAS_ICE)
578 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
579 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
581 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
582 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
583 wp->flags, NULL);
585 #endif
587 return new_env;
590 #if !defined(CONFIG_USER_ONLY)
591 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
592 uintptr_t length)
594 uintptr_t start1;
596 /* we modify the TLB cache so that the dirty bit will be set again
597 when accessing the range */
598 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
599 /* Check that we don't span multiple blocks - this breaks the
600 address comparisons below. */
601 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
602 != (end - 1) - start) {
603 abort();
605 cpu_tlb_reset_dirty_all(start1, length);
609 /* Note: start and end must be within the same ram block. */
610 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
611 int dirty_flags)
613 uintptr_t length;
615 start &= TARGET_PAGE_MASK;
616 end = TARGET_PAGE_ALIGN(end);
618 length = end - start;
619 if (length == 0)
620 return;
621 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
623 if (tcg_enabled()) {
624 tlb_reset_dirty_range_all(start, end, length);
628 static int cpu_physical_memory_set_dirty_tracking(int enable)
630 int ret = 0;
631 in_migration = enable;
632 return ret;
635 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
636 MemoryRegionSection *section,
637 target_ulong vaddr,
638 hwaddr paddr, hwaddr xlat,
639 int prot,
640 target_ulong *address)
642 hwaddr iotlb;
643 CPUWatchpoint *wp;
645 if (memory_region_is_ram(section->mr)) {
646 /* Normal RAM. */
647 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
648 + xlat;
649 if (!section->readonly) {
650 iotlb |= phys_section_notdirty;
651 } else {
652 iotlb |= phys_section_rom;
654 } else {
655 iotlb = section - phys_sections;
656 iotlb += xlat;
659 /* Make accesses to pages with watchpoints go via the
660 watchpoint trap routines. */
661 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
662 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
663 /* Avoid trapping reads of pages with a write breakpoint. */
664 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
665 iotlb = phys_section_watch + paddr;
666 *address |= TLB_MMIO;
667 break;
672 return iotlb;
674 #endif /* defined(CONFIG_USER_ONLY) */
676 #if !defined(CONFIG_USER_ONLY)
678 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
679 typedef struct subpage_t {
680 MemoryRegion iomem;
681 hwaddr base;
682 uint16_t sub_section[TARGET_PAGE_SIZE];
683 } subpage_t;
685 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
686 uint16_t section);
687 static subpage_t *subpage_init(hwaddr base);
688 static void destroy_page_desc(uint16_t section_index)
690 MemoryRegionSection *section = &phys_sections[section_index];
691 MemoryRegion *mr = section->mr;
693 if (mr->subpage) {
694 subpage_t *subpage = container_of(mr, subpage_t, iomem);
695 memory_region_destroy(&subpage->iomem);
696 g_free(subpage);
700 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
702 unsigned i;
703 PhysPageEntry *p;
705 if (lp->ptr == PHYS_MAP_NODE_NIL) {
706 return;
709 p = phys_map_nodes[lp->ptr];
710 for (i = 0; i < L2_SIZE; ++i) {
711 if (!p[i].is_leaf) {
712 destroy_l2_mapping(&p[i], level - 1);
713 } else {
714 destroy_page_desc(p[i].ptr);
717 lp->is_leaf = 0;
718 lp->ptr = PHYS_MAP_NODE_NIL;
721 static void destroy_all_mappings(AddressSpaceDispatch *d)
723 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
724 phys_map_nodes_reset();
727 static uint16_t phys_section_add(MemoryRegionSection *section)
729 /* The physical section number is ORed with a page-aligned
730 * pointer to produce the iotlb entries. Thus it should
731 * never overflow into the page-aligned value.
733 assert(phys_sections_nb < TARGET_PAGE_SIZE);
735 if (phys_sections_nb == phys_sections_nb_alloc) {
736 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
737 phys_sections = g_renew(MemoryRegionSection, phys_sections,
738 phys_sections_nb_alloc);
740 phys_sections[phys_sections_nb] = *section;
741 return phys_sections_nb++;
744 static void phys_sections_clear(void)
746 phys_sections_nb = 0;
749 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
751 subpage_t *subpage;
752 hwaddr base = section->offset_within_address_space
753 & TARGET_PAGE_MASK;
754 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
755 MemoryRegionSection subsection = {
756 .offset_within_address_space = base,
757 .size = TARGET_PAGE_SIZE,
759 hwaddr start, end;
761 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
763 if (!(existing->mr->subpage)) {
764 subpage = subpage_init(base);
765 subsection.mr = &subpage->iomem;
766 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
767 phys_section_add(&subsection));
768 } else {
769 subpage = container_of(existing->mr, subpage_t, iomem);
771 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
772 end = start + section->size - 1;
773 subpage_register(subpage, start, end, phys_section_add(section));
777 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
779 hwaddr start_addr = section->offset_within_address_space;
780 ram_addr_t size = section->size;
781 hwaddr addr;
782 uint16_t section_index = phys_section_add(section);
784 assert(size);
786 addr = start_addr;
787 phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
788 section_index);
791 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > MAX_PHYS_ADDR_SPACE_BITS)
793 static MemoryRegionSection limit(MemoryRegionSection section)
795 section.size = MIN(section.offset_within_address_space + section.size,
796 MAX_PHYS_ADDR + 1)
797 - section.offset_within_address_space;
799 return section;
802 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
804 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
805 MemoryRegionSection now = limit(*section), remain = limit(*section);
807 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
808 || (now.size < TARGET_PAGE_SIZE)) {
809 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
810 - now.offset_within_address_space,
811 now.size);
812 register_subpage(d, &now);
813 remain.size -= now.size;
814 remain.offset_within_address_space += now.size;
815 remain.offset_within_region += now.size;
817 while (remain.size >= TARGET_PAGE_SIZE) {
