libcacard: remove sql: prefix
[qemu/ar7.git] / hw / block / nand.c
blob087ca14ed1b5a7c66f6a287c4d4d0dbb0058723d
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
19 #ifndef NAND_IO
21 # include "hw/hw.h"
22 # include "hw/block/flash.h"
23 # include "sysemu/blockdev.h"
24 # include "hw/sysbus.h"
25 #include "qemu/error-report.h"
27 # define NAND_CMD_READ0 0x00
28 # define NAND_CMD_READ1 0x01
29 # define NAND_CMD_READ2 0x50
30 # define NAND_CMD_LPREAD2 0x30
31 # define NAND_CMD_NOSERIALREAD2 0x35
32 # define NAND_CMD_RANDOMREAD1 0x05
33 # define NAND_CMD_RANDOMREAD2 0xe0
34 # define NAND_CMD_READID 0x90
35 # define NAND_CMD_RESET 0xff
36 # define NAND_CMD_PAGEPROGRAM1 0x80
37 # define NAND_CMD_PAGEPROGRAM2 0x10
38 # define NAND_CMD_CACHEPROGRAM2 0x15
39 # define NAND_CMD_BLOCKERASE1 0x60
40 # define NAND_CMD_BLOCKERASE2 0xd0
41 # define NAND_CMD_READSTATUS 0x70
42 # define NAND_CMD_COPYBACKPRG1 0x85
44 # define NAND_IOSTATUS_ERROR (1 << 0)
45 # define NAND_IOSTATUS_PLANE0 (1 << 1)
46 # define NAND_IOSTATUS_PLANE1 (1 << 2)
47 # define NAND_IOSTATUS_PLANE2 (1 << 3)
48 # define NAND_IOSTATUS_PLANE3 (1 << 4)
49 # define NAND_IOSTATUS_READY (1 << 6)
50 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
52 # define MAX_PAGE 0x800
53 # define MAX_OOB 0x40
55 typedef struct NANDFlashState NANDFlashState;
56 struct NANDFlashState {
57 SysBusDevice busdev;
58 uint8_t manf_id, chip_id;
59 uint8_t buswidth; /* in BYTES */
60 int size, pages;
61 int page_shift, oob_shift, erase_shift, addr_shift;
62 uint8_t *storage;
63 BlockDriverState *bdrv;
64 int mem_oob;
66 uint8_t cle, ale, ce, wp, gnd;
68 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
69 uint8_t *ioaddr;
70 int iolen;
72 uint32_t cmd;
73 uint64_t addr;
74 int addrlen;
75 int status;
76 int offset;
78 void (*blk_write)(NANDFlashState *s);
79 void (*blk_erase)(NANDFlashState *s);
80 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
82 uint32_t ioaddr_vmstate;
85 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
87 /* Like memcpy() but we logical-AND the data into the destination */
88 int i;
89 for (i = 0; i < n; i++) {
90 dest[i] &= src[i];
94 # define NAND_NO_AUTOINCR 0x00000001
95 # define NAND_BUSWIDTH_16 0x00000002
96 # define NAND_NO_PADDING 0x00000004
97 # define NAND_CACHEPRG 0x00000008
98 # define NAND_COPYBACK 0x00000010
99 # define NAND_IS_AND 0x00000020
100 # define NAND_4PAGE_ARRAY 0x00000040
101 # define NAND_NO_READRDY 0x00000100
102 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
104 # define NAND_IO
106 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
107 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
108 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
109 # define OOB_SHIFT (PAGE_SHIFT - 5)
110 # define OOB_SIZE (1 << OOB_SHIFT)
111 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
112 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
114 # define PAGE_SIZE 256
115 # define PAGE_SHIFT 8
116 # define PAGE_SECTORS 1
117 # define ADDR_SHIFT 8
118 # include "nand.c"
119 # define PAGE_SIZE 512
120 # define PAGE_SHIFT 9
121 # define PAGE_SECTORS 1
122 # define ADDR_SHIFT 8
123 # include "nand.c"
124 # define PAGE_SIZE 2048
125 # define PAGE_SHIFT 11
126 # define PAGE_SECTORS 4
127 # define ADDR_SHIFT 16
128 # include "nand.c"
130 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
131 static const struct {
132 int size;
133 int width;
134 int page_shift;
135 int erase_shift;
136 uint32_t options;
137 } nand_flash_ids[0x100] = {
138 [0 ... 0xff] = { 0 },
140 [0x6e] = { 1, 8, 8, 4, 0 },
141 [0x64] = { 2, 8, 8, 4, 0 },
142 [0x6b] = { 4, 8, 9, 4, 0 },
143 [0xe8] = { 1, 8, 8, 4, 0 },
144 [0xec] = { 1, 8, 8, 4, 0 },
145 [0xea] = { 2, 8, 8, 4, 0 },
146 [0xd5] = { 4, 8, 9, 4, 0 },
147 [0xe3] = { 4, 8, 9, 4, 0 },
148 [0xe5] = { 4, 8, 9, 4, 0 },
149 [0xd6] = { 8, 8, 9, 4, 0 },
