cpu: Directly use get_memory_mapping() fallback handlers in place
[qemu/ar7.git] / target / arm / helper.c
bloba66c1f0b9eb48b418eb6c3a7ca6bb1568eeddb2a
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
43 #ifndef CONFIG_USER_ONLY
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46 MMUAccessType access_type, ARMMMUIdx mmu_idx,
47 bool s1_is_el0,
48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49 target_ulong *page_size_ptr,
50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51 __attribute__((nonnull));
52 #endif
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
59 ARMCPU *cpu = env_archcpu(env);
60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
62 /* VFP data registers are always little-endian. */
63 if (reg < nregs) {
64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
66 if (arm_feature(env, ARM_FEATURE_NEON)) {
67 /* Aliases for Q regs. */
68 nregs += 16;
69 if (reg < nregs) {
70 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71 return gdb_get_reg128(buf, q[0], q[1]);
74 switch (reg - nregs) {
75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
79 return 0;
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
84 ARMCPU *cpu = env_archcpu(env);
85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
87 if (reg < nregs) {
88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89 return 8;
91 if (arm_feature(env, ARM_FEATURE_NEON)) {
92 nregs += 16;
93 if (reg < nregs) {
94 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95 q[0] = ldq_le_p(buf);
96 q[1] = ldq_le_p(buf + 8);
97 return 16;
100 switch (reg - nregs) {
101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
105 return 0;
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
110 switch (reg) {
111 case 0 ... 31:
113 /* 128 bit FP register - quads are in LE order */
114 uint64_t *q = aa64_vfp_qreg(env, reg);
115 return gdb_get_reg128(buf, q[1], q[0]);
117 case 32:
118 /* FPSR */
119 return gdb_get_reg32(buf, vfp_get_fpsr(env));
120 case 33:
121 /* FPCR */
122 return gdb_get_reg32(buf,vfp_get_fpcr(env));
123 default:
124 return 0;
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
154 assert(ri->fieldoffset);
155 if (cpreg_field_is_64bit(ri)) {
156 return CPREG_FIELD64(env, ri);
157 } else {
158 return CPREG_FIELD32(env, ri);
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
175 return (char *)env + ri->fieldoffset;
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri->type & ARM_CP_CONST) {
182 return ri->resetvalue;
183 } else if (ri->raw_readfn) {
184 return ri->raw_readfn(env, ri);
185 } else if (ri->readfn) {
186 return ri->readfn(env, ri);
187 } else {
188 return raw_read(env, ri);
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193 uint64_t v)
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
200 if (ri->type & ARM_CP_CONST) {
201 return;
202 } else if (ri->raw_writefn) {
203 ri->raw_writefn(env, ri, v);
204 } else if (ri->writefn) {
205 ri->writefn(env, ri, v);
206 } else {
207 raw_write(env, ri, v);
212 * arm_get/set_gdb_*: get/set a gdb register
213 * @env: the CPU state
214 * @buf: a buffer to copy to/from
215 * @reg: register number (offset from start of group)
217 * We return the number of bytes copied
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
222 ARMCPU *cpu = env_archcpu(env);
223 const ARMCPRegInfo *ri;
224 uint32_t key;
226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228 if (ri) {
229 if (cpreg_field_is_64bit(ri)) {
230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231 } else {
232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
235 return 0;
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
240 return 0;
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
246 ARMCPU *cpu = env_archcpu(env);
248 switch (reg) {
249 /* The first 32 registers are the zregs */
250 case 0 ... 31:
252 int vq, len = 0;
253 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254 len += gdb_get_reg128(buf,
255 env->vfp.zregs[reg].d[vq * 2 + 1],
256 env->vfp.zregs[reg].d[vq * 2]);
258 return len;
260 case 32:
261 return gdb_get_reg32(buf, vfp_get_fpsr(env));
262 case 33:
263 return gdb_get_reg32(buf, vfp_get_fpcr(env));
264 /* then 16 predicates and the ffr */
265 case 34 ... 50:
267 int preg = reg - 34;
268 int vq, len = 0;
269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
272 return len;
274 case 51:
277 * We report in Vector Granules (VG) which is 64bit in a Z reg
278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281 return gdb_get_reg64(buf, vq * 2);
283 default:
284 /* gdbstub asked for something out our range */
285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286 break;
289 return 0;
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
294 ARMCPU *cpu = env_archcpu(env);
296 /* The first 32 registers are the zregs */
297 switch (reg) {
298 /* The first 32 registers are the zregs */
299 case 0 ... 31:
301 int vq, len = 0;
302 uint64_t *p = (uint64_t *) buf;
303 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305 env->vfp.zregs[reg].d[vq * 2] = *p++;
306 len += 16;
308 return len;
310 case 32:
311 vfp_set_fpsr(env, *(uint32_t *)buf);
312 return 4;
313 case 33:
314 vfp_set_fpcr(env, *(uint32_t *)buf);
315 return 4;
316 case 34 ... 50:
318 int preg = reg - 34;
319 int vq, len = 0;
320 uint64_t *p = (uint64_t *) buf;
321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322 env->vfp.pregs[preg].p[vq / 4] = *p++;
323 len += 8;
325 return len;
327 case 51:
328 /* cannot set vg via gdbstub */
329 return 0;
330 default:
331 /* gdbstub asked for something out our range */
332 break;
335 return 0;
337 #endif /* TARGET_AARCH64 */
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
341 /* Return true if the regdef would cause an assertion if you called
342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343 * program bug for it not to have the NO_RAW flag).
344 * NB that returning false here doesn't necessarily mean that calling
345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346 * read/write access functions which are safe for raw use" from "has
347 * read/write access functions which have side effects but has forgotten
348 * to provide raw access functions".
349 * The tests here line up with the conditions in read/write_raw_cp_reg()
350 * and assertions in raw_read()/raw_write().
352 if ((ri->type & ARM_CP_CONST) ||
353 ri->fieldoffset ||
354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355 return false;
357 return true;
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
362 /* Write the coprocessor state from cpu->env to the (index,value) list. */
363 int i;
364 bool ok = true;
366 for (i = 0; i < cpu->cpreg_array_len; i++) {
367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368 const ARMCPRegInfo *ri;
369 uint64_t newval;
371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372 if (!ri) {
373 ok = false;
374 continue;
376 if (ri->type & ARM_CP_NO_RAW) {
377 continue;
380 newval = read_raw_cp_reg(&cpu->env, ri);
381 if (kvm_sync) {
383 * Only sync if the previous list->cpustate sync succeeded.
384 * Rather than tracking the success/failure state for every
385 * item in the list, we just recheck "does the raw write we must
386 * have made in write_list_to_cpustate() read back OK" here.
388 uint64_t oldval = cpu->cpreg_values[i];
390 if (oldval == newval) {
391 continue;
394 write_raw_cp_reg(&cpu->env, ri, oldval);
395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396 continue;
399 write_raw_cp_reg(&cpu->env, ri, newval);
401 cpu->cpreg_values[i] = newval;
403 return ok;
406 bool write_list_to_cpustate(ARMCPU *cpu)
408 int i;
409 bool ok = true;
411 for (i = 0; i < cpu->cpreg_array_len; i++) {
412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413 uint64_t v = cpu->cpreg_values[i];
414 const ARMCPRegInfo *ri;
416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417 if (!ri) {
418 ok = false;
419 continue;
421 if (ri->type & ARM_CP_NO_RAW) {
422 continue;
424 /* Write value and confirm it reads back as written
425 * (to catch read-only registers and partially read-only
426 * registers where the incoming migration value doesn't match)
428 write_raw_cp_reg(&cpu->env, ri, v);
429 if (read_raw_cp_reg(&cpu->env, ri) != v) {
430 ok = false;
433 return ok;
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
438 ARMCPU *cpu = opaque;
439 uint64_t regidx;
440 const ARMCPRegInfo *ri;
442 regidx = *(uint32_t *)key;
443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447 /* The value array need not be initialized at this point */
448 cpu->cpreg_array_len++;
452 static void count_cpreg(gpointer key, gpointer opaque)
454 ARMCPU *cpu = opaque;
455 uint64_t regidx;
456 const ARMCPRegInfo *ri;
458 regidx = *(uint32_t *)key;
459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462 cpu->cpreg_array_len++;
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
471 if (aidx > bidx) {
472 return 1;
474 if (aidx < bidx) {
475 return -1;
477 return 0;
480 void init_cpreg_list(ARMCPU *cpu)
482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483 * Note that we require cpreg_tuples[] to be sorted by key ID.
485 GList *keys;
486 int arraylen;
488 keys = g_hash_table_get_keys(cpu->cp_regs);
489 keys = g_list_sort(keys, cpreg_key_compare);
491 cpu->cpreg_array_len = 0;
493 g_list_foreach(keys, count_cpreg, cpu);
495 arraylen = cpu->cpreg_array_len;
496 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497 cpu->cpreg_values = g_new(uint64_t, arraylen);
498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501 cpu->cpreg_array_len = 0;
503 g_list_foreach(keys, add_cpreg_to_list, cpu);
505 assert(cpu->cpreg_array_len == arraylen);
507 g_list_free(keys);
511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514 const ARMCPRegInfo *ri,
515 bool isread)
517 if (!is_a64(env) && arm_current_el(env) == 3 &&
518 arm_is_secure_below_el3(env)) {
519 return CP_ACCESS_TRAP_UNCATEGORIZED;
521 return CP_ACCESS_OK;
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527 * We assume that the .access field is set to PL1_RW.
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530 const ARMCPRegInfo *ri,
531 bool isread)
533 if (arm_current_el(env) == 3) {
534 return CP_ACCESS_OK;
536 if (arm_is_secure_below_el3(env)) {
537 if (env->cp15.scr_el3 & SCR_EEL2) {
538 return CP_ACCESS_TRAP_EL2;
540 return CP_ACCESS_TRAP_EL3;
542 /* This will be EL1 NS and EL2 NS, which just UNDEF */
543 return CP_ACCESS_TRAP_UNCATEGORIZED;
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
551 /* Check for traps to "powerdown debug" registers, which are controlled
552 * by MDCR.TDOSA
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555 bool isread)
557 int el = arm_current_el(env);
558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560 (arm_hcr_el2_eff(env) & HCR_TGE);
562 if (el < 2 && mdcr_el2_tdosa) {
563 return CP_ACCESS_TRAP_EL2;
565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566 return CP_ACCESS_TRAP_EL3;
568 return CP_ACCESS_OK;
571 /* Check for traps to "debug ROM" registers, which are controlled
572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575 bool isread)
577 int el = arm_current_el(env);
578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580 (arm_hcr_el2_eff(env) & HCR_TGE);
582 if (el < 2 && mdcr_el2_tdra) {
583 return CP_ACCESS_TRAP_EL2;
585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586 return CP_ACCESS_TRAP_EL3;
588 return CP_ACCESS_OK;
591 /* Check for traps to general debug registers, which are controlled
592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595 bool isread)
597 int el = arm_current_el(env);
598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600 (arm_hcr_el2_eff(env) & HCR_TGE);
602 if (el < 2 && mdcr_el2_tda) {
603 return CP_ACCESS_TRAP_EL2;
605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606 return CP_ACCESS_TRAP_EL3;
608 return CP_ACCESS_OK;
611 /* Check for traps to performance monitor registers, which are controlled
612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615 bool isread)
617 int el = arm_current_el(env);
618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621 return CP_ACCESS_TRAP_EL2;
623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624 return CP_ACCESS_TRAP_EL3;
626 return CP_ACCESS_OK;
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631 bool isread)
633 if (arm_current_el(env) == 1) {
634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635 if (arm_hcr_el2_eff(env) & trap) {
636 return CP_ACCESS_TRAP_EL2;
639 return CP_ACCESS_OK;
642 /* Check for traps from EL1 due to HCR_EL2.TSW. */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644 bool isread)
646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647 return CP_ACCESS_TRAP_EL2;
649 return CP_ACCESS_OK;
652 /* Check for traps from EL1 due to HCR_EL2.TACR. */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654 bool isread)
656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657 return CP_ACCESS_TRAP_EL2;
659 return CP_ACCESS_OK;
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664 bool isread)
666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667 return CP_ACCESS_TRAP_EL2;
669 return CP_ACCESS_OK;
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
674 ARMCPU *cpu = env_archcpu(env);
676 raw_write(env, ri, value);
677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
682 ARMCPU *cpu = env_archcpu(env);
684 if (raw_read(env, ri) != value) {
685 /* Unlike real hardware the qemu TLB uses virtual addresses,
686 * not modified virtual addresses, so this causes a TLB flush.
688 tlb_flush(CPU(cpu));
689 raw_write(env, ri, value);
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 ARMCPU *cpu = env_archcpu(env);
698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699 && !extended_addresses_enabled(env)) {
700 /* For VMSA (when not using the LPAE long descriptor page table
701 * format) this register includes the ASID, so do a TLB flush.
702 * For PMSA it is purely a process ID and no action is needed.
704 tlb_flush(CPU(cpu));
706 raw_write(env, ri, value);
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711 uint64_t value)
713 CPUState *cs = env_cpu(env);
715 tlb_flush_all_cpus_synced(cs);
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719 uint64_t value)
721 CPUState *cs = env_cpu(env);
723 tlb_flush_all_cpus_synced(cs);
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727 uint64_t value)
729 CPUState *cs = env_cpu(env);
731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735 uint64_t value)
737 CPUState *cs = env_cpu(env);
739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
743 * Non-IS variants of TLB operations are upgraded to
744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745 * force broadcast of these operations.
747 static bool tlb_force_broadcast(CPUARMState *env)
749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753 uint64_t value)
755 /* Invalidate all (TLBIALL) */
756 CPUState *cs = env_cpu(env);
758 if (tlb_force_broadcast(env)) {
759 tlb_flush_all_cpus_synced(cs);
760 } else {
761 tlb_flush(cs);
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766 uint64_t value)
768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769 CPUState *cs = env_cpu(env);
771 value &= TARGET_PAGE_MASK;
772 if (tlb_force_broadcast(env)) {
773 tlb_flush_page_all_cpus_synced(cs, value);
774 } else {
775 tlb_flush_page(cs, value);
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780 uint64_t value)
782 /* Invalidate by ASID (TLBIASID) */
783 CPUState *cs = env_cpu(env);
785 if (tlb_force_broadcast(env)) {
786 tlb_flush_all_cpus_synced(cs);
787 } else {
788 tlb_flush(cs);
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793 uint64_t value)
795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796 CPUState *cs = env_cpu(env);
798 value &= TARGET_PAGE_MASK;
799 if (tlb_force_broadcast(env)) {
800 tlb_flush_page_all_cpus_synced(cs, value);
801 } else {
802 tlb_flush_page(cs, value);
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807 uint64_t value)
809 CPUState *cs = env_cpu(env);
811 tlb_flush_by_mmuidx(cs,
812 ARMMMUIdxBit_E10_1 |
813 ARMMMUIdxBit_E10_1_PAN |
814 ARMMMUIdxBit_E10_0);
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t value)
820 CPUState *cs = env_cpu(env);
822 tlb_flush_by_mmuidx_all_cpus_synced(cs,
823 ARMMMUIdxBit_E10_1 |
824 ARMMMUIdxBit_E10_1_PAN |
825 ARMMMUIdxBit_E10_0);
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 uint64_t value)
832 CPUState *cs = env_cpu(env);
834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838 uint64_t value)
840 CPUState *cs = env_cpu(env);
842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 uint64_t value)
848 CPUState *cs = env_cpu(env);
849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855 uint64_t value)
857 CPUState *cs = env_cpu(env);
858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861 ARMMMUIdxBit_E2);
864 static const ARMCPRegInfo cp_reginfo[] = {
865 /* Define the secure and non-secure FCSE identifier CP registers
866 * separately because there is no secure bank in V8 (no _EL3). This allows
867 * the secure register to be properly reset and migrated. There is also no
868 * v8 EL1 version of the register so the non-secure instance stands alone.
870 { .name = "FCSEIDR",
871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875 { .name = "FCSEIDR_S",
876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880 /* Define the secure and non-secure context identifier CP registers
881 * separately because there is no secure bank in V8 (no _EL3). This allows
882 * the secure register to be properly reset and migrated. In the
883 * non-secure case, the 32-bit register will have reset and migration
884 * disabled during registration as it is handled by the 64-bit instance.
886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888 .access = PL1_RW, .accessfn = access_tvm_trvm,
889 .secure = ARM_CP_SECSTATE_NS,
890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894 .access = PL1_RW, .accessfn = access_tvm_trvm,
895 .secure = ARM_CP_SECSTATE_S,
896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898 REGINFO_SENTINEL
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902 /* NB: Some of these registers exist in v8 but with more precise
903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
905 /* MMU Domain access control / MPU write buffer control */
906 { .name = "DACR",
907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909 .writefn = dacr_write, .raw_writefn = raw_write,
910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913 * For v6 and v5, these mappings are overly broad.
915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923 /* Cache maintenance ops; some of this space may be overridden later. */
924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927 REGINFO_SENTINEL
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931 /* Not all pre-v6 cores implemented this WFI, so this is slightly
932 * over-broad.
934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935 .access = PL1_W, .type = ARM_CP_WFI },
936 REGINFO_SENTINEL
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941 * is UNPREDICTABLE; we choose to NOP as most implementations do).
943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944 .access = PL1_W, .type = ARM_CP_WFI },
945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947 * OMAPCP will override this space.
949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951 .resetvalue = 0 },
952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954 .resetvalue = 0 },
955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958 .resetvalue = 0 },
959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960 * implementing it as RAZ means the "debug architecture version" bits
961 * will read as a reserved value, which should cause Linux to not try
962 * to use the debug hardware.
964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966 /* MMU TLB control. Note that the wildcarding means we cover not just
967 * the unified TLB ops but also the dside/iside/inner-shareable variants.
969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971 .type = ARM_CP_NO_RAW },
972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974 .type = ARM_CP_NO_RAW },
975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977 .type = ARM_CP_NO_RAW },
978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980 .type = ARM_CP_NO_RAW },
981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985 REGINFO_SENTINEL
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989 uint64_t value)
991 uint32_t mask = 0;
993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994 if (!arm_feature(env, ARM_FEATURE_V8)) {
995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000 /* VFP coprocessor: cp10 & cp11 [23:20] */
1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1003 if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004 /* ASEDIS [31] bit is RAO/WI */
1005 value |= (1 << 31);
1008 /* VFPv3 and upwards with NEON implement 32 double precision
1009 * registers (D0-D31).
1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013 value |= (1 << 30);
1016 value &= mask;
1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025 value &= ~(0xf << 20);
1026 value |= env->cp15.cpacr_el1 & (0xf << 20);
1029 env->cp15.cpacr_el1 = value;
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1038 uint64_t value = env->cp15.cpacr_el1;
1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042 value &= ~(0xf << 20);
1044 return value;
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1050 /* Call cpacr_write() so that we reset with the correct RAO bits set
1051 * for our CPU features.
1053 cpacr_write(env, ri, 0);
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057 bool isread)
1059 if (arm_feature(env, ARM_FEATURE_V8)) {
1060 /* Check if CPACR accesses are to be trapped to EL2 */
1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063 return CP_ACCESS_TRAP_EL2;
1064 /* Check if CPACR accesses are to be trapped to EL3 */
1065 } else if (arm_current_el(env) < 3 &&
1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067 return CP_ACCESS_TRAP_EL3;
1071 return CP_ACCESS_OK;
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075 bool isread)
1077 /* Check if CPTR accesses are set to trap to EL3 */
1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079 return CP_ACCESS_TRAP_EL3;
1082 return CP_ACCESS_OK;
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086 /* prefetch by MVA in v6, NOP in v7 */
1087 { .name = "MVA_prefetch",
1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089 .access = PL1_W, .type = ARM_CP_NOP },
1090 /* We need to break the TB after ISB to execute self-modifying code
1091 * correctly and also to take any pending interrupts immediately.
1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097 .access = PL0_W, .type = ARM_CP_NOP },
1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099 .access = PL0_W, .type = ARM_CP_NOP },
1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101 .access = PL1_RW, .accessfn = access_tvm_trvm,
1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103 offsetof(CPUARMState, cp15.ifar_ns) },
1104 .resetvalue = 0, },
1105 /* Watchpoint Fault Address Register : should actually only be present
1106 * for 1136, 1176, 11MPCore.
1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114 REGINFO_SENTINEL
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK 0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC 0x40
1121 #define PMCRDP 0x20
1122 #define PMCRX 0x10
1123 #define PMCRD 0x8
1124 #define PMCRC 0x4
1125 #define PMCRP 0x2
1126 #define PMCRE 0x1
1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129 * which can be written as 1 to trigger behaviour but which stay RAZ).
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1133 #define PMXEVTYPER_P 0x80000000
1134 #define PMXEVTYPER_U 0x40000000
1135 #define PMXEVTYPER_NSK 0x20000000
1136 #define PMXEVTYPER_NSU 0x10000000
1137 #define PMXEVTYPER_NSH 0x08000000
1138 #define PMXEVTYPER_M 0x04000000
1139 #define PMXEVTYPER_MT 0x02000000
1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143 PMXEVTYPER_M | PMXEVTYPER_MT | \
1144 PMXEVTYPER_EVTCOUNT)
1146 #define PMCCFILTR 0xf8000000
1147 #define PMCCFILTR_M PMXEVTYPER_M
1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1161 typedef struct pm_event {
1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164 bool (*supported)(CPUARMState *);
1166 * Retrieve the current count of the underlying event. The programmed
1167 * counters hold a difference from the return value from this function
1169 uint64_t (*get_count)(CPUARMState *);
1171 * Return how many nanoseconds it will take (at a minimum) for count events
1172 * to occur. A negative value indicates the counter will never overflow, or
1173 * that the counter has otherwise arranged for the overflow bit to be set
1174 * and the PMU interrupt to be raised on overflow.
1176 int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1179 static bool event_always_supported(CPUARMState *env)
1181 return true;
1184 static uint64_t swinc_get_count(CPUARMState *env)
1187 * SW_INCR events are written directly to the pmevcntr's by writes to
1188 * PMSWINC, so there is no underlying count maintained by the PMU itself
1190 return 0;
1193 static int64_t swinc_ns_per(uint64_t ignored)
1195 return -1;
1199 * Return the underlying cycle count for the PMU cycle counters. If we're in
1200 * usermode, simply return 0.
1202 static uint64_t cycles_get_count(CPUARMState *env)
1204 #ifndef CONFIG_USER_ONLY
1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208 return cpu_get_host_ticks();
1209 #endif
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1218 static bool instructions_supported(CPUARMState *env)
1220 return icount_enabled() == 1; /* Precise instruction counting */
1223 static uint64_t instructions_get_count(CPUARMState *env)
1225 return (uint64_t)icount_get_raw();
1228 static int64_t instructions_ns_per(uint64_t icount)
1230 return icount_to_ns((int64_t)icount);
1232 #endif
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1236 /* For events which are supported in any v8.1 PMU */
1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1242 /* For events which are supported in any v8.1 PMU */
1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1248 /* For events which on QEMU never fire, so their count is always zero */
1249 return 0;
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1254 /* An event which never fires can never overflow */
1255 return -1;
1258 static const pm_event pm_events[] = {
1259 { .number = 0x000, /* SW_INCR */
1260 .supported = event_always_supported,
1261 .get_count = swinc_get_count,
1262 .ns_per_count = swinc_ns_per,
1264 #ifndef CONFIG_USER_ONLY
1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266 .supported = instructions_supported,
1267 .get_count = instructions_get_count,
1268 .ns_per_count = instructions_ns_per,
1270 { .number = 0x011, /* CPU_CYCLES, Cycle */
1271 .supported = event_always_supported,
1272 .get_count = cycles_get_count,
1273 .ns_per_count = cycles_ns_per,
1275 #endif
1276 { .number = 0x023, /* STALL_FRONTEND */
1277 .supported = pmu_8_1_events_supported,
1278 .get_count = zero_event_get_count,
1279 .ns_per_count = zero_event_ns_per,
1281 { .number = 0x024, /* STALL_BACKEND */
1282 .supported = pmu_8_1_events_supported,
1283 .get_count = zero_event_get_count,
1284 .ns_per_count = zero_event_ns_per,
1286 { .number = 0x03c, /* STALL */
1287 .supported = pmu_8_4_events_supported,
1288 .get_count = zero_event_get_count,
1289 .ns_per_count = zero_event_ns_per,
1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295 * events (i.e. the statistical profiling extension), this implementation
1296 * should first be updated to something sparse instead of the current
1297 * supported_event_map[] array.
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305 * of ARM event numbers to indices in our pm_events array.
1307 * Note: Events in the 0x40XX range are not currently supported.
1309 void pmu_init(ARMCPU *cpu)
1311 unsigned int i;
1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315 * events to them
1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318 supported_event_map[i] = UNSUPPORTED_EVENT;
1320 cpu->pmceid0 = 0;
1321 cpu->pmceid1 = 0;
1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324 const pm_event *cnt = &pm_events[i];
1325 assert(cnt->number <= MAX_EVENT_ID);
1326 /* We do not currently support events in the 0x40xx range */
1327 assert(cnt->number <= 0x3f);
1329 if (cnt->supported(&cpu->env)) {
1330 supported_event_map[cnt->number] = i;
1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332 if (cnt->number & 0x20) {
1333 cpu->pmceid1 |= event_mask;
1334 } else {
1335 cpu->pmceid0 |= event_mask;
1342 * Check at runtime whether a PMU event is supported for the current machine
1344 static bool event_supported(uint16_t number)
1346 if (number > MAX_EVENT_ID) {
1347 return false;
1349 return supported_event_map[number] != UNSUPPORTED_EVENT;
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353 bool isread)
1355 /* Performance monitor registers user accessibility is controlled
1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357 * trapping to EL2 or EL3 for other accesses.
1359 int el = arm_current_el(env);
1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363 return CP_ACCESS_TRAP;
1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366 return CP_ACCESS_TRAP_EL2;
1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369 return CP_ACCESS_TRAP_EL3;
1372 return CP_ACCESS_OK;
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376 const ARMCPRegInfo *ri,
1377 bool isread)
1379 /* ER: event counter read trap control */
1380 if (arm_feature(env, ARM_FEATURE_V8)
1381 && arm_current_el(env) == 0
1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383 && isread) {
1384 return CP_ACCESS_OK;
1387 return pmreg_access(env, ri, isread);
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391 const ARMCPRegInfo *ri,
1392 bool isread)
1394 /* SW: software increment write trap control */
1395 if (arm_feature(env, ARM_FEATURE_V8)
1396 && arm_current_el(env) == 0
1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398 && !isread) {
1399 return CP_ACCESS_OK;
1402 return pmreg_access(env, ri, isread);
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406 const ARMCPRegInfo *ri,
1407 bool isread)
1409 /* ER: event counter read trap control */
1410 if (arm_feature(env, ARM_FEATURE_V8)
1411 && arm_current_el(env) == 0
1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413 return CP_ACCESS_OK;
1416 return pmreg_access(env, ri, isread);
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420 const ARMCPRegInfo *ri,
1421 bool isread)
1423 /* CR: cycle counter read trap control */
1424 if (arm_feature(env, ARM_FEATURE_V8)
1425 && arm_current_el(env) == 0
1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427 && isread) {
1428 return CP_ACCESS_OK;
1431 return pmreg_access(env, ri, isread);
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435 * the current EL, security state, and register configuration.
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1439 uint64_t filter;
1440 bool e, p, u, nsk, nsu, nsh, m;
1441 bool enabled, prohibited, filtered;
1442 bool secure = arm_is_secure(env);
1443 int el = arm_current_el(env);
1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1447 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448 return false;
1451 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452 (counter < hpmn || counter == 31)) {
1453 e = env->cp15.c9_pmcr & PMCRE;
1454 } else {
1455 e = mdcr_el2 & MDCR_HPME;
1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1459 if (!secure) {
1460 if (el == 2 && (counter < hpmn || counter == 31)) {
1461 prohibited = mdcr_el2 & MDCR_HPMD;
1462 } else {
1463 prohibited = false;
1465 } else {
1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467 !(env->cp15.mdcr_el3 & MDCR_SPME);
1470 if (prohibited && counter == 31) {
1471 prohibited = env->cp15.c9_pmcr & PMCRDP;
1474 if (counter == 31) {
1475 filter = env->cp15.pmccfiltr_el0;
1476 } else {
1477 filter = env->cp15.c14_pmevtyper[counter];
1480 p = filter & PMXEVTYPER_P;
1481 u = filter & PMXEVTYPER_U;
1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485 m = arm_el_is_aa64(env, 1) &&
1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1488 if (el == 0) {
1489 filtered = secure ? u : u != nsu;
1490 } else if (el == 1) {
1491 filtered = secure ? p : p != nsk;
1492 } else if (el == 2) {
1493 filtered = !nsh;
1494 } else { /* EL3 */
1495 filtered = m != p;
1498 if (counter != 31) {
1500 * If not checking PMCCNTR, ensure the counter is setup to an event we
1501 * support
1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504 if (!event_supported(event)) {
1505 return false;
1509 return enabled && !prohibited && !filtered;
1512 static void pmu_update_irq(CPUARMState *env)
1514 ARMCPU *cpu = env_archcpu(env);
1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1520 * Ensure c15_ccnt is the guest-visible count so that operations such as
1521 * enabling/disabling the counter or filtering, modifying the count itself,
1522 * etc. can be done logically. This is essentially a no-op if the counter is
1523 * not enabled at the time of the call.