818 now = remain;
819 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
820 now.size = TARGET_PAGE_SIZE;
821 register_subpage(d, &now);
822 } else {
823 now.size &= TARGET_PAGE_MASK;
824 register_multipage(d, &now);
826 remain.size -= now.size;
827 remain.offset_within_address_space += now.size;
828 remain.offset_within_region += now.size;
830 now = remain;
831 if (now.size) {
832 register_subpage(d, &now);
836 void qemu_flush_coalesced_mmio_buffer(void)
838 if (kvm_enabled())
839 kvm_flush_coalesced_mmio_buffer();
842 void qemu_mutex_lock_ramlist(void)
844 qemu_mutex_lock(&ram_list.mutex);
847 void qemu_mutex_unlock_ramlist(void)
849 qemu_mutex_unlock(&ram_list.mutex);
852 #if defined(__linux__) && !defined(TARGET_S390X)
854 #include <sys/vfs.h>
856 #define HUGETLBFS_MAGIC 0x958458f6
858 static long gethugepagesize(const char *path)
860 struct statfs fs;
861 int ret;
863 do {
864 ret = statfs(path, &fs);
865 } while (ret != 0 && errno == EINTR);
867 if (ret != 0) {
868 perror(path);
869 return 0;
872 if (fs.f_type != HUGETLBFS_MAGIC)
873 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
875 return fs.f_bsize;
878 static void *file_ram_alloc(RAMBlock *block,
879 ram_addr_t memory,
880 const char *path)
882 char *filename;
883 char *sanitized_name;
884 char *c;
885 void *area;
886 int fd;
887 #ifdef MAP_POPULATE
888 int flags;
889 #endif
890 unsigned long hpagesize;
892 hpagesize = gethugepagesize(path);
893 if (!hpagesize) {
894 return NULL;
897 if (memory < hpagesize) {
898 return NULL;
901 if (kvm_enabled() && !kvm_has_sync_mmu()) {
902 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
903 return NULL;
906 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
907 sanitized_name = g_strdup(block->mr->name);
908 for (c = sanitized_name; *c != '\0'; c++) {
909 if (*c == '/')
910 *c = '_';
913 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
914 sanitized_name);
915 g_free(sanitized_name);
917 fd = mkstemp(filename);
918 if (fd < 0) {
919 perror("unable to create backing store for hugepages");
920 g_free(filename);
921 return NULL;
923 unlink(filename);
924 g_free(filename);
926 memory = (memory+hpagesize-1) & ~(hpagesize-1);
929 * ftruncate is not supported by hugetlbfs in older
930 * hosts, so don't bother bailing out on errors.
931 * If anything goes wrong with it under other filesystems,
932 * mmap will fail.
934 if (ftruncate(fd, memory))
935 perror("ftruncate");
937 #ifdef MAP_POPULATE
938 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
939 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
940 * to sidestep this quirk.
942 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
943 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
944 #else
945 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
946 #endif
947 if (area == MAP_FAILED) {
948 perror("file_ram_alloc: can't mmap RAM pages");
949 close(fd);
950 return (NULL);
952 block->fd = fd;
953 return area;
955 #endif
957 static ram_addr_t find_ram_offset(ram_addr_t size)
959 RAMBlock *block, *next_block;
960 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
962 assert(size != 0); /* it would hand out same offset multiple times */
964 if (QTAILQ_EMPTY(&ram_list.blocks))
965 return 0;
967 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
968 ram_addr_t end, next = RAM_ADDR_MAX;
970 end = block->offset + block->length;
972 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
973 if (next_block->offset >= end) {
974 next = MIN(next, next_block->offset);
977 if (next - end >= size && next - end < mingap) {
978 offset = end;
979 mingap = next - end;
983 if (offset == RAM_ADDR_MAX) {
984 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
985 (uint64_t)size);
986 abort();
989 return offset;
992 ram_addr_t last_ram_offset(void)
994 RAMBlock *block;
995 ram_addr_t last = 0;
997 QTAILQ_FOREACH(block, &ram_list.blocks, next)
998 last = MAX(last, block->offset + block->length);
1000 return last;
1003 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1005 int ret;
1006 QemuOpts *machine_opts;
1008 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1009 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1010 if (machine_opts &&
1011 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1012 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1013 if (ret) {
1014 perror("qemu_madvise");
1015 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1016 "but dump_guest_core=off specified\n");
1021 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1023 RAMBlock *new_block, *block;
1025 new_block = NULL;
1026 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1027 if (block->offset == addr) {
1028 new_block = block;
1029 break;
1032 assert(new_block);
1033 assert(!new_block->idstr[0]);
1035 if (dev) {
1036 char *id = qdev_get_dev_path(dev);
1037 if (id) {
1038 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1039 g_free(id);
1042 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1044 /* This assumes the iothread lock is taken here too. */
1045 qemu_mutex_lock_ramlist();
1046 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1047 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1048 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1049 new_block->idstr);
1050 abort();
1053 qemu_mutex_unlock_ramlist();
1056 static int memory_try_enable_merging(void *addr, size_t len)
1058 QemuOpts *opts;
1060 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1061 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1062 /* disabled by the user */
1063 return 0;
1066 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1069 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1070 MemoryRegion *mr)
1072 RAMBlock *block, *new_block;
1074 size = TARGET_PAGE_ALIGN(size);
1075 new_block = g_malloc0(sizeof(*new_block));
1077 /* This assumes the iothread lock is taken here too. */
1078 qemu_mutex_lock_ramlist();
1079 new_block->mr = mr;
1080 new_block->offset = find_ram_offset(size);
1081 if (host) {
1082 new_block->host = host;
1083 new_block->flags |= RAM_PREALLOC_MASK;
1084 } else {
1085 if (mem_path) {
1086 #if defined (__linux__) && !defined(TARGET_S390X)
1087 new_block->host = file_ram_alloc(new_block, size, mem_path);
1088 if (!new_block->host) {
1089 new_block->host = qemu_anon_ram_alloc(size);