151 [0x39] = { 8, 8, 9, 4, 0 },
152 [0xe6] = { 8, 8, 9, 4, 0 },
153 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
154 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
156 [0x33] = { 16, 8, 9, 5, 0 },
157 [0x73] = { 16, 8, 9, 5, 0 },
158 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
159 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
161 [0x35] = { 32, 8, 9, 5, 0 },
162 [0x75] = { 32, 8, 9, 5, 0 },
163 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
164 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
166 [0x36] = { 64, 8, 9, 5, 0 },
167 [0x76] = { 64, 8, 9, 5, 0 },
168 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
169 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
171 [0x78] = { 128, 8, 9, 5, 0 },
172 [0x39] = { 128, 8, 9, 5, 0 },
173 [0x79] = { 128, 8, 9, 5, 0 },
174 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
175 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
176 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
177 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
179 [0x71] = { 256, 8, 9, 5, 0 },
182 * These are the new chips with large page size. The pagesize and the
183 * erasesize is determined from the extended id bytes
185 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
186 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
188 /* 512 Megabit */
189 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
190 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
191 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
192 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
194 /* 1 Gigabit */
195 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
196 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
197 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
198 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
200 /* 2 Gigabit */
201 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
202 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
203 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
204 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
206 /* 4 Gigabit */
207 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
208 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
209 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
210 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
212 /* 8 Gigabit */
213 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
214 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
215 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
216 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
218 /* 16 Gigabit */
219 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
220 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
221 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
222 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
225 static void nand_reset(DeviceState *dev)
227 NANDFlashState *s = FROM_SYSBUS(NANDFlashState, SYS_BUS_DEVICE(dev));
228 s->cmd = NAND_CMD_READ0;
229 s->addr = 0;
230 s->addrlen = 0;
231 s->iolen = 0;
232 s->offset = 0;
233 s->status &= NAND_IOSTATUS_UNPROTCT;
234 s->status |= NAND_IOSTATUS_READY;
237 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
239 s->ioaddr[s->iolen++] = value;
240 for (value = s->buswidth; --value;) {
241 s->ioaddr[s->iolen++] = 0;
245 static void nand_command(NANDFlashState *s)
247 unsigned int offset;
248 switch (s->cmd) {
249 case NAND_CMD_READ0:
250 s->iolen = 0;
251 break;
253 case NAND_CMD_READID:
254 s->ioaddr = s->io;
255 s->iolen = 0;
256 nand_pushio_byte(s, s->manf_id);
257 nand_pushio_byte(s, s->chip_id);
258 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
259 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
260 /* Page Size, Block Size, Spare Size; bit 6 indicates
261 * 8 vs 16 bit width NAND.
