error: Eliminate error_propagate() with Coccinelle, part 1
[qemu/ar7.git] / hw / intc / spapr_xive.c
blob89c8cd96670bbaedfc4a3e7367ee855bf92d7ecc
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
29 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30 * use for the ESB pages and the TIMA pages
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
42 * These identifiers are never returned to the OS.
45 #define SPAPR_XIVE_NVT_BASE 0x400
48 * sPAPR NVT and END indexing helpers
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
52 return nvt_idx - SPAPR_XIVE_NVT_BASE;
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
58 assert(cpu);
60 if (out_nvt_blk) {
61 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
64 if (out_nvt_blk) {
65 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
69 static int spapr_xive_target_to_nvt(uint32_t target,
70 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
72 PowerPCCPU *cpu = spapr_find_cpu(target);
74 if (!cpu) {
75 return -1;
78 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79 return 0;
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84 * priorities per CPU
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87 uint32_t *out_server, uint8_t *out_prio)
90 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
92 if (out_server) {
93 *out_server = end_idx >> 3;
96 if (out_prio) {
97 *out_prio = end_idx & 0x7;
99 return 0;
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
105 assert(cpu);
107 if (out_end_blk) {
108 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
111 if (out_end_idx) {
112 *out_end_idx = (cpu->vcpu_id << 3) + prio;
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117 uint8_t *out_end_blk, uint32_t *out_end_idx)
119 PowerPCCPU *cpu = spapr_find_cpu(target);
121 if (!cpu) {
122 return -1;
125 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126 return 0;
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134 Monitor *mon)
136 uint64_t qaddr_base = xive_end_qaddr(end);
137 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140 uint32_t qentries = 1 << (qsize + 10);
141 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
144 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145 spapr_xive_nvt_to_target(0, nvt),
146 priority, qindex, qentries, qaddr_base, qgen);
148 xive_end_queue_pic_print_info(end, 6, mon);
151 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
153 XiveSource *xsrc = &xive->source;
154 int i;
156 if (kvm_irqchip_in_kernel()) {
157 Error *local_err = NULL;
159 kvmppc_xive_synchronize_state(xive, &local_err);
160 if (local_err) {
161 error_report_err(local_err);
162 return;
166 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
168 for (i = 0; i < xive->nr_irqs; i++) {
169 uint8_t pq = xive_source_esb_get(xsrc, i);
170 XiveEAS *eas = &xive->eat[i];
172 if (!xive_eas_is_valid(eas)) {
173 continue;
176 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
177 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
178 pq & XIVE_ESB_VAL_P ? 'P' : '-',
179 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
180 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
181 xive_eas_is_masked(eas) ? "M" : " ",
182 (int) xive_get_field64(EAS_END_DATA, eas->w));
184 if (!xive_eas_is_masked(eas)) {
185 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
186 XiveEND *end;
188 assert(end_idx < xive->nr_ends);
189 end = &xive->endt[end_idx];
191 if (xive_end_is_valid(end)) {
192 spapr_xive_end_pic_print_info(xive, end, mon);
195 monitor_printf(mon, "\n");
199 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
201 memory_region_set_enabled(&xive->source.esb_mmio, enable);
202 memory_region_set_enabled(&xive->tm_mmio, enable);
204 /* Disable the END ESBs until a guest OS makes use of them */
205 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
208 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
209 uint64_t value, unsigned size)
211 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
213 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
216 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
218 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
220 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
223 const MemoryRegionOps spapr_xive_tm_ops = {
224 .read = spapr_xive_tm_read,
225 .write = spapr_xive_tm_write,
226 .endianness = DEVICE_BIG_ENDIAN,
227 .valid = {
228 .min_access_size = 1,
229 .max_access_size = 8,
231 .impl = {
232 .min_access_size = 1,
233 .max_access_size = 8,
237 static void spapr_xive_end_reset(XiveEND *end)
239 memset(end, 0, sizeof(*end));
241 /* switch off the escalation and notification ESBs */
242 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
245 static void spapr_xive_reset(void *dev)
247 SpaprXive *xive = SPAPR_XIVE(dev);
248 int i;
251 * The XiveSource has its own reset handler, which mask off all
252 * IRQs (!P|Q)
255 /* Mask all valid EASs in the IRQ number space. */
256 for (i = 0; i < xive->nr_irqs; i++) {
257 XiveEAS *eas = &xive->eat[i];
258 if (xive_eas_is_valid(eas)) {
259 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
260 } else {
261 eas->w = 0;
265 /* Clear all ENDs */
266 for (i = 0; i < xive->nr_ends; i++) {
267 spapr_xive_end_reset(&xive->endt[i]);
271 static void spapr_xive_instance_init(Object *obj)
273 SpaprXive *xive = SPAPR_XIVE(obj);
275 object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
277 object_initialize_child(obj, "end_source", &xive->end_source,
278 TYPE_XIVE_END_SOURCE);
280 /* Not connected to the KVM XIVE device */
281 xive->fd = -1;
284 static void spapr_xive_realize(DeviceState *dev, Error **errp)
286 SpaprXive *xive = SPAPR_XIVE(dev);
287 SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
288 XiveSource *xsrc = &xive->source;
289 XiveENDSource *end_xsrc = &xive->end_source;
290 Error *local_err = NULL;
292 sxc->parent_realize(dev, &local_err);
293 if (local_err) {
294 error_propagate(errp, local_err);
295 return;
298 if (!xive->nr_irqs) {
299 error_setg(errp, "Number of interrupt needs to be greater 0");
300 return;
303 if (!xive->nr_ends) {
304 error_setg(errp, "Number of interrupt needs to be greater 0");
305 return;
309 * Initialize the internal sources, for IPIs and virtual devices.