1090 memory_try_enable_merging(new_block->host, size);
1092 #else
1093 fprintf(stderr, "-mem-path option unsupported\n");
1094 exit(1);
1095 #endif
1096 } else {
1097 if (xen_enabled()) {
1098 xen_ram_alloc(new_block->offset, size, mr);
1099 } else if (kvm_enabled()) {
1100 /* some s390/kvm configurations have special constraints */
1101 new_block->host = kvm_ram_alloc(size);
1102 } else {
1103 new_block->host = qemu_anon_ram_alloc(size);
1105 memory_try_enable_merging(new_block->host, size);
1108 new_block->length = size;
1110 /* Keep the list sorted from biggest to smallest block. */
1111 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1112 if (block->length < new_block->length) {
1113 break;
1116 if (block) {
1117 QTAILQ_INSERT_BEFORE(block, new_block, next);
1118 } else {
1119 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1121 ram_list.mru_block = NULL;
1123 ram_list.version++;
1124 qemu_mutex_unlock_ramlist();
1126 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1127 last_ram_offset() >> TARGET_PAGE_BITS);
1128 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1129 0, size >> TARGET_PAGE_BITS);
1130 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1132 qemu_ram_setup_dump(new_block->host, size);
1133 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1135 if (kvm_enabled())
1136 kvm_setup_guest_memory(new_block->host, size);
1138 return new_block->offset;
1141 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1143 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1146 void qemu_ram_free_from_ptr(ram_addr_t addr)
1148 RAMBlock *block;
1150 /* This assumes the iothread lock is taken here too. */
1151 qemu_mutex_lock_ramlist();
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (addr == block->offset) {
1154 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1155 ram_list.mru_block = NULL;
1156 ram_list.version++;
1157 g_free(block);
1158 break;
1161 qemu_mutex_unlock_ramlist();
1164 void qemu_ram_free(ram_addr_t addr)
1166 RAMBlock *block;
1168 /* This assumes the iothread lock is taken here too. */
1169 qemu_mutex_lock_ramlist();
1170 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1171 if (addr == block->offset) {
1172 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1173 ram_list.mru_block = NULL;
1174 ram_list.version++;
1175 if (block->flags & RAM_PREALLOC_MASK) {
1177 } else if (mem_path) {
1178 #if defined (__linux__) && !defined(TARGET_S390X)
1179 if (block->fd) {
1180 munmap(block->host, block->length);
1181 close(block->fd);
1182 } else {
1183 qemu_anon_ram_free(block->host, block->length);
1185 #else
1186 abort();
1187 #endif
1188 } else {
1189 if (xen_enabled()) {
1190 xen_invalidate_map_cache_entry(block->host);
1191 } else {
1192 qemu_anon_ram_free(block->host, block->length);
1195 g_free(block);
1196 break;
1199 qemu_mutex_unlock_ramlist();
1203 #ifndef _WIN32
1204 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1206 RAMBlock *block;
1207 ram_addr_t offset;
1208 int flags;
1209 void *area, *vaddr;
1211 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1212 offset = addr - block->offset;
1213 if (offset < block->length) {
1214 vaddr = block->host + offset;
1215 if (block->flags & RAM_PREALLOC_MASK) {
1217 } else {
1218 flags = MAP_FIXED;
1219 munmap(vaddr, length);
1220 if (mem_path) {
1221 #if defined(__linux__) && !defined(TARGET_S390X)
1222 if (block->fd) {
1223 #ifdef MAP_POPULATE
1224 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1225 MAP_PRIVATE;
1226 #else
1227 flags |= MAP_PRIVATE;
1228 #endif
1229 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1230 flags, block->fd, offset);
1231 } else {
1232 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1233 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1234 flags, -1, 0);
1236 #else
1237 abort();
1238 #endif
1239 } else {
1240 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1241 flags |= MAP_SHARED | MAP_ANONYMOUS;
1242 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1243 flags, -1, 0);
1244 #else
1245 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1246 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1247 flags, -1, 0);
1248 #endif
1250 if (area != vaddr) {
1251 fprintf(stderr, "Could not remap addr: "
1252 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1253 length, addr);
1254 exit(1);
1256 memory_try_enable_merging(vaddr, length);
1257 qemu_ram_setup_dump(vaddr, length);
1259 return;
1263 #endif /* !_WIN32 */
1265 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1266 With the exception of the softmmu code in this file, this should
1267 only be used for local memory (e.g. video ram) that the device owns,
1268 and knows it isn't going to access beyond the end of the block.
1270 It should not be used for general purpose DMA.
1271 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1273 void *qemu_get_ram_ptr(ram_addr_t addr)
1275 RAMBlock *block;
1277 /* The list is protected by the iothread lock here. */
1278 block = ram_list.mru_block;
1279 if (block && addr - block->offset < block->length) {
1280 goto found;
1282 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1283 if (addr - block->offset < block->length) {
1284 goto found;
1288 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1289 abort();
1291 found:
1292 ram_list.mru_block = block;
1293 if (xen_enabled()) {
1294 /* We need to check if the requested address is in the RAM
1295 * because we don't want to map the entire memory in QEMU.
1296 * In that case just map until the end of the page.
1298 if (block->offset == 0) {
1299 return xen_map_cache(addr, 0, 0);
1300 } else if (block->host == NULL) {
1301 block->host =
1302 xen_map_cache(block->offset, block->length, 1);
1305 return block->host + (addr - block->offset);
1308 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1309 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1311 * ??? Is this still necessary?
1313 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1315 RAMBlock *block;
1317 /* The list is protected by the iothread lock here. */
1318 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1319 if (addr - block->offset < block->length) {
1320 if (xen_enabled()) {
1321 /* We need to check if the requested address is in the RAM
1322 * because we don't want to map the entire memory in QEMU.
1323 * In that case just map until the end of the page.