263 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
264 } else {
265 nand_pushio_byte(s, 0xc0); /* Multi-plane */
267 break;
269 case NAND_CMD_RANDOMREAD2:
270 case NAND_CMD_NOSERIALREAD2:
271 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
272 break;
273 offset = s->addr & ((1 << s->addr_shift) - 1);
274 s->blk_load(s, s->addr, offset);
275 if (s->gnd)
276 s->iolen = (1 << s->page_shift) - offset;
277 else
278 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
279 break;
281 case NAND_CMD_RESET:
282 nand_reset(&s->busdev.qdev);
283 break;
285 case NAND_CMD_PAGEPROGRAM1:
286 s->ioaddr = s->io;
287 s->iolen = 0;
288 break;
290 case NAND_CMD_PAGEPROGRAM2:
291 if (s->wp) {
292 s->blk_write(s);
294 break;
296 case NAND_CMD_BLOCKERASE1:
297 break;
299 case NAND_CMD_BLOCKERASE2:
300 s->addr &= (1ull << s->addrlen * 8) - 1;
301 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
302 s->addr <<= 16;
303 else
304 s->addr <<= 8;
306 if (s->wp) {
307 s->blk_erase(s);
309 break;
311 case NAND_CMD_READSTATUS:
312 s->ioaddr = s->io;
313 s->iolen = 0;
314 nand_pushio_byte(s, s->status);
315 break;
317 default:
318 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
322 static void nand_pre_save(void *opaque)
324 NANDFlashState *s = opaque;
326 s->ioaddr_vmstate = s->ioaddr - s->io;
329 static int nand_post_load(void *opaque, int version_id)
331 NANDFlashState *s = opaque;
333 if (s->ioaddr_vmstate > sizeof(s->io)) {
334 return -EINVAL;
336 s->ioaddr = s->io + s->ioaddr_vmstate;
338 return 0;
341 static const VMStateDescription vmstate_nand = {
342 .name = "nand",
343 .version_id = 1,
344 .minimum_version_id = 1,
345 .minimum_version_id_old = 1,
346 .pre_save = nand_pre_save,
347 .post_load = nand_post_load,
348 .fields = (VMStateField[]) {
349 VMSTATE_UINT8(cle, NANDFlashState),
350 VMSTATE_UINT8(ale, NANDFlashState),
351 VMSTATE_UINT8(ce, NANDFlashState),
352 VMSTATE_UINT8(wp, NANDFlashState),
353 VMSTATE_UINT8(gnd, NANDFlashState),
354 VMSTATE_BUFFER(io, NANDFlashState),
355 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
356 VMSTATE_INT32(iolen, NANDFlashState),
357 VMSTATE_UINT32(cmd, NANDFlashState),
358 VMSTATE_UINT64(addr, NANDFlashState),
359 VMSTATE_INT32(addrlen, NANDFlashState),
360 VMSTATE_INT32(status, NANDFlashState),
361 VMSTATE_INT32(offset, NANDFlashState),
362 /* XXX: do we want to save s->storage too? */
363 VMSTATE_END_OF_LIST()
367 static int nand_device_init(SysBusDevice *dev)
369 int pagesize;
370 NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev);
372 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
373 s->size = nand_flash_ids[s->chip_id].size << 20;
374 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
375 s->page_shift = 11;
376 s->erase_shift = 6;
377 } else {
378 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
379 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
382 switch (1 << s->page_shift) {
383 case 256:
384 nand_init_256(s);
385 break;
386 case 512:
387 nand_init_512(s);
388 break;
389 case 2048:
390 nand_init_2048(s);
391 break;
392 default:
393 error_report("Unsupported NAND block size");
394 return -1;
397 pagesize = 1 << s->oob_shift;
398 s->mem_oob = 1;
399 if (s->bdrv) {
400 if (bdrv_is_read_only(s->bdrv)) {
401 error_report("Can't use a read-only drive");
402 return -1;
404 if (bdrv_getlength(s->bdrv) >=
405 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
406 pagesize = 0;
407 s->mem_oob = 0;
409 } else {
410 pagesize += 1 << s->page_shift;
412 if (pagesize) {
413 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
414 0xff, s->pages * pagesize);
416 /* Give s->ioaddr a sane value in case we save state before it is used. */
417 s->ioaddr = s->io;
419 return 0;
422 static Property nand_properties[] = {
423 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
424 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
425 DEFINE_PROP_DRIVE("drive", NANDFlashState, bdrv),
426 DEFINE_PROP_END_OF_LIST(),
429 static void nand_class_init(ObjectClass *klass, void *data)
431 DeviceClass *dc = DEVICE_CLASS(klass);
432 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
434 k->init = nand_device_init;
435 dc->reset = nand_reset;
436 dc->vmsd = &vmstate_nand;
437 dc->props = nand_properties;
440 static const TypeInfo nand_info = {
441 .name = "nand",
442 .parent = TYPE_SYS_BUS_DEVICE,
443 .instance_size = sizeof(NANDFlashState),
444 .class_init = nand_class_init,
447 static void nand_register_types(void)
449 type_register_static(&nand_info);
453 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
454 * outputs are R/B and eight I/O pins.