1525 static void pmccntr_op_start(CPUARMState *env)
1527 uint64_t cycles = cycles_get_count(env);
1529 if (pmu_counter_enabled(env, 31)) {
1530 uint64_t eff_cycles = cycles;
1531 if (env->cp15.c9_pmcr & PMCRD) {
1532 /* Increment once every 64 processor clock cycles */
1533 eff_cycles /= 64;
1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539 1ull << 63 : 1ull << 31;
1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541 env->cp15.c9_pmovsr |= (1 << 31);
1542 pmu_update_irq(env);
1545 env->cp15.c15_ccnt = new_pmccntr;
1547 env->cp15.c15_ccnt_delta = cycles;
1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553 * pmccntr_op_start.
1555 static void pmccntr_op_finish(CPUARMState *env)
1557 if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559 /* Calculate when the counter will next overflow */
1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562 remaining_cycles = (uint32_t)remaining_cycles;
1564 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1566 if (overflow_in > 0) {
1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568 overflow_in;
1569 ARMCPU *cpu = env_archcpu(env);
1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1572 #endif
1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575 if (env->cp15.c9_pmcr & PMCRD) {
1576 /* Increment once every 64 processor clock cycles */
1577 prev_cycles /= 64;
1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587 uint64_t count = 0;
1588 if (event_supported(event)) {
1589 uint16_t event_idx = supported_event_map[event];
1590 count = pm_events[event_idx].get_count(env);
1593 if (pmu_counter_enabled(env, counter)) {
1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597 env->cp15.c9_pmovsr |= (1 << counter);
1598 pmu_update_irq(env);
1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1602 env->cp15.c14_pmevcntr_delta[counter] = count;
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1607 if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610 uint16_t event_idx = supported_event_map[event];
1611 uint64_t delta = UINT32_MAX -
1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1615 if (overflow_in > 0) {
1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617 overflow_in;
1618 ARMCPU *cpu = env_archcpu(env);
1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1621 #endif
1623 env->cp15.c14_pmevcntr_delta[counter] -=
1624 env->cp15.c14_pmevcntr[counter];
1628 void pmu_op_start(CPUARMState *env)
1630 unsigned int i;
1631 pmccntr_op_start(env);
1632 for (i = 0; i < pmu_num_counters(env); i++) {
1633 pmevcntr_op_start(env, i);
1637 void pmu_op_finish(CPUARMState *env)
1639 unsigned int i;
1640 pmccntr_op_finish(env);
1641 for (i = 0; i < pmu_num_counters(env); i++) {
1642 pmevcntr_op_finish(env, i);
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1648 pmu_op_start(&cpu->env);
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1653 pmu_op_finish(&cpu->env);
1656 void arm_pmu_timer_cb(void *opaque)
1658 ARMCPU *cpu = opaque;
1661 * Update all the counter values based on the current underlying counts,
1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664 * counter may expire.
1666 pmu_op_start(&cpu->env);
1667 pmu_op_finish(&cpu->env);
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671 uint64_t value)
1673 pmu_op_start(env);
1675 if (value & PMCRC) {
1676 /* The counter has been reset */
1677 env->cp15.c15_ccnt = 0;
1680 if (value & PMCRP) {
1681 unsigned int i;
1682 for (i = 0; i < pmu_num_counters(env); i++) {
1683 env->cp15.c14_pmevcntr[i] = 0;
1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1690 pmu_op_finish(env);
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694 uint64_t value)
1696 unsigned int i;
1697 for (i = 0; i < pmu_num_counters(env); i++) {
1698 /* Increment a counter's count iff: */
1699 if ((value & (1 << i)) && /* counter's bit is set */
1700 /* counter is enabled and not filtered */
1701 pmu_counter_enabled(env, i) &&
1702 /* counter is SW_INCR */
1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704 pmevcntr_op_start(env, i);
1707 * Detect if this write causes an overflow since we can't predict
1708 * PMSWINC overflows like we can for other events
1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713 env->cp15.c9_pmovsr |= (1 << i);
1714 pmu_update_irq(env);
1717 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1719 pmevcntr_op_finish(env, i);
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1726 uint64_t ret;
1727 pmccntr_op_start(env);
1728 ret = env->cp15.c15_ccnt;
1729 pmccntr_op_finish(env);
1730 return ret;
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739 * accessed.
1741 env->cp15.c9_pmselr = value & 0x1f;
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1747 pmccntr_op_start(env);
1748 env->cp15.c15_ccnt = value;
1749 pmccntr_op_finish(env);
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753 uint64_t value)
1755 uint64_t cur_val = pmccntr_read(env, NULL);
1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1763 pmccntr_op_start(env);
1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765 pmccntr_op_finish(env);
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint64_t value)
1771 pmccntr_op_start(env);
1772 /* M is not accessible from AArch32 */
1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774 (value & PMCCFILTR);
1775 pmccntr_op_finish(env);
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1780 /* M is not visible in AArch32 */
1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785 uint64_t value)
1787 value &= pmu_counter_mask(env);
1788 env->cp15.c9_pmcnten |= value;
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 value &= pmu_counter_mask(env);
1795 env->cp15.c9_pmcnten &= ~value;
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1801 value &= pmu_counter_mask(env);
1802 env->cp15.c9_pmovsr &= ~value;
1803 pmu_update_irq(env);
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1809 value &= pmu_counter_mask(env);
1810 env->cp15.c9_pmovsr |= value;
1811 pmu_update_irq(env);
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value, const uint8_t counter)
1817 if (counter == 31) {
1818 pmccfiltr_write(env, ri, value);
1819 } else if (counter < pmu_num_counters(env)) {
1820 pmevcntr_op_start(env, counter);
1823 * If this counter's event type is changing, store the current
1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825 * pmevcntr_op_finish has the correct baseline when it converts back to
1826 * a delta.
1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829 PMXEVTYPER_EVTCOUNT;
1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831 if (old_event != new_event) {
1832 uint64_t count = 0;
1833 if (event_supported(new_event)) {
1834 uint16_t event_idx = supported_event_map[new_event];
1835 count = pm_events[event_idx].get_count(env);
1837 env->cp15.c14_pmevcntr_delta[counter] = count;
1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841 pmevcntr_op_finish(env, counter);
1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844 * PMSELR value is equal to or greater than the number of implemented
1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850 const uint8_t counter)
1852 if (counter == 31) {
1853 return env->cp15.pmccfiltr_el0;
1854 } else if (counter < pmu_num_counters(env)) {
1855 return env->cp15.c14_pmevtyper[counter];
1856 } else {
1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1861 return 0;
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866 uint64_t value)
1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869 pmevtyper_write(env, ri, value, counter);
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873 uint64_t value)
1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876 env->cp15.c14_pmevtyper[counter] = value;
1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880 * pmu_op_finish calls when loading saved state for a migration. Because
1881 * we're potentially updating the type of event here, the value written to
1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883 * different counter type. Therefore, we need to set this value to the
1884 * current count for the counter type we're writing so that pmu_op_finish
1885 * has the correct count for its calculation.
1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888 if (event_supported(event)) {
1889 uint16_t event_idx = supported_event_map[event];
1890 env->cp15.c14_pmevcntr_delta[counter] =
1891 pm_events[event_idx].get_count(env);
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898 return pmevtyper_read(env, ri, counter);
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902 uint64_t value)
1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913 uint64_t value, uint8_t counter)
1915 if (counter < pmu_num_counters(env)) {
1916 pmevcntr_op_start(env, counter);
1917 env->cp15.c14_pmevcntr[counter] = value;
1918 pmevcntr_op_finish(env, counter);
1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922 * are CONSTRAINED UNPREDICTABLE.
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927 uint8_t counter)
1929 if (counter < pmu_num_counters(env)) {
1930 uint64_t ret;
1931 pmevcntr_op_start(env, counter);
1932 ret = env->cp15.c14_pmevcntr[counter];
1933 pmevcntr_op_finish(env, counter);
1934 return ret;
1935 } else {
1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937 * are CONSTRAINED UNPREDICTABLE. */
1938 return 0;
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943 uint64_t value)
1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946 pmevcntr_write(env, ri, value, counter);
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952 return pmevcntr_read(env, ri, counter);
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956 uint64_t value)
1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959 assert(counter < pmu_num_counters(env));
1960 env->cp15.c14_pmevcntr[counter] = value;
1961 pmevcntr_write(env, ri, value, counter);
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967 assert(counter < pmu_num_counters(env));
1968 return env->cp15.c14_pmevcntr[counter];
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972 uint64_t value)
1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983 uint64_t value)
1985 if (arm_feature(env, ARM_FEATURE_V8)) {
1986 env->cp15.c9_pmuserenr = value & 0xf;
1987 } else {
1988 env->cp15.c9_pmuserenr = value & 1;
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993 uint64_t value)
1995 /* We have no event counters so only the C bit can be changed */
1996 value &= pmu_counter_mask(env);
1997 env->cp15.c9_pminten |= value;
1998 pmu_update_irq(env);
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002 uint64_t value)
2004 value &= pmu_counter_mask(env);
2005 env->cp15.c9_pminten &= ~value;
2006 pmu_update_irq(env);
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010 uint64_t value)
2012 /* Note that even though the AArch64 view of this register has bits
2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014 * architectural requirements for bits which are RES0 only in some
2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2018 raw_write(env, ri, value & ~0x1FULL);
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2023 /* Begin with base v8.0 state. */
2024 uint32_t valid_mask = 0x3fff;
2025 ARMCPU *cpu = env_archcpu(env);
2027 if (ri->state == ARM_CP_STATE_AA64) {
2028 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2032 valid_mask &= ~SCR_NET;
2034 if (cpu_isar_feature(aa64_lor, cpu)) {
2035 valid_mask |= SCR_TLOR;
2037 if (cpu_isar_feature(aa64_pauth, cpu)) {
2038 valid_mask |= SCR_API | SCR_APK;
2040 if (cpu_isar_feature(aa64_sel2, cpu)) {
2041 valid_mask |= SCR_EEL2;
2043 if (cpu_isar_feature(aa64_mte, cpu)) {
2044 valid_mask |= SCR_ATA;
2046 } else {
2047 valid_mask &= ~(SCR_RW | SCR_ST);
2050 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051 valid_mask &= ~SCR_HCE;
2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054 * supported if EL2 exists. The bit is UNK/SBZP when
2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056 * when EL2 is unavailable.
2057 * On ARMv8, this bit is always available.
2059 if (arm_feature(env, ARM_FEATURE_V7) &&
2060 !arm_feature(env, ARM_FEATURE_V8)) {
2061 valid_mask &= ~SCR_SMD;
2065 /* Clear all-context RES0 bits. */
2066 value &= valid_mask;
2067 raw_write(env, ri, value);
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2073 * scr_write will set the RES1 bits on an AArch64-only CPU.
2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2076 scr_write(env, ri, 0);
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080 const ARMCPRegInfo *ri,
2081 bool isread)
2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084 return CP_ACCESS_TRAP_EL2;
2087 return CP_ACCESS_OK;
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2092 ARMCPU *cpu = env_archcpu(env);
2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095 * bank
2097 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098 ri->secure & ARM_CP_SECSTATE_S);
2100 return cpu->ccsidr[index];
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104 uint64_t value)
2106 raw_write(env, ri, value & 0xf);
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2111 CPUState *cs = env_cpu(env);
2112 bool el1 = arm_current_el(env) == 1;
2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114 uint64_t ret = 0;
2116 if (hcr_el2 & HCR_IMO) {
2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118 ret |= CPSR_I;
2120 } else {
2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122 ret |= CPSR_I;
2126 if (hcr_el2 & HCR_FMO) {
2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128 ret |= CPSR_F;
2130 } else {
2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132 ret |= CPSR_F;
2136 /* External aborts are not possible in QEMU so A bit is always clear */
2137 return ret;
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141 bool isread)
2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144 return CP_ACCESS_TRAP_EL2;
2147 return CP_ACCESS_OK;
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151 bool isread)
2153 if (arm_feature(env, ARM_FEATURE_V8)) {
2154 return access_aa64_tid1(env, ri, isread);
2157 return CP_ACCESS_OK;
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163 .access = PL1_W, .type = ARM_CP_NOP },
2164 /* Performance monitors are implementation defined in v7,
2165 * but with an ARM recommended set of registers, which we
2166 * follow.
2168 * Performance registers fall into three categories:
2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176 .access = PL0_RW, .type = ARM_CP_ALIAS,
2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178 .writefn = pmcntenset_write,
2179 .accessfn = pmreg_access,
2180 .raw_writefn = raw_write },
2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183 .access = PL0_RW, .accessfn = pmreg_access,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187 .access = PL0_RW,
2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189 .accessfn = pmreg_access,
2190 .writefn = pmcntenclr_write,
2191 .type = ARM_CP_ALIAS },
2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194 .access = PL0_RW, .accessfn = pmreg_access,
2195 .type = ARM_CP_ALIAS,
2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197 .writefn = pmcntenclr_write },
2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199 .access = PL0_RW, .type = ARM_CP_IO,
2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201 .accessfn = pmreg_access,
2202 .writefn = pmovsr_write,
2203 .raw_writefn = raw_write },
2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206 .access = PL0_RW, .accessfn = pmreg_access,
2207 .type = ARM_CP_ALIAS | ARM_CP_IO,
2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209 .writefn = pmovsr_write,
2210 .raw_writefn = raw_write },
2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212 .access = PL0_W, .accessfn = pmreg_access_swinc,
2213 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214 .writefn = pmswinc_write },
2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217 .access = PL0_W, .accessfn = pmreg_access_swinc,
2218 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219 .writefn = pmswinc_write },
2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221 .access = PL0_RW, .type = ARM_CP_ALIAS,
2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224 .raw_writefn = raw_write},
2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227 .access = PL0_RW, .accessfn = pmreg_access_selr,
2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229 .writefn = pmselr_write, .raw_writefn = raw_write, },
2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233 .accessfn = pmreg_access_ccntr },
2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237 .type = ARM_CP_IO,
2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239 .readfn = pmccntr_read, .writefn = pmccntr_write,
2240 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243 .access = PL0_RW, .accessfn = pmreg_access,
2244 .type = ARM_CP_ALIAS | ARM_CP_IO,
2245 .resetvalue = 0, },
2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249 .access = PL0_RW, .accessfn = pmreg_access,
2250 .type = ARM_CP_IO,
2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252 .resetvalue = 0, },
2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255 .accessfn = pmreg_access,
2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260 .accessfn = pmreg_access,
2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264 .accessfn = pmreg_access_xevcntr,
2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269 .accessfn = pmreg_access_xevcntr,
2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274 .resetvalue = 0,
2275 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280 .resetvalue = 0,
2281 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283 .access = PL1_RW, .accessfn = access_tpm,
2284 .type = ARM_CP_ALIAS | ARM_CP_IO,
2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286 .resetvalue = 0,
2287 .writefn = pmintenset_write, .raw_writefn = raw_write },
2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290 .access = PL1_RW, .accessfn = access_tpm,
2291 .type = ARM_CP_IO,
2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293 .writefn = pmintenset_write, .raw_writefn = raw_write,
2294 .resetvalue = 0x0 },
2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296 .access = PL1_RW, .accessfn = access_tpm,
2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299 .writefn = pmintenclr_write, },
2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302 .access = PL1_RW, .accessfn = access_tpm,
2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305 .writefn = pmintenclr_write },
2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308 .access = PL1_R,
2309 .accessfn = access_aa64_tid2,
2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313 .access = PL1_RW,
2314 .accessfn = access_aa64_tid2,
2315 .writefn = csselr_write, .resetvalue = 0,
2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317 offsetof(CPUARMState, cp15.csselr_ns) } },
2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319 * just RAZ for all cores:
2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323 .access = PL1_R, .type = ARM_CP_CONST,
2324 .accessfn = access_aa64_tid1,
2325 .resetvalue = 0 },
2326 /* Auxiliary fault status registers: these also are IMPDEF, and we
2327 * choose to RAZ/WI for all cores.
2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331 .access = PL1_RW, .accessfn = access_tvm_trvm,
2332 .type = ARM_CP_CONST, .resetvalue = 0 },
2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335 .access = PL1_RW, .accessfn = access_tvm_trvm,
2336 .type = ARM_CP_CONST, .resetvalue = 0 },
2337 /* MAIR can just read-as-written because we don't implement caches
2338 * and so don't need to care about memory attributes.
2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342 .access = PL1_RW, .accessfn = access_tvm_trvm,
2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344 .resetvalue = 0 },
2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348 .resetvalue = 0 },
2349 /* For non-long-descriptor page tables these are PRRR and NMRR;
2350 * regardless they still act as reads-as-written for QEMU.
2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353 * allows them to assign the correct fieldoffset based on the endianness
2354 * handled in the field definitions.
2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358 .access = PL1_RW, .accessfn = access_tvm_trvm,
2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360 offsetof(CPUARMState, cp15.mair0_ns) },
2361 .resetfn = arm_cp_reset_ignore },
2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364 .access = PL1_RW, .accessfn = access_tvm_trvm,
2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366 offsetof(CPUARMState, cp15.mair1_ns) },
2367 .resetfn = arm_cp_reset_ignore },
2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371 /* 32 bit ITLB invalidates */
2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374 .writefn = tlbiall_write },
2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377 .writefn = tlbimva_write },
2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380 .writefn = tlbiasid_write },
2381 /* 32 bit DTLB invalidates */
2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384 .writefn = tlbiall_write },
2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387 .writefn = tlbimva_write },
2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390 .writefn = tlbiasid_write },
2391 /* 32 bit TLB invalidates */
2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394 .writefn = tlbiall_write },
2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397 .writefn = tlbimva_write },
2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400 .writefn = tlbiasid_write },
2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403 .writefn = tlbimvaa_write },
2404 REGINFO_SENTINEL
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408 /* 32 bit TLB invalidates, Inner Shareable */
2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411 .writefn = tlbiall_is_write },
2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414 .writefn = tlbimva_is_write },
2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417 .writefn = tlbiasid_is_write },
2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420 .writefn = tlbimvaa_is_write },
2421 REGINFO_SENTINEL
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425 /* PMOVSSET is not implemented in v7 before v7ve */
2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427 .access = PL0_RW, .accessfn = pmreg_access,
2428 .type = ARM_CP_ALIAS | ARM_CP_IO,
2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430 .writefn = pmovsset_write,
2431 .raw_writefn = raw_write },
2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434 .access = PL0_RW, .accessfn = pmreg_access,
2435 .type = ARM_CP_ALIAS | ARM_CP_IO,
2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437 .writefn = pmovsset_write,
2438 .raw_writefn = raw_write },
2439 REGINFO_SENTINEL
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443 uint64_t value)
2445 value &= 1;
2446 env->teecr = value;
2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450 bool isread)
2452 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453 return CP_ACCESS_TRAP;
2455 return CP_ACCESS_OK;
2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461 .resetvalue = 0,
2462 .writefn = teecr_write },
2463 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465 .accessfn = teehbr_access, .resetvalue = 0 },
2466 REGINFO_SENTINEL
2469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472 .access = PL0_RW,
2473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475 .access = PL0_RW,
2476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478 .resetfn = arm_cp_reset_ignore },
2479 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481 .access = PL0_R|PL1_W,
2482 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483 .resetvalue = 0},
2484 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485 .access = PL0_R|PL1_W,
2486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488 .resetfn = arm_cp_reset_ignore },
2489 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491 .access = PL1_RW,
2492 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494 .access = PL1_RW,
2495 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497 .resetvalue = 0 },
2498 REGINFO_SENTINEL
2501 #ifndef CONFIG_USER_ONLY
2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504 bool isread)
2506 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507 * Writable only at the highest implemented exception level.
2509 int el = arm_current_el(env);
2510 uint64_t hcr;
2511 uint32_t cntkctl;
2513 switch (el) {
2514 case 0:
2515 hcr = arm_hcr_el2_eff(env);
2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517 cntkctl = env->cp15.cnthctl_el2;
2518 } else {
2519 cntkctl = env->cp15.c14_cntkctl;
2521 if (!extract32(cntkctl, 0, 2)) {
2522 return CP_ACCESS_TRAP;
2524 break;
2525 case 1:
2526 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527 arm_is_secure_below_el3(env)) {
2528 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529 return CP_ACCESS_TRAP_UNCATEGORIZED;
2531 break;
2532 case 2:
2533 case 3:
2534 break;
2537 if (!isread && el < arm_highest_el(env)) {
2538 return CP_ACCESS_TRAP_UNCATEGORIZED;
2541 return CP_ACCESS_OK;
2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545 bool isread)
2547 unsigned int cur_el = arm_current_el(env);
2548 bool has_el2 = arm_is_el2_enabled(env);
2549 uint64_t hcr = arm_hcr_el2_eff(env);
2551 switch (cur_el) {
2552 case 0:
2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2559 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561 return CP_ACCESS_TRAP;
2564 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565 if (hcr & HCR_E2H) {
2566 if (timeridx == GTIMER_PHYS &&
2567 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568 return CP_ACCESS_TRAP_EL2;
2570 } else {
2571 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572 if (has_el2 && timeridx == GTIMER_PHYS &&
2573 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574 return CP_ACCESS_TRAP_EL2;
2577 break;
2579 case 1:
2580 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581 if (has_el2 && timeridx == GTIMER_PHYS &&
2582 (hcr & HCR_E2H
2583 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585 return CP_ACCESS_TRAP_EL2;
2587 break;
2589 return CP_ACCESS_OK;
2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593 bool isread)
2595 unsigned int cur_el = arm_current_el(env);
2596 bool has_el2 = arm_is_el2_enabled(env);
2597 uint64_t hcr = arm_hcr_el2_eff(env);
2599 switch (cur_el) {
2600 case 0:
2601 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2608 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609 * EL0 if EL0[PV]TEN is zero.
2611 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612 return CP_ACCESS_TRAP;
2614 /* fall through */
2616 case 1:
2617 if (has_el2 && timeridx == GTIMER_PHYS) {
2618 if (hcr & HCR_E2H) {
2619 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621 return CP_ACCESS_TRAP_EL2;
2623 } else {
2624 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626 return CP_ACCESS_TRAP_EL2;
2630 break;
2632 return CP_ACCESS_OK;
2635 static CPAccessResult gt_pct_access(CPUARMState *env,
2636 const ARMCPRegInfo *ri,
2637 bool isread)
2639 return gt_counter_access(env, GTIMER_PHYS, isread);
2642 static CPAccessResult gt_vct_access(CPUARMState *env,
2643 const ARMCPRegInfo *ri,
2644 bool isread)
2646 return gt_counter_access(env, GTIMER_VIRT, isread);
2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650 bool isread)
2652 return gt_timer_access(env, GTIMER_PHYS, isread);
2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656 bool isread)
2658 return gt_timer_access(env, GTIMER_VIRT, isread);
2661 static CPAccessResult gt_stimer_access(CPUARMState *env,
2662 const ARMCPRegInfo *ri,
2663 bool isread)
2665 /* The AArch64 register view of the secure physical timer is
2666 * always accessible from EL3, and configurably accessible from
2667 * Secure EL1.
2669 switch (arm_current_el(env)) {
2670 case 1:
2671 if (!arm_is_secure(env)) {
2672 return CP_ACCESS_TRAP;
2674 if (!(env->cp15.scr_el3 & SCR_ST)) {
2675 return CP_ACCESS_TRAP_EL3;
2677 return CP_ACCESS_OK;
2678 case 0:
2679 case 2:
2680 return CP_ACCESS_TRAP;
2681 case 3:
2682 return CP_ACCESS_OK;
2683 default:
2684 g_assert_not_reached();
2688 static uint64_t gt_get_countervalue(CPUARMState *env)
2690 ARMCPU *cpu = env_archcpu(env);
2692 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2697 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2699 if (gt->ctl & 1) {
2700 /* Timer enabled: calculate and set current ISTATUS, irq, and
2701 * reset timer to when ISTATUS next has to change
2703 uint64_t offset = timeridx == GTIMER_VIRT ?
2704 cpu->env.cp15.cntvoff_el2 : 0;
2705 uint64_t count = gt_get_countervalue(&cpu->env);
2706 /* Note that this must be unsigned 64 bit arithmetic: */
2707 int istatus = count - offset >= gt->cval;
2708 uint64_t nexttick;
2709 int irqstate;
2711 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2713 irqstate = (istatus && !(gt->ctl & 2));
2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2716 if (istatus) {
2717 /* Next transition is when count rolls back over to zero */
2718 nexttick = UINT64_MAX;
2719 } else {
2720 /* Next transition is when we hit cval */
2721 nexttick = gt->cval + offset;
2723 /* Note that the desired next expiry time might be beyond the
2724 * signed-64-bit range of a QEMUTimer -- in this case we just
2725 * set the timer for as far in the future as possible. When the
2726 * timer expires we will reset the timer for any remaining period.
2728 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730 } else {
2731 timer_mod(cpu->gt_timer[timeridx], nexttick);
2733 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734 } else {
2735 /* Timer disabled: ISTATUS and timer output always clear */
2736 gt->ctl &= ~4;
2737 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738 timer_del(cpu->gt_timer[timeridx]);
2739 trace_arm_gt_recalc_disabled(timeridx);
2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744 int timeridx)
2746 ARMCPU *cpu = env_archcpu(env);
2748 timer_del(cpu->gt_timer[timeridx]);
2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2753 return gt_get_countervalue(env);
2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2758 uint64_t hcr;
2760 switch (arm_current_el(env)) {
2761 case 2:
2762 hcr = arm_hcr_el2_eff(env);
2763 if (hcr & HCR_E2H) {
2764 return 0;
2766 break;
2767 case 0:
2768 hcr = arm_hcr_el2_eff(env);
2769 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770 return 0;
2772 break;
2775 return env->cp15.cntvoff_el2;
2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2780 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784 int timeridx,
2785 uint64_t value)
2787 trace_arm_gt_cval_write(timeridx, value);
2788 env->cp15.c14_timer[timeridx].cval = value;
2789 gt_recalc_timer(env_archcpu(env), timeridx);
2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793 int timeridx)
2795 uint64_t offset = 0;
2797 switch (timeridx) {
2798 case GTIMER_VIRT:
2799 case GTIMER_HYPVIRT:
2800 offset = gt_virt_cnt_offset(env);
2801 break;
2804 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805 (gt_get_countervalue(env) - offset));
2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809 int timeridx,
2810 uint64_t value)
2812 uint64_t offset = 0;
2814 switch (timeridx) {
2815 case GTIMER_VIRT:
2816 case GTIMER_HYPVIRT:
2817 offset = gt_virt_cnt_offset(env);
2818 break;
2821 trace_arm_gt_tval_write(timeridx, value);
2822 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823 sextract64(value, 0, 32);
2824 gt_recalc_timer(env_archcpu(env), timeridx);
2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828 int timeridx,
2829 uint64_t value)
2831 ARMCPU *cpu = env_archcpu(env);
2832 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2834 trace_arm_gt_ctl_write(timeridx, value);
2835 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836 if ((oldval ^ value) & 1) {
2837 /* Enable toggled */
2838 gt_recalc_timer(cpu, timeridx);
2839 } else if ((oldval ^ value) & 2) {
2840 /* IMASK toggled: don't need to recalculate,
2841 * just set the interrupt line based on ISTATUS
2843 int irqstate = (oldval & 4) && !(value & 2);
2845 trace_arm_gt_imask_toggle(timeridx, irqstate);
2846 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2852 gt_timer_reset(env, ri, GTIMER_PHYS);
2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2858 gt_cval_write(env, ri, GTIMER_PHYS, value);
2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2863 return gt_tval_read(env, ri, GTIMER_PHYS);
2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867 uint64_t value)
2869 gt_tval_write(env, ri, GTIMER_PHYS, value);
2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873 uint64_t value)
2875 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2878 static int gt_phys_redir_timeridx(CPUARMState *env)
2880 switch (arm_mmu_idx(env)) {
2881 case ARMMMUIdx_E20_0:
2882 case ARMMMUIdx_E20_2:
2883 case ARMMMUIdx_E20_2_PAN:
2884 case ARMMMUIdx_SE20_0:
2885 case ARMMMUIdx_SE20_2:
2886 case ARMMMUIdx_SE20_2_PAN:
2887 return GTIMER_HYP;
2888 default:
2889 return GTIMER_PHYS;
2893 static int gt_virt_redir_timeridx(CPUARMState *env)
2895 switch (arm_mmu_idx(env)) {
2896 case ARMMMUIdx_E20_0:
2897 case ARMMMUIdx_E20_2:
2898 case ARMMMUIdx_E20_2_PAN:
2899 case ARMMMUIdx_SE20_0:
2900 case ARMMMUIdx_SE20_2:
2901 case ARMMMUIdx_SE20_2_PAN:
2902 return GTIMER_HYPVIRT;
2903 default:
2904 return GTIMER_VIRT;
2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909 const ARMCPRegInfo *ri)
2911 int timeridx = gt_phys_redir_timeridx(env);
2912 return env->cp15.c14_timer[timeridx].cval;
2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2918 int timeridx = gt_phys_redir_timeridx(env);
2919 gt_cval_write(env, ri, timeridx, value);
2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923 const ARMCPRegInfo *ri)
2925 int timeridx = gt_phys_redir_timeridx(env);
2926 return gt_tval_read(env, ri, timeridx);
2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930 uint64_t value)
2932 int timeridx = gt_phys_redir_timeridx(env);
2933 gt_tval_write(env, ri, timeridx, value);
2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937 const ARMCPRegInfo *ri)
2939 int timeridx = gt_phys_redir_timeridx(env);
2940 return env->cp15.c14_timer[timeridx].ctl;
2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2946 int timeridx = gt_phys_redir_timeridx(env);
2947 gt_ctl_write(env, ri, timeridx, value);
2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2952 gt_timer_reset(env, ri, GTIMER_VIRT);
2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956 uint64_t value)
2958 gt_cval_write(env, ri, GTIMER_VIRT, value);
2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2963 return gt_tval_read(env, ri, GTIMER_VIRT);
2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967 uint64_t value)
2969 gt_tval_write(env, ri, GTIMER_VIRT, value);
2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973 uint64_t value)
2975 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979 uint64_t value)
2981 ARMCPU *cpu = env_archcpu(env);
2983 trace_arm_gt_cntvoff_write(value);
2984 raw_write(env, ri, value);
2985 gt_recalc_timer(cpu, GTIMER_VIRT);
2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989 const ARMCPRegInfo *ri)
2991 int timeridx = gt_virt_redir_timeridx(env);
2992 return env->cp15.c14_timer[timeridx].cval;
2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996 uint64_t value)
2998 int timeridx = gt_virt_redir_timeridx(env);
2999 gt_cval_write(env, ri, timeridx, value);
3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003 const ARMCPRegInfo *ri)
3005 int timeridx = gt_virt_redir_timeridx(env);
3006 return gt_tval_read(env, ri, timeridx);
3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3012 int timeridx = gt_virt_redir_timeridx(env);
3013 gt_tval_write(env, ri, timeridx, value);
3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017 const ARMCPRegInfo *ri)
3019 int timeridx = gt_virt_redir_timeridx(env);
3020 return env->cp15.c14_timer[timeridx].ctl;
3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 int timeridx = gt_virt_redir_timeridx(env);
3027 gt_ctl_write(env, ri, timeridx, value);
3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3032 gt_timer_reset(env, ri, GTIMER_HYP);
3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036 uint64_t value)
3038 gt_cval_write(env, ri, GTIMER_HYP, value);
3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3043 return gt_tval_read(env, ri, GTIMER_HYP);
3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047 uint64_t value)
3049 gt_tval_write(env, ri, GTIMER_HYP, value);
3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053 uint64_t value)
3055 gt_ctl_write(env, ri, GTIMER_HYP, value);
3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3060 gt_timer_reset(env, ri, GTIMER_SEC);
3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3066 gt_cval_write(env, ri, GTIMER_SEC, value);
3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3071 return gt_tval_read(env, ri, GTIMER_SEC);
3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075 uint64_t value)
3077 gt_tval_write(env, ri, GTIMER_SEC, value);
3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081 uint64_t value)
3083 gt_ctl_write(env, ri, GTIMER_SEC, value);
3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3088 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092 uint64_t value)
3094 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3099 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103 uint64_t value)
3105 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109 uint64_t value)
3111 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3114 void arm_gt_ptimer_cb(void *opaque)
3116 ARMCPU *cpu = opaque;
3118 gt_recalc_timer(cpu, GTIMER_PHYS);
3121 void arm_gt_vtimer_cb(void *opaque)
3123 ARMCPU *cpu = opaque;
3125 gt_recalc_timer(cpu, GTIMER_VIRT);
3128 void arm_gt_htimer_cb(void *opaque)
3130 ARMCPU *cpu = opaque;
3132 gt_recalc_timer(cpu, GTIMER_HYP);
3135 void arm_gt_stimer_cb(void *opaque)
3137 ARMCPU *cpu = opaque;
3139 gt_recalc_timer(cpu, GTIMER_SEC);
3142 void arm_gt_hvtimer_cb(void *opaque)
3144 ARMCPU *cpu = opaque;
3146 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3151 ARMCPU *cpu = env_archcpu(env);
3153 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157 /* Note that CNTFRQ is purely reads-as-written for the benefit
3158 * of software; writing it doesn't actually change the timer frequency.