1325 if (block->offset == 0) {
1326 return xen_map_cache(addr, 0, 0);
1327 } else if (block->host == NULL) {
1328 block->host =
1329 xen_map_cache(block->offset, block->length, 1);
1332 return block->host + (addr - block->offset);
1336 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1337 abort();
1339 return NULL;
1342 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1343 * but takes a size argument */
1344 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1346 if (*size == 0) {
1347 return NULL;
1349 if (xen_enabled()) {
1350 return xen_map_cache(addr, *size, 1);
1351 } else {
1352 RAMBlock *block;
1354 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1355 if (addr - block->offset < block->length) {
1356 if (addr - block->offset + *size > block->length)
1357 *size = block->length - addr + block->offset;
1358 return block->host + (addr - block->offset);
1362 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1363 abort();
1367 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1369 RAMBlock *block;
1370 uint8_t *host = ptr;
1372 if (xen_enabled()) {
1373 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1374 return 0;
1377 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1378 /* This case append when the block is not mapped. */
1379 if (block->host == NULL) {
1380 continue;
1382 if (host - block->host < block->length) {
1383 *ram_addr = block->offset + (host - block->host);
1384 return 0;
1388 return -1;
1391 /* Some of the softmmu routines need to translate from a host pointer
1392 (typically a TLB entry) back to a ram offset. */
1393 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1395 ram_addr_t ram_addr;
1397 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1398 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1399 abort();
1401 return ram_addr;
1404 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1405 uint64_t val, unsigned size)
1407 int dirty_flags;
1408 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1409 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1410 tb_invalidate_phys_page_fast(ram_addr, size);
1411 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1413 switch (size) {
1414 case 1:
1415 stb_p(qemu_get_ram_ptr(ram_addr), val);
1416 break;
1417 case 2:
1418 stw_p(qemu_get_ram_ptr(ram_addr), val);
1419 break;
1420 case 4:
1421 stl_p(qemu_get_ram_ptr(ram_addr), val);
1422 break;
1423 default:
1424 abort();
1426 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1427 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1428 /* we remove the notdirty callback only if the code has been
1429 flushed */
1430 if (dirty_flags == 0xff)
1431 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1434 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1435 unsigned size, bool is_write)
1437 return is_write;
1440 static const MemoryRegionOps notdirty_mem_ops = {
1441 .write = notdirty_mem_write,
1442 .valid.accepts = notdirty_mem_accepts,
1443 .endianness = DEVICE_NATIVE_ENDIAN,
1446 /* Generate a debug exception if a watchpoint has been hit. */
1447 static void check_watchpoint(int offset, int len_mask, int flags)
1449 CPUArchState *env = cpu_single_env;
1450 target_ulong pc, cs_base;
1451 target_ulong vaddr;
1452 CPUWatchpoint *wp;
1453 int cpu_flags;
1455 if (env->watchpoint_hit) {
1456 /* We re-entered the check after replacing the TB. Now raise
1457 * the debug interrupt so that is will trigger after the
1458 * current instruction. */
1459 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1460 return;
1462 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1463 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1464 if ((vaddr == (wp->vaddr & len_mask) ||
1465 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1466 wp->flags |= BP_WATCHPOINT_HIT;
1467 if (!env->watchpoint_hit) {
1468 env->watchpoint_hit = wp;
1469 tb_check_watchpoint(env);
1470 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1471 env->exception_index = EXCP_DEBUG;
1472 cpu_loop_exit(env);
1473 } else {
1474 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1475 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1476 cpu_resume_from_signal(env, NULL);
1479 } else {
1480 wp->flags &= ~BP_WATCHPOINT_HIT;
1485 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1486 so these check for a hit then pass through to the normal out-of-line
1487 phys routines. */
1488 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1489 unsigned size)
1491 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1492 switch (size) {
1493 case 1: return ldub_phys(addr);
1494 case 2: return lduw_phys(addr);
1495 case 4: return ldl_phys(addr);
1496 default: abort();
1500 static void watch_mem_write(void *opaque, hwaddr addr,
1501 uint64_t val, unsigned size)
1503 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1504 switch (size) {
1505 case 1:
1506 stb_phys(addr, val);
1507 break;
1508 case 2:
1509 stw_phys(addr, val);
1510 break;
1511 case 4:
1512 stl_phys(addr, val);
1513 break;
1514 default: abort();
1518 static const MemoryRegionOps watch_mem_ops = {
1519 .read = watch_mem_read,
1520 .write = watch_mem_write,
1521 .endianness = DEVICE_NATIVE_ENDIAN,
1524 static uint64_t subpage_read(void *opaque, hwaddr addr,
1525 unsigned len)
1527 subpage_t *mmio = opaque;
1528 unsigned int idx = SUBPAGE_IDX(addr);
1529 uint64_t val;
1531 MemoryRegionSection *section;
1532 #if defined(DEBUG_SUBPAGE)
1533 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
1534 mmio, len, addr, idx);
1535 #endif
1537 section = &phys_sections[mmio->sub_section[idx]];
1538 addr += mmio->base;
1539 addr -= section->offset_within_address_space;
1540 addr += section->offset_within_region;
1541 io_mem_read(section->mr, addr, &val, len);
1542 return val;
1545 static void subpage_write(void *opaque, hwaddr addr,
1546 uint64_t value, unsigned len)
1548 subpage_t *mmio = opaque;
1549 unsigned int idx = SUBPAGE_IDX(addr);
1550 MemoryRegionSection *section;
1551 #if defined(DEBUG_SUBPAGE)
1552 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1553 " idx %d value %"PRIx64"\n",
1554 __func__, mmio, len, addr, idx, value);
1555 #endif
1557 section = &phys_sections[mmio->sub_section[idx]];
1558 addr += mmio->base;
1559 addr -= section->offset_within_address_space;
1560 addr += section->offset_within_region;
1561 io_mem_write(section->mr, addr, value, len);
1564 static bool subpage_accepts(void *opaque, hwaddr addr,
1565 unsigned size, bool is_write)
1567 subpage_t *mmio = opaque;
1568 unsigned int idx = SUBPAGE_IDX(addr);
1569 MemoryRegionSection *section;
1570 #if defined(DEBUG_SUBPAGE)
1571 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx
1572 " idx %d\n", __func__, mmio,