456 * CE, WP and R/B are active low.
458 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
459 uint8_t ce, uint8_t wp, uint8_t gnd)
461 NANDFlashState *s = (NANDFlashState *) dev;
462 s->cle = cle;
463 s->ale = ale;
464 s->ce = ce;
465 s->wp = wp;
466 s->gnd = gnd;
467 if (wp)
468 s->status |= NAND_IOSTATUS_UNPROTCT;
469 else
470 s->status &= ~NAND_IOSTATUS_UNPROTCT;
473 void nand_getpins(DeviceState *dev, int *rb)
475 *rb = 1;
478 void nand_setio(DeviceState *dev, uint32_t value)
480 int i;
481 NANDFlashState *s = (NANDFlashState *) dev;
482 if (!s->ce && s->cle) {
483 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
484 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
485 return;
486 if (value == NAND_CMD_RANDOMREAD1) {
487 s->addr &= ~((1 << s->addr_shift) - 1);
488 s->addrlen = 0;
489 return;
492 if (value == NAND_CMD_READ0)
493 s->offset = 0;
494 else if (value == NAND_CMD_READ1) {
495 s->offset = 0x100;
496 value = NAND_CMD_READ0;
498 else if (value == NAND_CMD_READ2) {
499 s->offset = 1 << s->page_shift;
500 value = NAND_CMD_READ0;
503 s->cmd = value;
505 if (s->cmd == NAND_CMD_READSTATUS ||
506 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
507 s->cmd == NAND_CMD_BLOCKERASE1 ||
508 s->cmd == NAND_CMD_BLOCKERASE2 ||
509 s->cmd == NAND_CMD_NOSERIALREAD2 ||
510 s->cmd == NAND_CMD_RANDOMREAD2 ||
511 s->cmd == NAND_CMD_RESET)
512 nand_command(s);
514 if (s->cmd != NAND_CMD_RANDOMREAD2) {
515 s->addrlen = 0;
519 if (s->ale) {
520 unsigned int shift = s->addrlen * 8;
521 unsigned int mask = ~(0xff << shift);
522 unsigned int v = value << shift;
524 s->addr = (s->addr & mask) | v;
525 s->addrlen ++;
527 switch (s->addrlen) {
528 case 1:
529 if (s->cmd == NAND_CMD_READID) {
530 nand_command(s);
532 break;
533 case 2: /* fix cache address as a byte address */
534 s->addr <<= (s->buswidth - 1);
535 break;
536 case 3:
537 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
538 (s->cmd == NAND_CMD_READ0 ||
539 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
540 nand_command(s);
542 break;
543 case 4:
544 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
545 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
546 (s->cmd == NAND_CMD_READ0 ||
547 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
548 nand_command(s);
550 break;
551 case 5:
552 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
553 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
554 (s->cmd == NAND_CMD_READ0 ||
555 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
556 nand_command(s);
558 break;
559 default:
560 break;
564 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
565 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
566 for (i = s->buswidth; i--; value >>= 8) {
567 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
570 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
571 if ((s->addr & ((1 << s->addr_shift) - 1)) <
572 (1 << s->page_shift) + (1 << s->oob_shift)) {
573 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
574 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
575 (uint8_t) (value & 0xff);
581 uint32_t nand_getio(DeviceState *dev)
583 int offset;
584 uint32_t x = 0;
585 NANDFlashState *s = (NANDFlashState *) dev;
587 /* Allow sequential reading */
588 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
589 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
590 s->offset = 0;
592 s->blk_load(s, s->addr, offset);
593 if (s->gnd)
594 s->iolen = (1 << s->page_shift) - offset;
595 else
596 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
599 if (s->ce || s->iolen <= 0)
600 return 0;
602 for (offset = s->buswidth; offset--;) {
603 x |= s->ioaddr[offset] << (offset << 3);
605 /* after receiving READ STATUS command all subsequent reads will
606 * return the status register value until another command is issued
608 if (s->cmd != NAND_CMD_READSTATUS) {
609 s->addr += s->buswidth;
610 s->ioaddr += s->buswidth;
611 s->iolen -= s->buswidth;
613 return x;
616 uint32_t nand_getbuswidth(DeviceState *dev)
618 NANDFlashState *s = (NANDFlashState *) dev;
619 return s->buswidth << 3;
622 DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
624 DeviceState *dev;
626 if (nand_flash_ids[chip_id].size == 0) {
627 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
629 dev = qdev_create(NULL, "nand");
630 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
631 qdev_prop_set_uint8(dev, "chip_id", chip_id);
632 if (bdrv) {
633 qdev_prop_set_drive_nofail(dev, "drive", bdrv);