3159 * Our reset value matches the fixed frequency we implement the timer at.
3161 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162 .type = ARM_CP_ALIAS,
3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3166 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170 .resetfn = arm_gt_cntfrq_reset,
3172 /* overall control: mostly access permissions */
3173 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175 .access = PL1_RW,
3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177 .resetvalue = 0,
3179 /* per-timer control */
3180 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181 .secure = ARM_CP_SECSTATE_NS,
3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183 .accessfn = gt_ptimer_access,
3184 .fieldoffset = offsetoflow32(CPUARMState,
3185 cp15.c14_timer[GTIMER_PHYS].ctl),
3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3189 { .name = "CNTP_CTL_S",
3190 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191 .secure = ARM_CP_SECSTATE_S,
3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193 .accessfn = gt_ptimer_access,
3194 .fieldoffset = offsetoflow32(CPUARMState,
3195 cp15.c14_timer[GTIMER_SEC].ctl),
3196 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3198 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200 .type = ARM_CP_IO, .access = PL0_RW,
3201 .accessfn = gt_ptimer_access,
3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203 .resetvalue = 0,
3204 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3207 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209 .accessfn = gt_vtimer_access,
3210 .fieldoffset = offsetoflow32(CPUARMState,
3211 cp15.c14_timer[GTIMER_VIRT].ctl),
3212 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3215 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217 .type = ARM_CP_IO, .access = PL0_RW,
3218 .accessfn = gt_vtimer_access,
3219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220 .resetvalue = 0,
3221 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3224 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226 .secure = ARM_CP_SECSTATE_NS,
3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228 .accessfn = gt_ptimer_access,
3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3231 { .name = "CNTP_TVAL_S",
3232 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233 .secure = ARM_CP_SECSTATE_S,
3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235 .accessfn = gt_ptimer_access,
3236 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3238 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3244 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246 .accessfn = gt_vtimer_access,
3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3249 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3255 /* The counter itself */
3256 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258 .accessfn = gt_pct_access,
3259 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3261 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3266 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268 .accessfn = gt_vct_access,
3269 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3271 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3276 /* Comparison value, indicating when the timer goes off */
3277 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278 .secure = ARM_CP_SECSTATE_NS,
3279 .access = PL0_RW,
3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282 .accessfn = gt_ptimer_access,
3283 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3286 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287 .secure = ARM_CP_SECSTATE_S,
3288 .access = PL0_RW,
3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291 .accessfn = gt_ptimer_access,
3292 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3294 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296 .access = PL0_RW,
3297 .type = ARM_CP_IO,
3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299 .resetvalue = 0, .accessfn = gt_ptimer_access,
3300 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3303 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304 .access = PL0_RW,
3305 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307 .accessfn = gt_vtimer_access,
3308 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3311 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313 .access = PL0_RW,
3314 .type = ARM_CP_IO,
3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316 .resetvalue = 0, .accessfn = gt_vtimer_access,
3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3320 /* Secure timer -- this is actually restricted to only EL3
3321 * and configurably Secure-EL1 via the accessfn.
3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326 .accessfn = gt_stimer_access,
3327 .readfn = gt_sec_tval_read,
3328 .writefn = gt_sec_tval_write,
3329 .resetfn = gt_sec_timer_reset,
3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333 .type = ARM_CP_IO, .access = PL1_RW,
3334 .accessfn = gt_stimer_access,
3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336 .resetvalue = 0,
3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341 .type = ARM_CP_IO, .access = PL1_RW,
3342 .accessfn = gt_stimer_access,
3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3346 REGINFO_SENTINEL
3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350 bool isread)
3352 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353 return CP_ACCESS_TRAP;
3355 return CP_ACCESS_OK;
3358 #else
3360 /* In user-mode most of the generic timer registers are inaccessible
3361 * however modern kernels (4.12+) allow access to cntvct_el0
3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3366 ARMCPU *cpu = env_archcpu(env);
3368 /* Currently we have no support for QEMUTimer in linux-user so we
3369 * can't call gt_get_countervalue(env), instead we directly
3370 * call the lower level functions.
3372 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3382 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385 .readfn = gt_virt_cnt_read,
3387 REGINFO_SENTINEL
3390 #endif
3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3394 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395 raw_write(env, ri, value);
3396 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397 raw_write(env, ri, value & 0xfffff6ff);
3398 } else {
3399 raw_write(env, ri, value & 0xfffff1ff);
3403 #ifndef CONFIG_USER_ONLY
3404 /* get_phys_addr() isn't present for user-mode-only targets */
3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407 bool isread)
3409 if (ri->opc2 & 4) {
3410 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411 * Secure EL1 (which can only happen if EL3 is AArch64).
3412 * They are simply UNDEF if executed from NS EL1.
3413 * They function normally from EL2 or EL3.
3415 if (arm_current_el(env) == 1) {
3416 if (arm_is_secure_below_el3(env)) {
3417 if (env->cp15.scr_el3 & SCR_EEL2) {
3418 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3420 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3422 return CP_ACCESS_TRAP_UNCATEGORIZED;
3425 return CP_ACCESS_OK;
3428 #ifdef CONFIG_TCG
3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3432 hwaddr phys_addr;
3433 target_ulong page_size;
3434 int prot;
3435 bool ret;
3436 uint64_t par64;
3437 bool format64 = false;
3438 MemTxAttrs attrs = {};
3439 ARMMMUFaultInfo fi = {};
3440 ARMCacheAttrs cacheattrs = {};
3442 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443 &prot, &page_size, &fi, &cacheattrs);
3445 if (ret) {
3447 * Some kinds of translation fault must cause exceptions rather
3448 * than being reported in the PAR.
3450 int current_el = arm_current_el(env);
3451 int target_el;
3452 uint32_t syn, fsr, fsc;
3453 bool take_exc = false;
3455 if (fi.s1ptw && current_el == 1
3456 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3458 * Synchronous stage 2 fault on an access made as part of the
3459 * translation table walk for AT S1E0* or AT S1E1* insn
3460 * executed from NS EL1. If this is a synchronous external abort
3461 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462 * to EL3. Otherwise the fault is taken as an exception to EL2,
3463 * and HPFAR_EL2 holds the faulting IPA.
3465 if (fi.type == ARMFault_SyncExternalOnWalk &&
3466 (env->cp15.scr_el3 & SCR_EA)) {
3467 target_el = 3;
3468 } else {
3469 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471 env->cp15.hpfar_el2 |= HPFAR_NS;
3473 target_el = 2;
3475 take_exc = true;
3476 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3478 * Synchronous external aborts during a translation table walk
3479 * are taken as Data Abort exceptions.
3481 if (fi.stage2) {
3482 if (current_el == 3) {
3483 target_el = 3;
3484 } else {
3485 target_el = 2;
3487 } else {
3488 target_el = exception_target_el(env);
3490 take_exc = true;
3493 if (take_exc) {
3494 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497 fsr = arm_fi_to_lfsc(&fi);
3498 fsc = extract32(fsr, 0, 6);
3499 } else {
3500 fsr = arm_fi_to_sfsc(&fi);
3501 fsc = 0x3f;
3504 * Report exception with ESR indicating a fault due to a
3505 * translation table walk for a cache maintenance instruction.
3507 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508 fi.ea, 1, fi.s1ptw, 1, fsc);
3509 env->exception.vaddress = value;
3510 env->exception.fsr = fsr;
3511 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3515 if (is_a64(env)) {
3516 format64 = true;
3517 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3519 * ATS1Cxx:
3520 * * TTBCR.EAE determines whether the result is returned using the
3521 * 32-bit or the 64-bit PAR format
3522 * * Instructions executed in Hyp mode always use the 64bit format
3524 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525 * * The Non-secure TTBCR.EAE bit is set to 1
3526 * * The implementation includes EL2, and the value of HCR.VM is 1
3528 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3530 * ATS1Hx always uses the 64bit format.
3532 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3534 if (arm_feature(env, ARM_FEATURE_EL2)) {
3535 if (mmu_idx == ARMMMUIdx_E10_0 ||
3536 mmu_idx == ARMMMUIdx_E10_1 ||
3537 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539 } else {
3540 format64 |= arm_current_el(env) == 2;
3545 if (format64) {
3546 /* Create a 64-bit PAR */
3547 par64 = (1 << 11); /* LPAE bit always set */
3548 if (!ret) {
3549 par64 |= phys_addr & ~0xfffULL;
3550 if (!attrs.secure) {
3551 par64 |= (1 << 9); /* NS */
3553 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554 par64 |= cacheattrs.shareability << 7; /* SH */
3555 } else {
3556 uint32_t fsr = arm_fi_to_lfsc(&fi);
3558 par64 |= 1; /* F */
3559 par64 |= (fsr & 0x3f) << 1; /* FS */
3560 if (fi.stage2) {
3561 par64 |= (1 << 9); /* S */
3563 if (fi.s1ptw) {
3564 par64 |= (1 << 8); /* PTW */
3567 } else {
3568 /* fsr is a DFSR/IFSR value for the short descriptor
3569 * translation table format (with WnR always clear).
3570 * Convert it to a 32-bit PAR.
3572 if (!ret) {
3573 /* We do not set any attribute bits in the PAR */
3574 if (page_size == (1 << 24)
3575 && arm_feature(env, ARM_FEATURE_V7)) {
3576 par64 = (phys_addr & 0xff000000) | (1 << 1);
3577 } else {
3578 par64 = phys_addr & 0xfffff000;
3580 if (!attrs.secure) {
3581 par64 |= (1 << 9); /* NS */
3583 } else {
3584 uint32_t fsr = arm_fi_to_sfsc(&fi);
3586 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587 ((fsr & 0xf) << 1) | 1;
3590 return par64;
3592 #endif /* CONFIG_TCG */
3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3596 #ifdef CONFIG_TCG
3597 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598 uint64_t par64;
3599 ARMMMUIdx mmu_idx;
3600 int el = arm_current_el(env);
3601 bool secure = arm_is_secure_below_el3(env);
3603 switch (ri->opc2 & 6) {
3604 case 0:
3605 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606 switch (el) {
3607 case 3:
3608 mmu_idx = ARMMMUIdx_SE3;
3609 break;
3610 case 2:
3611 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3612 /* fall through */
3613 case 1:
3614 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616 : ARMMMUIdx_Stage1_E1_PAN);
3617 } else {
3618 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3620 break;
3621 default:
3622 g_assert_not_reached();
3624 break;
3625 case 2:
3626 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627 switch (el) {
3628 case 3:
3629 mmu_idx = ARMMMUIdx_SE10_0;
3630 break;
3631 case 2:
3632 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3633 mmu_idx = ARMMMUIdx_Stage1_E0;
3634 break;
3635 case 1:
3636 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637 break;
3638 default:
3639 g_assert_not_reached();
3641 break;
3642 case 4:
3643 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644 mmu_idx = ARMMMUIdx_E10_1;
3645 break;
3646 case 6:
3647 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648 mmu_idx = ARMMMUIdx_E10_0;
3649 break;
3650 default:
3651 g_assert_not_reached();
3654 par64 = do_ats_write(env, value, access_type, mmu_idx);
3656 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657 #else
3658 /* Handled by hardware accelerator. */
3659 g_assert_not_reached();
3660 #endif /* CONFIG_TCG */
3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664 uint64_t value)
3666 #ifdef CONFIG_TCG
3667 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668 uint64_t par64;
3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3672 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673 #else
3674 /* Handled by hardware accelerator. */
3675 g_assert_not_reached();
3676 #endif /* CONFIG_TCG */
3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680 bool isread)
3682 if (arm_current_el(env) == 3 &&
3683 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684 return CP_ACCESS_TRAP;
3686 return CP_ACCESS_OK;
3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690 uint64_t value)
3692 #ifdef CONFIG_TCG
3693 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694 ARMMMUIdx mmu_idx;
3695 int secure = arm_is_secure_below_el3(env);
3697 switch (ri->opc2 & 6) {
3698 case 0:
3699 switch (ri->opc1) {
3700 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703 : ARMMMUIdx_Stage1_E1_PAN);
3704 } else {
3705 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3707 break;
3708 case 4: /* AT S1E2R, AT S1E2W */
3709 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710 break;
3711 case 6: /* AT S1E3R, AT S1E3W */
3712 mmu_idx = ARMMMUIdx_SE3;
3713 break;
3714 default:
3715 g_assert_not_reached();
3717 break;
3718 case 2: /* AT S1E0R, AT S1E0W */
3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720 break;
3721 case 4: /* AT S12E1R, AT S12E1W */
3722 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723 break;
3724 case 6: /* AT S12E0R, AT S12E0W */
3725 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726 break;
3727 default:
3728 g_assert_not_reached();
3731 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732 #else
3733 /* Handled by hardware accelerator. */
3734 g_assert_not_reached();
3735 #endif /* CONFIG_TCG */
3737 #endif
3739 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741 .access = PL1_RW, .resetvalue = 0,
3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743 offsetoflow32(CPUARMState, cp15.par_ns) },
3744 .writefn = par_write },
3745 #ifndef CONFIG_USER_ONLY
3746 /* This underdecoding is safe because the reginfo is NO_RAW. */
3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748 .access = PL1_W, .accessfn = ats_access,
3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750 #endif
3751 REGINFO_SENTINEL
3754 /* Return basic MPU access permission bits. */
3755 static uint32_t simple_mpu_ap_bits(uint32_t val)
3757 uint32_t ret;
3758 uint32_t mask;
3759 int i;
3760 ret = 0;
3761 mask = 3;
3762 for (i = 0; i < 16; i += 2) {
3763 ret |= (val >> i) & mask;
3764 mask <<= 2;
3766 return ret;
3769 /* Pad basic MPU access permission bits to extended format. */
3770 static uint32_t extended_mpu_ap_bits(uint32_t val)
3772 uint32_t ret;
3773 uint32_t mask;
3774 int i;
3775 ret = 0;
3776 mask = 3;
3777 for (i = 0; i < 16; i += 2) {
3778 ret |= (val & mask) << i;
3779 mask <<= 2;
3781 return ret;
3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785 uint64_t value)
3787 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3792 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796 uint64_t value)
3798 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3803 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3808 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3810 if (!u32p) {
3811 return 0;
3814 u32p += env->pmsav7.rnr[M_REG_NS];
3815 return *u32p;
3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819 uint64_t value)
3821 ARMCPU *cpu = env_archcpu(env);
3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3824 if (!u32p) {
3825 return;
3828 u32p += env->pmsav7.rnr[M_REG_NS];
3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830 *u32p = value;
3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834 uint64_t value)
3836 ARMCPU *cpu = env_archcpu(env);
3837 uint32_t nrgs = cpu->pmsav7_dregion;
3839 if (value >= nrgs) {
3840 qemu_log_mask(LOG_GUEST_ERROR,
3841 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843 return;
3846 raw_write(env, ri, value);
3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850 /* Reset for all these registers is handled in arm_cpu_reset(),
3851 * because the PMSAv7 is also used by M-profile CPUs, which do
3852 * not register cpregs but still need the state to be reset.
3854 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857 .readfn = pmsav7_read, .writefn = pmsav7_write,
3858 .resetfn = arm_cp_reset_ignore },
3859 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862 .readfn = pmsav7_read, .writefn = pmsav7_write,
3863 .resetfn = arm_cp_reset_ignore },
3864 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867 .readfn = pmsav7_read, .writefn = pmsav7_write,
3868 .resetfn = arm_cp_reset_ignore },
3869 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870 .access = PL1_RW,
3871 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872 .writefn = pmsav7_rgnr_write,
3873 .resetfn = arm_cp_reset_ignore },
3874 REGINFO_SENTINEL
3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879 .access = PL1_RW, .type = ARM_CP_ALIAS,
3880 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883 .access = PL1_RW, .type = ARM_CP_ALIAS,
3884 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887 .access = PL1_RW,
3888 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889 .resetvalue = 0, },
3890 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891 .access = PL1_RW,
3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893 .resetvalue = 0, },
3894 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895 .access = PL1_RW,
3896 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898 .access = PL1_RW,
3899 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900 /* Protection region base and size registers */
3901 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925 REGINFO_SENTINEL
3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929 uint64_t value)
3931 TCR *tcr = raw_ptr(env, ri);
3932 int maskshift = extract32(value, 0, 3);
3934 if (!arm_feature(env, ARM_FEATURE_V8)) {
3935 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937 * using Long-desciptor translation table format */
3938 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940 /* In an implementation that includes the Security Extensions
3941 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942 * Short-descriptor translation table format.
3944 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945 } else {
3946 value &= TTBCR_N;
3950 /* Update the masks corresponding to the TCR bank being written
3951 * Note that we always calculate mask and base_mask, but
3952 * they are only used for short-descriptor tables (ie if EAE is 0);
3953 * for long-descriptor tables the TCR fields are used differently
3954 * and the mask and base_mask values are meaningless.
3956 tcr->raw_tcr = value;
3957 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962 uint64_t value)
3964 ARMCPU *cpu = env_archcpu(env);
3965 TCR *tcr = raw_ptr(env, ri);
3967 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968 /* With LPAE the TTBCR could result in a change of ASID
3969 * via the TTBCR.A1 bit, so do a TLB flush.
3971 tlb_flush(CPU(cpu));
3973 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3974 value = deposit64(tcr->raw_tcr, 0, 32, value);
3975 vmsa_ttbcr_raw_write(env, ri, value);
3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3980 TCR *tcr = raw_ptr(env, ri);
3982 /* Reset both the TCR as well as the masks corresponding to the bank of
3983 * the TCR being reset.
3985 tcr->raw_tcr = 0;
3986 tcr->mask = 0;
3987 tcr->base_mask = 0xffffc000u;
3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991 uint64_t value)
3993 ARMCPU *cpu = env_archcpu(env);
3994 TCR *tcr = raw_ptr(env, ri);
3996 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997 tlb_flush(CPU(cpu));
3998 tcr->raw_tcr = value;
4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002 uint64_t value)
4004 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4005 if (cpreg_field_is_64bit(ri) &&
4006 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007 ARMCPU *cpu = env_archcpu(env);
4008 tlb_flush(CPU(cpu));
4010 raw_write(env, ri, value);
4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014 uint64_t value)
4017 * If we are running with E2&0 regime, then an ASID is active.
4018 * Flush if that might be changing. Note we're not checking
4019 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020 * holds the active ASID, only checking the field that might.
4022 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024 uint16_t mask = ARMMMUIdxBit_E20_2 |
4025 ARMMMUIdxBit_E20_2_PAN |
4026 ARMMMUIdxBit_E20_0;
4028 if (arm_is_secure_below_el3(env)) {
4029 mask >>= ARM_MMU_IDX_A_NS;
4032 tlb_flush_by_mmuidx(env_cpu(env), mask);
4034 raw_write(env, ri, value);
4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038 uint64_t value)
4040 ARMCPU *cpu = env_archcpu(env);
4041 CPUState *cs = CPU(cpu);
4044 * A change in VMID to the stage2 page table (Stage2) invalidates
4045 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4047 if (raw_read(env, ri) != value) {
4048 uint16_t mask = ARMMMUIdxBit_E10_1 |
4049 ARMMMUIdxBit_E10_1_PAN |
4050 ARMMMUIdxBit_E10_0;
4052 if (arm_is_secure_below_el3(env)) {
4053 mask >>= ARM_MMU_IDX_A_NS;
4056 tlb_flush_by_mmuidx(cs, mask);
4057 raw_write(env, ri, value);
4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073 offsetof(CPUARMState, cp15.dfar_ns) } },
4074 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076 .access = PL1_RW, .accessfn = access_tvm_trvm,
4077 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078 .resetvalue = 0, },
4079 REGINFO_SENTINEL
4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085 .access = PL1_RW, .accessfn = access_tvm_trvm,
4086 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089 .access = PL1_RW, .accessfn = access_tvm_trvm,
4090 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095 .access = PL1_RW, .accessfn = access_tvm_trvm,
4096 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101 .access = PL1_RW, .accessfn = access_tvm_trvm,
4102 .writefn = vmsa_tcr_el12_write,
4103 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106 .access = PL1_RW, .accessfn = access_tvm_trvm,
4107 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108 .raw_writefn = vmsa_ttbcr_raw_write,
4109 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4110 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4111 REGINFO_SENTINEL
4114 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4115 * qemu tlbs nor adjusting cached masks.
4117 static const ARMCPRegInfo ttbcr2_reginfo = {
4118 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4119 .access = PL1_RW, .accessfn = access_tvm_trvm,
4120 .type = ARM_CP_ALIAS,
4121 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4122 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4125 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4126 uint64_t value)
4128 env->cp15.c15_ticonfig = value & 0xe7;
4129 /* The OS_TYPE bit in this register changes the reported CPUID! */
4130 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4131 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4134 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4135 uint64_t value)
4137 env->cp15.c15_threadid = value & 0xffff;
4140 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4141 uint64_t value)
4143 /* Wait-for-interrupt (deprecated) */
4144 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4147 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4148 uint64_t value)
4150 /* On OMAP there are registers indicating the max/min index of dcache lines
4151 * containing a dirty line; cache flush operations have to reset these.
4153 env->cp15.c15_i_max = 0x000;
4154 env->cp15.c15_i_min = 0xff0;
4157 static const ARMCPRegInfo omap_cp_reginfo[] = {
4158 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4159 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4160 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4161 .resetvalue = 0, },
4162 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4163 .access = PL1_RW, .type = ARM_CP_NOP },
4164 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4165 .access = PL1_RW,
4166 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4167 .writefn = omap_ticonfig_write },
4168 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4169 .access = PL1_RW,
4170 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4171 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4172 .access = PL1_RW, .resetvalue = 0xff0,
4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4174 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4175 .access = PL1_RW,
4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4177 .writefn = omap_threadid_write },
4178 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4179 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4180 .type = ARM_CP_NO_RAW,
4181 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4182 /* TODO: Peripheral port remap register:
4183 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4184 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4185 * when MMU is off.
4187 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4188 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4189 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4190 .writefn = omap_cachemaint_write },
4191 { .name = "C9", .cp = 15, .crn = 9,
4192 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4193 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4194 REGINFO_SENTINEL
4197 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4198 uint64_t value)
4200 env->cp15.c15_cpar = value & 0x3fff;
4203 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4204 { .name = "XSCALE_CPAR",
4205 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4206 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4207 .writefn = xscale_cpar_write, },
4208 { .name = "XSCALE_AUXCR",
4209 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4210 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4211 .resetvalue = 0, },
4212 /* XScale specific cache-lockdown: since we have no cache we NOP these
4213 * and hope the guest does not really rely on cache behaviour.
4215 { .name = "XSCALE_LOCK_ICACHE_LINE",
4216 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4217 .access = PL1_W, .type = ARM_CP_NOP },
4218 { .name = "XSCALE_UNLOCK_ICACHE",
4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4220 .access = PL1_W, .type = ARM_CP_NOP },
4221 { .name = "XSCALE_DCACHE_LOCK",
4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4223 .access = PL1_RW, .type = ARM_CP_NOP },
4224 { .name = "XSCALE_UNLOCK_DCACHE",
4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4226 .access = PL1_W, .type = ARM_CP_NOP },
4227 REGINFO_SENTINEL
4230 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4231 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4232 * implementation of this implementation-defined space.
4233 * Ideally this should eventually disappear in favour of actually
4234 * implementing the correct behaviour for all cores.
4236 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4237 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4238 .access = PL1_RW,
4239 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4240 .resetvalue = 0 },
4241 REGINFO_SENTINEL
4244 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4245 /* Cache status: RAZ because we have no cache so it's always clean */
4246 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4247 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4248 .resetvalue = 0 },
4249 REGINFO_SENTINEL
4252 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4253 /* We never have a a block transfer operation in progress */
4254 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4255 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4256 .resetvalue = 0 },
4257 /* The cache ops themselves: these all NOP for QEMU */
4258 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4259 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4260 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4261 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4262 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4263 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4264 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4265 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4266 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4267 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4268 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4269 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4270 REGINFO_SENTINEL
4273 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4274 /* The cache test-and-clean instructions always return (1 << 30)
4275 * to indicate that there are no dirty cache lines.
4277 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4278 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4279 .resetvalue = (1 << 30) },
4280 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282 .resetvalue = (1 << 30) },
4283 REGINFO_SENTINEL
4286 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4287 /* Ignore ReadBuffer accesses */
4288 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4289 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4290 .access = PL1_RW, .resetvalue = 0,
4291 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4292 REGINFO_SENTINEL
4295 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4297 unsigned int cur_el = arm_current_el(env);
4299 if (arm_is_el2_enabled(env) && cur_el == 1) {
4300 return env->cp15.vpidr_el2;
4302 return raw_read(env, ri);
4305 static uint64_t mpidr_read_val(CPUARMState *env)
4307 ARMCPU *cpu = env_archcpu(env);
4308 uint64_t mpidr = cpu->mp_affinity;
4310 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4311 mpidr |= (1U << 31);
4312 /* Cores which are uniprocessor (non-coherent)
4313 * but still implement the MP extensions set
4314 * bit 30. (For instance, Cortex-R5).