1573 is_write ? 'w' : 'r', len, addr, idx);
1574 #endif
1576 section = &phys_sections[mmio->sub_section[idx]];
1577 addr += mmio->base;
1578 addr -= section->offset_within_address_space;
1579 addr += section->offset_within_region;
1580 return memory_region_access_valid(section->mr, addr, size, is_write);
1583 static const MemoryRegionOps subpage_ops = {
1584 .read = subpage_read,
1585 .write = subpage_write,
1586 .valid.accepts = subpage_accepts,
1587 .endianness = DEVICE_NATIVE_ENDIAN,
1590 static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
1591 unsigned size)
1593 ram_addr_t raddr = addr;
1594 void *ptr = qemu_get_ram_ptr(raddr);
1595 switch (size) {
1596 case 1: return ldub_p(ptr);
1597 case 2: return lduw_p(ptr);
1598 case 4: return ldl_p(ptr);
1599 default: abort();
1603 static void subpage_ram_write(void *opaque, hwaddr addr,
1604 uint64_t value, unsigned size)
1606 ram_addr_t raddr = addr;
1607 void *ptr = qemu_get_ram_ptr(raddr);
1608 switch (size) {
1609 case 1: return stb_p(ptr, value);
1610 case 2: return stw_p(ptr, value);
1611 case 4: return stl_p(ptr, value);
1612 default: abort();
1616 static const MemoryRegionOps subpage_ram_ops = {
1617 .read = subpage_ram_read,
1618 .write = subpage_ram_write,
1619 .endianness = DEVICE_NATIVE_ENDIAN,
1622 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1623 uint16_t section)
1625 int idx, eidx;
1627 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1628 return -1;
1629 idx = SUBPAGE_IDX(start);
1630 eidx = SUBPAGE_IDX(end);
1631 #if defined(DEBUG_SUBPAGE)
1632 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1633 mmio, start, end, idx, eidx, memory);
1634 #endif
1635 if (memory_region_is_ram(phys_sections[section].mr)) {
1636 MemoryRegionSection new_section = phys_sections[section];
1637 new_section.mr = &io_mem_subpage_ram;
1638 section = phys_section_add(&new_section);
1640 for (; idx <= eidx; idx++) {
1641 mmio->sub_section[idx] = section;
1644 return 0;
1647 static subpage_t *subpage_init(hwaddr base)
1649 subpage_t *mmio;
1651 mmio = g_malloc0(sizeof(subpage_t));
1653 mmio->base = base;
1654 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1655 "subpage", TARGET_PAGE_SIZE);
1656 mmio->iomem.subpage = true;
1657 #if defined(DEBUG_SUBPAGE)
1658 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1659 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1660 #endif
1661 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1663 return mmio;
1666 static uint16_t dummy_section(MemoryRegion *mr)
1668 MemoryRegionSection section = {
1669 .mr = mr,
1670 .offset_within_address_space = 0,
1671 .offset_within_region = 0,
1672 .size = UINT64_MAX,
1675 return phys_section_add(&section);
1678 MemoryRegion *iotlb_to_region(hwaddr index)
1680 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1683 static void io_mem_init(void)
1685 memory_region_init_io(&io_mem_rom, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1686 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1687 "unassigned", UINT64_MAX);
1688 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
1689 "notdirty", UINT64_MAX);
1690 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
1691 "subpage-ram", UINT64_MAX);
1692 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1693 "watch", UINT64_MAX);
1696 static void mem_begin(MemoryListener *listener)
1698 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1700 destroy_all_mappings(d);
1701 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1704 static void core_begin(MemoryListener *listener)
1706 phys_sections_clear();
1707 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1708 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1709 phys_section_rom = dummy_section(&io_mem_rom);
1710 phys_section_watch = dummy_section(&io_mem_watch);
1713 static void tcg_commit(MemoryListener *listener)
1715 CPUArchState *env;
1717 /* since each CPU stores ram addresses in its TLB cache, we must
1718 reset the modified entries */
1719 /* XXX: slow ! */
1720 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1721 tlb_flush(env, 1);
1725 static void core_log_global_start(MemoryListener *listener)
1727 cpu_physical_memory_set_dirty_tracking(1);
1730 static void core_log_global_stop(MemoryListener *listener)
1732 cpu_physical_memory_set_dirty_tracking(0);
1735 static void io_region_add(MemoryListener *listener,
1736 MemoryRegionSection *section)
1738 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1740 mrio->mr = section->mr;
1741 mrio->offset = section->offset_within_region;
1742 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1743 section->offset_within_address_space, section->size);
1744 ioport_register(&mrio->iorange);
1747 static void io_region_del(MemoryListener *listener,
1748 MemoryRegionSection *section)
1750 isa_unassign_ioport(section->offset_within_address_space, section->size);
1753 static MemoryListener core_memory_listener = {
1754 .begin = core_begin,
1755 .log_global_start = core_log_global_start,
1756 .log_global_stop = core_log_global_stop,
1757 .priority = 1,
1760 static MemoryListener io_memory_listener = {
1761 .region_add = io_region_add,
1762 .region_del = io_region_del,
1763 .priority = 0,
1766 static MemoryListener tcg_memory_listener = {
1767 .commit = tcg_commit,
1770 void address_space_init_dispatch(AddressSpace *as)
1772 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1774 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1775 d->listener = (MemoryListener) {
1776 .begin = mem_begin,
1777 .region_add = mem_add,
1778 .region_nop = mem_add,
1779 .priority = 0,
1781 as->dispatch = d;
1782 memory_listener_register(&d->listener, as);
1785 void address_space_destroy_dispatch(AddressSpace *as)
1787 AddressSpaceDispatch *d = as->dispatch;
1789 memory_listener_unregister(&d->listener);
1790 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1791 g_free(d);
1792 as->dispatch = NULL;
1795 static void memory_map_init(void)
1797 system_memory = g_malloc(sizeof(*system_memory));
1798 memory_region_init(system_memory, "system", INT64_MAX);
1799 address_space_init(&address_space_memory, system_memory);
1800 address_space_memory.name = "memory";
1802 system_io = g_malloc(sizeof(*system_io));
1803 memory_region_init(system_io, "io", 65536);
1804 address_space_init(&address_space_io, system_io);
1805 address_space_io.name = "I/O";
1807 memory_listener_register(&core_memory_listener, &address_space_memory);
1808 memory_listener_register(&io_memory_listener, &address_space_io);
1809 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1811 dma_context_init(&dma_context_memory, &address_space_memory,
1812 NULL, NULL, NULL);
1815 MemoryRegion *get_system_memory(void)
1817 return system_memory;