311 object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
312 &error_fatal);
313 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
314 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
315 return;
317 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
320 * Initialize the END ESB source
322 object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
323 &error_fatal);
324 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
325 &error_abort);
326 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
327 return;
329 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
331 /* Set the mapping address of the END ESB pages after the source ESBs */
332 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
335 * Allocate the routing tables
337 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
338 xive->endt = g_new0(XiveEND, xive->nr_ends);
340 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
341 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
343 qemu_register_reset(spapr_xive_reset, dev);
345 /* TIMA initialization */
346 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
347 xive, "xive.tima", 4ull << TM_SHIFT);
348 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
351 * Map all regions. These will be enabled or disabled at reset and
352 * can also be overridden by KVM memory regions if active
354 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
355 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
356 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
359 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
360 uint32_t eas_idx, XiveEAS *eas)
362 SpaprXive *xive = SPAPR_XIVE(xrtr);
364 if (eas_idx >= xive->nr_irqs) {
365 return -1;
368 *eas = xive->eat[eas_idx];
369 return 0;
372 static int spapr_xive_get_end(XiveRouter *xrtr,
373 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
375 SpaprXive *xive = SPAPR_XIVE(xrtr);
377 if (end_idx >= xive->nr_ends) {
378 return -1;
381 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
382 return 0;
385 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
386 uint32_t end_idx, XiveEND *end,
387 uint8_t word_number)
389 SpaprXive *xive = SPAPR_XIVE(xrtr);
391 if (end_idx >= xive->nr_ends) {
392 return -1;
395 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
396 return 0;
399 static int spapr_xive_get_nvt(XiveRouter *xrtr,
400 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
402 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
403 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
405 if (!cpu) {
406 /* TODO: should we assert() if we can find a NVT ? */
407 return -1;
411 * sPAPR does not maintain a NVT table. Return that the NVT is
412 * valid if we have found a matching CPU
414 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
415 return 0;
418 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
419 uint32_t nvt_idx, XiveNVT *nvt,
420 uint8_t word_number)
423 * We don't need to write back to the NVTs because the sPAPR
424 * machine should never hit a non-scheduled NVT. It should never
425 * get called.
427 g_assert_not_reached();
430 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
431 uint8_t nvt_blk, uint32_t nvt_idx,
432 bool cam_ignore, uint8_t priority,
433 uint32_t logic_serv, XiveTCTXMatch *match)
435 CPUState *cs;
436 int count = 0;
438 CPU_FOREACH(cs) {
439 PowerPCCPU *cpu = POWERPC_CPU(cs);
440 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
441 int ring;
444 * Skip partially initialized vCPUs. This can happen when
445 * vCPUs are hotplugged.
447 if (!tctx) {
448 continue;
452 * Check the thread context CAM lines and record matches.
454 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
455 cam_ignore, logic_serv);
457 * Save the matching thread interrupt context and follow on to
458 * check for duplicates which are invalid.
460 if (ring != -1) {
461 if (match->tctx) {
462 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
463 "context NVT %x/%x\n", nvt_blk, nvt_idx);
464 return -1;
467 match->ring = ring;
468 match->tctx = tctx;
469 count++;
473 return count;
476 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
478 return SPAPR_XIVE_BLOCK_ID;
481 static const VMStateDescription vmstate_spapr_xive_end = {
482 .name = TYPE_SPAPR_XIVE "/end",
483 .version_id = 1,
484 .minimum_version_id = 1,
485 .fields = (VMStateField []) {
486 VMSTATE_UINT32(w0, XiveEND),
487 VMSTATE_UINT32(w1, XiveEND),
488 VMSTATE_UINT32(w2, XiveEND),
489 VMSTATE_UINT32(w3, XiveEND),
490 VMSTATE_UINT32(w4, XiveEND),
491 VMSTATE_UINT32(w5, XiveEND),
492 VMSTATE_UINT32(w6, XiveEND),
493 VMSTATE_UINT32(w7, XiveEND),
494 VMSTATE_END_OF_LIST()
498 static const VMStateDescription vmstate_spapr_xive_eas = {
499 .name = TYPE_SPAPR_XIVE "/eas",
500 .version_id = 1,
501 .minimum_version_id = 1,
502 .fields = (VMStateField []) {
503 VMSTATE_UINT64(w, XiveEAS),
504 VMSTATE_END_OF_LIST()
508 static int vmstate_spapr_xive_pre_save(void *opaque)
510 if (kvm_irqchip_in_kernel()) {
511 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
514 return 0;
518 * Called by the sPAPR IRQ backend 'post_load' method at the machine
519 * level.