4316 if (cpu->mp_is_up) {
4317 mpidr |= (1u << 30);
4320 return mpidr;
4323 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4325 unsigned int cur_el = arm_current_el(env);
4327 if (arm_is_el2_enabled(env) && cur_el == 1) {
4328 return env->cp15.vmpidr_el2;
4330 return mpidr_read_val(env);
4333 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4334 /* NOP AMAIR0/1 */
4335 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4336 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4337 .access = PL1_RW, .accessfn = access_tvm_trvm,
4338 .type = ARM_CP_CONST, .resetvalue = 0 },
4339 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4340 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4341 .access = PL1_RW, .accessfn = access_tvm_trvm,
4342 .type = ARM_CP_CONST, .resetvalue = 0 },
4343 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4344 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4345 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4346 offsetof(CPUARMState, cp15.par_ns)} },
4347 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4348 .access = PL1_RW, .accessfn = access_tvm_trvm,
4349 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4350 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4351 offsetof(CPUARMState, cp15.ttbr0_ns) },
4352 .writefn = vmsa_ttbr_write, },
4353 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4354 .access = PL1_RW, .accessfn = access_tvm_trvm,
4355 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4356 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4357 offsetof(CPUARMState, cp15.ttbr1_ns) },
4358 .writefn = vmsa_ttbr_write, },
4359 REGINFO_SENTINEL
4362 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4364 return vfp_get_fpcr(env);
4367 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368 uint64_t value)
4370 vfp_set_fpcr(env, value);
4373 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4375 return vfp_get_fpsr(env);
4378 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4379 uint64_t value)
4381 vfp_set_fpsr(env, value);
4384 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4385 bool isread)
4387 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4388 return CP_ACCESS_TRAP;
4390 return CP_ACCESS_OK;
4393 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394 uint64_t value)
4396 env->daif = value & PSTATE_DAIF;
4399 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4401 return env->pstate & PSTATE_PAN;
4404 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405 uint64_t value)
4407 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4410 static const ARMCPRegInfo pan_reginfo = {
4411 .name = "PAN", .state = ARM_CP_STATE_AA64,
4412 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4413 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4414 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4417 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4419 return env->pstate & PSTATE_UAO;
4422 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423 uint64_t value)
4425 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4428 static const ARMCPRegInfo uao_reginfo = {
4429 .name = "UAO", .state = ARM_CP_STATE_AA64,
4430 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4431 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4432 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4435 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4437 return env->pstate & PSTATE_DIT;
4440 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4441 uint64_t value)
4443 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4446 static const ARMCPRegInfo dit_reginfo = {
4447 .name = "DIT", .state = ARM_CP_STATE_AA64,
4448 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4449 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4450 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4453 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4455 return env->pstate & PSTATE_SSBS;
4458 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4459 uint64_t value)
4461 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4464 static const ARMCPRegInfo ssbs_reginfo = {
4465 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4466 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4467 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4468 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4471 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4472 const ARMCPRegInfo *ri,
4473 bool isread)
4475 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4476 switch (arm_current_el(env)) {
4477 case 0:
4478 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4479 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4480 return CP_ACCESS_TRAP;
4482 /* fall through */
4483 case 1:
4484 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4485 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4486 return CP_ACCESS_TRAP_EL2;
4488 break;
4490 return CP_ACCESS_OK;
4493 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4494 const ARMCPRegInfo *ri,
4495 bool isread)
4497 /* Cache invalidate/clean to Point of Unification... */
4498 switch (arm_current_el(env)) {
4499 case 0:
4500 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4501 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4502 return CP_ACCESS_TRAP;
4504 /* fall through */
4505 case 1:
4506 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4507 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4508 return CP_ACCESS_TRAP_EL2;
4510 break;
4512 return CP_ACCESS_OK;
4515 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4516 * Page D4-1736 (DDI0487A.b)
4519 static int vae1_tlbmask(CPUARMState *env)
4521 uint64_t hcr = arm_hcr_el2_eff(env);
4522 uint16_t mask;
4524 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4525 mask = ARMMMUIdxBit_E20_2 |
4526 ARMMMUIdxBit_E20_2_PAN |
4527 ARMMMUIdxBit_E20_0;
4528 } else {
4529 mask = ARMMMUIdxBit_E10_1 |
4530 ARMMMUIdxBit_E10_1_PAN |
4531 ARMMMUIdxBit_E10_0;
4534 if (arm_is_secure_below_el3(env)) {
4535 mask >>= ARM_MMU_IDX_A_NS;
4538 return mask;
4541 /* Return 56 if TBI is enabled, 64 otherwise. */
4542 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4543 uint64_t addr)
4545 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4546 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4547 int select = extract64(addr, 55, 1);
4549 return (tbi >> select) & 1 ? 56 : 64;
4552 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4554 uint64_t hcr = arm_hcr_el2_eff(env);
4555 ARMMMUIdx mmu_idx;
4557 /* Only the regime of the mmu_idx below is significant. */
4558 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4559 mmu_idx = ARMMMUIdx_E20_0;
4560 } else {
4561 mmu_idx = ARMMMUIdx_E10_0;
4564 if (arm_is_secure_below_el3(env)) {
4565 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4568 return tlbbits_for_regime(env, mmu_idx, addr);
4571 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4572 uint64_t value)
4574 CPUState *cs = env_cpu(env);
4575 int mask = vae1_tlbmask(env);
4577 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4580 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4581 uint64_t value)
4583 CPUState *cs = env_cpu(env);
4584 int mask = vae1_tlbmask(env);
4586 if (tlb_force_broadcast(env)) {
4587 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4588 } else {
4589 tlb_flush_by_mmuidx(cs, mask);
4593 static int alle1_tlbmask(CPUARMState *env)
4596 * Note that the 'ALL' scope must invalidate both stage 1 and
4597 * stage 2 translations, whereas most other scopes only invalidate
4598 * stage 1 translations.
4600 if (arm_is_secure_below_el3(env)) {
4601 return ARMMMUIdxBit_SE10_1 |
4602 ARMMMUIdxBit_SE10_1_PAN |
4603 ARMMMUIdxBit_SE10_0;
4604 } else {
4605 return ARMMMUIdxBit_E10_1 |
4606 ARMMMUIdxBit_E10_1_PAN |
4607 ARMMMUIdxBit_E10_0;
4611 static int e2_tlbmask(CPUARMState *env)
4613 if (arm_is_secure_below_el3(env)) {
4614 return ARMMMUIdxBit_SE20_0 |
4615 ARMMMUIdxBit_SE20_2 |
4616 ARMMMUIdxBit_SE20_2_PAN |
4617 ARMMMUIdxBit_SE2;
4618 } else {
4619 return ARMMMUIdxBit_E20_0 |
4620 ARMMMUIdxBit_E20_2 |
4621 ARMMMUIdxBit_E20_2_PAN |
4622 ARMMMUIdxBit_E2;
4626 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4627 uint64_t value)
4629 CPUState *cs = env_cpu(env);
4630 int mask = alle1_tlbmask(env);
4632 tlb_flush_by_mmuidx(cs, mask);
4635 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4636 uint64_t value)
4638 CPUState *cs = env_cpu(env);
4639 int mask = e2_tlbmask(env);
4641 tlb_flush_by_mmuidx(cs, mask);
4644 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4645 uint64_t value)
4647 ARMCPU *cpu = env_archcpu(env);
4648 CPUState *cs = CPU(cpu);
4650 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4653 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4654 uint64_t value)
4656 CPUState *cs = env_cpu(env);
4657 int mask = alle1_tlbmask(env);
4659 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4662 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4663 uint64_t value)
4665 CPUState *cs = env_cpu(env);
4666 int mask = e2_tlbmask(env);
4668 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4671 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4672 uint64_t value)
4674 CPUState *cs = env_cpu(env);
4676 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4679 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680 uint64_t value)
4682 /* Invalidate by VA, EL2
4683 * Currently handles both VAE2 and VALE2, since we don't support
4684 * flush-last-level-only.
4686 CPUState *cs = env_cpu(env);
4687 int mask = e2_tlbmask(env);
4688 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4690 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4693 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4694 uint64_t value)
4696 /* Invalidate by VA, EL3
4697 * Currently handles both VAE3 and VALE3, since we don't support
4698 * flush-last-level-only.
4700 ARMCPU *cpu = env_archcpu(env);
4701 CPUState *cs = CPU(cpu);
4702 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4704 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4707 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4708 uint64_t value)
4710 CPUState *cs = env_cpu(env);
4711 int mask = vae1_tlbmask(env);
4712 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4713 int bits = vae1_tlbbits(env, pageaddr);
4715 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4718 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719 uint64_t value)
4721 /* Invalidate by VA, EL1&0 (AArch64 version).
4722 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4723 * since we don't support flush-for-specific-ASID-only or
4724 * flush-last-level-only.
4726 CPUState *cs = env_cpu(env);
4727 int mask = vae1_tlbmask(env);
4728 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4729 int bits = vae1_tlbbits(env, pageaddr);
4731 if (tlb_force_broadcast(env)) {
4732 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4733 } else {
4734 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4738 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4739 uint64_t value)
4741 CPUState *cs = env_cpu(env);
4742 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4743 bool secure = arm_is_secure_below_el3(env);
4744 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4745 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4746 pageaddr);
4748 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4751 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4752 uint64_t value)
4754 CPUState *cs = env_cpu(env);
4755 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4756 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4758 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4759 ARMMMUIdxBit_SE3, bits);
4762 #ifdef TARGET_AARCH64
4763 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4764 uint64_t value)
4766 unsigned int page_shift;
4767 unsigned int page_size_granule;
4768 uint64_t num;
4769 uint64_t scale;
4770 uint64_t exponent;
4771 uint64_t length;
4773 num = extract64(value, 39, 4);
4774 scale = extract64(value, 44, 2);
4775 page_size_granule = extract64(value, 46, 2);
4777 page_shift = page_size_granule * 2 + 12;
4779 if (page_size_granule == 0) {
4780 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4781 page_size_granule);
4782 return 0;
4785 exponent = (5 * scale) + 1;
4786 length = (num + 1) << (exponent + page_shift);
4788 return length;
4791 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4792 bool two_ranges)
4794 /* TODO: ARMv8.7 FEAT_LPA2 */
4795 uint64_t pageaddr;
4797 if (two_ranges) {
4798 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4799 } else {
4800 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4803 return pageaddr;
4806 static void do_rvae_write(CPUARMState *env, uint64_t value,
4807 int idxmap, bool synced)
4809 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4810 bool two_ranges = regime_has_2_ranges(one_idx);
4811 uint64_t baseaddr, length;
4812 int bits;
4814 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4815 length = tlbi_aa64_range_get_length(env, value);
4816 bits = tlbbits_for_regime(env, one_idx, baseaddr);
4818 if (synced) {
4819 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4820 baseaddr,
4821 length,
4822 idxmap,
4823 bits);
4824 } else {
4825 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4826 length, idxmap, bits);
4830 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4831 const ARMCPRegInfo *ri,
4832 uint64_t value)
4835 * Invalidate by VA range, EL1&0.
4836 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4837 * since we don't support flush-for-specific-ASID-only or
4838 * flush-last-level-only.
4841 do_rvae_write(env, value, vae1_tlbmask(env),
4842 tlb_force_broadcast(env));
4845 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4846 const ARMCPRegInfo *ri,
4847 uint64_t value)
4850 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4851 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4852 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4853 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4854 * shareable specific flushes.
4857 do_rvae_write(env, value, vae1_tlbmask(env), true);
4860 static int vae2_tlbmask(CPUARMState *env)
4862 return (arm_is_secure_below_el3(env)
4863 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4866 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4867 const ARMCPRegInfo *ri,
4868 uint64_t value)
4871 * Invalidate by VA range, EL2.
4872 * Currently handles all of RVAE2 and RVALE2,
4873 * since we don't support flush-for-specific-ASID-only or
4874 * flush-last-level-only.
4877 do_rvae_write(env, value, vae2_tlbmask(env),
4878 tlb_force_broadcast(env));
4883 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4884 const ARMCPRegInfo *ri,
4885 uint64_t value)
4888 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4889 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4890 * since we don't support flush-for-specific-ASID-only,
4891 * flush-last-level-only or inner/outer shareable specific flushes.
4894 do_rvae_write(env, value, vae2_tlbmask(env), true);
4898 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4899 const ARMCPRegInfo *ri,
4900 uint64_t value)
4903 * Invalidate by VA range, EL3.
4904 * Currently handles all of RVAE3 and RVALE3,
4905 * since we don't support flush-for-specific-ASID-only or
4906 * flush-last-level-only.
4909 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4910 tlb_force_broadcast(env));
4913 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4914 const ARMCPRegInfo *ri,
4915 uint64_t value)
4918 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4919 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4920 * since we don't support flush-for-specific-ASID-only,
4921 * flush-last-level-only or inner/outer specific flushes.
4924 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4926 #endif
4928 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4929 bool isread)
4931 int cur_el = arm_current_el(env);
4933 if (cur_el < 2) {
4934 uint64_t hcr = arm_hcr_el2_eff(env);
4936 if (cur_el == 0) {
4937 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4938 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4939 return CP_ACCESS_TRAP_EL2;
4941 } else {
4942 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4943 return CP_ACCESS_TRAP;
4945 if (hcr & HCR_TDZ) {
4946 return CP_ACCESS_TRAP_EL2;
4949 } else if (hcr & HCR_TDZ) {
4950 return CP_ACCESS_TRAP_EL2;
4953 return CP_ACCESS_OK;
4956 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4958 ARMCPU *cpu = env_archcpu(env);
4959 int dzp_bit = 1 << 4;
4961 /* DZP indicates whether DC ZVA access is allowed */
4962 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4963 dzp_bit = 0;
4965 return cpu->dcz_blocksize | dzp_bit;
4968 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4969 bool isread)
4971 if (!(env->pstate & PSTATE_SP)) {
4972 /* Access to SP_EL0 is undefined if it's being used as
4973 * the stack pointer.
4975 return CP_ACCESS_TRAP_UNCATEGORIZED;
4977 return CP_ACCESS_OK;
4980 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4982 return env->pstate & PSTATE_SP;
4985 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4987 update_spsel(env, val);
4990 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4991 uint64_t value)
4993 ARMCPU *cpu = env_archcpu(env);
4995 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4996 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4997 value &= ~SCTLR_M;
5000 /* ??? Lots of these bits are not implemented. */
5002 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5003 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5004 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5005 } else {
5006 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5007 SCTLR_ATA0 | SCTLR_ATA);
5011 if (raw_read(env, ri) == value) {
5012 /* Skip the TLB flush if nothing actually changed; Linux likes
5013 * to do a lot of pointless SCTLR writes.
5015 return;
5018 raw_write(env, ri, value);
5020 /* This may enable/disable the MMU, so do a TLB flush. */
5021 tlb_flush(CPU(cpu));
5023 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5025 * Normally we would always end the TB on an SCTLR write; see the
5026 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5027 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5028 * of hflags from the translator, so do it here.
5030 arm_rebuild_hflags(env);
5034 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
5035 bool isread)
5037 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
5038 return CP_ACCESS_TRAP_FP_EL2;
5040 if (env->cp15.cptr_el[3] & CPTR_TFP) {
5041 return CP_ACCESS_TRAP_FP_EL3;
5043 return CP_ACCESS_OK;
5046 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5047 uint64_t value)
5049 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
5052 static const ARMCPRegInfo v8_cp_reginfo[] = {
5053 /* Minimal set of EL0-visible registers. This will need to be expanded
5054 * significantly for system emulation of AArch64 CPUs.
5056 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5057 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5058 .access = PL0_RW, .type = ARM_CP_NZCV },
5059 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5060 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5061 .type = ARM_CP_NO_RAW,
5062 .access = PL0_RW, .accessfn = aa64_daif_access,
5063 .fieldoffset = offsetof(CPUARMState, daif),
5064 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5065 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5066 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5067 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5068 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5069 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5070 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5071 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5072 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5073 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5074 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5075 .access = PL0_R, .type = ARM_CP_NO_RAW,
5076 .readfn = aa64_dczid_read },
5077 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5078 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5079 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5080 #ifndef CONFIG_USER_ONLY
5081 /* Avoid overhead of an access check that always passes in user-mode */
5082 .accessfn = aa64_zva_access,
5083 #endif
5085 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5086 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5087 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5088 /* Cache ops: all NOPs since we don't emulate caches */
5089 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5090 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5091 .access = PL1_W, .type = ARM_CP_NOP,
5092 .accessfn = aa64_cacheop_pou_access },
5093 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5095 .access = PL1_W, .type = ARM_CP_NOP,
5096 .accessfn = aa64_cacheop_pou_access },
5097 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5098 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5099 .access = PL0_W, .type = ARM_CP_NOP,
5100 .accessfn = aa64_cacheop_pou_access },
5101 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5102 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5103 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5104 .type = ARM_CP_NOP },
5105 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5106 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5107 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5108 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5109 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5110 .access = PL0_W, .type = ARM_CP_NOP,
5111 .accessfn = aa64_cacheop_poc_access },
5112 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5113 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5114 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5115 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5116 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5117 .access = PL0_W, .type = ARM_CP_NOP,
5118 .accessfn = aa64_cacheop_pou_access },
5119 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5120 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5121 .access = PL0_W, .type = ARM_CP_NOP,
5122 .accessfn = aa64_cacheop_poc_access },
5123 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5124 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5125 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5126 /* TLBI operations */
5127 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5128 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5129 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5130 .writefn = tlbi_aa64_vmalle1is_write },
5131 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5132 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5133 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5134 .writefn = tlbi_aa64_vae1is_write },
5135 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5136 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5137 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5138 .writefn = tlbi_aa64_vmalle1is_write },
5139 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5140 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5141 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5142 .writefn = tlbi_aa64_vae1is_write },
5143 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5144 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5145 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5146 .writefn = tlbi_aa64_vae1is_write },
5147 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5148 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5149 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5150 .writefn = tlbi_aa64_vae1is_write },
5151 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5152 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5153 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5154 .writefn = tlbi_aa64_vmalle1_write },
5155 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5156 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5157 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5158 .writefn = tlbi_aa64_vae1_write },
5159 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5160 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5161 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5162 .writefn = tlbi_aa64_vmalle1_write },
5163 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5164 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5165 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5166 .writefn = tlbi_aa64_vae1_write },
5167 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5168 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5169 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5170 .writefn = tlbi_aa64_vae1_write },
5171 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5172 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5173 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5174 .writefn = tlbi_aa64_vae1_write },
5175 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5176 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5177 .access = PL2_W, .type = ARM_CP_NOP },
5178 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5179 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5180 .access = PL2_W, .type = ARM_CP_NOP },
5181 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5182 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5183 .access = PL2_W, .type = ARM_CP_NO_RAW,
5184 .writefn = tlbi_aa64_alle1is_write },
5185 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5186 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5187 .access = PL2_W, .type = ARM_CP_NO_RAW,
5188 .writefn = tlbi_aa64_alle1is_write },
5189 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5190 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5191 .access = PL2_W, .type = ARM_CP_NOP },
5192 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5194 .access = PL2_W, .type = ARM_CP_NOP },
5195 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5197 .access = PL2_W, .type = ARM_CP_NO_RAW,
5198 .writefn = tlbi_aa64_alle1_write },
5199 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5200 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5201 .access = PL2_W, .type = ARM_CP_NO_RAW,
5202 .writefn = tlbi_aa64_alle1is_write },
5203 #ifndef CONFIG_USER_ONLY
5204 /* 64 bit address translation operations */
5205 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5206 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5207 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5208 .writefn = ats_write64 },
5209 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5210 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5211 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5212 .writefn = ats_write64 },
5213 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5214 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5215 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5216 .writefn = ats_write64 },
5217 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5218 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5219 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5220 .writefn = ats_write64 },
5221 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5222 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5223 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5224 .writefn = ats_write64 },
5225 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5226 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5227 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5228 .writefn = ats_write64 },
5229 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5230 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5231 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5232 .writefn = ats_write64 },
5233 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5234 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5235 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5236 .writefn = ats_write64 },
5237 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5238 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5239 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5240 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5241 .writefn = ats_write64 },
5242 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5243 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5244 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5245 .writefn = ats_write64 },
5246 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5247 .type = ARM_CP_ALIAS,
5248 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5249 .access = PL1_RW, .resetvalue = 0,
5250 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5251 .writefn = par_write },
5252 #endif
5253 /* TLB invalidate last level of translation table walk */
5254 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5255 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5256 .writefn = tlbimva_is_write },
5257 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5258 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5259 .writefn = tlbimvaa_is_write },
5260 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5261 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5262 .writefn = tlbimva_write },
5263 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5264 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5265 .writefn = tlbimvaa_write },
5266 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5267 .type = ARM_CP_NO_RAW, .access = PL2_W,
5268 .writefn = tlbimva_hyp_write },
5269 { .name = "TLBIMVALHIS",
5270 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5271 .type = ARM_CP_NO_RAW, .access = PL2_W,
5272 .writefn = tlbimva_hyp_is_write },
5273 { .name = "TLBIIPAS2",
5274 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5275 .type = ARM_CP_NOP, .access = PL2_W },
5276 { .name = "TLBIIPAS2IS",
5277 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5278 .type = ARM_CP_NOP, .access = PL2_W },
5279 { .name = "TLBIIPAS2L",
5280 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5281 .type = ARM_CP_NOP, .access = PL2_W },
5282 { .name = "TLBIIPAS2LIS",
5283 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5284 .type = ARM_CP_NOP, .access = PL2_W },
5285 /* 32 bit cache operations */
5286 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5287 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5288 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5289 .type = ARM_CP_NOP, .access = PL1_W },
5290 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5291 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5292 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5293 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5294 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5295 .type = ARM_CP_NOP, .access = PL1_W },
5296 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5297 .type = ARM_CP_NOP, .access = PL1_W },
5298 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5299 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5300 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5301 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5302 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5303 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5304 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5305 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5306 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5307 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5308 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5309 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5310 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5311 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5312 /* MMU Domain access control / MPU write buffer control */
5313 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5314 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5315 .writefn = dacr_write, .raw_writefn = raw_write,
5316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5317 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5318 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5319 .type = ARM_CP_ALIAS,
5320 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5321 .access = PL1_RW,
5322 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5323 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5324 .type = ARM_CP_ALIAS,
5325 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5326 .access = PL1_RW,
5327 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5328 /* We rely on the access checks not allowing the guest to write to the
5329 * state field when SPSel indicates that it's being used as the stack
5330 * pointer.
5332 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5333 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5334 .access = PL1_RW, .accessfn = sp_el0_access,
5335 .type = ARM_CP_ALIAS,
5336 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5337 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5338 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5339 .access = PL2_RW, .type = ARM_CP_ALIAS,
5340 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5341 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5342 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5343 .type = ARM_CP_NO_RAW,
5344 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5345 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5346 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5347 .type = ARM_CP_ALIAS,
5348 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5349 .access = PL2_RW, .accessfn = fpexc32_access },
5350 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5351 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5352 .access = PL2_RW, .resetvalue = 0,
5353 .writefn = dacr_write, .raw_writefn = raw_write,
5354 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5355 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5356 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5357 .access = PL2_RW, .resetvalue = 0,
5358 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5359 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5360 .type = ARM_CP_ALIAS,
5361 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5362 .access = PL2_RW,
5363 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5364 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5365 .type = ARM_CP_ALIAS,
5366 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5367 .access = PL2_RW,
5368 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5369 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5370 .type = ARM_CP_ALIAS,
5371 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5372 .access = PL2_RW,
5373 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5374 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5375 .type = ARM_CP_ALIAS,
5376 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5377 .access = PL2_RW,
5378 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5379 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5380 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5381 .resetvalue = 0,
5382 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5383 { .name = "SDCR", .type = ARM_CP_ALIAS,
5384 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5385 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5386 .writefn = sdcr_write,
5387 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5388 REGINFO_SENTINEL
5391 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5392 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5393 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5394 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5395 .access = PL2_RW,
5396 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5397 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5398 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5399 .access = PL2_RW,
5400 .type = ARM_CP_CONST, .resetvalue = 0 },
5401 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5402 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5403 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5404 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5405 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5406 .access = PL2_RW,
5407 .type = ARM_CP_CONST, .resetvalue = 0 },
5408 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5409 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5410 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5411 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5412 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5413 .access = PL2_RW, .type = ARM_CP_CONST,
5414 .resetvalue = 0 },
5415 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5416 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5417 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5418 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5419 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5420 .access = PL2_RW, .type = ARM_CP_CONST,
5421 .resetvalue = 0 },
5422 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5423 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5424 .access = PL2_RW, .type = ARM_CP_CONST,
5425 .resetvalue = 0 },
5426 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5427 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5428 .access = PL2_RW, .type = ARM_CP_CONST,
5429 .resetvalue = 0 },
5430 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5431 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5432 .access = PL2_RW, .type = ARM_CP_CONST,
5433 .resetvalue = 0 },
5434 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5435 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5436 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5437 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5438 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5439 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5440 .type = ARM_CP_CONST, .resetvalue = 0 },
5441 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5442 .cp = 15, .opc1 = 6, .crm = 2,
5443 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5444 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5445 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5446 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5447 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5448 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5449 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5450 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5451 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5452 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5453 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5455 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5456 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5457 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5458 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5459 .resetvalue = 0 },
5460 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5461 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5462 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5463 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5464 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5465 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5466 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5467 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5468 .resetvalue = 0 },
5469 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5470 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5471 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5472 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5473 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5474 .resetvalue = 0 },
5475 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5476 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5477 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5478 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5479 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5480 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5481 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5482 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5483 .access = PL2_RW, .accessfn = access_tda,
5484 .type = ARM_CP_CONST, .resetvalue = 0 },
5485 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5486 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5487 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5488 .type = ARM_CP_CONST, .resetvalue = 0 },
5489 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5490 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5491 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5492 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5493 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5494 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5495 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5496 .type = ARM_CP_CONST,
5497 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5498 .access = PL2_RW, .resetvalue = 0 },
5499 REGINFO_SENTINEL
5502 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5503 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5504 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5505 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5506 .access = PL2_RW,
5507 .type = ARM_CP_CONST, .resetvalue = 0 },
5508 REGINFO_SENTINEL
5511 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5513 ARMCPU *cpu = env_archcpu(env);
5515 if (arm_feature(env, ARM_FEATURE_V8)) {
5516 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5517 } else {
5518 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5521 if (arm_feature(env, ARM_FEATURE_EL3)) {
5522 valid_mask &= ~HCR_HCD;
5523 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5524 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5525 * However, if we're using the SMC PSCI conduit then QEMU is
5526 * effectively acting like EL3 firmware and so the guest at
5527 * EL2 should retain the ability to prevent EL1 from being
5528 * able to make SMC calls into the ersatz firmware, so in
5529 * that case HCR.TSC should be read/write.
5531 valid_mask &= ~HCR_TSC;
5534 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5535 if (cpu_isar_feature(aa64_vh, cpu)) {
5536 valid_mask |= HCR_E2H;
5538 if (cpu_isar_feature(aa64_lor, cpu)) {
5539 valid_mask |= HCR_TLOR;
5541 if (cpu_isar_feature(aa64_pauth, cpu)) {
5542 valid_mask |= HCR_API | HCR_APK;
5544 if (cpu_isar_feature(aa64_mte, cpu)) {
5545 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5549 /* Clear RES0 bits. */
5550 value &= valid_mask;
5553 * These bits change the MMU setup:
5554 * HCR_VM enables stage 2 translation
5555 * HCR_PTW forbids certain page-table setups
5556 * HCR_DC disables stage1 and enables stage2 translation
5557 * HCR_DCT enables tagging on (disabled) stage1 translation
5559 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5560 tlb_flush(CPU(cpu));
5562 env->cp15.hcr_el2 = value;
5565 * Updates to VI and VF require us to update the status of
5566 * virtual interrupts, which are the logical OR of these bits
5567 * and the state of the input lines from the GIC. (This requires
5568 * that we have the iothread lock, which is done by marking the
5569 * reginfo structs as ARM_CP_IO.)
5570 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5571 * possible for it to be taken immediately, because VIRQ and
5572 * VFIQ are masked unless running at EL0 or EL1, and HCR
5573 * can only be written at EL2.
5575 g_assert(qemu_mutex_iothread_locked());
5576 arm_cpu_update_virq(cpu);
5577 arm_cpu_update_vfiq(cpu);
5580 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5582 do_hcr_write(env, value, 0);
5585 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5586 uint64_t value)
5588 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5589 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5590 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5593 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5594 uint64_t value)
5596 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5597 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5598 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5602 * Return the effective value of HCR_EL2.
5603 * Bits that are not included here:
5604 * RW (read from SCR_EL3.RW as needed)
5606 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5608 uint64_t ret = env->cp15.hcr_el2;
5610 if (!arm_is_el2_enabled(env)) {
5612 * "This register has no effect if EL2 is not enabled in the
5613 * current Security state". This is ARMv8.4-SecEL2 speak for
5614 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5616 * Prior to that, the language was "In an implementation that
5617 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5618 * as if this field is 0 for all purposes other than a direct
5619 * read or write access of HCR_EL2". With lots of enumeration
5620 * on a per-field basis. In current QEMU, this is condition
5621 * is arm_is_secure_below_el3.
5623 * Since the v8.4 language applies to the entire register, and
5624 * appears to be backward compatible, use that.
5626 return 0;
5630 * For a cpu that supports both aarch64 and aarch32, we can set bits
5631 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5632 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5634 if (!arm_el_is_aa64(env, 2)) {
5635 uint64_t aa32_valid;
5638 * These bits are up-to-date as of ARMv8.6.
5639 * For HCR, it's easiest to list just the 2 bits that are invalid.
5640 * For HCR2, list those that are valid.