1820 MemoryRegion *get_system_io(void)
1822 return system_io;
1825 #endif /* !defined(CONFIG_USER_ONLY) */
1827 /* physical memory access (slow version, mainly for debug) */
1828 #if defined(CONFIG_USER_ONLY)
1829 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1830 uint8_t *buf, int len, int is_write)
1832 int l, flags;
1833 target_ulong page;
1834 void * p;
1836 while (len > 0) {
1837 page = addr & TARGET_PAGE_MASK;
1838 l = (page + TARGET_PAGE_SIZE) - addr;
1839 if (l > len)
1840 l = len;
1841 flags = page_get_flags(page);
1842 if (!(flags & PAGE_VALID))
1843 return -1;
1844 if (is_write) {
1845 if (!(flags & PAGE_WRITE))
1846 return -1;
1847 /* XXX: this code should not depend on lock_user */
1848 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1849 return -1;
1850 memcpy(p, buf, l);
1851 unlock_user(p, addr, l);
1852 } else {
1853 if (!(flags & PAGE_READ))
1854 return -1;
1855 /* XXX: this code should not depend on lock_user */
1856 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1857 return -1;
1858 memcpy(buf, p, l);
1859 unlock_user(p, addr, 0);
1861 len -= l;
1862 buf += l;
1863 addr += l;
1865 return 0;
1868 #else
1870 static void invalidate_and_set_dirty(hwaddr addr,
1871 hwaddr length)
1873 if (!cpu_physical_memory_is_dirty(addr)) {
1874 /* invalidate code */
1875 tb_invalidate_phys_page_range(addr, addr + length, 0);
1876 /* set dirty bit */
1877 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1879 xen_modified_memory(addr, length);
1882 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1884 if (memory_region_is_ram(mr)) {
1885 return !(is_write && mr->readonly);
1887 if (memory_region_is_romd(mr)) {
1888 return !is_write;
1891 return false;
1894 static inline int memory_access_size(int l, hwaddr addr)
1896 if (l >= 4 && ((addr & 3) == 0)) {
1897 return 4;
1899 if (l >= 2 && ((addr & 1) == 0)) {
1900 return 2;
1902 return 1;
1905 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1906 int len, bool is_write)
1908 hwaddr l;
1909 uint8_t *ptr;
1910 uint64_t val;
1911 hwaddr addr1;
1912 MemoryRegionSection *section;
1913 bool error = false;
1915 while (len > 0) {
1916 l = len;
1917 section = address_space_translate(as, addr, &addr1, &l, is_write);
1919 if (is_write) {
1920 if (!memory_access_is_direct(section->mr, is_write)) {
1921 l = memory_access_size(l, addr1);
1922 /* XXX: could force cpu_single_env to NULL to avoid
1923 potential bugs */
1924 if (l == 4) {
1925 /* 32 bit write access */
1926 val = ldl_p(buf);
1927 error |= io_mem_write(section->mr, addr1, val, 4);
1928 } else if (l == 2) {
1929 /* 16 bit write access */
1930 val = lduw_p(buf);
1931 error |= io_mem_write(section->mr, addr1, val, 2);
1932 } else {
1933 /* 8 bit write access */
1934 val = ldub_p(buf);
1935 error |= io_mem_write(section->mr, addr1, val, 1);
1937 } else {
1938 addr1 += memory_region_get_ram_addr(section->mr);
1939 /* RAM case */
1940 ptr = qemu_get_ram_ptr(addr1);
1941 memcpy(ptr, buf, l);
1942 invalidate_and_set_dirty(addr1, l);
1944 } else {
1945 if (!memory_access_is_direct(section->mr, is_write)) {
1946 /* I/O case */
1947 l = memory_access_size(l, addr1);
1948 if (l == 4) {
1949 /* 32 bit read access */
1950 error |= io_mem_read(section->mr, addr1, &val, 4);
1951 stl_p(buf, val);
1952 } else if (l == 2) {
1953 /* 16 bit read access */
1954 error |= io_mem_read(section->mr, addr1, &val, 2);
1955 stw_p(buf, val);
1956 } else {
1957 /* 8 bit read access */
1958 error |= io_mem_read(section->mr, addr1, &val, 1);
1959 stb_p(buf, val);
1961 } else {
1962 /* RAM case */
1963 ptr = qemu_get_ram_ptr(section->mr->ram_addr + addr1);
1964 memcpy(buf, ptr, l);
1967 len -= l;
1968 buf += l;
1969 addr += l;
1972 return error;
1975 bool address_space_write(AddressSpace *as, hwaddr addr,
1976 const uint8_t *buf, int len)
1978 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1981 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1983 return address_space_rw(as, addr, buf, len, false);
1987 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1988 int len, int is_write)
1990 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1993 /* used for ROM loading : can write in RAM and ROM */
1994 void cpu_physical_memory_write_rom(hwaddr addr,
1995 const uint8_t *buf, int len)
1997 hwaddr l;
1998 uint8_t *ptr;
1999 hwaddr addr1;
2000 MemoryRegionSection *section;
2002 while (len > 0) {
2003 l = len;
2004 section = address_space_translate(&address_space_memory,
2005 addr, &addr1, &l, true);
2007 if (!(memory_region_is_ram(section->mr) ||
2008 memory_region_is_romd(section->mr))) {
2009 /* do nothing */
2010 } else {
2011 addr1 += memory_region_get_ram_addr(section->mr);
2012 /* ROM/RAM case */
2013 ptr = qemu_get_ram_ptr(addr1);
2014 memcpy(ptr, buf, l);
2015 invalidate_and_set_dirty(addr1, l);
2017 len -= l;
2018 buf += l;
2019 addr += l;
2023 typedef struct {
2024 void *buffer;
2025 hwaddr addr;
2026 hwaddr len;
2027 } BounceBuffer;
2029 static BounceBuffer bounce;
2031 typedef struct MapClient {
2032 void *opaque;
2033 void (*callback)(void *opaque);
2034 QLIST_ENTRY(MapClient) link;
2035 } MapClient;
2037 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2038 = QLIST_HEAD_INITIALIZER(map_client_list);
2040 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2042 MapClient *client = g_malloc(sizeof(*client));
2044 client->opaque = opaque;
2045 client->callback = callback;
2046 QLIST_INSERT_HEAD(&map_client_list, client, link);
2047 return client;
2050 static void cpu_unregister_map_client(void *_client)
2052 MapClient *client = (MapClient *)_client;
2054 QLIST_REMOVE(client, link);
2055 g_free(client);
2058 static void cpu_notify_map_clients(void)
2060 MapClient *client;
2062 while (!QLIST_EMPTY(&map_client_list)) {
2063 client = QLIST_FIRST(&map_client_list);
2064 client->callback(client->opaque);
2065 cpu_unregister_map_client(client);
2069 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2071 MemoryRegionSection *section;
2072 hwaddr l, xlat;
2074 while (len > 0) {
2075 l = len;
2076 section = address_space_translate(as, addr, &xlat, &l, is_write);
2077 if (!memory_access_is_direct(section->mr, is_write)) {
2078 l = memory_access_size(l, addr);
2079 if (!memory_region_access_valid(section->mr, xlat, l, is_write)) {
2080 return false;
2084 len -= l;
2085 addr += l;
2087 return true;
2090 /* Map a physical memory region into a host virtual address.
2091 * May map a subset of the requested range, given by and returned in *plen.
2092 * May return NULL if resources needed to perform the mapping are exhausted.
2093 * Use only for reads OR writes - not for read-modify-write operations.
2094 * Use cpu_register_map_client() to know when retrying the map operation is
2095 * likely to succeed.