636 qdev_init_nofail(dev);
637 return dev;
640 type_init(nand_register_types)
642 #else
644 /* Program a single page */
645 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
647 uint64_t off, page, sector, soff;
648 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
649 if (PAGE(s->addr) >= s->pages)
650 return;
652 if (!s->bdrv) {
653 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
654 s->offset, s->io, s->iolen);
655 } else if (s->mem_oob) {
656 sector = SECTOR(s->addr);
657 off = (s->addr & PAGE_MASK) + s->offset;
658 soff = SECTOR_OFFSET(s->addr);
659 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
660 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
661 return;
664 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
665 if (off + s->iolen > PAGE_SIZE) {
666 page = PAGE(s->addr);
667 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
668 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
671 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
672 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
674 } else {
675 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
676 sector = off >> 9;
677 soff = off & 0x1ff;
678 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
679 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
680 return;
683 mem_and(iobuf + soff, s->io, s->iolen);
685 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
686 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
689 s->offset = 0;
692 /* Erase a single block */
693 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
695 uint64_t i, page, addr;
696 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
697 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
699 if (PAGE(addr) >= s->pages)
700 return;
702 if (!s->bdrv) {
703 memset(s->storage + PAGE_START(addr),
704 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
705 } else if (s->mem_oob) {
706 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
707 0xff, OOB_SIZE << s->erase_shift);
708 i = SECTOR(addr);
709 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
710 for (; i < page; i ++)
711 if (bdrv_write(s->bdrv, i, iobuf, 1) < 0) {
712 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
714 } else {
715 addr = PAGE_START(addr);
716 page = addr >> 9;
717 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
718 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
720 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
721 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
722 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
725 memset(iobuf, 0xff, 0x200);
726 i = (addr & ~0x1ff) + 0x200;
727 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
728 i < addr; i += 0x200)
729 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) < 0) {
730 printf("%s: write error in sector %" PRIu64 "\n",
731 __func__, i >> 9);
734 page = i >> 9;
735 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
736 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
738 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
739 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
740 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
745 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
746 uint64_t addr, int offset)
748 if (PAGE(addr) >= s->pages)
749 return;
751 if (s->bdrv) {
752 if (s->mem_oob) {
753 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) < 0) {
754 printf("%s: read error in sector %" PRIu64 "\n",
755 __func__, SECTOR(addr));
757 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
758 s->storage + (PAGE(s->addr) << OOB_SHIFT),
759 OOB_SIZE);
760 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
761 } else {
762 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
763 s->io, (PAGE_SECTORS + 2)) < 0) {
764 printf("%s: read error in sector %" PRIu64 "\n",
765 __func__, PAGE_START(addr) >> 9);
767 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
769 } else {
770 memcpy(s->io, s->storage + PAGE_START(s->addr) +
771 offset, PAGE_SIZE + OOB_SIZE - offset);
772 s->ioaddr = s->io;
776 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
778 s->oob_shift = PAGE_SHIFT - 5;
779 s->pages = s->size >> PAGE_SHIFT;
780 s->addr_shift = ADDR_SHIFT;
782 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
783 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
784 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
787 # undef PAGE_SIZE
788 # undef PAGE_SHIFT
789 # undef PAGE_SECTORS
790 # undef ADDR_SHIFT
791 #endif /* NAND_IO */