5642 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5643 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5644 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5645 ret &= aa32_valid;
5648 if (ret & HCR_TGE) {
5649 /* These bits are up-to-date as of ARMv8.6. */
5650 if (ret & HCR_E2H) {
5651 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5652 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5653 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5654 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5655 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5656 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5657 } else {
5658 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5660 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5661 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5662 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5663 HCR_TLOR);
5666 return ret;
5669 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5670 uint64_t value)
5673 * For A-profile AArch32 EL3, if NSACR.CP10
5674 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5676 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5677 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5678 value &= ~(0x3 << 10);
5679 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5681 env->cp15.cptr_el[2] = value;
5684 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5687 * For A-profile AArch32 EL3, if NSACR.CP10
5688 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5690 uint64_t value = env->cp15.cptr_el[2];
5692 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5693 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5694 value |= 0x3 << 10;
5696 return value;
5699 static const ARMCPRegInfo el2_cp_reginfo[] = {
5700 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5701 .type = ARM_CP_IO,
5702 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5703 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5704 .writefn = hcr_write },
5705 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5706 .type = ARM_CP_ALIAS | ARM_CP_IO,
5707 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5708 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5709 .writefn = hcr_writelow },
5710 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5711 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5712 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5713 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5714 .type = ARM_CP_ALIAS,
5715 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5716 .access = PL2_RW,
5717 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5718 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5719 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5720 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5721 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5722 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5723 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5724 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5725 .type = ARM_CP_ALIAS,
5726 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5727 .access = PL2_RW,
5728 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5729 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5730 .type = ARM_CP_ALIAS,
5731 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5732 .access = PL2_RW,
5733 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5734 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5735 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5736 .access = PL2_RW, .writefn = vbar_write,
5737 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5738 .resetvalue = 0 },
5739 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5740 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5741 .access = PL3_RW, .type = ARM_CP_ALIAS,
5742 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5743 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5744 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5745 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5746 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5747 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5748 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5749 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5750 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5751 .resetvalue = 0 },
5752 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5753 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5754 .access = PL2_RW, .type = ARM_CP_ALIAS,
5755 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5756 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5757 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5758 .access = PL2_RW, .type = ARM_CP_CONST,
5759 .resetvalue = 0 },
5760 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5761 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5762 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5763 .access = PL2_RW, .type = ARM_CP_CONST,
5764 .resetvalue = 0 },
5765 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5766 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5767 .access = PL2_RW, .type = ARM_CP_CONST,
5768 .resetvalue = 0 },
5769 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5770 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5771 .access = PL2_RW, .type = ARM_CP_CONST,
5772 .resetvalue = 0 },
5773 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5774 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5775 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5776 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5777 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5778 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5779 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5780 .type = ARM_CP_ALIAS,
5781 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5782 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5783 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5784 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5785 .access = PL2_RW,
5786 /* no .writefn needed as this can't cause an ASID change;
5787 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5789 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5790 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5791 .cp = 15, .opc1 = 6, .crm = 2,
5792 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5793 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5794 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5795 .writefn = vttbr_write },
5796 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5798 .access = PL2_RW, .writefn = vttbr_write,
5799 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5800 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5801 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5802 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5803 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5804 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5805 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5806 .access = PL2_RW, .resetvalue = 0,
5807 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5808 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5809 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5810 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5811 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5812 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5813 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5814 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5815 { .name = "TLBIALLNSNH",
5816 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5817 .type = ARM_CP_NO_RAW, .access = PL2_W,
5818 .writefn = tlbiall_nsnh_write },
5819 { .name = "TLBIALLNSNHIS",
5820 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5821 .type = ARM_CP_NO_RAW, .access = PL2_W,
5822 .writefn = tlbiall_nsnh_is_write },
5823 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5824 .type = ARM_CP_NO_RAW, .access = PL2_W,
5825 .writefn = tlbiall_hyp_write },
5826 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5827 .type = ARM_CP_NO_RAW, .access = PL2_W,
5828 .writefn = tlbiall_hyp_is_write },
5829 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5830 .type = ARM_CP_NO_RAW, .access = PL2_W,
5831 .writefn = tlbimva_hyp_write },
5832 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5833 .type = ARM_CP_NO_RAW, .access = PL2_W,
5834 .writefn = tlbimva_hyp_is_write },
5835 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5836 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5837 .type = ARM_CP_NO_RAW, .access = PL2_W,
5838 .writefn = tlbi_aa64_alle2_write },
5839 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5840 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5841 .type = ARM_CP_NO_RAW, .access = PL2_W,
5842 .writefn = tlbi_aa64_vae2_write },
5843 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5844 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5845 .access = PL2_W, .type = ARM_CP_NO_RAW,
5846 .writefn = tlbi_aa64_vae2_write },
5847 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5848 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5849 .access = PL2_W, .type = ARM_CP_NO_RAW,
5850 .writefn = tlbi_aa64_alle2is_write },
5851 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5852 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5853 .type = ARM_CP_NO_RAW, .access = PL2_W,
5854 .writefn = tlbi_aa64_vae2is_write },
5855 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5856 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5857 .access = PL2_W, .type = ARM_CP_NO_RAW,
5858 .writefn = tlbi_aa64_vae2is_write },
5859 #ifndef CONFIG_USER_ONLY
5860 /* Unlike the other EL2-related AT operations, these must
5861 * UNDEF from EL3 if EL2 is not implemented, which is why we
5862 * define them here rather than with the rest of the AT ops.
5864 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5865 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5866 .access = PL2_W, .accessfn = at_s1e2_access,
5867 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5868 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5869 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5870 .access = PL2_W, .accessfn = at_s1e2_access,
5871 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5872 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5873 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5874 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5875 * to behave as if SCR.NS was 1.
5877 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5878 .access = PL2_W,
5879 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5880 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5881 .access = PL2_W,
5882 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5883 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5884 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5885 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5886 * reset values as IMPDEF. We choose to reset to 3 to comply with
5887 * both ARMv7 and ARMv8.
5889 .access = PL2_RW, .resetvalue = 3,
5890 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5891 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5892 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5893 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5894 .writefn = gt_cntvoff_write,
5895 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5896 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5897 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5898 .writefn = gt_cntvoff_write,
5899 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5900 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5901 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5902 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5903 .type = ARM_CP_IO, .access = PL2_RW,
5904 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5905 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5906 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5907 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5908 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5909 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5910 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5911 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5912 .resetfn = gt_hyp_timer_reset,
5913 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5914 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5915 .type = ARM_CP_IO,
5916 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5917 .access = PL2_RW,
5918 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5919 .resetvalue = 0,
5920 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5921 #endif
5922 /* The only field of MDCR_EL2 that has a defined architectural reset value
5923 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5925 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5926 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5927 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5928 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5929 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5930 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5931 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5932 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5933 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5934 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5935 .access = PL2_RW,
5936 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5937 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5938 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5939 .access = PL2_RW,
5940 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5941 REGINFO_SENTINEL
5944 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5945 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5946 .type = ARM_CP_ALIAS | ARM_CP_IO,
5947 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5948 .access = PL2_RW,
5949 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5950 .writefn = hcr_writehigh },
5951 REGINFO_SENTINEL
5954 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5955 bool isread)
5957 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5958 return CP_ACCESS_OK;
5960 return CP_ACCESS_TRAP_UNCATEGORIZED;
5963 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5964 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5965 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5966 .access = PL2_RW, .accessfn = sel2_access,
5967 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5968 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5969 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5970 .access = PL2_RW, .accessfn = sel2_access,
5971 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5972 REGINFO_SENTINEL
5975 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5976 bool isread)
5978 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5979 * At Secure EL1 it traps to EL3 or EL2.
5981 if (arm_current_el(env) == 3) {
5982 return CP_ACCESS_OK;
5984 if (arm_is_secure_below_el3(env)) {
5985 if (env->cp15.scr_el3 & SCR_EEL2) {
5986 return CP_ACCESS_TRAP_EL2;
5988 return CP_ACCESS_TRAP_EL3;
5990 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5991 if (isread) {
5992 return CP_ACCESS_OK;
5994 return CP_ACCESS_TRAP_UNCATEGORIZED;
5997 static const ARMCPRegInfo el3_cp_reginfo[] = {
5998 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5999 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6000 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6001 .resetfn = scr_reset, .writefn = scr_write },
6002 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6003 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6004 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6005 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6006 .writefn = scr_write },
6007 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6008 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6009 .access = PL3_RW, .resetvalue = 0,
6010 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6011 { .name = "SDER",
6012 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6013 .access = PL3_RW, .resetvalue = 0,
6014 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6015 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6016 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6017 .writefn = vbar_write, .resetvalue = 0,
6018 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6019 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6020 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6021 .access = PL3_RW, .resetvalue = 0,
6022 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6023 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6024 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6025 .access = PL3_RW,
6026 /* no .writefn needed as this can't cause an ASID change;
6027 * we must provide a .raw_writefn and .resetfn because we handle
6028 * reset and migration for the AArch32 TTBCR(S), which might be
6029 * using mask and base_mask.
6031 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
6032 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6033 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6034 .type = ARM_CP_ALIAS,
6035 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6036 .access = PL3_RW,
6037 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6038 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6039 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6040 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6041 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6042 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6043 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6044 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6045 .type = ARM_CP_ALIAS,
6046 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6047 .access = PL3_RW,
6048 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6049 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6050 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6051 .access = PL3_RW, .writefn = vbar_write,
6052 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6053 .resetvalue = 0 },
6054 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6055 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6056 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6057 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6058 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6059 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6060 .access = PL3_RW, .resetvalue = 0,
6061 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6062 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6063 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6064 .access = PL3_RW, .type = ARM_CP_CONST,
6065 .resetvalue = 0 },
6066 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6067 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6068 .access = PL3_RW, .type = ARM_CP_CONST,
6069 .resetvalue = 0 },
6070 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6071 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6072 .access = PL3_RW, .type = ARM_CP_CONST,
6073 .resetvalue = 0 },
6074 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6075 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6076 .access = PL3_W, .type = ARM_CP_NO_RAW,
6077 .writefn = tlbi_aa64_alle3is_write },
6078 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6079 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6080 .access = PL3_W, .type = ARM_CP_NO_RAW,
6081 .writefn = tlbi_aa64_vae3is_write },
6082 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6083 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6084 .access = PL3_W, .type = ARM_CP_NO_RAW,
6085 .writefn = tlbi_aa64_vae3is_write },
6086 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6087 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6088 .access = PL3_W, .type = ARM_CP_NO_RAW,
6089 .writefn = tlbi_aa64_alle3_write },
6090 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6091 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6092 .access = PL3_W, .type = ARM_CP_NO_RAW,
6093 .writefn = tlbi_aa64_vae3_write },
6094 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6095 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6096 .access = PL3_W, .type = ARM_CP_NO_RAW,
6097 .writefn = tlbi_aa64_vae3_write },
6098 REGINFO_SENTINEL
6101 #ifndef CONFIG_USER_ONLY
6102 /* Test if system register redirection is to occur in the current state. */
6103 static bool redirect_for_e2h(CPUARMState *env)
6105 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6108 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6110 CPReadFn *readfn;
6112 if (redirect_for_e2h(env)) {
6113 /* Switch to the saved EL2 version of the register. */
6114 ri = ri->opaque;
6115 readfn = ri->readfn;
6116 } else {
6117 readfn = ri->orig_readfn;
6119 if (readfn == NULL) {
6120 readfn = raw_read;
6122 return readfn(env, ri);
6125 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6126 uint64_t value)
6128 CPWriteFn *writefn;
6130 if (redirect_for_e2h(env)) {
6131 /* Switch to the saved EL2 version of the register. */
6132 ri = ri->opaque;
6133 writefn = ri->writefn;
6134 } else {
6135 writefn = ri->orig_writefn;
6137 if (writefn == NULL) {
6138 writefn = raw_write;
6140 writefn(env, ri, value);
6143 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6145 struct E2HAlias {
6146 uint32_t src_key, dst_key, new_key;
6147 const char *src_name, *dst_name, *new_name;
6148 bool (*feature)(const ARMISARegisters *id);
6151 #define K(op0, op1, crn, crm, op2) \
6152 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6154 static const struct E2HAlias aliases[] = {
6155 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6156 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6157 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6158 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6159 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6160 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6161 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6162 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6163 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6164 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6165 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6166 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6167 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6168 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6169 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6170 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6171 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6172 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6173 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6174 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6175 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6176 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6177 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6178 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6179 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6180 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6181 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6182 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6183 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6184 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6185 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6186 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6189 * Note that redirection of ZCR is mentioned in the description
6190 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6191 * not in the summary table.
6193 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6194 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6196 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6197 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6199 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6200 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6202 #undef K
6204 size_t i;
6206 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6207 const struct E2HAlias *a = &aliases[i];
6208 ARMCPRegInfo *src_reg, *dst_reg;
6210 if (a->feature && !a->feature(&cpu->isar)) {
6211 continue;
6214 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6215 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6216 g_assert(src_reg != NULL);
6217 g_assert(dst_reg != NULL);
6219 /* Cross-compare names to detect typos in the keys. */
6220 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6221 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6223 /* None of the core system registers use opaque; we will. */
6224 g_assert(src_reg->opaque == NULL);
6226 /* Create alias before redirection so we dup the right data. */
6227 if (a->new_key) {
6228 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6229 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6230 bool ok;
6232 new_reg->name = a->new_name;
6233 new_reg->type |= ARM_CP_ALIAS;
6234 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6235 new_reg->access &= PL2_RW | PL3_RW;
6237 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6238 g_assert(ok);
6241 src_reg->opaque = dst_reg;
6242 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6243 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6244 if (!src_reg->raw_readfn) {
6245 src_reg->raw_readfn = raw_read;
6247 if (!src_reg->raw_writefn) {
6248 src_reg->raw_writefn = raw_write;
6250 src_reg->readfn = el2_e2h_read;
6251 src_reg->writefn = el2_e2h_write;
6254 #endif
6256 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6257 bool isread)
6259 int cur_el = arm_current_el(env);
6261 if (cur_el < 2) {
6262 uint64_t hcr = arm_hcr_el2_eff(env);
6264 if (cur_el == 0) {
6265 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6266 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6267 return CP_ACCESS_TRAP_EL2;
6269 } else {
6270 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6271 return CP_ACCESS_TRAP;
6273 if (hcr & HCR_TID2) {
6274 return CP_ACCESS_TRAP_EL2;
6277 } else if (hcr & HCR_TID2) {
6278 return CP_ACCESS_TRAP_EL2;
6282 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6283 return CP_ACCESS_TRAP_EL2;
6286 return CP_ACCESS_OK;
6289 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6290 uint64_t value)
6292 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6293 * read via a bit in OSLSR_EL1.
6295 int oslock;
6297 if (ri->state == ARM_CP_STATE_AA32) {
6298 oslock = (value == 0xC5ACCE55);
6299 } else {
6300 oslock = value & 1;
6303 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6306 static const ARMCPRegInfo debug_cp_reginfo[] = {
6307 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6308 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6309 * unlike DBGDRAR it is never accessible from EL0.
6310 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6311 * accessor.
6313 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6314 .access = PL0_R, .accessfn = access_tdra,
6315 .type = ARM_CP_CONST, .resetvalue = 0 },
6316 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6317 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6318 .access = PL1_R, .accessfn = access_tdra,
6319 .type = ARM_CP_CONST, .resetvalue = 0 },
6320 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6321 .access = PL0_R, .accessfn = access_tdra,
6322 .type = ARM_CP_CONST, .resetvalue = 0 },
6323 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6324 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6325 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6326 .access = PL1_RW, .accessfn = access_tda,
6327 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6328 .resetvalue = 0 },
6329 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6330 * We don't implement the configurable EL0 access.
6332 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6333 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6334 .type = ARM_CP_ALIAS,
6335 .access = PL1_R, .accessfn = access_tda,
6336 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6337 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6338 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6339 .access = PL1_W, .type = ARM_CP_NO_RAW,
6340 .accessfn = access_tdosa,
6341 .writefn = oslar_write },
6342 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6343 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6344 .access = PL1_R, .resetvalue = 10,
6345 .accessfn = access_tdosa,
6346 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6347 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6348 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6349 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6350 .access = PL1_RW, .accessfn = access_tdosa,
6351 .type = ARM_CP_NOP },
6352 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6353 * implement vector catch debug events yet.
6355 { .name = "DBGVCR",
6356 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6357 .access = PL1_RW, .accessfn = access_tda,
6358 .type = ARM_CP_NOP },
6359 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6360 * to save and restore a 32-bit guest's DBGVCR)
6362 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6363 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6364 .access = PL2_RW, .accessfn = access_tda,
6365 .type = ARM_CP_NOP },
6366 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6367 * Channel but Linux may try to access this register. The 32-bit
6368 * alias is DBGDCCINT.
6370 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6371 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6372 .access = PL1_RW, .accessfn = access_tda,
6373 .type = ARM_CP_NOP },
6374 REGINFO_SENTINEL
6377 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6378 /* 64 bit access versions of the (dummy) debug registers */
6379 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6380 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6381 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6382 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6383 REGINFO_SENTINEL
6386 /* Return the exception level to which exceptions should be taken
6387 * via SVEAccessTrap. If an exception should be routed through
6388 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6389 * take care of raising that exception.
6390 * C.f. the ARM pseudocode function CheckSVEEnabled.
6392 int sve_exception_el(CPUARMState *env, int el)
6394 #ifndef CONFIG_USER_ONLY
6395 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6397 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6398 bool disabled = false;
6400 /* The CPACR.ZEN controls traps to EL1:
6401 * 0, 2 : trap EL0 and EL1 accesses
6402 * 1 : trap only EL0 accesses
6403 * 3 : trap no accesses
6405 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6406 disabled = true;
6407 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6408 disabled = el == 0;
6410 if (disabled) {
6411 /* route_to_el2 */
6412 return hcr_el2 & HCR_TGE ? 2 : 1;
6415 /* Check CPACR.FPEN. */
6416 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6417 disabled = true;
6418 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6419 disabled = el == 0;
6421 if (disabled) {
6422 return 0;
6426 /* CPTR_EL2. Since TZ and TFP are positive,
6427 * they will be zero when EL2 is not present.
6429 if (el <= 2 && arm_is_el2_enabled(env)) {
6430 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6431 return 2;
6433 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6434 return 0;
6438 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6439 if (arm_feature(env, ARM_FEATURE_EL3)
6440 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6441 return 3;
6443 #endif
6444 return 0;
6447 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6449 uint32_t end_len;
6451 end_len = start_len &= 0xf;
6452 if (!test_bit(start_len, cpu->sve_vq_map)) {
6453 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6454 assert(end_len < start_len);
6456 return end_len;
6460 * Given that SVE is enabled, return the vector length for EL.
6462 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6464 ARMCPU *cpu = env_archcpu(env);
6465 uint32_t zcr_len = cpu->sve_max_vq - 1;
6467 if (el <= 1) {
6468 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6470 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6471 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6473 if (arm_feature(env, ARM_FEATURE_EL3)) {
6474 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6477 return sve_zcr_get_valid_len(cpu, zcr_len);
6480 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6481 uint64_t value)
6483 int cur_el = arm_current_el(env);
6484 int old_len = sve_zcr_len_for_el(env, cur_el);
6485 int new_len;
6487 /* Bits other than [3:0] are RAZ/WI. */
6488 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6489 raw_write(env, ri, value & 0xf);
6492 * Because we arrived here, we know both FP and SVE are enabled;
6493 * otherwise we would have trapped access to the ZCR_ELn register.
6495 new_len = sve_zcr_len_for_el(env, cur_el);
6496 if (new_len < old_len) {
6497 aarch64_sve_narrow_vq(env, new_len + 1);
6501 static const ARMCPRegInfo zcr_el1_reginfo = {
6502 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6503 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6504 .access = PL1_RW, .type = ARM_CP_SVE,
6505 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6506 .writefn = zcr_write, .raw_writefn = raw_write
6509 static const ARMCPRegInfo zcr_el2_reginfo = {
6510 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6511 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6512 .access = PL2_RW, .type = ARM_CP_SVE,
6513 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6514 .writefn = zcr_write, .raw_writefn = raw_write
6517 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6518 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6519 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6520 .access = PL2_RW, .type = ARM_CP_SVE,
6521 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6524 static const ARMCPRegInfo zcr_el3_reginfo = {
6525 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6526 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6527 .access = PL3_RW, .type = ARM_CP_SVE,
6528 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6529 .writefn = zcr_write, .raw_writefn = raw_write
6532 void hw_watchpoint_update(ARMCPU *cpu, int n)
6534 CPUARMState *env = &cpu->env;
6535 vaddr len = 0;
6536 vaddr wvr = env->cp15.dbgwvr[n];
6537 uint64_t wcr = env->cp15.dbgwcr[n];
6538 int mask;
6539 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6541 if (env->cpu_watchpoint[n]) {
6542 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6543 env->cpu_watchpoint[n] = NULL;
6546 if (!extract64(wcr, 0, 1)) {
6547 /* E bit clear : watchpoint disabled */
6548 return;
6551 switch (extract64(wcr, 3, 2)) {
6552 case 0:
6553 /* LSC 00 is reserved and must behave as if the wp is disabled */
6554 return;
6555 case 1:
6556 flags |= BP_MEM_READ;
6557 break;
6558 case 2:
6559 flags |= BP_MEM_WRITE;
6560 break;
6561 case 3:
6562 flags |= BP_MEM_ACCESS;
6563 break;
6566 /* Attempts to use both MASK and BAS fields simultaneously are
6567 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6568 * thus generating a watchpoint for every byte in the masked region.
6570 mask = extract64(wcr, 24, 4);
6571 if (mask == 1 || mask == 2) {
6572 /* Reserved values of MASK; we must act as if the mask value was
6573 * some non-reserved value, or as if the watchpoint were disabled.
6574 * We choose the latter.
6576 return;
6577 } else if (mask) {
6578 /* Watchpoint covers an aligned area up to 2GB in size */
6579 len = 1ULL << mask;
6580 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6581 * whether the watchpoint fires when the unmasked bits match; we opt
6582 * to generate the exceptions.
6584 wvr &= ~(len - 1);
6585 } else {
6586 /* Watchpoint covers bytes defined by the byte address select bits */
6587 int bas = extract64(wcr, 5, 8);
6588 int basstart;
6590 if (extract64(wvr, 2, 1)) {
6591 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6592 * ignored, and BAS[3:0] define which bytes to watch.
6594 bas &= 0xf;
6597 if (bas == 0) {
6598 /* This must act as if the watchpoint is disabled */
6599 return;
6602 /* The BAS bits are supposed to be programmed to indicate a contiguous
6603 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6604 * we fire for each byte in the word/doubleword addressed by the WVR.
6605 * We choose to ignore any non-zero bits after the first range of 1s.
6607 basstart = ctz32(bas);
6608 len = cto32(bas >> basstart);
6609 wvr += basstart;
6612 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6613 &env->cpu_watchpoint[n]);
6616 void hw_watchpoint_update_all(ARMCPU *cpu)
6618 int i;
6619 CPUARMState *env = &cpu->env;
6621 /* Completely clear out existing QEMU watchpoints and our array, to
6622 * avoid possible stale entries following migration load.
6624 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6625 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6627 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6628 hw_watchpoint_update(cpu, i);
6632 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6633 uint64_t value)
6635 ARMCPU *cpu = env_archcpu(env);
6636 int i = ri->crm;
6638 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6639 * register reads and behaves as if values written are sign extended.
6640 * Bits [1:0] are RES0.
6642 value = sextract64(value, 0, 49) & ~3ULL;
6644 raw_write(env, ri, value);
6645 hw_watchpoint_update(cpu, i);
6648 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6649 uint64_t value)
6651 ARMCPU *cpu = env_archcpu(env);
6652 int i = ri->crm;
6654 raw_write(env, ri, value);
6655 hw_watchpoint_update(cpu, i);
6658 void hw_breakpoint_update(ARMCPU *cpu, int n)
6660 CPUARMState *env = &cpu->env;
6661 uint64_t bvr = env->cp15.dbgbvr[n];
6662 uint64_t bcr = env->cp15.dbgbcr[n];
6663 vaddr addr;
6664 int bt;
6665 int flags = BP_CPU;
6667 if (env->cpu_breakpoint[n]) {
6668 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6669 env->cpu_breakpoint[n] = NULL;
6672 if (!extract64(bcr, 0, 1)) {
6673 /* E bit clear : watchpoint disabled */
6674 return;
6677 bt = extract64(bcr, 20, 4);
6679 switch (bt) {
6680 case 4: /* unlinked address mismatch (reserved if AArch64) */
6681 case 5: /* linked address mismatch (reserved if AArch64) */
6682 qemu_log_mask(LOG_UNIMP,
6683 "arm: address mismatch breakpoint types not implemented\n");
6684 return;
6685 case 0: /* unlinked address match */
6686 case 1: /* linked address match */
6688 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6689 * we behave as if the register was sign extended. Bits [1:0] are
6690 * RES0. The BAS field is used to allow setting breakpoints on 16
6691 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6692 * a bp will fire if the addresses covered by the bp and the addresses
6693 * covered by the insn overlap but the insn doesn't start at the
6694 * start of the bp address range. We choose to require the insn and
6695 * the bp to have the same address. The constraints on writing to
6696 * BAS enforced in dbgbcr_write mean we have only four cases:
6697 * 0b0000 => no breakpoint
6698 * 0b0011 => breakpoint on addr
6699 * 0b1100 => breakpoint on addr + 2
6700 * 0b1111 => breakpoint on addr
6701 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6703 int bas = extract64(bcr, 5, 4);
6704 addr = sextract64(bvr, 0, 49) & ~3ULL;
6705 if (bas == 0) {
6706 return;
6708 if (bas == 0xc) {
6709 addr += 2;
6711 break;
6713 case 2: /* unlinked context ID match */
6714 case 8: /* unlinked VMID match (reserved if no EL2) */
6715 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6716 qemu_log_mask(LOG_UNIMP,
6717 "arm: unlinked context breakpoint types not implemented\n");
6718 return;
6719 case 9: /* linked VMID match (reserved if no EL2) */
6720 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6721 case 3: /* linked context ID match */
6722 default:
6723 /* We must generate no events for Linked context matches (unless
6724 * they are linked to by some other bp/wp, which is handled in
6725 * updates for the linking bp/wp). We choose to also generate no events
6726 * for reserved values.
6728 return;
6731 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6734 void hw_breakpoint_update_all(ARMCPU *cpu)
6736 int i;
6737 CPUARMState *env = &cpu->env;
6739 /* Completely clear out existing QEMU breakpoints and our array, to
6740 * avoid possible stale entries following migration load.
6742 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6743 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6745 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6746 hw_breakpoint_update(cpu, i);
6750 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6751 uint64_t value)
6753 ARMCPU *cpu = env_archcpu(env);
6754 int i = ri->crm;
6756 raw_write(env, ri, value);
6757 hw_breakpoint_update(cpu, i);
6760 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6761 uint64_t value)
6763 ARMCPU *cpu = env_archcpu(env);
6764 int i = ri->crm;
6766 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6767 * copy of BAS[0].
6769 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6770 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6772 raw_write(env, ri, value);
6773 hw_breakpoint_update(cpu, i);
6776 static void define_debug_regs(ARMCPU *cpu)
6778 /* Define v7 and v8 architectural debug registers.
6779 * These are just dummy implementations for now.
6781 int i;
6782 int wrps, brps, ctx_cmps;
6785 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6786 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
6787 * the register must not exist for this cpu.
6789 if (cpu->isar.dbgdidr != 0) {
6790 ARMCPRegInfo dbgdidr = {
6791 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6792 .opc1 = 0, .opc2 = 0,
6793 .access = PL0_R, .accessfn = access_tda,
6794 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6796 define_one_arm_cp_reg(cpu, &dbgdidr);
6799 /* Note that all these register fields hold "number of Xs minus 1". */
6800 brps = arm_num_brps(cpu);
6801 wrps = arm_num_wrps(cpu);
6802 ctx_cmps = arm_num_ctx_cmps(cpu);
6804 assert(ctx_cmps <= brps);
6806 define_arm_cp_regs(cpu, debug_cp_reginfo);
6808 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6809 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6812 for (i = 0; i < brps; i++) {
6813 ARMCPRegInfo dbgregs[] = {
6814 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6815 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6816 .access = PL1_RW, .accessfn = access_tda,
6817 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6818 .writefn = dbgbvr_write, .raw_writefn = raw_write
6820 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6821 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6822 .access = PL1_RW, .accessfn = access_tda,
6823 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6824 .writefn = dbgbcr_write, .raw_writefn = raw_write
6826 REGINFO_SENTINEL
6828 define_arm_cp_regs(cpu, dbgregs);
6831 for (i = 0; i < wrps; i++) {
6832 ARMCPRegInfo dbgregs[] = {
6833 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6834 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6835 .access = PL1_RW, .accessfn = access_tda,
6836 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6837 .writefn = dbgwvr_write, .raw_writefn = raw_write
6839 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6840 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6841 .access = PL1_RW, .accessfn = access_tda,
6842 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6843 .writefn = dbgwcr_write, .raw_writefn = raw_write
6845 REGINFO_SENTINEL
6847 define_arm_cp_regs(cpu, dbgregs);
6851 static void define_pmu_regs(ARMCPU *cpu)
6854 * v7 performance monitor control register: same implementor
6855 * field as main ID register, and we implement four counters in
6856 * addition to the cycle count register.