2097 void *address_space_map(AddressSpace *as,
2098 hwaddr addr,
2099 hwaddr *plen,
2100 bool is_write)
2102 hwaddr len = *plen;
2103 hwaddr todo = 0;
2104 hwaddr l, xlat;
2105 MemoryRegionSection *section;
2106 ram_addr_t raddr = RAM_ADDR_MAX;
2107 ram_addr_t rlen;
2108 void *ret;
2110 while (len > 0) {
2111 l = len;
2112 section = address_space_translate(as, addr, &xlat, &l, is_write);
2114 if (!memory_access_is_direct(section->mr, is_write)) {
2115 if (todo || bounce.buffer) {
2116 break;
2118 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2119 bounce.addr = addr;
2120 bounce.len = l;
2121 if (!is_write) {
2122 address_space_read(as, addr, bounce.buffer, l);
2125 *plen = l;
2126 return bounce.buffer;
2128 if (!todo) {
2129 raddr = memory_region_get_ram_addr(section->mr) + xlat;
2130 } else {
2131 if (memory_region_get_ram_addr(section->mr) + xlat != raddr + todo) {
2132 break;
2136 len -= l;
2137 addr += l;
2138 todo += l;
2140 rlen = todo;
2141 ret = qemu_ram_ptr_length(raddr, &rlen);
2142 *plen = rlen;
2143 return ret;
2146 /* Unmaps a memory region previously mapped by address_space_map().
2147 * Will also mark the memory as dirty if is_write == 1. access_len gives
2148 * the amount of memory that was actually read or written by the caller.
2150 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2151 int is_write, hwaddr access_len)
2153 if (buffer != bounce.buffer) {
2154 if (is_write) {
2155 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2156 while (access_len) {
2157 unsigned l;
2158 l = TARGET_PAGE_SIZE;
2159 if (l > access_len)
2160 l = access_len;
2161 invalidate_and_set_dirty(addr1, l);
2162 addr1 += l;
2163 access_len -= l;
2166 if (xen_enabled()) {
2167 xen_invalidate_map_cache_entry(buffer);
2169 return;
2171 if (is_write) {
2172 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2174 qemu_vfree(bounce.buffer);
2175 bounce.buffer = NULL;
2176 cpu_notify_map_clients();
2179 void *cpu_physical_memory_map(hwaddr addr,
2180 hwaddr *plen,
2181 int is_write)
2183 return address_space_map(&address_space_memory, addr, plen, is_write);
2186 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2187 int is_write, hwaddr access_len)
2189 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2192 /* warning: addr must be aligned */
2193 static inline uint32_t ldl_phys_internal(hwaddr addr,
2194 enum device_endian endian)
2196 uint8_t *ptr;
2197 uint64_t val;
2198 MemoryRegionSection *section;
2199 hwaddr l = 4;
2200 hwaddr addr1;
2202 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2203 false);
2204 if (l < 4 || !memory_access_is_direct(section->mr, false)) {
2205 /* I/O case */
2206 io_mem_read(section->mr, addr1, &val, 4);
2207 #if defined(TARGET_WORDS_BIGENDIAN)
2208 if (endian == DEVICE_LITTLE_ENDIAN) {
2209 val = bswap32(val);
2211 #else
2212 if (endian == DEVICE_BIG_ENDIAN) {
2213 val = bswap32(val);
2215 #endif
2216 } else {
2217 /* RAM case */
2218 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2219 & TARGET_PAGE_MASK)
2220 + addr1);
2221 switch (endian) {
2222 case DEVICE_LITTLE_ENDIAN:
2223 val = ldl_le_p(ptr);
2224 break;
2225 case DEVICE_BIG_ENDIAN:
2226 val = ldl_be_p(ptr);
2227 break;
2228 default:
2229 val = ldl_p(ptr);
2230 break;
2233 return val;
2236 uint32_t ldl_phys(hwaddr addr)
2238 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2241 uint32_t ldl_le_phys(hwaddr addr)
2243 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2246 uint32_t ldl_be_phys(hwaddr addr)
2248 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2251 /* warning: addr must be aligned */
2252 static inline uint64_t ldq_phys_internal(hwaddr addr,
2253 enum device_endian endian)
2255 uint8_t *ptr;
2256 uint64_t val;
2257 MemoryRegionSection *section;
2258 hwaddr l = 8;
2259 hwaddr addr1;
2261 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2262 false);
2263 if (l < 8 || !memory_access_is_direct(section->mr, false)) {
2264 /* I/O case */
2265 io_mem_read(section->mr, addr1, &val, 8);
2266 #if defined(TARGET_WORDS_BIGENDIAN)
2267 if (endian == DEVICE_LITTLE_ENDIAN) {
2268 val = bswap64(val);
2270 #else
2271 if (endian == DEVICE_BIG_ENDIAN) {
2272 val = bswap64(val);
2274 #endif
2275 } else {
2276 /* RAM case */
2277 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2278 & TARGET_PAGE_MASK)
2279 + addr1);
2280 switch (endian) {
2281 case DEVICE_LITTLE_ENDIAN:
2282 val = ldq_le_p(ptr);
2283 break;
2284 case DEVICE_BIG_ENDIAN:
2285 val = ldq_be_p(ptr);
2286 break;
2287 default:
2288 val = ldq_p(ptr);
2289 break;
2292 return val;
2295 uint64_t ldq_phys(hwaddr addr)
2297 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2300 uint64_t ldq_le_phys(hwaddr addr)
2302 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2305 uint64_t ldq_be_phys(hwaddr addr)
2307 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2310 /* XXX: optimize */
2311 uint32_t ldub_phys(hwaddr addr)
2313 uint8_t val;
2314 cpu_physical_memory_read(addr, &val, 1);
2315 return val;
2318 /* warning: addr must be aligned */
2319 static inline uint32_t lduw_phys_internal(hwaddr addr,
2320 enum device_endian endian)
2322 uint8_t *ptr;
2323 uint64_t val;
2324 MemoryRegionSection *section;
2325 hwaddr l = 2;
2326 hwaddr addr1;
2328 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2329 false);
2330 if (l < 2 || !memory_access_is_direct(section->mr, false)) {
2331 /* I/O case */
2332 io_mem_read(section->mr, addr1, &val, 2);
2333 #if defined(TARGET_WORDS_BIGENDIAN)
2334 if (endian == DEVICE_LITTLE_ENDIAN) {
2335 val = bswap16(val);
2337 #else
2338 if (endian == DEVICE_BIG_ENDIAN) {
2339 val = bswap16(val);
2341 #endif
2342 } else {
2343 /* RAM case */
2344 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2345 & TARGET_PAGE_MASK)
2346 + addr1);
2347 switch (endian) {
2348 case DEVICE_LITTLE_ENDIAN:
2349 val = lduw_le_p(ptr);
2350 break;
2351 case DEVICE_BIG_ENDIAN:
2352 val = lduw_be_p(ptr);
2353 break;