521 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
523 if (kvm_irqchip_in_kernel()) {
524 return kvmppc_xive_post_load(SPAPR_XIVE(intc), version_id);
527 return 0;
530 static const VMStateDescription vmstate_spapr_xive = {
531 .name = TYPE_SPAPR_XIVE,
532 .version_id = 1,
533 .minimum_version_id = 1,
534 .pre_save = vmstate_spapr_xive_pre_save,
535 .post_load = NULL, /* handled at the machine level */
536 .fields = (VMStateField[]) {
537 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
538 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
539 vmstate_spapr_xive_eas, XiveEAS),
540 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
541 vmstate_spapr_xive_end, XiveEND),
542 VMSTATE_END_OF_LIST()
546 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
547 bool lsi, Error **errp)
549 SpaprXive *xive = SPAPR_XIVE(intc);
550 XiveSource *xsrc = &xive->source;
552 assert(lisn < xive->nr_irqs);
554 if (xive_eas_is_valid(&xive->eat[lisn])) {
555 error_setg(errp, "IRQ %d is not free", lisn);
556 return -EBUSY;
560 * Set default values when allocating an IRQ number
562 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
563 if (lsi) {
564 xive_source_irq_set_lsi(xsrc, lisn);
567 if (kvm_irqchip_in_kernel()) {
568 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
571 return 0;
574 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
576 SpaprXive *xive = SPAPR_XIVE(intc);
577 assert(lisn < xive->nr_irqs);
579 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
582 static Property spapr_xive_properties[] = {
583 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
584 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
585 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
586 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
587 DEFINE_PROP_END_OF_LIST(),
590 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
591 PowerPCCPU *cpu, Error **errp)
593 SpaprXive *xive = SPAPR_XIVE(intc);
594 Object *obj;
595 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
597 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
598 if (!obj) {
599 return -1;
602 spapr_cpu->tctx = XIVE_TCTX(obj);
603 return 0;
606 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
608 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
609 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
612 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
613 PowerPCCPU *cpu)
615 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
616 uint8_t nvt_blk;
617 uint32_t nvt_idx;
619 xive_tctx_reset(tctx);
622 * When a Virtual Processor is scheduled to run on a HW thread,
623 * the hypervisor pushes its identifier in the OS CAM line.
624 * Emulate the same behavior under QEMU.
626 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
628 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
631 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
632 PowerPCCPU *cpu)
634 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
636 xive_tctx_destroy(spapr_cpu->tctx);
637 spapr_cpu->tctx = NULL;
640 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
642 SpaprXive *xive = SPAPR_XIVE(intc);
644 if (kvm_irqchip_in_kernel()) {
645 kvmppc_xive_source_set_irq(&xive->source, irq, val);
646 } else {
647 xive_source_set_irq(&xive->source, irq, val);
651 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
653 SpaprXive *xive = SPAPR_XIVE(intc);
654 CPUState *cs;
656 CPU_FOREACH(cs) {
657 PowerPCCPU *cpu = POWERPC_CPU(cs);
659 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
662 spapr_xive_pic_print_info(xive, mon);
665 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
666 void *fdt, uint32_t phandle)
668 SpaprXive *xive = SPAPR_XIVE(intc);
669 int node;
670 uint64_t timas[2 * 2];
671 /* Interrupt number ranges for the IPIs */
672 uint32_t lisn_ranges[] = {
673 cpu_to_be32(SPAPR_IRQ_IPI),
674 cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
677 * EQ size - the sizes of pages supported by the system 4K, 64K,
678 * 2M, 16M. We only advertise 64K for the moment.
680 uint32_t eq_sizes[] = {
681 cpu_to_be32(16), /* 64K */
684 * The following array is in sync with the reserved priorities
685 * defined by the 'spapr_xive_priority_is_reserved' routine.