6858 unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6859 ARMCPRegInfo pmcr = {
6860 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6861 .access = PL0_RW,
6862 .type = ARM_CP_IO | ARM_CP_ALIAS,
6863 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6864 .accessfn = pmreg_access, .writefn = pmcr_write,
6865 .raw_writefn = raw_write,
6867 ARMCPRegInfo pmcr64 = {
6868 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6869 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6870 .access = PL0_RW, .accessfn = pmreg_access,
6871 .type = ARM_CP_IO,
6872 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6873 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6874 PMCRLC,
6875 .writefn = pmcr_write, .raw_writefn = raw_write,
6877 define_one_arm_cp_reg(cpu, &pmcr);
6878 define_one_arm_cp_reg(cpu, &pmcr64);
6879 for (i = 0; i < pmcrn; i++) {
6880 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6881 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6882 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6883 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6884 ARMCPRegInfo pmev_regs[] = {
6885 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6886 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6887 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6888 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6889 .accessfn = pmreg_access },
6890 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6892 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6893 .type = ARM_CP_IO,
6894 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6895 .raw_readfn = pmevcntr_rawread,
6896 .raw_writefn = pmevcntr_rawwrite },
6897 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6898 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6899 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6900 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6901 .accessfn = pmreg_access },
6902 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6903 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6904 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6905 .type = ARM_CP_IO,
6906 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6907 .raw_writefn = pmevtyper_rawwrite },
6908 REGINFO_SENTINEL
6910 define_arm_cp_regs(cpu, pmev_regs);
6911 g_free(pmevcntr_name);
6912 g_free(pmevcntr_el0_name);
6913 g_free(pmevtyper_name);
6914 g_free(pmevtyper_el0_name);
6916 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6917 ARMCPRegInfo v81_pmu_regs[] = {
6918 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6919 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6920 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6921 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6922 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6923 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6924 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6925 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6926 REGINFO_SENTINEL
6928 define_arm_cp_regs(cpu, v81_pmu_regs);
6930 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6931 static const ARMCPRegInfo v84_pmmir = {
6932 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6933 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6934 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6935 .resetvalue = 0
6937 define_one_arm_cp_reg(cpu, &v84_pmmir);
6941 /* We don't know until after realize whether there's a GICv3
6942 * attached, and that is what registers the gicv3 sysregs.
6943 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6944 * at runtime.
6946 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6948 ARMCPU *cpu = env_archcpu(env);
6949 uint64_t pfr1 = cpu->isar.id_pfr1;
6951 if (env->gicv3state) {
6952 pfr1 |= 1 << 28;
6954 return pfr1;
6957 #ifndef CONFIG_USER_ONLY
6958 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6960 ARMCPU *cpu = env_archcpu(env);
6961 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6963 if (env->gicv3state) {
6964 pfr0 |= 1 << 24;
6966 return pfr0;
6968 #endif
6970 /* Shared logic between LORID and the rest of the LOR* registers.
6971 * Secure state exclusion has already been dealt with.
6973 static CPAccessResult access_lor_ns(CPUARMState *env,
6974 const ARMCPRegInfo *ri, bool isread)
6976 int el = arm_current_el(env);
6978 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6979 return CP_ACCESS_TRAP_EL2;
6981 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6982 return CP_ACCESS_TRAP_EL3;
6984 return CP_ACCESS_OK;
6987 static CPAccessResult access_lor_other(CPUARMState *env,
6988 const ARMCPRegInfo *ri, bool isread)
6990 if (arm_is_secure_below_el3(env)) {
6991 /* Access denied in secure mode. */
6992 return CP_ACCESS_TRAP;
6994 return access_lor_ns(env, ri, isread);
6998 * A trivial implementation of ARMv8.1-LOR leaves all of these
6999 * registers fixed at 0, which indicates that there are zero
7000 * supported Limited Ordering regions.
7002 static const ARMCPRegInfo lor_reginfo[] = {
7003 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7004 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7005 .access = PL1_RW, .accessfn = access_lor_other,
7006 .type = ARM_CP_CONST, .resetvalue = 0 },
7007 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7008 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7009 .access = PL1_RW, .accessfn = access_lor_other,
7010 .type = ARM_CP_CONST, .resetvalue = 0 },
7011 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7012 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7013 .access = PL1_RW, .accessfn = access_lor_other,
7014 .type = ARM_CP_CONST, .resetvalue = 0 },
7015 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7016 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7017 .access = PL1_RW, .accessfn = access_lor_other,
7018 .type = ARM_CP_CONST, .resetvalue = 0 },
7019 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7020 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7021 .access = PL1_R, .accessfn = access_lor_ns,
7022 .type = ARM_CP_CONST, .resetvalue = 0 },
7023 REGINFO_SENTINEL
7026 #ifdef TARGET_AARCH64
7027 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7028 bool isread)
7030 int el = arm_current_el(env);
7032 if (el < 2 &&
7033 arm_feature(env, ARM_FEATURE_EL2) &&
7034 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7035 return CP_ACCESS_TRAP_EL2;
7037 if (el < 3 &&
7038 arm_feature(env, ARM_FEATURE_EL3) &&
7039 !(env->cp15.scr_el3 & SCR_APK)) {
7040 return CP_ACCESS_TRAP_EL3;
7042 return CP_ACCESS_OK;
7045 static const ARMCPRegInfo pauth_reginfo[] = {
7046 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7047 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7048 .access = PL1_RW, .accessfn = access_pauth,
7049 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7050 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7051 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7052 .access = PL1_RW, .accessfn = access_pauth,
7053 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7054 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7055 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7056 .access = PL1_RW, .accessfn = access_pauth,
7057 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7058 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7059 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7060 .access = PL1_RW, .accessfn = access_pauth,
7061 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7062 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7063 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7064 .access = PL1_RW, .accessfn = access_pauth,
7065 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7066 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7067 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7068 .access = PL1_RW, .accessfn = access_pauth,
7069 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7070 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7071 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7072 .access = PL1_RW, .accessfn = access_pauth,
7073 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7074 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7075 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7076 .access = PL1_RW, .accessfn = access_pauth,
7077 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7078 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7079 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7080 .access = PL1_RW, .accessfn = access_pauth,
7081 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7082 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7083 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7084 .access = PL1_RW, .accessfn = access_pauth,
7085 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7086 REGINFO_SENTINEL
7089 static const ARMCPRegInfo tlbirange_reginfo[] = {
7090 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7091 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7092 .access = PL1_W, .type = ARM_CP_NO_RAW,
7093 .writefn = tlbi_aa64_rvae1is_write },
7094 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7095 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7096 .access = PL1_W, .type = ARM_CP_NO_RAW,
7097 .writefn = tlbi_aa64_rvae1is_write },
7098 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7099 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7100 .access = PL1_W, .type = ARM_CP_NO_RAW,
7101 .writefn = tlbi_aa64_rvae1is_write },
7102 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7103 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7104 .access = PL1_W, .type = ARM_CP_NO_RAW,
7105 .writefn = tlbi_aa64_rvae1is_write },
7106 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7107 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7108 .access = PL1_W, .type = ARM_CP_NO_RAW,
7109 .writefn = tlbi_aa64_rvae1is_write },
7110 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7111 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7112 .access = PL1_W, .type = ARM_CP_NO_RAW,
7113 .writefn = tlbi_aa64_rvae1is_write },
7114 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7115 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7116 .access = PL1_W, .type = ARM_CP_NO_RAW,
7117 .writefn = tlbi_aa64_rvae1is_write },
7118 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7119 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7120 .access = PL1_W, .type = ARM_CP_NO_RAW,
7121 .writefn = tlbi_aa64_rvae1is_write },
7122 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7123 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7124 .access = PL1_W, .type = ARM_CP_NO_RAW,
7125 .writefn = tlbi_aa64_rvae1_write },
7126 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7127 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7128 .access = PL1_W, .type = ARM_CP_NO_RAW,
7129 .writefn = tlbi_aa64_rvae1_write },
7130 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7131 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7132 .access = PL1_W, .type = ARM_CP_NO_RAW,
7133 .writefn = tlbi_aa64_rvae1_write },
7134 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7135 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7136 .access = PL1_W, .type = ARM_CP_NO_RAW,
7137 .writefn = tlbi_aa64_rvae1_write },
7138 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7139 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7140 .access = PL2_W, .type = ARM_CP_NOP },
7141 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7142 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7143 .access = PL2_W, .type = ARM_CP_NOP },
7144 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7145 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7146 .access = PL2_W, .type = ARM_CP_NO_RAW,
7147 .writefn = tlbi_aa64_rvae2is_write },
7148 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7149 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7150 .access = PL2_W, .type = ARM_CP_NO_RAW,
7151 .writefn = tlbi_aa64_rvae2is_write },
7152 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7153 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7154 .access = PL2_W, .type = ARM_CP_NOP },
7155 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7156 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7157 .access = PL2_W, .type = ARM_CP_NOP },
7158 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7159 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7160 .access = PL2_W, .type = ARM_CP_NO_RAW,
7161 .writefn = tlbi_aa64_rvae2is_write },
7162 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7163 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7164 .access = PL2_W, .type = ARM_CP_NO_RAW,
7165 .writefn = tlbi_aa64_rvae2is_write },
7166 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7167 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7168 .access = PL2_W, .type = ARM_CP_NO_RAW,
7169 .writefn = tlbi_aa64_rvae2_write },
7170 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7171 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7172 .access = PL2_W, .type = ARM_CP_NO_RAW,
7173 .writefn = tlbi_aa64_rvae2_write },
7174 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7175 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7176 .access = PL3_W, .type = ARM_CP_NO_RAW,
7177 .writefn = tlbi_aa64_rvae3is_write },
7178 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7179 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7180 .access = PL3_W, .type = ARM_CP_NO_RAW,
7181 .writefn = tlbi_aa64_rvae3is_write },
7182 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7183 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7184 .access = PL3_W, .type = ARM_CP_NO_RAW,
7185 .writefn = tlbi_aa64_rvae3is_write },
7186 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7187 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7188 .access = PL3_W, .type = ARM_CP_NO_RAW,
7189 .writefn = tlbi_aa64_rvae3is_write },
7190 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7191 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7192 .access = PL3_W, .type = ARM_CP_NO_RAW,
7193 .writefn = tlbi_aa64_rvae3_write },
7194 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7195 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7196 .access = PL3_W, .type = ARM_CP_NO_RAW,
7197 .writefn = tlbi_aa64_rvae3_write },
7198 REGINFO_SENTINEL
7201 static const ARMCPRegInfo tlbios_reginfo[] = {
7202 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7203 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7204 .access = PL1_W, .type = ARM_CP_NO_RAW,
7205 .writefn = tlbi_aa64_vmalle1is_write },
7206 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7207 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7208 .access = PL1_W, .type = ARM_CP_NO_RAW,
7209 .writefn = tlbi_aa64_vmalle1is_write },
7210 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7211 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7212 .access = PL2_W, .type = ARM_CP_NO_RAW,
7213 .writefn = tlbi_aa64_alle2is_write },
7214 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7215 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7216 .access = PL2_W, .type = ARM_CP_NO_RAW,
7217 .writefn = tlbi_aa64_alle1is_write },
7218 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7219 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7220 .access = PL2_W, .type = ARM_CP_NO_RAW,
7221 .writefn = tlbi_aa64_alle1is_write },
7222 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7223 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7224 .access = PL2_W, .type = ARM_CP_NOP },
7225 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7227 .access = PL2_W, .type = ARM_CP_NOP },
7228 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7229 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7230 .access = PL2_W, .type = ARM_CP_NOP },
7231 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7232 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7233 .access = PL2_W, .type = ARM_CP_NOP },
7234 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7235 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7236 .access = PL3_W, .type = ARM_CP_NO_RAW,
7237 .writefn = tlbi_aa64_alle3is_write },
7238 REGINFO_SENTINEL
7241 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7243 Error *err = NULL;
7244 uint64_t ret;
7246 /* Success sets NZCV = 0000. */
7247 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7249 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7251 * ??? Failed, for unknown reasons in the crypto subsystem.
7252 * The best we can do is log the reason and return the
7253 * timed-out indication to the guest. There is no reason
7254 * we know to expect this failure to be transitory, so the
7255 * guest may well hang retrying the operation.
7257 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7258 ri->name, error_get_pretty(err));
7259 error_free(err);
7261 env->ZF = 0; /* NZCF = 0100 */
7262 return 0;
7264 return ret;
7267 /* We do not support re-seeding, so the two registers operate the same. */
7268 static const ARMCPRegInfo rndr_reginfo[] = {
7269 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7270 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7271 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7272 .access = PL0_R, .readfn = rndr_readfn },
7273 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7274 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7275 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7276 .access = PL0_R, .readfn = rndr_readfn },
7277 REGINFO_SENTINEL
7280 #ifndef CONFIG_USER_ONLY
7281 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7282 uint64_t value)
7284 ARMCPU *cpu = env_archcpu(env);
7285 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7286 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7287 uint64_t vaddr_in = (uint64_t) value;
7288 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7289 void *haddr;
7290 int mem_idx = cpu_mmu_index(env, false);
7292 /* This won't be crossing page boundaries */
7293 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7294 if (haddr) {
7296 ram_addr_t offset;
7297 MemoryRegion *mr;
7299 /* RCU lock is already being held */
7300 mr = memory_region_from_host(haddr, &offset);
7302 if (mr) {
7303 memory_region_writeback(mr, offset, dline_size);
7308 static const ARMCPRegInfo dcpop_reg[] = {
7309 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7311 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7312 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7313 REGINFO_SENTINEL
7316 static const ARMCPRegInfo dcpodp_reg[] = {
7317 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7318 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7319 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7320 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7321 REGINFO_SENTINEL
7323 #endif /*CONFIG_USER_ONLY*/
7325 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7326 bool isread)
7328 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7329 return CP_ACCESS_TRAP_EL2;
7332 return CP_ACCESS_OK;
7335 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7336 bool isread)
7338 int el = arm_current_el(env);
7340 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7341 uint64_t hcr = arm_hcr_el2_eff(env);
7342 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7343 return CP_ACCESS_TRAP_EL2;
7346 if (el < 3 &&
7347 arm_feature(env, ARM_FEATURE_EL3) &&
7348 !(env->cp15.scr_el3 & SCR_ATA)) {
7349 return CP_ACCESS_TRAP_EL3;
7351 return CP_ACCESS_OK;
7354 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7356 return env->pstate & PSTATE_TCO;
7359 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7361 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7364 static const ARMCPRegInfo mte_reginfo[] = {
7365 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7366 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7367 .access = PL1_RW, .accessfn = access_mte,
7368 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7369 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7370 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7371 .access = PL1_RW, .accessfn = access_mte,
7372 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7373 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7374 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7375 .access = PL2_RW, .accessfn = access_mte,
7376 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7377 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7378 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7379 .access = PL3_RW,
7380 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7381 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7382 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7383 .access = PL1_RW, .accessfn = access_mte,
7384 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7385 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7386 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7387 .access = PL1_RW, .accessfn = access_mte,
7388 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7389 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7390 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7391 .access = PL1_R, .accessfn = access_aa64_tid5,
7392 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7393 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7394 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7395 .type = ARM_CP_NO_RAW,
7396 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7397 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7398 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7399 .type = ARM_CP_NOP, .access = PL1_W,
7400 .accessfn = aa64_cacheop_poc_access },
7401 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7402 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7403 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7404 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7405 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7406 .type = ARM_CP_NOP, .access = PL1_W,
7407 .accessfn = aa64_cacheop_poc_access },
7408 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7409 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7410 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7411 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7412 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7413 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7414 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7416 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7417 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7419 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7420 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7421 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7422 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7423 REGINFO_SENTINEL
7426 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7427 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7428 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7429 .type = ARM_CP_CONST, .access = PL0_RW, },
7430 REGINFO_SENTINEL
7433 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7434 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7435 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7436 .type = ARM_CP_NOP, .access = PL0_W,
7437 .accessfn = aa64_cacheop_poc_access },
7438 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7439 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7440 .type = ARM_CP_NOP, .access = PL0_W,
7441 .accessfn = aa64_cacheop_poc_access },
7442 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7443 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7444 .type = ARM_CP_NOP, .access = PL0_W,
7445 .accessfn = aa64_cacheop_poc_access },
7446 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7447 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7448 .type = ARM_CP_NOP, .access = PL0_W,
7449 .accessfn = aa64_cacheop_poc_access },
7450 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7451 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7452 .type = ARM_CP_NOP, .access = PL0_W,
7453 .accessfn = aa64_cacheop_poc_access },
7454 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7455 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7456 .type = ARM_CP_NOP, .access = PL0_W,
7457 .accessfn = aa64_cacheop_poc_access },
7458 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7460 .type = ARM_CP_NOP, .access = PL0_W,
7461 .accessfn = aa64_cacheop_poc_access },
7462 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7463 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7464 .type = ARM_CP_NOP, .access = PL0_W,
7465 .accessfn = aa64_cacheop_poc_access },
7466 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7467 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7468 .access = PL0_W, .type = ARM_CP_DC_GVA,
7469 #ifndef CONFIG_USER_ONLY
7470 /* Avoid overhead of an access check that always passes in user-mode */
7471 .accessfn = aa64_zva_access,
7472 #endif
7474 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7475 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7476 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7477 #ifndef CONFIG_USER_ONLY
7478 /* Avoid overhead of an access check that always passes in user-mode */
7479 .accessfn = aa64_zva_access,
7480 #endif
7482 REGINFO_SENTINEL
7485 #endif
7487 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7488 bool isread)
7490 int el = arm_current_el(env);
7492 if (el == 0) {
7493 uint64_t sctlr = arm_sctlr(env, el);
7494 if (!(sctlr & SCTLR_EnRCTX)) {
7495 return CP_ACCESS_TRAP;
7497 } else if (el == 1) {
7498 uint64_t hcr = arm_hcr_el2_eff(env);
7499 if (hcr & HCR_NV) {
7500 return CP_ACCESS_TRAP_EL2;
7503 return CP_ACCESS_OK;
7506 static const ARMCPRegInfo predinv_reginfo[] = {
7507 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7508 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7509 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7510 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7511 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7512 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7513 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7514 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7515 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7517 * Note the AArch32 opcodes have a different OPC1.
7519 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7520 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7521 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7522 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7523 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7524 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7525 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7526 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7527 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7528 REGINFO_SENTINEL
7531 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7533 /* Read the high 32 bits of the current CCSIDR */
7534 return extract64(ccsidr_read(env, ri), 32, 32);
7537 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7538 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7539 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7540 .access = PL1_R,
7541 .accessfn = access_aa64_tid2,
7542 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7543 REGINFO_SENTINEL
7546 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7547 bool isread)
7549 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7550 return CP_ACCESS_TRAP_EL2;
7553 return CP_ACCESS_OK;
7556 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7557 bool isread)
7559 if (arm_feature(env, ARM_FEATURE_V8)) {
7560 return access_aa64_tid3(env, ri, isread);
7563 return CP_ACCESS_OK;
7566 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7567 bool isread)
7569 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7570 return CP_ACCESS_TRAP_EL2;
7573 return CP_ACCESS_OK;
7576 static const ARMCPRegInfo jazelle_regs[] = {
7577 { .name = "JIDR",
7578 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7579 .access = PL1_R, .accessfn = access_jazelle,
7580 .type = ARM_CP_CONST, .resetvalue = 0 },
7581 { .name = "JOSCR",
7582 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7583 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7584 { .name = "JMCR",
7585 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7586 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7587 REGINFO_SENTINEL
7590 static const ARMCPRegInfo vhe_reginfo[] = {
7591 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7592 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7593 .access = PL2_RW,
7594 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7595 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7596 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7597 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7598 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7599 #ifndef CONFIG_USER_ONLY
7600 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7601 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7602 .fieldoffset =
7603 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7604 .type = ARM_CP_IO, .access = PL2_RW,
7605 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7606 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7607 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7608 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7609 .resetfn = gt_hv_timer_reset,
7610 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7611 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7612 .type = ARM_CP_IO,
7613 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7614 .access = PL2_RW,
7615 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7616 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7617 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7618 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7619 .type = ARM_CP_IO | ARM_CP_ALIAS,
7620 .access = PL2_RW, .accessfn = e2h_access,
7621 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7622 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7623 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7624 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7625 .type = ARM_CP_IO | ARM_CP_ALIAS,
7626 .access = PL2_RW, .accessfn = e2h_access,
7627 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7628 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7629 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7630 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7631 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7632 .access = PL2_RW, .accessfn = e2h_access,
7633 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7634 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7635 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7636 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7637 .access = PL2_RW, .accessfn = e2h_access,
7638 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7639 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7640 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7641 .type = ARM_CP_IO | ARM_CP_ALIAS,
7642 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7643 .access = PL2_RW, .accessfn = e2h_access,
7644 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7645 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7646 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7647 .type = ARM_CP_IO | ARM_CP_ALIAS,
7648 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7649 .access = PL2_RW, .accessfn = e2h_access,
7650 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7651 #endif
7652 REGINFO_SENTINEL
7655 #ifndef CONFIG_USER_ONLY
7656 static const ARMCPRegInfo ats1e1_reginfo[] = {
7657 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7658 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7659 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7660 .writefn = ats_write64 },
7661 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7662 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7663 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7664 .writefn = ats_write64 },
7665 REGINFO_SENTINEL
7668 static const ARMCPRegInfo ats1cp_reginfo[] = {
7669 { .name = "ATS1CPRP",
7670 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7671 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7672 .writefn = ats_write },
7673 { .name = "ATS1CPWP",
7674 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7675 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7676 .writefn = ats_write },
7677 REGINFO_SENTINEL
7679 #endif
7682 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7683 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7684 * is non-zero, which is never for ARMv7, optionally in ARMv8
7685 * and mandatorily for ARMv8.2 and up.
7686 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7687 * implementation is RAZ/WI we can ignore this detail, as we
7688 * do for ACTLR.
7690 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7691 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7692 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7693 .access = PL1_RW, .accessfn = access_tacr,
7694 .type = ARM_CP_CONST, .resetvalue = 0 },
7695 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7696 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7697 .access = PL2_RW, .type = ARM_CP_CONST,
7698 .resetvalue = 0 },
7699 REGINFO_SENTINEL
7702 void register_cp_regs_for_features(ARMCPU *cpu)
7704 /* Register all the coprocessor registers based on feature bits */
7705 CPUARMState *env = &cpu->env;
7706 if (arm_feature(env, ARM_FEATURE_M)) {
7707 /* M profile has no coprocessor registers */
7708 return;
7711 define_arm_cp_regs(cpu, cp_reginfo);
7712 if (!arm_feature(env, ARM_FEATURE_V8)) {
7713 /* Must go early as it is full of wildcards that may be
7714 * overridden by later definitions.
7716 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7719 if (arm_feature(env, ARM_FEATURE_V6)) {
7720 /* The ID registers all have impdef reset values */
7721 ARMCPRegInfo v6_idregs[] = {
7722 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7724 .access = PL1_R, .type = ARM_CP_CONST,
7725 .accessfn = access_aa32_tid3,
7726 .resetvalue = cpu->isar.id_pfr0 },
7727 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7728 * the value of the GIC field until after we define these regs.
7730 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7732 .access = PL1_R, .type = ARM_CP_NO_RAW,
7733 .accessfn = access_aa32_tid3,
7734 .readfn = id_pfr1_read,
7735 .writefn = arm_cp_write_ignore },
7736 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7738 .access = PL1_R, .type = ARM_CP_CONST,
7739 .accessfn = access_aa32_tid3,
7740 .resetvalue = cpu->isar.id_dfr0 },
7741 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7743 .access = PL1_R, .type = ARM_CP_CONST,
7744 .accessfn = access_aa32_tid3,
7745 .resetvalue = cpu->id_afr0 },
7746 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7748 .access = PL1_R, .type = ARM_CP_CONST,
7749 .accessfn = access_aa32_tid3,
7750 .resetvalue = cpu->isar.id_mmfr0 },
7751 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7753 .access = PL1_R, .type = ARM_CP_CONST,
7754 .accessfn = access_aa32_tid3,
7755 .resetvalue = cpu->isar.id_mmfr1 },
7756 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7758 .access = PL1_R, .type = ARM_CP_CONST,
7759 .accessfn = access_aa32_tid3,
7760 .resetvalue = cpu->isar.id_mmfr2 },
7761 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7763 .access = PL1_R, .type = ARM_CP_CONST,
7764 .accessfn = access_aa32_tid3,
7765 .resetvalue = cpu->isar.id_mmfr3 },
7766 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7768 .access = PL1_R, .type = ARM_CP_CONST,
7769 .accessfn = access_aa32_tid3,
7770 .resetvalue = cpu->isar.id_isar0 },
7771 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7773 .access = PL1_R, .type = ARM_CP_CONST,
7774 .accessfn = access_aa32_tid3,
7775 .resetvalue = cpu->isar.id_isar1 },
7776 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7778 .access = PL1_R, .type = ARM_CP_CONST,
7779 .accessfn = access_aa32_tid3,
7780 .resetvalue = cpu->isar.id_isar2 },
7781 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7783 .access = PL1_R, .type = ARM_CP_CONST,
7784 .accessfn = access_aa32_tid3,
7785 .resetvalue = cpu->isar.id_isar3 },
7786 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7788 .access = PL1_R, .type = ARM_CP_CONST,
7789 .accessfn = access_aa32_tid3,
7790 .resetvalue = cpu->isar.id_isar4 },
7791 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7793 .access = PL1_R, .type = ARM_CP_CONST,
7794 .accessfn = access_aa32_tid3,
7795 .resetvalue = cpu->isar.id_isar5 },
7796 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7798 .access = PL1_R, .type = ARM_CP_CONST,
7799 .accessfn = access_aa32_tid3,
7800 .resetvalue = cpu->isar.id_mmfr4 },
7801 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7803 .access = PL1_R, .type = ARM_CP_CONST,
7804 .accessfn = access_aa32_tid3,
7805 .resetvalue = cpu->isar.id_isar6 },
7806 REGINFO_SENTINEL
7808 define_arm_cp_regs(cpu, v6_idregs);
7809 define_arm_cp_regs(cpu, v6_cp_reginfo);
7810 } else {
7811 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7813 if (arm_feature(env, ARM_FEATURE_V6K)) {
7814 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7816 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7817 !arm_feature(env, ARM_FEATURE_PMSA)) {
7818 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7820 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7821 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7823 if (arm_feature(env, ARM_FEATURE_V7)) {
7824 ARMCPRegInfo clidr = {
7825 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7826 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7827 .access = PL1_R, .type = ARM_CP_CONST,
7828 .accessfn = access_aa64_tid2,
7829 .resetvalue = cpu->clidr
7831 define_one_arm_cp_reg(cpu, &clidr);
7832 define_arm_cp_regs(cpu, v7_cp_reginfo);
7833 define_debug_regs(cpu);
7834 define_pmu_regs(cpu);
7835 } else {
7836 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7838 if (arm_feature(env, ARM_FEATURE_V8)) {
7839 /* AArch64 ID registers, which all have impdef reset values.
7840 * Note that within the ID register ranges the unused slots
7841 * must all RAZ, not UNDEF; future architecture versions may
7842 * define new registers here.
7844 ARMCPRegInfo v8_idregs[] = {
7846 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7847 * emulation because we don't know the right value for the
7848 * GIC field until after we define these regs.