2354 default:
2355 val = lduw_p(ptr);
2356 break;
2359 return val;
2362 uint32_t lduw_phys(hwaddr addr)
2364 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2367 uint32_t lduw_le_phys(hwaddr addr)
2369 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2372 uint32_t lduw_be_phys(hwaddr addr)
2374 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2377 /* warning: addr must be aligned. The ram page is not masked as dirty
2378 and the code inside is not invalidated. It is useful if the dirty
2379 bits are used to track modified PTEs */
2380 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2382 uint8_t *ptr;
2383 MemoryRegionSection *section;
2384 hwaddr l = 4;
2385 hwaddr addr1;
2387 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2388 true);
2389 if (l < 4 || !memory_access_is_direct(section->mr, true)) {
2390 io_mem_write(section->mr, addr1, val, 4);
2391 } else {
2392 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2393 ptr = qemu_get_ram_ptr(addr1);
2394 stl_p(ptr, val);
2396 if (unlikely(in_migration)) {
2397 if (!cpu_physical_memory_is_dirty(addr1)) {
2398 /* invalidate code */
2399 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2400 /* set dirty bit */
2401 cpu_physical_memory_set_dirty_flags(
2402 addr1, (0xff & ~CODE_DIRTY_FLAG));
2408 /* warning: addr must be aligned */
2409 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2410 enum device_endian endian)
2412 uint8_t *ptr;
2413 MemoryRegionSection *section;
2414 hwaddr l = 4;
2415 hwaddr addr1;
2417 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2418 true);
2419 if (l < 4 || !memory_access_is_direct(section->mr, true)) {
2420 #if defined(TARGET_WORDS_BIGENDIAN)
2421 if (endian == DEVICE_LITTLE_ENDIAN) {
2422 val = bswap32(val);
2424 #else
2425 if (endian == DEVICE_BIG_ENDIAN) {
2426 val = bswap32(val);
2428 #endif
2429 io_mem_write(section->mr, addr1, val, 4);
2430 } else {
2431 /* RAM case */
2432 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2433 ptr = qemu_get_ram_ptr(addr1);
2434 switch (endian) {
2435 case DEVICE_LITTLE_ENDIAN:
2436 stl_le_p(ptr, val);
2437 break;
2438 case DEVICE_BIG_ENDIAN:
2439 stl_be_p(ptr, val);
2440 break;
2441 default:
2442 stl_p(ptr, val);
2443 break;
2445 invalidate_and_set_dirty(addr1, 4);
2449 void stl_phys(hwaddr addr, uint32_t val)
2451 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2454 void stl_le_phys(hwaddr addr, uint32_t val)
2456 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2459 void stl_be_phys(hwaddr addr, uint32_t val)
2461 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2464 /* XXX: optimize */
2465 void stb_phys(hwaddr addr, uint32_t val)
2467 uint8_t v = val;
2468 cpu_physical_memory_write(addr, &v, 1);
2471 /* warning: addr must be aligned */
2472 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2473 enum device_endian endian)
2475 uint8_t *ptr;
2476 MemoryRegionSection *section;
2477 hwaddr l = 2;
2478 hwaddr addr1;
2480 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2481 true);
2482 if (l < 2 || !memory_access_is_direct(section->mr, true)) {
2483 #if defined(TARGET_WORDS_BIGENDIAN)
2484 if (endian == DEVICE_LITTLE_ENDIAN) {
2485 val = bswap16(val);
2487 #else
2488 if (endian == DEVICE_BIG_ENDIAN) {
2489 val = bswap16(val);
2491 #endif
2492 io_mem_write(section->mr, addr1, val, 2);
2493 } else {
2494 /* RAM case */
2495 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2496 ptr = qemu_get_ram_ptr(addr1);
2497 switch (endian) {
2498 case DEVICE_LITTLE_ENDIAN:
2499 stw_le_p(ptr, val);
2500 break;
2501 case DEVICE_BIG_ENDIAN:
2502 stw_be_p(ptr, val);
2503 break;
2504 default:
2505 stw_p(ptr, val);
2506 break;
2508 invalidate_and_set_dirty(addr1, 2);
2512 void stw_phys(hwaddr addr, uint32_t val)
2514 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2517 void stw_le_phys(hwaddr addr, uint32_t val)
2519 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2522 void stw_be_phys(hwaddr addr, uint32_t val)
2524 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2527 /* XXX: optimize */
2528 void stq_phys(hwaddr addr, uint64_t val)
2530 val = tswap64(val);
2531 cpu_physical_memory_write(addr, &val, 8);
2534 void stq_le_phys(hwaddr addr, uint64_t val)
2536 val = cpu_to_le64(val);
2537 cpu_physical_memory_write(addr, &val, 8);
2540 void stq_be_phys(hwaddr addr, uint64_t val)
2542 val = cpu_to_be64(val);
2543 cpu_physical_memory_write(addr, &val, 8);
2546 /* virtual memory access for debug (includes writing to ROM) */
2547 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2548 uint8_t *buf, int len, int is_write)
2550 int l;
2551 hwaddr phys_addr;
2552 target_ulong page;
2554 while (len > 0) {
2555 page = addr & TARGET_PAGE_MASK;
2556 phys_addr = cpu_get_phys_page_debug(env, page);
2557 /* if no physical page mapped, return an error */
2558 if (phys_addr == -1)
2559 return -1;
2560 l = (page + TARGET_PAGE_SIZE) - addr;
2561 if (l > len)
2562 l = len;
2563 phys_addr += (addr & ~TARGET_PAGE_MASK);
2564 if (is_write)
2565 cpu_physical_memory_write_rom(phys_addr, buf, l);
2566 else
2567 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2568 len -= l;
2569 buf += l;
2570 addr += l;
2572 return 0;
2574 #endif
2576 #if !defined(CONFIG_USER_ONLY)
2579 * A helper function for the _utterly broken_ virtio device model to find out if
2580 * it's running on a big endian machine. Don't do this at home kids!
2582 bool virtio_is_big_endian(void);
2583 bool virtio_is_big_endian(void)
2585 #if defined(TARGET_WORDS_BIGENDIAN)
2586 return true;
2587 #else
2588 return false;
2589 #endif
2592 #endif
2594 #ifndef CONFIG_USER_ONLY
2595 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2597 MemoryRegionSection *section;
2598 hwaddr l = 1;
2600 section = address_space_translate(&address_space_memory,
2601 phys_addr, &phys_addr, &l, false);
2603 return !(memory_region_is_ram(section->mr) ||
2604 memory_region_is_romd(section->mr));
2606 #endif