687 uint32_t plat_res_int_priorities[] = {
688 cpu_to_be32(7), /* start */
689 cpu_to_be32(0xf8), /* count */
692 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
693 timas[0] = cpu_to_be64(xive->tm_base +
694 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
695 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
696 timas[2] = cpu_to_be64(xive->tm_base +
697 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
698 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
700 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
702 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
703 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
705 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
706 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
707 sizeof(eq_sizes)));
708 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
709 sizeof(lisn_ranges)));
711 /* For Linux to link the LSIs to the interrupt controller. */
712 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
713 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
715 /* For SLOF */
716 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
717 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
720 * The "ibm,plat-res-int-priorities" property defines the priority
721 * ranges reserved by the hypervisor
723 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
724 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
727 static int spapr_xive_activate(SpaprInterruptController *intc,
728 uint32_t nr_servers, Error **errp)
730 SpaprXive *xive = SPAPR_XIVE(intc);
732 if (kvm_enabled()) {
733 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
734 errp);
735 if (rc < 0) {
736 return rc;
740 /* Activate the XIVE MMIOs */
741 spapr_xive_mmio_set_enabled(xive, true);
743 return 0;
746 static void spapr_xive_deactivate(SpaprInterruptController *intc)
748 SpaprXive *xive = SPAPR_XIVE(intc);
750 spapr_xive_mmio_set_enabled(xive, false);
752 if (kvm_irqchip_in_kernel()) {
753 kvmppc_xive_disconnect(intc);
757 static void spapr_xive_class_init(ObjectClass *klass, void *data)
759 DeviceClass *dc = DEVICE_CLASS(klass);
760 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
761 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
762 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
763 SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
765 dc->desc = "sPAPR XIVE Interrupt Controller";
766 device_class_set_props(dc, spapr_xive_properties);
767 device_class_set_parent_realize(dc, spapr_xive_realize,
768 &sxc->parent_realize);
769 dc->vmsd = &vmstate_spapr_xive;
771 xrc->get_eas = spapr_xive_get_eas;
772 xrc->get_end = spapr_xive_get_end;
773 xrc->write_end = spapr_xive_write_end;
774 xrc->get_nvt = spapr_xive_get_nvt;
775 xrc->write_nvt = spapr_xive_write_nvt;
776 xrc->get_block_id = spapr_xive_get_block_id;
778 sicc->activate = spapr_xive_activate;
779 sicc->deactivate = spapr_xive_deactivate;
780 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
781 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
782 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
783 sicc->claim_irq = spapr_xive_claim_irq;
784 sicc->free_irq = spapr_xive_free_irq;
785 sicc->set_irq = spapr_xive_set_irq;
786 sicc->print_info = spapr_xive_print_info;
787 sicc->dt = spapr_xive_dt;
788 sicc->post_load = spapr_xive_post_load;
790 xpc->match_nvt = spapr_xive_match_nvt;
793 static const TypeInfo spapr_xive_info = {
794 .name = TYPE_SPAPR_XIVE,
795 .parent = TYPE_XIVE_ROUTER,
796 .instance_init = spapr_xive_instance_init,
797 .instance_size = sizeof(SpaprXive),
798 .class_init = spapr_xive_class_init,
799 .class_size = sizeof(SpaprXiveClass),
800 .interfaces = (InterfaceInfo[]) {
801 { TYPE_SPAPR_INTC },
806 static void spapr_xive_register_types(void)
808 type_register_static(&spapr_xive_info);
811 type_init(spapr_xive_register_types)
814 * XIVE hcalls
816 * The terminology used by the XIVE hcalls is the following :
818 * TARGET vCPU number
819 * EQ Event Queue assigned by OS to receive event data
820 * ESB page for source interrupt management
821 * LISN Logical Interrupt Source Number identifying a source in the
822 * machine
823 * EISN Effective Interrupt Source Number used by guest OS to
824 * identify source in the guest
826 * The EAS, END, NVT structures are not exposed.
830 * Linux hosts under OPAL reserve priority 7 for their own escalation
831 * interrupts (DD2.X POWER9). So we only allow the guest to use
832 * priorities [0..6].
834 static bool spapr_xive_priority_is_reserved(uint8_t priority)
836 switch (priority) {
837 case 0 ... 6:
838 return false;
839 case 7: /* OPAL escalation queue */
840 default:
841 return true;
846 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
847 * real address of the MMIO page through which the Event State Buffer
848 * entry associated with the value of the "lisn" parameter is managed.
850 * Parameters:
851 * Input
852 * - R4: "flags"
853 * Bits 0-63 reserved
854 * - R5: "lisn" is per "interrupts", "interrupt-map", or
855 * "ibm,xive-lisn-ranges" properties, or as returned by the
856 * ibm,query-interrupt-source-number RTAS call, or as returned
857 * by the H_ALLOCATE_VAS_WINDOW hcall
859 * Output
860 * - R4: "flags"
861 * Bits 0-59: Reserved
862 * Bit 60: H_INT_ESB must be used for Event State Buffer
863 * management
864 * Bit 61: 1 == LSI 0 == MSI
865 * Bit 62: the full function page supports trigger
866 * Bit 63: Store EOI Supported
867 * - R5: Logical Real address of full function Event State Buffer
868 * management page, -1 if H_INT_ESB hcall flag is set to 1.
869 * - R6: Logical Real Address of trigger only Event State Buffer
870 * management page or -1.
871 * - R7: Power of 2 page size for the ESB management pages returned in
872 * R5 and R6.
875 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
876 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
877 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
878 on same page */
879 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
881 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
882 SpaprMachineState *spapr,
883 target_ulong opcode,
884 target_ulong *args)
886 SpaprXive *xive = spapr->xive;
887 XiveSource *xsrc = &xive->source;
888 target_ulong flags = args[0];
889 target_ulong lisn = args[1];
891 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
892 return H_FUNCTION;
895 if (flags) {
896 return H_PARAMETER;
899 if (lisn >= xive->nr_irqs) {
900 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
901 lisn);
902 return H_P2;
905 if (!xive_eas_is_valid(&xive->eat[lisn])) {
906 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
907 lisn);
908 return H_P2;
912 * All sources are emulated under the main XIVE object and share
913 * the same characteristics.