7850 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7852 .access = PL1_R,
7853 #ifdef CONFIG_USER_ONLY
7854 .type = ARM_CP_CONST,
7855 .resetvalue = cpu->isar.id_aa64pfr0
7856 #else
7857 .type = ARM_CP_NO_RAW,
7858 .accessfn = access_aa64_tid3,
7859 .readfn = id_aa64pfr0_read,
7860 .writefn = arm_cp_write_ignore
7861 #endif
7863 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7865 .access = PL1_R, .type = ARM_CP_CONST,
7866 .accessfn = access_aa64_tid3,
7867 .resetvalue = cpu->isar.id_aa64pfr1},
7868 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7870 .access = PL1_R, .type = ARM_CP_CONST,
7871 .accessfn = access_aa64_tid3,
7872 .resetvalue = 0 },
7873 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7875 .access = PL1_R, .type = ARM_CP_CONST,
7876 .accessfn = access_aa64_tid3,
7877 .resetvalue = 0 },
7878 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7880 .access = PL1_R, .type = ARM_CP_CONST,
7881 .accessfn = access_aa64_tid3,
7882 .resetvalue = cpu->isar.id_aa64zfr0 },
7883 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7885 .access = PL1_R, .type = ARM_CP_CONST,
7886 .accessfn = access_aa64_tid3,
7887 .resetvalue = 0 },
7888 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7890 .access = PL1_R, .type = ARM_CP_CONST,
7891 .accessfn = access_aa64_tid3,
7892 .resetvalue = 0 },
7893 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7895 .access = PL1_R, .type = ARM_CP_CONST,
7896 .accessfn = access_aa64_tid3,
7897 .resetvalue = 0 },
7898 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7900 .access = PL1_R, .type = ARM_CP_CONST,
7901 .accessfn = access_aa64_tid3,
7902 .resetvalue = cpu->isar.id_aa64dfr0 },
7903 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7905 .access = PL1_R, .type = ARM_CP_CONST,
7906 .accessfn = access_aa64_tid3,
7907 .resetvalue = cpu->isar.id_aa64dfr1 },
7908 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7910 .access = PL1_R, .type = ARM_CP_CONST,
7911 .accessfn = access_aa64_tid3,
7912 .resetvalue = 0 },
7913 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7915 .access = PL1_R, .type = ARM_CP_CONST,
7916 .accessfn = access_aa64_tid3,
7917 .resetvalue = 0 },
7918 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7919 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7920 .access = PL1_R, .type = ARM_CP_CONST,
7921 .accessfn = access_aa64_tid3,
7922 .resetvalue = cpu->id_aa64afr0 },
7923 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7924 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7925 .access = PL1_R, .type = ARM_CP_CONST,
7926 .accessfn = access_aa64_tid3,
7927 .resetvalue = cpu->id_aa64afr1 },
7928 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7930 .access = PL1_R, .type = ARM_CP_CONST,
7931 .accessfn = access_aa64_tid3,
7932 .resetvalue = 0 },
7933 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7935 .access = PL1_R, .type = ARM_CP_CONST,
7936 .accessfn = access_aa64_tid3,
7937 .resetvalue = 0 },
7938 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7940 .access = PL1_R, .type = ARM_CP_CONST,
7941 .accessfn = access_aa64_tid3,
7942 .resetvalue = cpu->isar.id_aa64isar0 },
7943 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7945 .access = PL1_R, .type = ARM_CP_CONST,
7946 .accessfn = access_aa64_tid3,
7947 .resetvalue = cpu->isar.id_aa64isar1 },
7948 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7950 .access = PL1_R, .type = ARM_CP_CONST,
7951 .accessfn = access_aa64_tid3,
7952 .resetvalue = 0 },
7953 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7955 .access = PL1_R, .type = ARM_CP_CONST,
7956 .accessfn = access_aa64_tid3,
7957 .resetvalue = 0 },
7958 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7960 .access = PL1_R, .type = ARM_CP_CONST,
7961 .accessfn = access_aa64_tid3,
7962 .resetvalue = 0 },
7963 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7964 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7965 .access = PL1_R, .type = ARM_CP_CONST,
7966 .accessfn = access_aa64_tid3,
7967 .resetvalue = 0 },
7968 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7970 .access = PL1_R, .type = ARM_CP_CONST,
7971 .accessfn = access_aa64_tid3,
7972 .resetvalue = 0 },
7973 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7975 .access = PL1_R, .type = ARM_CP_CONST,
7976 .accessfn = access_aa64_tid3,
7977 .resetvalue = 0 },
7978 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7980 .access = PL1_R, .type = ARM_CP_CONST,
7981 .accessfn = access_aa64_tid3,
7982 .resetvalue = cpu->isar.id_aa64mmfr0 },
7983 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7985 .access = PL1_R, .type = ARM_CP_CONST,
7986 .accessfn = access_aa64_tid3,
7987 .resetvalue = cpu->isar.id_aa64mmfr1 },
7988 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7990 .access = PL1_R, .type = ARM_CP_CONST,
7991 .accessfn = access_aa64_tid3,
7992 .resetvalue = cpu->isar.id_aa64mmfr2 },
7993 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7995 .access = PL1_R, .type = ARM_CP_CONST,
7996 .accessfn = access_aa64_tid3,
7997 .resetvalue = 0 },
7998 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8000 .access = PL1_R, .type = ARM_CP_CONST,
8001 .accessfn = access_aa64_tid3,
8002 .resetvalue = 0 },
8003 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8005 .access = PL1_R, .type = ARM_CP_CONST,
8006 .accessfn = access_aa64_tid3,
8007 .resetvalue = 0 },
8008 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8010 .access = PL1_R, .type = ARM_CP_CONST,
8011 .accessfn = access_aa64_tid3,
8012 .resetvalue = 0 },
8013 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8015 .access = PL1_R, .type = ARM_CP_CONST,
8016 .accessfn = access_aa64_tid3,
8017 .resetvalue = 0 },
8018 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8020 .access = PL1_R, .type = ARM_CP_CONST,
8021 .accessfn = access_aa64_tid3,
8022 .resetvalue = cpu->isar.mvfr0 },
8023 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8025 .access = PL1_R, .type = ARM_CP_CONST,
8026 .accessfn = access_aa64_tid3,
8027 .resetvalue = cpu->isar.mvfr1 },
8028 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8030 .access = PL1_R, .type = ARM_CP_CONST,
8031 .accessfn = access_aa64_tid3,
8032 .resetvalue = cpu->isar.mvfr2 },
8033 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8035 .access = PL1_R, .type = ARM_CP_CONST,
8036 .accessfn = access_aa64_tid3,
8037 .resetvalue = 0 },
8038 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8040 .access = PL1_R, .type = ARM_CP_CONST,
8041 .accessfn = access_aa64_tid3,
8042 .resetvalue = cpu->isar.id_pfr2 },
8043 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8045 .access = PL1_R, .type = ARM_CP_CONST,
8046 .accessfn = access_aa64_tid3,
8047 .resetvalue = 0 },
8048 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8050 .access = PL1_R, .type = ARM_CP_CONST,
8051 .accessfn = access_aa64_tid3,
8052 .resetvalue = 0 },
8053 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8055 .access = PL1_R, .type = ARM_CP_CONST,
8056 .accessfn = access_aa64_tid3,
8057 .resetvalue = 0 },
8058 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8059 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8060 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8061 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8062 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8063 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8064 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8065 .resetvalue = cpu->pmceid0 },
8066 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8067 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8068 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8069 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8070 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8071 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8072 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8073 .resetvalue = cpu->pmceid1 },
8074 REGINFO_SENTINEL
8076 #ifdef CONFIG_USER_ONLY
8077 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8078 { .name = "ID_AA64PFR0_EL1",
8079 .exported_bits = 0x000f000f00ff0000,
8080 .fixed_bits = 0x0000000000000011 },
8081 { .name = "ID_AA64PFR1_EL1",
8082 .exported_bits = 0x00000000000000f0 },
8083 { .name = "ID_AA64PFR*_EL1_RESERVED",
8084 .is_glob = true },
8085 { .name = "ID_AA64ZFR0_EL1" },
8086 { .name = "ID_AA64MMFR0_EL1",
8087 .fixed_bits = 0x00000000ff000000 },
8088 { .name = "ID_AA64MMFR1_EL1" },
8089 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8090 .is_glob = true },
8091 { .name = "ID_AA64DFR0_EL1",
8092 .fixed_bits = 0x0000000000000006 },
8093 { .name = "ID_AA64DFR1_EL1" },
8094 { .name = "ID_AA64DFR*_EL1_RESERVED",
8095 .is_glob = true },
8096 { .name = "ID_AA64AFR*",
8097 .is_glob = true },
8098 { .name = "ID_AA64ISAR0_EL1",
8099 .exported_bits = 0x00fffffff0fffff0 },
8100 { .name = "ID_AA64ISAR1_EL1",
8101 .exported_bits = 0x000000f0ffffffff },
8102 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8103 .is_glob = true },
8104 REGUSERINFO_SENTINEL
8106 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8107 #endif
8108 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8109 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8110 !arm_feature(env, ARM_FEATURE_EL2)) {
8111 ARMCPRegInfo rvbar = {
8112 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
8113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8114 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
8116 define_one_arm_cp_reg(cpu, &rvbar);
8118 define_arm_cp_regs(cpu, v8_idregs);
8119 define_arm_cp_regs(cpu, v8_cp_reginfo);
8121 if (arm_feature(env, ARM_FEATURE_EL2)) {
8122 uint64_t vmpidr_def = mpidr_read_val(env);
8123 ARMCPRegInfo vpidr_regs[] = {
8124 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8125 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8126 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8127 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
8128 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8129 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8130 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8131 .access = PL2_RW, .resetvalue = cpu->midr,
8132 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8133 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8134 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8135 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8136 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
8137 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8138 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8139 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8140 .access = PL2_RW,
8141 .resetvalue = vmpidr_def,
8142 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8143 REGINFO_SENTINEL
8145 define_arm_cp_regs(cpu, vpidr_regs);
8146 define_arm_cp_regs(cpu, el2_cp_reginfo);
8147 if (arm_feature(env, ARM_FEATURE_V8)) {
8148 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8150 if (cpu_isar_feature(aa64_sel2, cpu)) {
8151 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8153 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8154 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8155 ARMCPRegInfo rvbar = {
8156 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8157 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8158 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
8160 define_one_arm_cp_reg(cpu, &rvbar);
8162 } else {
8163 /* If EL2 is missing but higher ELs are enabled, we need to
8164 * register the no_el2 reginfos.
8166 if (arm_feature(env, ARM_FEATURE_EL3)) {
8167 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8168 * of MIDR_EL1 and MPIDR_EL1.
8170 ARMCPRegInfo vpidr_regs[] = {
8171 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8172 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8173 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8174 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8175 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8176 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8177 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8178 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8179 .type = ARM_CP_NO_RAW,
8180 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8181 REGINFO_SENTINEL
8183 define_arm_cp_regs(cpu, vpidr_regs);
8184 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8185 if (arm_feature(env, ARM_FEATURE_V8)) {
8186 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8190 if (arm_feature(env, ARM_FEATURE_EL3)) {
8191 define_arm_cp_regs(cpu, el3_cp_reginfo);
8192 ARMCPRegInfo el3_regs[] = {
8193 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8194 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8195 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8196 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8197 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8198 .access = PL3_RW,
8199 .raw_writefn = raw_write, .writefn = sctlr_write,
8200 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8201 .resetvalue = cpu->reset_sctlr },
8202 REGINFO_SENTINEL
8205 define_arm_cp_regs(cpu, el3_regs);
8207 /* The behaviour of NSACR is sufficiently various that we don't
8208 * try to describe it in a single reginfo:
8209 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8210 * reads as constant 0xc00 from NS EL1 and NS EL2
8211 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8212 * if v7 without EL3, register doesn't exist
8213 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8215 if (arm_feature(env, ARM_FEATURE_EL3)) {
8216 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8217 ARMCPRegInfo nsacr = {
8218 .name = "NSACR", .type = ARM_CP_CONST,
8219 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8220 .access = PL1_RW, .accessfn = nsacr_access,
8221 .resetvalue = 0xc00
8223 define_one_arm_cp_reg(cpu, &nsacr);
8224 } else {
8225 ARMCPRegInfo nsacr = {
8226 .name = "NSACR",
8227 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8228 .access = PL3_RW | PL1_R,
8229 .resetvalue = 0,
8230 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8232 define_one_arm_cp_reg(cpu, &nsacr);
8234 } else {
8235 if (arm_feature(env, ARM_FEATURE_V8)) {
8236 ARMCPRegInfo nsacr = {
8237 .name = "NSACR", .type = ARM_CP_CONST,
8238 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8239 .access = PL1_R,
8240 .resetvalue = 0xc00
8242 define_one_arm_cp_reg(cpu, &nsacr);
8246 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8247 if (arm_feature(env, ARM_FEATURE_V6)) {
8248 /* PMSAv6 not implemented */
8249 assert(arm_feature(env, ARM_FEATURE_V7));
8250 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8251 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8252 } else {
8253 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8255 } else {
8256 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8257 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8258 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8259 if (cpu_isar_feature(aa32_hpd, cpu)) {
8260 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8263 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8264 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8266 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8267 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8269 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8270 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8272 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8273 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8275 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8276 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8278 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8279 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8281 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8282 define_arm_cp_regs(cpu, omap_cp_reginfo);
8284 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8285 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8287 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8288 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8290 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8291 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8293 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8294 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8296 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8297 define_arm_cp_regs(cpu, jazelle_regs);
8299 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8300 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8301 * be read-only (ie write causes UNDEF exception).
8304 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8305 /* Pre-v8 MIDR space.
8306 * Note that the MIDR isn't a simple constant register because
8307 * of the TI925 behaviour where writes to another register can
8308 * cause the MIDR value to change.
8310 * Unimplemented registers in the c15 0 0 0 space default to
8311 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8312 * and friends override accordingly.
8314 { .name = "MIDR",
8315 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8316 .access = PL1_R, .resetvalue = cpu->midr,
8317 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8318 .readfn = midr_read,
8319 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8320 .type = ARM_CP_OVERRIDE },
8321 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8322 { .name = "DUMMY",
8323 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8324 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8325 { .name = "DUMMY",
8326 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8327 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8328 { .name = "DUMMY",
8329 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8330 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8331 { .name = "DUMMY",
8332 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8333 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8334 { .name = "DUMMY",
8335 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8336 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8337 REGINFO_SENTINEL
8339 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8340 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8342 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8343 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8344 .readfn = midr_read },
8345 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8346 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8347 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8348 .access = PL1_R, .resetvalue = cpu->midr },
8349 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8350 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8351 .access = PL1_R, .resetvalue = cpu->midr },
8352 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8354 .access = PL1_R,
8355 .accessfn = access_aa64_tid1,
8356 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8357 REGINFO_SENTINEL
8359 ARMCPRegInfo id_cp_reginfo[] = {
8360 /* These are common to v8 and pre-v8 */
8361 { .name = "CTR",
8362 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8363 .access = PL1_R, .accessfn = ctr_el0_access,
8364 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8365 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8366 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8367 .access = PL0_R, .accessfn = ctr_el0_access,
8368 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8369 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8370 { .name = "TCMTR",
8371 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8372 .access = PL1_R,
8373 .accessfn = access_aa32_tid1,
8374 .type = ARM_CP_CONST, .resetvalue = 0 },
8375 REGINFO_SENTINEL
8377 /* TLBTR is specific to VMSA */
8378 ARMCPRegInfo id_tlbtr_reginfo = {
8379 .name = "TLBTR",
8380 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8381 .access = PL1_R,
8382 .accessfn = access_aa32_tid1,
8383 .type = ARM_CP_CONST, .resetvalue = 0,
8385 /* MPUIR is specific to PMSA V6+ */
8386 ARMCPRegInfo id_mpuir_reginfo = {
8387 .name = "MPUIR",
8388 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8389 .access = PL1_R, .type = ARM_CP_CONST,
8390 .resetvalue = cpu->pmsav7_dregion << 8
8392 ARMCPRegInfo crn0_wi_reginfo = {
8393 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8394 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8395 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8397 #ifdef CONFIG_USER_ONLY
8398 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8399 { .name = "MIDR_EL1",
8400 .exported_bits = 0x00000000ffffffff },
8401 { .name = "REVIDR_EL1" },
8402 REGUSERINFO_SENTINEL
8404 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8405 #endif
8406 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8407 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8408 ARMCPRegInfo *r;
8409 /* Register the blanket "writes ignored" value first to cover the
8410 * whole space. Then update the specific ID registers to allow write
8411 * access, so that they ignore writes rather than causing them to
8412 * UNDEF.
8414 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8415 for (r = id_pre_v8_midr_cp_reginfo;
8416 r->type != ARM_CP_SENTINEL; r++) {
8417 r->access = PL1_RW;
8419 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8420 r->access = PL1_RW;
8422 id_mpuir_reginfo.access = PL1_RW;
8423 id_tlbtr_reginfo.access = PL1_RW;
8425 if (arm_feature(env, ARM_FEATURE_V8)) {
8426 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8427 } else {
8428 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8430 define_arm_cp_regs(cpu, id_cp_reginfo);
8431 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8432 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8433 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8434 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8438 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8439 ARMCPRegInfo mpidr_cp_reginfo[] = {
8440 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8441 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8442 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8443 REGINFO_SENTINEL
8445 #ifdef CONFIG_USER_ONLY
8446 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8447 { .name = "MPIDR_EL1",
8448 .fixed_bits = 0x0000000080000000 },
8449 REGUSERINFO_SENTINEL
8451 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8452 #endif
8453 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8456 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8457 ARMCPRegInfo auxcr_reginfo[] = {
8458 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8459 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8460 .access = PL1_RW, .accessfn = access_tacr,
8461 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8462 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8463 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8464 .access = PL2_RW, .type = ARM_CP_CONST,
8465 .resetvalue = 0 },
8466 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8467 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8468 .access = PL3_RW, .type = ARM_CP_CONST,
8469 .resetvalue = 0 },
8470 REGINFO_SENTINEL
8472 define_arm_cp_regs(cpu, auxcr_reginfo);
8473 if (cpu_isar_feature(aa32_ac2, cpu)) {
8474 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8478 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8480 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8481 * There are two flavours:
8482 * (1) older 32-bit only cores have a simple 32-bit CBAR
8483 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8484 * 32-bit register visible to AArch32 at a different encoding
8485 * to the "flavour 1" register and with the bits rearranged to
8486 * be able to squash a 64-bit address into the 32-bit view.
8487 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8488 * in future if we support AArch32-only configs of some of the
8489 * AArch64 cores we might need to add a specific feature flag
8490 * to indicate cores with "flavour 2" CBAR.
8492 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8493 /* 32 bit view is [31:18] 0...0 [43:32]. */
8494 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8495 | extract64(cpu->reset_cbar, 32, 12);
8496 ARMCPRegInfo cbar_reginfo[] = {
8497 { .name = "CBAR",
8498 .type = ARM_CP_CONST,
8499 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8500 .access = PL1_R, .resetvalue = cbar32 },
8501 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8502 .type = ARM_CP_CONST,
8503 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8504 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8505 REGINFO_SENTINEL
8507 /* We don't implement a r/w 64 bit CBAR currently */
8508 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8509 define_arm_cp_regs(cpu, cbar_reginfo);
8510 } else {
8511 ARMCPRegInfo cbar = {
8512 .name = "CBAR",
8513 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8514 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8515 .fieldoffset = offsetof(CPUARMState,
8516 cp15.c15_config_base_address)
8518 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8519 cbar.access = PL1_R;
8520 cbar.fieldoffset = 0;
8521 cbar.type = ARM_CP_CONST;
8523 define_one_arm_cp_reg(cpu, &cbar);
8527 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8528 ARMCPRegInfo vbar_cp_reginfo[] = {
8529 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8530 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8531 .access = PL1_RW, .writefn = vbar_write,
8532 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8533 offsetof(CPUARMState, cp15.vbar_ns) },
8534 .resetvalue = 0 },
8535 REGINFO_SENTINEL
8537 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8540 /* Generic registers whose values depend on the implementation */
8542 ARMCPRegInfo sctlr = {
8543 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8544 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8545 .access = PL1_RW, .accessfn = access_tvm_trvm,
8546 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8547 offsetof(CPUARMState, cp15.sctlr_ns) },
8548 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8549 .raw_writefn = raw_write,
8551 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8552 /* Normally we would always end the TB on an SCTLR write, but Linux
8553 * arch/arm/mach-pxa/sleep.S expects two instructions following
8554 * an MMU enable to execute from cache. Imitate this behaviour.
8556 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8558 define_one_arm_cp_reg(cpu, &sctlr);
8561 if (cpu_isar_feature(aa64_lor, cpu)) {
8562 define_arm_cp_regs(cpu, lor_reginfo);
8564 if (cpu_isar_feature(aa64_pan, cpu)) {
8565 define_one_arm_cp_reg(cpu, &pan_reginfo);
8567 #ifndef CONFIG_USER_ONLY
8568 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8569 define_arm_cp_regs(cpu, ats1e1_reginfo);
8571 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8572 define_arm_cp_regs(cpu, ats1cp_reginfo);
8574 #endif
8575 if (cpu_isar_feature(aa64_uao, cpu)) {
8576 define_one_arm_cp_reg(cpu, &uao_reginfo);
8579 if (cpu_isar_feature(aa64_dit, cpu)) {
8580 define_one_arm_cp_reg(cpu, &dit_reginfo);
8582 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8583 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8586 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8587 define_arm_cp_regs(cpu, vhe_reginfo);
8590 if (cpu_isar_feature(aa64_sve, cpu)) {
8591 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8592 if (arm_feature(env, ARM_FEATURE_EL2)) {
8593 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8594 } else {
8595 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8597 if (arm_feature(env, ARM_FEATURE_EL3)) {
8598 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8602 #ifdef TARGET_AARCH64
8603 if (cpu_isar_feature(aa64_pauth, cpu)) {
8604 define_arm_cp_regs(cpu, pauth_reginfo);
8606 if (cpu_isar_feature(aa64_rndr, cpu)) {
8607 define_arm_cp_regs(cpu, rndr_reginfo);
8609 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8610 define_arm_cp_regs(cpu, tlbirange_reginfo);
8612 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8613 define_arm_cp_regs(cpu, tlbios_reginfo);
8615 #ifndef CONFIG_USER_ONLY
8616 /* Data Cache clean instructions up to PoP */
8617 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8618 define_one_arm_cp_reg(cpu, dcpop_reg);
8620 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8621 define_one_arm_cp_reg(cpu, dcpodp_reg);
8624 #endif /*CONFIG_USER_ONLY*/
8627 * If full MTE is enabled, add all of the system registers.
8628 * If only "instructions available at EL0" are enabled,
8629 * then define only a RAZ/WI version of PSTATE.TCO.
8631 if (cpu_isar_feature(aa64_mte, cpu)) {
8632 define_arm_cp_regs(cpu, mte_reginfo);
8633 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8634 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8635 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8636 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8638 #endif
8640 if (cpu_isar_feature(any_predinv, cpu)) {
8641 define_arm_cp_regs(cpu, predinv_reginfo);
8644 if (cpu_isar_feature(any_ccidx, cpu)) {
8645 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8648 #ifndef CONFIG_USER_ONLY
8650 * Register redirections and aliases must be done last,
8651 * after the registers from the other extensions have been defined.
8653 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8654 define_arm_vh_e2h_redirects_aliases(cpu);
8656 #endif
8659 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8661 CPUState *cs = CPU(cpu);
8662 CPUARMState *env = &cpu->env;
8664 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8666 * The lower part of each SVE register aliases to the FPU
8667 * registers so we don't need to include both.
8669 #ifdef TARGET_AARCH64
8670 if (isar_feature_aa64_sve(&cpu->isar)) {
8671 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8672 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8673 "sve-registers.xml", 0);
8674 } else
8675 #endif
8677 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8678 aarch64_fpu_gdb_set_reg,
8679 34, "aarch64-fpu.xml", 0);
8681 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8682 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8683 51, "arm-neon.xml", 0);
8684 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8685 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8686 35, "arm-vfp3.xml", 0);
8687 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8688 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8689 19, "arm-vfp.xml", 0);
8691 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8692 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8693 "system-registers.xml", 0);
8697 /* Sort alphabetically by type name, except for "any". */
8698 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8700 ObjectClass *class_a = (ObjectClass *)a;
8701 ObjectClass *class_b = (ObjectClass *)b;
8702 const char *name_a, *name_b;
8704 name_a = object_class_get_name(class_a);
8705 name_b = object_class_get_name(class_b);
8706 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8707 return 1;
8708 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8709 return -1;
8710 } else {
8711 return strcmp(name_a, name_b);
8715 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8717 ObjectClass *oc = data;
8718 const char *typename;
8719 char *name;
8721 typename = object_class_get_name(oc);
8722 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8723 qemu_printf(" %s\n", name);
8724 g_free(name);
8727 void arm_cpu_list(void)
8729 GSList *list;
8731 list = object_class_get_list(TYPE_ARM_CPU, false);
8732 list = g_slist_sort(list, arm_cpu_list_compare);
8733 qemu_printf("Available CPUs:\n");
8734 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8735 g_slist_free(list);
8738 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8740 ObjectClass *oc = data;
8741 CpuDefinitionInfoList **cpu_list = user_data;
8742 CpuDefinitionInfo *info;
8743 const char *typename;
8745 typename = object_class_get_name(oc);
8746 info = g_malloc0(sizeof(*info));
8747 info->name = g_strndup(typename,
8748 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8749 info->q_typename = g_strdup(typename);
8751 QAPI_LIST_PREPEND(*cpu_list, info);
8754 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8756 CpuDefinitionInfoList *cpu_list = NULL;
8757 GSList *list;
8759 list = object_class_get_list(TYPE_ARM_CPU, false);
8760 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8761 g_slist_free(list);
8763 return cpu_list;
8766 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8767 void *opaque, int state, int secstate,
8768 int crm, int opc1, int opc2,
8769 const char *name)
8771 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8772 * add a single reginfo struct to the hash table.
8774 uint32_t *key = g_new(uint32_t, 1);
8775 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8776 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8777 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8779 r2->name = g_strdup(name);
8780 /* Reset the secure state to the specific incoming state. This is
8781 * necessary as the register may have been defined with both states.
8783 r2->secure = secstate;
8785 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8786 /* Register is banked (using both entries in array).
8787 * Overwriting fieldoffset as the array is only used to define
8788 * banked registers but later only fieldoffset is used.
8790 r2->fieldoffset = r->bank_fieldoffsets[ns];
8793 if (state == ARM_CP_STATE_AA32) {
8794 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8795 /* If the register is banked then we don't need to migrate or
8796 * reset the 32-bit instance in certain cases:
8798 * 1) If the register has both 32-bit and 64-bit instances then we
8799 * can count on the 64-bit instance taking care of the
8800 * non-secure bank.
8801 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8802 * taking care of the secure bank. This requires that separate
8803 * 32 and 64-bit definitions are provided.
8805 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8806 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8807 r2->type |= ARM_CP_ALIAS;
8809 } else if ((secstate != r->secure) && !ns) {
8810 /* The register is not banked so we only want to allow migration of
8811 * the non-secure instance.
8813 r2->type |= ARM_CP_ALIAS;
8816 if (r->state == ARM_CP_STATE_BOTH) {
8817 /* We assume it is a cp15 register if the .cp field is left unset.
8819 if (r2->cp == 0) {
8820 r2->cp = 15;
8823 #ifdef HOST_WORDS_BIGENDIAN
8824 if (r2->fieldoffset) {
8825 r2->fieldoffset += sizeof(uint32_t);
8827 #endif
8830 if (state == ARM_CP_STATE_AA64) {
8831 /* To allow abbreviation of ARMCPRegInfo
8832 * definitions, we treat cp == 0 as equivalent to
8833 * the value for "standard guest-visible sysreg".
8834 * STATE_BOTH definitions are also always "standard
8835 * sysreg" in their AArch64 view (the .cp value may
8836 * be non-zero for the benefit of the AArch32 view).
8838 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8839 r2->cp = CP_REG_ARM64_SYSREG_CP;
8841 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8842 r2->opc0, opc1, opc2);
8843 } else {
8844 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8846 if (opaque) {
8847 r2->opaque = opaque;
8849 /* reginfo passed to helpers is correct for the actual access,
8850 * and is never ARM_CP_STATE_BOTH:
8852 r2->state = state;
8853 /* Make sure reginfo passed to helpers for wildcarded regs
8854 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8856 r2->crm = crm;
8857 r2->opc1 = opc1;
8858 r2->opc2 = opc2;
8859 /* By convention, for wildcarded registers only the first
8860 * entry is used for migration; the others are marked as
8861 * ALIAS so we don't try to transfer the register
8862 * multiple times. Special registers (ie NOP/WFI) are
8863 * never migratable and not even raw-accessible.
8865 if ((r->type & ARM_CP_SPECIAL)) {
8866 r2->type |= ARM_CP_NO_RAW;
8868 if (((r->crm == CP_ANY) && crm != 0) ||
8869 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8870 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8871 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8874 /* Check that raw accesses are either forbidden or handled. Note that
8875 * we can't assert this earlier because the setup of fieldoffset for
8876 * banked registers has to be done first.
8878 if (!(r2->type & ARM_CP_NO_RAW)) {
8879 assert(!raw_accessors_invalid(r2));
8882 /* Overriding of an existing definition must be explicitly
8883 * requested.
8885 if (!(r->type & ARM_CP_OVERRIDE)) {
8886 ARMCPRegInfo *oldreg;
8887 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8888 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8889 fprintf(stderr, "Register redefined: cp=%d %d bit "
8890 "crn=%d crm=%d opc1=%d opc2=%d, "
8891 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8892 r2->crn, r2->crm, r2->opc1, r2->opc2,
8893 oldreg->name, r2->name);
8894 g_assert_not_reached();
8897 g_hash_table_insert(cpu->cp_regs, key, r2);
8901 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8902 const ARMCPRegInfo *r, void *opaque)
8904 /* Define implementations of coprocessor registers.
8905 * We store these in a hashtable because typically
8906 * there are less than 150 registers in a space which
8907 * is 16*16*16*8*8 = 262144 in size.
8908 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8909 * If a register is defined twice then the second definition is
8910 * used, so this can be used to define some generic registers and
8911 * then override them with implementation specific variations.
8912 * At least one of the original and the second definition should
8913 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8914 * against accidental use.
8916 * The state field defines whether the register is to be
8917 * visible in the AArch32 or AArch64 execution state. If the
8918 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8919 * reginfo structure for the AArch32 view, which sees the lower
8920 * 32 bits of the 64 bit register.
8922 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8923 * be wildcarded. AArch64 registers are always considered to be 64
8924 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8925 * the register, if any.
8927 int crm, opc1, opc2, state;
8928 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8929 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8930 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8931 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8932 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8933 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8934 /* 64 bit registers have only CRm and Opc1 fields */
8935 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8936 /* op0 only exists in the AArch64 encodings */
8937 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8938 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8939 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8941 * This API is only for Arm's system coprocessors (14 and 15) or
8942 * (M-profile or v7A-and-earlier only) for implementation defined
8943 * coprocessors in the range 0..7. Our decode assumes this, since
8944 * 8..13 can be used for other insns including VFP and Neon. See
8945 * valid_cp() in translate.c. Assert here that we haven't tried
8946 * to use an invalid coprocessor number.
8948 switch (r->state) {
8949 case ARM_CP_STATE_BOTH:
8950 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8951 if (r->cp == 0) {
8952 break;
8954 /* fall through */
8955 case ARM_CP_STATE_AA32:
8956 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8957 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8958 assert(r->cp >= 14 && r->cp <= 15);
8959 } else {
8960 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8962 break;
8963 case ARM_CP_STATE_AA64:
8964 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8965 break;
8966 default:
8967 g_assert_not_reached();
8969 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8970 * encodes a minimum access level for the register. We roll this
8971 * runtime check into our general permission check code, so check
8972 * here that the reginfo's specified permissions are strict enough
8973 * to encompass the generic architectural permission check.