915 args[0] = 0;
916 if (!xive_source_esb_has_2page(xsrc)) {
917 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
919 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
920 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
924 * Force the use of the H_INT_ESB hcall in case of an LSI
925 * interrupt. This is necessary under KVM to re-trigger the
926 * interrupt if the level is still asserted
928 if (xive_source_irq_is_lsi(xsrc, lisn)) {
929 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
932 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
933 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
934 } else {
935 args[1] = -1;
938 if (xive_source_esb_has_2page(xsrc) &&
939 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
940 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
941 } else {
942 args[2] = -1;
945 if (xive_source_esb_has_2page(xsrc)) {
946 args[3] = xsrc->esb_shift - 1;
947 } else {
948 args[3] = xsrc->esb_shift;
951 return H_SUCCESS;
955 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
956 * Interrupt Source to a target. The Logical Interrupt Source is
957 * designated with the "lisn" parameter and the target is designated
958 * with the "target" and "priority" parameters. Upon return from the
959 * hcall(), no additional interrupts will be directed to the old EQ.
961 * Parameters:
962 * Input:
963 * - R4: "flags"
964 * Bits 0-61: Reserved
965 * Bit 62: set the "eisn" in the EAS
966 * Bit 63: masks the interrupt source in the hardware interrupt
967 * control structure. An interrupt masked by this mechanism will
968 * be dropped, but it's source state bits will still be
969 * set. There is no race-free way of unmasking and restoring the
970 * source. Thus this should only be used in interrupts that are
971 * also masked at the source, and only in cases where the
972 * interrupt is not meant to be used for a large amount of time
973 * because no valid target exists for it for example
974 * - R5: "lisn" is per "interrupts", "interrupt-map", or
975 * "ibm,xive-lisn-ranges" properties, or as returned by the
976 * ibm,query-interrupt-source-number RTAS call, or as returned by
977 * the H_ALLOCATE_VAS_WINDOW hcall
978 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
979 * "ibm,ppc-interrupt-gserver#s"
980 * - R7: "priority" is a valid priority not in
981 * "ibm,plat-res-int-priorities"
982 * - R8: "eisn" is the guest EISN associated with the "lisn"
984 * Output:
985 * - None
988 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
989 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
991 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
992 SpaprMachineState *spapr,
993 target_ulong opcode,
994 target_ulong *args)
996 SpaprXive *xive = spapr->xive;
997 XiveEAS eas, new_eas;
998 target_ulong flags = args[0];
999 target_ulong lisn = args[1];
1000 target_ulong target = args[2];
1001 target_ulong priority = args[3];
1002 target_ulong eisn = args[4];
1003 uint8_t end_blk;
1004 uint32_t end_idx;
1006 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1007 return H_FUNCTION;
1010 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1011 return H_PARAMETER;
1014 if (lisn >= xive->nr_irqs) {
1015 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1016 lisn);
1017 return H_P2;
1020 eas = xive->eat[lisn];
1021 if (!xive_eas_is_valid(&eas)) {
1022 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1023 lisn);
1024 return H_P2;
1027 /* priority 0xff is used to reset the EAS */
1028 if (priority == 0xff) {
1029 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1030 goto out;
1033 if (flags & SPAPR_XIVE_SRC_MASK) {
1034 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1035 } else {
1036 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1039 if (spapr_xive_priority_is_reserved(priority)) {
1040 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1041 " is reserved\n", priority);
1042 return H_P4;
1046 * Validate that "target" is part of the list of threads allocated
1047 * to the partition. For that, find the END corresponding to the
1048 * target.
1050 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1051 return H_P3;
1054 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1055 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1057 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1058 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1061 if (kvm_irqchip_in_kernel()) {
1062 Error *local_err = NULL;
1064 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1065 if (local_err) {
1066 error_report_err(local_err);
1067 return H_HARDWARE;
1071 out:
1072 xive->eat[lisn] = new_eas;
1073 return H_SUCCESS;
1077 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1078 * target/priority pair is assigned to the specified Logical Interrupt
1079 * Source.
1081 * Parameters:
1082 * Input:
1083 * - R4: "flags"
1084 * Bits 0-63 Reserved
1085 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1086 * "ibm,xive-lisn-ranges" properties, or as returned by the
1087 * ibm,query-interrupt-source-number RTAS call, or as
1088 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1090 * Output:
1091 * - R4: Target to which the specified Logical Interrupt Source is
1092 * assigned
1093 * - R5: Priority to which the specified Logical Interrupt Source is
1094 * assigned
1095 * - R6: EISN for the specified Logical Interrupt Source (this will be
1096 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1098 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1099 SpaprMachineState *spapr,
1100 target_ulong opcode,
1101 target_ulong *args)
1103 SpaprXive *xive = spapr->xive;
1104 target_ulong flags = args[0];
1105 target_ulong lisn = args[1];
1106 XiveEAS eas;
1107 XiveEND *end;
1108 uint8_t nvt_blk;
1109 uint32_t end_idx, nvt_idx;
1111 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1112 return H_FUNCTION;
1115 if (flags) {
1116 return H_PARAMETER;
1119 if (lisn >= xive->nr_irqs) {
1120 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1121 lisn);
1122 return H_P2;
1125 eas = xive->eat[lisn];
1126 if (!xive_eas_is_valid(&eas)) {
1127 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1128 lisn);
1129 return H_P2;
1132 /* EAS_END_BLOCK is unused on sPAPR */
1133 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1135 assert(end_idx < xive->nr_ends);
1136 end = &xive->endt[end_idx];
1138 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1139 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1140 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1142 if (xive_eas_is_masked(&eas)) {
1143 args[1] = 0xff;
1144 } else {
1145 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1148 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1150 return H_SUCCESS;
1154 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1155 * address of the notification management page associated with the
1156 * specified target and priority.
1158 * Parameters:
1159 * Input:
1160 * - R4: "flags"
1161 * Bits 0-63 Reserved
1162 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1163 * "ibm,ppc-interrupt-gserver#s"
1164 * - R6: "priority" is a valid priority not in
1165 * "ibm,plat-res-int-priorities"
1167 * Output:
1168 * - R4: Logical real address of notification page
1169 * - R5: Power of 2 page size of the notification page
1171 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1172 SpaprMachineState *spapr,
1173 target_ulong opcode,
1174 target_ulong *args)
1176 SpaprXive *xive = spapr->xive;
1177 XiveENDSource *end_xsrc = &xive->end_source;
1178 target_ulong flags = args[0];
1179 target_ulong target = args[1];
1180 target_ulong priority = args[2];
1181 XiveEND *end;
1182 uint8_t end_blk;
1183 uint32_t end_idx;
1185 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1186 return H_FUNCTION;
1189 if (flags) {
1190 return H_PARAMETER;
1194 * H_STATE should be returned if a H_INT_RESET is in progress.
1195 * This is not needed when running the emulation under QEMU
1198 if (spapr_xive_priority_is_reserved(priority)) {
1199 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1200 " is reserved\n", priority);
1201 return H_P3;
1205 * Validate that "target" is part of the list of threads allocated
1206 * to the partition. For that, find the END corresponding to the
1207 * target.
1209 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1210 return H_P2;
1213 assert(end_idx < xive->nr_ends);
1214 end = &xive->endt[end_idx];
1216 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1217 if (xive_end_is_enqueue(end)) {
1218 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1219 } else {
1220 args[1] = 0;
1223 return H_SUCCESS;
1227 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1228 * a given "target" and "priority". It is also used to set the
1229 * notification config associated with the EQ. An EQ size of 0 is
1230 * used to reset the EQ config for a given target and priority. If
1231 * resetting the EQ config, the END associated with the given "target"
1232 * and "priority" will be changed to disable queueing.
1234 * Upon return from the hcall(), no additional interrupts will be
1235 * directed to the old EQ (if one was set). The old EQ (if one was
1236 * set) should be investigated for interrupts that occurred prior to
1237 * or during the hcall().
1239 * Parameters:
1240 * Input:
1241 * - R4: "flags"
1242 * Bits 0-62: Reserved
1243 * Bit 63: Unconditional Notify (n) per the XIVE spec
1244 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1245 * "ibm,ppc-interrupt-gserver#s"
1246 * - R6: "priority" is a valid priority not in
1247 * "ibm,plat-res-int-priorities"
1248 * - R7: "eventQueue": The logical real address of the start of the EQ
1249 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1251 * Output:
1252 * - None
1255 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1257 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1258 SpaprMachineState *spapr,
1259 target_ulong opcode,
1260 target_ulong *args)
1262 SpaprXive *xive = spapr->xive;
1263 target_ulong flags = args[0];
1264 target_ulong target = args[1];
1265 target_ulong priority = args[2];
1266 target_ulong qpage = args[3];
1267 target_ulong qsize = args[4];
1268 XiveEND end;
1269 uint8_t end_blk, nvt_blk;
1270 uint32_t end_idx, nvt_idx;
1272 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1273 return H_FUNCTION;
1276 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1277 return H_PARAMETER;
1281 * H_STATE should be returned if a H_INT_RESET is in progress.
1282 * This is not needed when running the emulation under QEMU
1285 if (spapr_xive_priority_is_reserved(priority)) {
1286 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1287 " is reserved\n", priority);
1288 return H_P3;
1292 * Validate that "target" is part of the list of threads allocated
1293 * to the partition. For that, find the END corresponding to the
1294 * target.
1297 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1298 return H_P2;
1301 assert(end_idx < xive->nr_ends);
1302 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1304 switch (qsize) {
1305 case 12:
1306 case 16:
1307 case 21:
1308 case 24:
1309 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1310 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1311 " is not naturally aligned with %" HWADDR_PRIx "\n",
1312 qpage, (hwaddr)1 << qsize);
1313 return H_P4;
1315 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1316 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1317 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1318 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1319 break;
1320 case 0:
1321 /* reset queue and disable queueing */
1322 spapr_xive_end_reset(&end);
1323 goto out;
1325 default:
1326 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1327 qsize);
1328 return H_P5;
1331 if (qsize) {
1332 hwaddr plen = 1 << qsize;
1333 void *eq;
1336 * Validate the guest EQ. We should also check that the queue
1337 * has been zeroed by the OS.
1339 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1340 MEMTXATTRS_UNSPECIFIED);
1341 if (plen != 1 << qsize) {
1342 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1343 HWADDR_PRIx "\n", qpage);
1344 return H_P4;
1346 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1349 /* "target" should have been validated above */
1350 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1351 g_assert_not_reached();
1355 * Ensure the priority and target are correctly set (they will not
1356 * be right after allocation)
1358 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1359 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1360 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1362 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1363 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1364 } else {
1365 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1369 * The generation bit for the END starts at 1 and The END page
1370 * offset counter starts at 0.
1372 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1373 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1374 end.w0 |= cpu_to_be32(END_W0_VALID);
1377 * TODO: issue syncs required to ensure all in-flight interrupts
1378 * are complete on the old END
1381 out:
1382 if (kvm_irqchip_in_kernel()) {
1383 Error *local_err = NULL;
1385 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1386 if (local_err) {
1387 error_report_err(local_err);
1388 return H_HARDWARE;
1392 /* Update END */
1393 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1394 return H_SUCCESS;
1398 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1399 * target and priority.
1401 * Parameters:
1402 * Input:
1403 * - R4: "flags"
1404 * Bits 0-62: Reserved
1405 * Bit 63: Debug: Return debug data
1406 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1407 * "ibm,ppc-interrupt-gserver#s"
1408 * - R6: "priority" is a valid priority not in
1409 * "ibm,plat-res-int-priorities"
1411 * Output:
1412 * - R4: "flags":
1413 * Bits 0-61: Reserved
1414 * Bit 62: The value of Event Queue Generation Number (g) per
1415 * the XIVE spec if "Debug" = 1
1416 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1417 * - R5: The logical real address of the start of the EQ
1418 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1419 * - R7: The value of Event Queue Offset Counter per XIVE spec
1420 * if "Debug" = 1, else 0
1424 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1426 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1427 SpaprMachineState *spapr,
1428 target_ulong opcode,
1429 target_ulong *args)
1431 SpaprXive *xive = spapr->xive;
1432 target_ulong flags = args[0];
1433 target_ulong target = args[1];
1434 target_ulong priority = args[2];
1435 XiveEND *end;
1436 uint8_t end_blk;
1437 uint32_t end_idx;
1439 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1440 return H_FUNCTION;
1443 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1444 return H_PARAMETER;
1448 * H_STATE should be returned if a H_INT_RESET is in progress.
1449 * This is not needed when running the emulation under QEMU
1452 if (spapr_xive_priority_is_reserved(priority)) {
1453 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1454 " is reserved\n", priority);
1455 return H_P3;
1459 * Validate that "target" is part of the list of threads allocated
1460 * to the partition. For that, find the END corresponding to the
1461 * target.
1463 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1464 return H_P2;
1467 assert(end_idx < xive->nr_ends);
1468 end = &xive->endt[end_idx];
1470 args[0] = 0;
1471 if (xive_end_is_notify(end)) {
1472 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1475 if (xive_end_is_enqueue(end)) {
1476 args[1] = xive_end_qaddr(end);
1477 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1478 } else {
1479 args[1] = 0;
1480 args[2] = 0;
1483 if (kvm_irqchip_in_kernel()) {
1484 Error *local_err = NULL;
1486 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1487 if (local_err) {
1488 error_report_err(local_err);
1489 return H_HARDWARE;
1493 /* TODO: do we need any locking on the END ? */
1494 if (flags & SPAPR_XIVE_END_DEBUG) {
1495 /* Load the event queue generation number into the return flags */
1496 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1498 /* Load R7 with the event queue offset counter */
1499 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1500 } else {
1501 args[3] = 0;
1504 return H_SUCCESS;
1508 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1509 * reporting cache line pair for the calling thread. The reporting
1510 * cache lines will contain the OS interrupt context when the OS
1511 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1512 * interrupt. The reporting cache lines can be reset by inputting -1
1513 * in "reportingLine". Issuing the CI store byte without reporting
1514 * cache lines registered will result in the data not being accessible
1515 * to the OS.
1517 * Parameters:
1518 * Input:
1519 * - R4: "flags"
1520 * Bits 0-63: Reserved
1521 * - R5: "reportingLine": The logical real address of the reporting cache
1522 * line pair
1524 * Output:
1525 * - None
1527 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1528 SpaprMachineState *spapr,
1529 target_ulong opcode,
1530 target_ulong *args)
1532 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1533 return H_FUNCTION;
1537 * H_STATE should be returned if a H_INT_RESET is in progress.
1538 * This is not needed when running the emulation under QEMU
1541 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1542 return H_FUNCTION;
1546 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1547 * real address of the reporting cache line pair set for the input
1548 * "target". If no reporting cache line pair has been set, -1 is
1549 * returned.
1551 * Parameters:
1552 * Input:
1553 * - R4: "flags"
1554 * Bits 0-63: Reserved
1555 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1556 * "ibm,ppc-interrupt-gserver#s"
1557 * - R6: "reportingLine": The logical real address of the reporting
1558 * cache line pair
1560 * Output:
1561 * - R4: The logical real address of the reporting line if set, else -1
1563 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1564 SpaprMachineState *spapr,
1565 target_ulong opcode,
1566 target_ulong *args)
1568 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1569 return H_FUNCTION;
1573 * H_STATE should be returned if a H_INT_RESET is in progress.
1574 * This is not needed when running the emulation under QEMU
1577 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1578 return H_FUNCTION;
1582 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1583 * page for the input "lisn". This hcall is only supported for LISNs
1584 * that have the ESB hcall flag set to 1 when returned from hcall()
1585 * H_INT_GET_SOURCE_INFO.
1587 * Parameters:
1588 * Input:
1589 * - R4: "flags"
1590 * Bits 0-62: Reserved
1591 * bit 63: Store: Store=1, store operation, else load operation
1592 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1593 * "ibm,xive-lisn-ranges" properties, or as returned by the
1594 * ibm,query-interrupt-source-number RTAS call, or as
1595 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1596 * - R6: "esbOffset" is the offset into the ESB page for the load or
1597 * store operation
1598 * - R7: "storeData" is the data to write for a store operation
1600 * Output:
1601 * - R4: The value of the load if load operation, else -1
1604 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1606 static target_ulong h_int_esb(PowerPCCPU *cpu,
1607 SpaprMachineState *spapr,
1608 target_ulong opcode,
1609 target_ulong *args)
1611 SpaprXive *xive = spapr->xive;
1612 XiveEAS eas;
1613 target_ulong flags = args[0];
1614 target_ulong lisn = args[1];
1615 target_ulong offset = args[2];
1616 target_ulong data = args[3];
1617 hwaddr mmio_addr;
1618 XiveSource *xsrc = &xive->source;
1620 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1621 return H_FUNCTION;
1624 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1625 return H_PARAMETER;
1628 if (lisn >= xive->nr_irqs) {
1629 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1630 lisn);
1631 return H_P2;
1634 eas = xive->eat[lisn];
1635 if (!xive_eas_is_valid(&eas)) {
1636 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1637 lisn);
1638 return H_P2;
1641 if (offset > (1ull << xsrc->esb_shift)) {
1642 return H_P3;
1645 if (kvm_irqchip_in_kernel()) {
1646 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1647 flags & SPAPR_XIVE_ESB_STORE);
1648 } else {
1649 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1651 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1652 (flags & SPAPR_XIVE_ESB_STORE))) {
1653 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1654 HWADDR_PRIx "\n", mmio_addr);
1655 return H_HARDWARE;
1657 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1659 return H_SUCCESS;
1663 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1664 * ensure any in flight events for the input lisn are in the event
1665 * queue.
1667 * Parameters:
1668 * Input:
1669 * - R4: "flags"
1670 * Bits 0-63: Reserved
1671 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1672 * "ibm,xive-lisn-ranges" properties, or as returned by the
1673 * ibm,query-interrupt-source-number RTAS call, or as
1674 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1676 * Output:
1677 * - None
1679 static target_ulong h_int_sync(PowerPCCPU *cpu,
1680 SpaprMachineState *spapr,
1681 target_ulong opcode,
1682 target_ulong *args)
1684 SpaprXive *xive = spapr->xive;
1685 XiveEAS eas;
1686 target_ulong flags = args[0];
1687 target_ulong lisn = args[1];
1689 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1690 return H_FUNCTION;
1693 if (flags) {
1694 return H_PARAMETER;
1697 if (lisn >= xive->nr_irqs) {
1698 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1699 lisn);
1700 return H_P2;
1703 eas = xive->eat[lisn];
1704 if (!xive_eas_is_valid(&eas)) {
1705 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1706 lisn);
1707 return H_P2;
1711 * H_STATE should be returned if a H_INT_RESET is in progress.
1712 * This is not needed when running the emulation under QEMU
1716 * This is not real hardware. Nothing to be done unless when
1717 * under KVM
1720 if (kvm_irqchip_in_kernel()) {
1721 Error *local_err = NULL;
1723 kvmppc_xive_sync_source(xive, lisn, &local_err);
1724 if (local_err) {
1725 error_report_err(local_err);
1726 return H_HARDWARE;
1729 return H_SUCCESS;
1733 * The H_INT_RESET hcall() is used to reset all of the partition's
1734 * interrupt exploitation structures to their initial state. This
1735 * means losing all previously set interrupt state set via
1736 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1738 * Parameters:
1739 * Input:
1740 * - R4: "flags"
1741 * Bits 0-63: Reserved
1743 * Output:
1744 * - None
1746 static target_ulong h_int_reset(PowerPCCPU *cpu,
1747 SpaprMachineState *spapr,
1748 target_ulong opcode,
1749 target_ulong *args)
1751 SpaprXive *xive = spapr->xive;
1752 target_ulong flags = args[0];
1754 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1755 return H_FUNCTION;
1758 if (flags) {
1759 return H_PARAMETER;
1762 device_legacy_reset(DEVICE(xive));
1764 if (kvm_irqchip_in_kernel()) {
1765 Error *local_err = NULL;
1767 kvmppc_xive_reset(xive, &local_err);
1768 if (local_err) {
1769 error_report_err(local_err);
1770 return H_HARDWARE;
1773 return H_SUCCESS;
1776 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1778 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1779 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1780 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1781 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1782 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1783 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1784 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1785 h_int_set_os_reporting_line);
1786 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1787 h_int_get_os_reporting_line);
1788 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1789 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1790 spapr_register_hypercall(H_INT_RESET, h_int_reset);