8975 if (r->state != ARM_CP_STATE_AA32) {
8976 int mask = 0;
8977 switch (r->opc1) {
8978 case 0:
8979 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8980 mask = PL0U_R | PL1_RW;
8981 break;
8982 case 1: case 2:
8983 /* min_EL EL1 */
8984 mask = PL1_RW;
8985 break;
8986 case 3:
8987 /* min_EL EL0 */
8988 mask = PL0_RW;
8989 break;
8990 case 4:
8991 case 5:
8992 /* min_EL EL2 */
8993 mask = PL2_RW;
8994 break;
8995 case 6:
8996 /* min_EL EL3 */
8997 mask = PL3_RW;
8998 break;
8999 case 7:
9000 /* min_EL EL1, secure mode only (we don't check the latter) */
9001 mask = PL1_RW;
9002 break;
9003 default:
9004 /* broken reginfo with out-of-range opc1 */
9005 assert(false);
9006 break;
9008 /* assert our permissions are not too lax (stricter is fine) */
9009 assert((r->access & ~mask) == 0);
9012 /* Check that the register definition has enough info to handle
9013 * reads and writes if they are permitted.
9015 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
9016 if (r->access & PL3_R) {
9017 assert((r->fieldoffset ||
9018 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9019 r->readfn);
9021 if (r->access & PL3_W) {
9022 assert((r->fieldoffset ||
9023 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9024 r->writefn);
9027 /* Bad type field probably means missing sentinel at end of reg list */
9028 assert(cptype_valid(r->type));
9029 for (crm = crmmin; crm <= crmmax; crm++) {
9030 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9031 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9032 for (state = ARM_CP_STATE_AA32;
9033 state <= ARM_CP_STATE_AA64; state++) {
9034 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9035 continue;
9037 if (state == ARM_CP_STATE_AA32) {
9038 /* Under AArch32 CP registers can be common
9039 * (same for secure and non-secure world) or banked.
9041 char *name;
9043 switch (r->secure) {
9044 case ARM_CP_SECSTATE_S:
9045 case ARM_CP_SECSTATE_NS:
9046 add_cpreg_to_hashtable(cpu, r, opaque, state,
9047 r->secure, crm, opc1, opc2,
9048 r->name);
9049 break;
9050 default:
9051 name = g_strdup_printf("%s_S", r->name);
9052 add_cpreg_to_hashtable(cpu, r, opaque, state,
9053 ARM_CP_SECSTATE_S,
9054 crm, opc1, opc2, name);
9055 g_free(name);
9056 add_cpreg_to_hashtable(cpu, r, opaque, state,
9057 ARM_CP_SECSTATE_NS,
9058 crm, opc1, opc2, r->name);
9059 break;
9061 } else {
9062 /* AArch64 registers get mapped to non-secure instance
9063 * of AArch32 */
9064 add_cpreg_to_hashtable(cpu, r, opaque, state,
9065 ARM_CP_SECSTATE_NS,
9066 crm, opc1, opc2, r->name);
9074 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
9075 const ARMCPRegInfo *regs, void *opaque)
9077 /* Define a whole list of registers */
9078 const ARMCPRegInfo *r;
9079 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9080 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
9085 * Modify ARMCPRegInfo for access from userspace.
9087 * This is a data driven modification directed by
9088 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9089 * user-space cannot alter any values and dynamic values pertaining to
9090 * execution state are hidden from user space view anyway.
9092 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
9094 const ARMCPRegUserSpaceInfo *m;
9095 ARMCPRegInfo *r;
9097 for (m = mods; m->name; m++) {
9098 GPatternSpec *pat = NULL;
9099 if (m->is_glob) {
9100 pat = g_pattern_spec_new(m->name);
9102 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9103 if (pat && g_pattern_match_string(pat, r->name)) {
9104 r->type = ARM_CP_CONST;
9105 r->access = PL0U_R;
9106 r->resetvalue = 0;
9107 /* continue */
9108 } else if (strcmp(r->name, m->name) == 0) {
9109 r->type = ARM_CP_CONST;
9110 r->access = PL0U_R;
9111 r->resetvalue &= m->exported_bits;
9112 r->resetvalue |= m->fixed_bits;
9113 break;
9116 if (pat) {
9117 g_pattern_spec_free(pat);
9122 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9124 return g_hash_table_lookup(cpregs, &encoded_cp);
9127 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9128 uint64_t value)
9130 /* Helper coprocessor write function for write-ignore registers */
9133 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9135 /* Helper coprocessor write function for read-as-zero registers */
9136 return 0;
9139 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9141 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9144 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9146 /* Return true if it is not valid for us to switch to
9147 * this CPU mode (ie all the UNPREDICTABLE cases in
9148 * the ARM ARM CPSRWriteByInstr pseudocode).
9151 /* Changes to or from Hyp via MSR and CPS are illegal. */
9152 if (write_type == CPSRWriteByInstr &&
9153 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9154 mode == ARM_CPU_MODE_HYP)) {
9155 return 1;
9158 switch (mode) {
9159 case ARM_CPU_MODE_USR:
9160 return 0;
9161 case ARM_CPU_MODE_SYS:
9162 case ARM_CPU_MODE_SVC:
9163 case ARM_CPU_MODE_ABT:
9164 case ARM_CPU_MODE_UND:
9165 case ARM_CPU_MODE_IRQ:
9166 case ARM_CPU_MODE_FIQ:
9167 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9168 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9170 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9171 * and CPS are treated as illegal mode changes.
9173 if (write_type == CPSRWriteByInstr &&
9174 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9175 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9176 return 1;
9178 return 0;
9179 case ARM_CPU_MODE_HYP:
9180 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9181 case ARM_CPU_MODE_MON:
9182 return arm_current_el(env) < 3;
9183 default:
9184 return 1;
9188 uint32_t cpsr_read(CPUARMState *env)
9190 int ZF;
9191 ZF = (env->ZF == 0);
9192 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9193 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9194 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9195 | ((env->condexec_bits & 0xfc) << 8)
9196 | (env->GE << 16) | (env->daif & CPSR_AIF);
9199 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9200 CPSRWriteType write_type)
9202 uint32_t changed_daif;
9204 if (mask & CPSR_NZCV) {
9205 env->ZF = (~val) & CPSR_Z;
9206 env->NF = val;
9207 env->CF = (val >> 29) & 1;
9208 env->VF = (val << 3) & 0x80000000;
9210 if (mask & CPSR_Q)
9211 env->QF = ((val & CPSR_Q) != 0);
9212 if (mask & CPSR_T)
9213 env->thumb = ((val & CPSR_T) != 0);
9214 if (mask & CPSR_IT_0_1) {
9215 env->condexec_bits &= ~3;
9216 env->condexec_bits |= (val >> 25) & 3;
9218 if (mask & CPSR_IT_2_7) {
9219 env->condexec_bits &= 3;
9220 env->condexec_bits |= (val >> 8) & 0xfc;
9222 if (mask & CPSR_GE) {
9223 env->GE = (val >> 16) & 0xf;
9226 /* In a V7 implementation that includes the security extensions but does
9227 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9228 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9229 * bits respectively.
9231 * In a V8 implementation, it is permitted for privileged software to
9232 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9234 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9235 arm_feature(env, ARM_FEATURE_EL3) &&
9236 !arm_feature(env, ARM_FEATURE_EL2) &&
9237 !arm_is_secure(env)) {
9239 changed_daif = (env->daif ^ val) & mask;
9241 if (changed_daif & CPSR_A) {
9242 /* Check to see if we are allowed to change the masking of async
9243 * abort exceptions from a non-secure state.
9245 if (!(env->cp15.scr_el3 & SCR_AW)) {
9246 qemu_log_mask(LOG_GUEST_ERROR,
9247 "Ignoring attempt to switch CPSR_A flag from "
9248 "non-secure world with SCR.AW bit clear\n");
9249 mask &= ~CPSR_A;
9253 if (changed_daif & CPSR_F) {
9254 /* Check to see if we are allowed to change the masking of FIQ
9255 * exceptions from a non-secure state.
9257 if (!(env->cp15.scr_el3 & SCR_FW)) {
9258 qemu_log_mask(LOG_GUEST_ERROR,
9259 "Ignoring attempt to switch CPSR_F flag from "
9260 "non-secure world with SCR.FW bit clear\n");
9261 mask &= ~CPSR_F;
9264 /* Check whether non-maskable FIQ (NMFI) support is enabled.
9265 * If this bit is set software is not allowed to mask
9266 * FIQs, but is allowed to set CPSR_F to 0.
9268 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9269 (val & CPSR_F)) {
9270 qemu_log_mask(LOG_GUEST_ERROR,
9271 "Ignoring attempt to enable CPSR_F flag "
9272 "(non-maskable FIQ [NMFI] support enabled)\n");
9273 mask &= ~CPSR_F;
9278 env->daif &= ~(CPSR_AIF & mask);
9279 env->daif |= val & CPSR_AIF & mask;
9281 if (write_type != CPSRWriteRaw &&
9282 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9283 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9284 /* Note that we can only get here in USR mode if this is a
9285 * gdb stub write; for this case we follow the architectural
9286 * behaviour for guest writes in USR mode of ignoring an attempt
9287 * to switch mode. (Those are caught by translate.c for writes
9288 * triggered by guest instructions.)
9290 mask &= ~CPSR_M;
9291 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9292 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9293 * v7, and has defined behaviour in v8:
9294 * + leave CPSR.M untouched
9295 * + allow changes to the other CPSR fields
9296 * + set PSTATE.IL
9297 * For user changes via the GDB stub, we don't set PSTATE.IL,
9298 * as this would be unnecessarily harsh for a user error.
9300 mask &= ~CPSR_M;
9301 if (write_type != CPSRWriteByGDBStub &&
9302 arm_feature(env, ARM_FEATURE_V8)) {
9303 mask |= CPSR_IL;
9304 val |= CPSR_IL;
9306 qemu_log_mask(LOG_GUEST_ERROR,
9307 "Illegal AArch32 mode switch attempt from %s to %s\n",
9308 aarch32_mode_name(env->uncached_cpsr),
9309 aarch32_mode_name(val));
9310 } else {
9311 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9312 write_type == CPSRWriteExceptionReturn ?
9313 "Exception return from AArch32" :
9314 "AArch32 mode switch from",
9315 aarch32_mode_name(env->uncached_cpsr),
9316 aarch32_mode_name(val), env->regs[15]);
9317 switch_mode(env, val & CPSR_M);
9320 mask &= ~CACHED_CPSR_BITS;
9321 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9324 /* Sign/zero extend */
9325 uint32_t HELPER(sxtb16)(uint32_t x)
9327 uint32_t res;
9328 res = (uint16_t)(int8_t)x;
9329 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9330 return res;
9333 uint32_t HELPER(uxtb16)(uint32_t x)
9335 uint32_t res;
9336 res = (uint16_t)(uint8_t)x;
9337 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9338 return res;
9341 int32_t HELPER(sdiv)(int32_t num, int32_t den)
9343 if (den == 0)
9344 return 0;
9345 if (num == INT_MIN && den == -1)
9346 return INT_MIN;
9347 return num / den;
9350 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
9352 if (den == 0)
9353 return 0;
9354 return num / den;
9357 uint32_t HELPER(rbit)(uint32_t x)
9359 return revbit32(x);
9362 #ifdef CONFIG_USER_ONLY
9364 static void switch_mode(CPUARMState *env, int mode)
9366 ARMCPU *cpu = env_archcpu(env);
9368 if (mode != ARM_CPU_MODE_USR) {
9369 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9373 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9374 uint32_t cur_el, bool secure)
9376 return 1;
9379 void aarch64_sync_64_to_32(CPUARMState *env)
9381 g_assert_not_reached();
9384 #else
9386 static void switch_mode(CPUARMState *env, int mode)
9388 int old_mode;
9389 int i;
9391 old_mode = env->uncached_cpsr & CPSR_M;
9392 if (mode == old_mode)
9393 return;
9395 if (old_mode == ARM_CPU_MODE_FIQ) {
9396 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9397 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9398 } else if (mode == ARM_CPU_MODE_FIQ) {
9399 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9400 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9403 i = bank_number(old_mode);
9404 env->banked_r13[i] = env->regs[13];
9405 env->banked_spsr[i] = env->spsr;
9407 i = bank_number(mode);
9408 env->regs[13] = env->banked_r13[i];
9409 env->spsr = env->banked_spsr[i];
9411 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9412 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9415 /* Physical Interrupt Target EL Lookup Table
9417 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9419 * The below multi-dimensional table is used for looking up the target
9420 * exception level given numerous condition criteria. Specifically, the
9421 * target EL is based on SCR and HCR routing controls as well as the
9422 * currently executing EL and secure state.
9424 * Dimensions:
9425 * target_el_table[2][2][2][2][2][4]
9426 * | | | | | +--- Current EL
9427 * | | | | +------ Non-secure(0)/Secure(1)
9428 * | | | +--------- HCR mask override
9429 * | | +------------ SCR exec state control
9430 * | +--------------- SCR mask override
9431 * +------------------ 32-bit(0)/64-bit(1) EL3
9433 * The table values are as such:
9434 * 0-3 = EL0-EL3
9435 * -1 = Cannot occur
9437 * The ARM ARM target EL table includes entries indicating that an "exception
9438 * is not taken". The two cases where this is applicable are:
9439 * 1) An exception is taken from EL3 but the SCR does not have the exception
9440 * routed to EL3.
9441 * 2) An exception is taken from EL2 but the HCR does not have the exception
9442 * routed to EL2.
9443 * In these two cases, the below table contain a target of EL1. This value is
9444 * returned as it is expected that the consumer of the table data will check
9445 * for "target EL >= current EL" to ensure the exception is not taken.
9447 * SCR HCR
9448 * 64 EA AMO From
9449 * BIT IRQ IMO Non-secure Secure
9450 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9452 static const int8_t target_el_table[2][2][2][2][2][4] = {
9453 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9454 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9455 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9456 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9457 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9458 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9459 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9460 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9461 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9462 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9463 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9464 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9465 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9466 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9467 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9468 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9472 * Determine the target EL for physical exceptions
9474 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9475 uint32_t cur_el, bool secure)
9477 CPUARMState *env = cs->env_ptr;
9478 bool rw;
9479 bool scr;
9480 bool hcr;
9481 int target_el;
9482 /* Is the highest EL AArch64? */
9483 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9484 uint64_t hcr_el2;
9486 if (arm_feature(env, ARM_FEATURE_EL3)) {
9487 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9488 } else {
9489 /* Either EL2 is the highest EL (and so the EL2 register width
9490 * is given by is64); or there is no EL2 or EL3, in which case
9491 * the value of 'rw' does not affect the table lookup anyway.
9493 rw = is64;
9496 hcr_el2 = arm_hcr_el2_eff(env);
9497 switch (excp_idx) {
9498 case EXCP_IRQ:
9499 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9500 hcr = hcr_el2 & HCR_IMO;
9501 break;
9502 case EXCP_FIQ:
9503 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9504 hcr = hcr_el2 & HCR_FMO;
9505 break;
9506 default:
9507 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9508 hcr = hcr_el2 & HCR_AMO;
9509 break;
9513 * For these purposes, TGE and AMO/IMO/FMO both force the
9514 * interrupt to EL2. Fold TGE into the bit extracted above.
9516 hcr |= (hcr_el2 & HCR_TGE) != 0;
9518 /* Perform a table-lookup for the target EL given the current state */
9519 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9521 assert(target_el > 0);
9523 return target_el;
9526 void arm_log_exception(int idx)
9528 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9529 const char *exc = NULL;
9530 static const char * const excnames[] = {
9531 [EXCP_UDEF] = "Undefined Instruction",
9532 [EXCP_SWI] = "SVC",
9533 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9534 [EXCP_DATA_ABORT] = "Data Abort",
9535 [EXCP_IRQ] = "IRQ",
9536 [EXCP_FIQ] = "FIQ",
9537 [EXCP_BKPT] = "Breakpoint",
9538 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9539 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9540 [EXCP_HVC] = "Hypervisor Call",
9541 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9542 [EXCP_SMC] = "Secure Monitor Call",
9543 [EXCP_VIRQ] = "Virtual IRQ",
9544 [EXCP_VFIQ] = "Virtual FIQ",
9545 [EXCP_SEMIHOST] = "Semihosting call",
9546 [EXCP_NOCP] = "v7M NOCP UsageFault",
9547 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9548 [EXCP_STKOF] = "v8M STKOF UsageFault",
9549 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9550 [EXCP_LSERR] = "v8M LSERR UsageFault",
9551 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9554 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9555 exc = excnames[idx];
9557 if (!exc) {
9558 exc = "unknown";
9560 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9565 * Function used to synchronize QEMU's AArch64 register set with AArch32
9566 * register set. This is necessary when switching between AArch32 and AArch64
9567 * execution state.
9569 void aarch64_sync_32_to_64(CPUARMState *env)
9571 int i;
9572 uint32_t mode = env->uncached_cpsr & CPSR_M;
9574 /* We can blanket copy R[0:7] to X[0:7] */
9575 for (i = 0; i < 8; i++) {
9576 env->xregs[i] = env->regs[i];
9580 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9581 * Otherwise, they come from the banked user regs.
9583 if (mode == ARM_CPU_MODE_FIQ) {
9584 for (i = 8; i < 13; i++) {
9585 env->xregs[i] = env->usr_regs[i - 8];
9587 } else {
9588 for (i = 8; i < 13; i++) {
9589 env->xregs[i] = env->regs[i];
9594 * Registers x13-x23 are the various mode SP and FP registers. Registers
9595 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9596 * from the mode banked register.
9598 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9599 env->xregs[13] = env->regs[13];
9600 env->xregs[14] = env->regs[14];
9601 } else {
9602 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9603 /* HYP is an exception in that it is copied from r14 */
9604 if (mode == ARM_CPU_MODE_HYP) {
9605 env->xregs[14] = env->regs[14];
9606 } else {
9607 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9611 if (mode == ARM_CPU_MODE_HYP) {
9612 env->xregs[15] = env->regs[13];
9613 } else {
9614 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9617 if (mode == ARM_CPU_MODE_IRQ) {
9618 env->xregs[16] = env->regs[14];
9619 env->xregs[17] = env->regs[13];
9620 } else {
9621 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9622 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9625 if (mode == ARM_CPU_MODE_SVC) {
9626 env->xregs[18] = env->regs[14];
9627 env->xregs[19] = env->regs[13];
9628 } else {
9629 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9630 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9633 if (mode == ARM_CPU_MODE_ABT) {
9634 env->xregs[20] = env->regs[14];
9635 env->xregs[21] = env->regs[13];
9636 } else {
9637 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9638 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9641 if (mode == ARM_CPU_MODE_UND) {
9642 env->xregs[22] = env->regs[14];
9643 env->xregs[23] = env->regs[13];
9644 } else {
9645 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9646 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9650 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9651 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9652 * FIQ bank for r8-r14.
9654 if (mode == ARM_CPU_MODE_FIQ) {
9655 for (i = 24; i < 31; i++) {
9656 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9658 } else {
9659 for (i = 24; i < 29; i++) {
9660 env->xregs[i] = env->fiq_regs[i - 24];
9662 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9663 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9666 env->pc = env->regs[15];
9670 * Function used to synchronize QEMU's AArch32 register set with AArch64
9671 * register set. This is necessary when switching between AArch32 and AArch64
9672 * execution state.
9674 void aarch64_sync_64_to_32(CPUARMState *env)
9676 int i;
9677 uint32_t mode = env->uncached_cpsr & CPSR_M;
9679 /* We can blanket copy X[0:7] to R[0:7] */
9680 for (i = 0; i < 8; i++) {
9681 env->regs[i] = env->xregs[i];
9685 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9686 * Otherwise, we copy x8-x12 into the banked user regs.
9688 if (mode == ARM_CPU_MODE_FIQ) {
9689 for (i = 8; i < 13; i++) {
9690 env->usr_regs[i - 8] = env->xregs[i];
9692 } else {
9693 for (i = 8; i < 13; i++) {
9694 env->regs[i] = env->xregs[i];
9699 * Registers r13 & r14 depend on the current mode.
9700 * If we are in a given mode, we copy the corresponding x registers to r13
9701 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9702 * for the mode.
9704 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9705 env->regs[13] = env->xregs[13];
9706 env->regs[14] = env->xregs[14];
9707 } else {
9708 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9711 * HYP is an exception in that it does not have its own banked r14 but
9712 * shares the USR r14
9714 if (mode == ARM_CPU_MODE_HYP) {
9715 env->regs[14] = env->xregs[14];
9716 } else {
9717 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9721 if (mode == ARM_CPU_MODE_HYP) {
9722 env->regs[13] = env->xregs[15];
9723 } else {
9724 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9727 if (mode == ARM_CPU_MODE_IRQ) {
9728 env->regs[14] = env->xregs[16];
9729 env->regs[13] = env->xregs[17];
9730 } else {
9731 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9732 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9735 if (mode == ARM_CPU_MODE_SVC) {
9736 env->regs[14] = env->xregs[18];
9737 env->regs[13] = env->xregs[19];
9738 } else {
9739 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9740 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9743 if (mode == ARM_CPU_MODE_ABT) {
9744 env->regs[14] = env->xregs[20];
9745 env->regs[13] = env->xregs[21];
9746 } else {
9747 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9748 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9751 if (mode == ARM_CPU_MODE_UND) {
9752 env->regs[14] = env->xregs[22];
9753 env->regs[13] = env->xregs[23];
9754 } else {
9755 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9756 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9759 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9760 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9761 * FIQ bank for r8-r14.
9763 if (mode == ARM_CPU_MODE_FIQ) {
9764 for (i = 24; i < 31; i++) {
9765 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9767 } else {
9768 for (i = 24; i < 29; i++) {
9769 env->fiq_regs[i - 24] = env->xregs[i];
9771 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9772 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9775 env->regs[15] = env->pc;
9778 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9779 uint32_t mask, uint32_t offset,
9780 uint32_t newpc)
9782 int new_el;
9784 /* Change the CPU state so as to actually take the exception. */
9785 switch_mode(env, new_mode);
9788 * For exceptions taken to AArch32 we must clear the SS bit in both
9789 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9791 env->pstate &= ~PSTATE_SS;
9792 env->spsr = cpsr_read(env);
9793 /* Clear IT bits. */
9794 env->condexec_bits = 0;
9795 /* Switch to the new mode, and to the correct instruction set. */
9796 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9798 /* This must be after mode switching. */
9799 new_el = arm_current_el(env);
9801 /* Set new mode endianness */
9802 env->uncached_cpsr &= ~CPSR_E;
9803 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9804 env->uncached_cpsr |= CPSR_E;
9806 /* J and IL must always be cleared for exception entry */
9807 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9808 env->daif |= mask;
9810 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9811 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9812 env->uncached_cpsr |= CPSR_SSBS;
9813 } else {
9814 env->uncached_cpsr &= ~CPSR_SSBS;
9818 if (new_mode == ARM_CPU_MODE_HYP) {
9819 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9820 env->elr_el[2] = env->regs[15];
9821 } else {
9822 /* CPSR.PAN is normally preserved preserved unless... */
9823 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9824 switch (new_el) {
9825 case 3:
9826 if (!arm_is_secure_below_el3(env)) {
9827 /* ... the target is EL3, from non-secure state. */
9828 env->uncached_cpsr &= ~CPSR_PAN;
9829 break;
9831 /* ... the target is EL3, from secure state ... */
9832 /* fall through */
9833 case 1:
9834 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9835 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9836 env->uncached_cpsr |= CPSR_PAN;
9838 break;
9842 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9843 * and we should just guard the thumb mode on V4
9845 if (arm_feature(env, ARM_FEATURE_V4T)) {
9846 env->thumb =
9847 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9849 env->regs[14] = env->regs[15] + offset;
9851 env->regs[15] = newpc;
9852 arm_rebuild_hflags(env);
9855 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9858 * Handle exception entry to Hyp mode; this is sufficiently
9859 * different to entry to other AArch32 modes that we handle it
9860 * separately here.
9862 * The vector table entry used is always the 0x14 Hyp mode entry point,
9863 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9864 * The offset applied to the preferred return address is always zero
9865 * (see DDI0487C.a section G1.12.3).
9866 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9868 uint32_t addr, mask;
9869 ARMCPU *cpu = ARM_CPU(cs);
9870 CPUARMState *env = &cpu->env;
9872 switch (cs->exception_index) {
9873 case EXCP_UDEF:
9874 addr = 0x04;
9875 break;
9876 case EXCP_SWI:
9877 addr = 0x14;
9878 break;
9879 case EXCP_BKPT:
9880 /* Fall through to prefetch abort. */
9881 case EXCP_PREFETCH_ABORT:
9882 env->cp15.ifar_s = env->exception.vaddress;
9883 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9884 (uint32_t)env->exception.vaddress);
9885 addr = 0x0c;
9886 break;
9887 case EXCP_DATA_ABORT:
9888 env->cp15.dfar_s = env->exception.vaddress;
9889 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9890 (uint32_t)env->exception.vaddress);
9891 addr = 0x10;
9892 break;
9893 case EXCP_IRQ:
9894 addr = 0x18;
9895 break;
9896 case EXCP_FIQ:
9897 addr = 0x1c;
9898 break;
9899 case EXCP_HVC:
9900 addr = 0x08;
9901 break;
9902 case EXCP_HYP_TRAP:
9903 addr = 0x14;
9904 break;
9905 default:
9906 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9909 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9910 if (!arm_feature(env, ARM_FEATURE_V8)) {
9912 * QEMU syndrome values are v8-style. v7 has the IL bit
9913 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9914 * If this is a v7 CPU, squash the IL bit in those cases.
9916 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9917 (cs->exception_index == EXCP_DATA_ABORT &&
9918 !(env->exception.syndrome & ARM_EL_ISV)) ||
9919 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9920 env->exception.syndrome &= ~ARM_EL_IL;
9923 env->cp15.esr_el[2] = env->exception.syndrome;
9926 if (arm_current_el(env) != 2 && addr < 0x14) {
9927 addr = 0x14;
9930 mask = 0;
9931 if (!(env->cp15.scr_el3 & SCR_EA)) {
9932 mask |= CPSR_A;
9934 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9935 mask |= CPSR_I;
9937 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9938 mask |= CPSR_F;
9941 addr += env->cp15.hvbar;
9943 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9946 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9948 ARMCPU *cpu = ARM_CPU(cs);
9949 CPUARMState *env = &cpu->env;
9950 uint32_t addr;
9951 uint32_t mask;
9952 int new_mode;
9953 uint32_t offset;
9954 uint32_t moe;
9956 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9957 switch (syn_get_ec(env->exception.syndrome)) {
9958 case EC_BREAKPOINT:
9959 case EC_BREAKPOINT_SAME_EL:
9960 moe = 1;
9961 break;
9962 case EC_WATCHPOINT:
9963 case EC_WATCHPOINT_SAME_EL:
9964 moe = 10;
9965 break;
9966 case EC_AA32_BKPT:
9967 moe = 3;
9968 break;
9969 case EC_VECTORCATCH:
9970 moe = 5;
9971 break;
9972 default:
9973 moe = 0;
9974 break;
9977 if (moe) {
9978 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9981 if (env->exception.target_el == 2) {
9982 arm_cpu_do_interrupt_aarch32_hyp(cs);
9983 return;
9986 switch (cs->exception_index) {
9987 case EXCP_UDEF:
9988 new_mode = ARM_CPU_MODE_UND;
9989 addr = 0x04;
9990 mask = CPSR_I;
9991 if (env->thumb)
9992 offset = 2;
9993 else
9994 offset = 4;
9995 break;
9996 case EXCP_SWI:
9997 new_mode = ARM_CPU_MODE_SVC;
9998 addr = 0x08;
9999 mask = CPSR_I;
10000 /* The PC already points to the next instruction. */
10001 offset = 0;
10002 break;
10003 case EXCP_BKPT:
10004 /* Fall through to prefetch abort. */
10005 case EXCP_PREFETCH_ABORT:
10006 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10007 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10008 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10009 env->exception.fsr, (uint32_t)env->exception.vaddress);
10010 new_mode = ARM_CPU_MODE_ABT;
10011 addr = 0x0c;
10012 mask = CPSR_A | CPSR_I;
10013 offset = 4;
10014 break;
10015 case EXCP_DATA_ABORT:
10016 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10017 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10018 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10019 env->exception.fsr,
10020 (uint32_t)env->exception.vaddress);
10021 new_mode = ARM_CPU_MODE_ABT;
10022 addr = 0x10;
10023 mask = CPSR_A | CPSR_I;
10024 offset = 8;
10025 break;
10026 case EXCP_IRQ:
10027 new_mode = ARM_CPU_MODE_IRQ;
10028 addr = 0x18;
10029 /* Disable IRQ and imprecise data aborts. */
10030 mask = CPSR_A | CPSR_I;
10031 offset = 4;
10032 if (env->cp15.scr_el3 & SCR_IRQ) {
10033 /* IRQ routed to monitor mode */
10034 new_mode = ARM_CPU_MODE_MON;
10035 mask |= CPSR_F;
10037 break;
10038 case EXCP_FIQ:
10039 new_mode = ARM_CPU_MODE_FIQ;
10040 addr = 0x1c;
10041 /* Disable FIQ, IRQ and imprecise data aborts. */
10042 mask = CPSR_A | CPSR_I | CPSR_F;
10043 if (env->cp15.scr_el3 & SCR_FIQ) {
10044 /* FIQ routed to monitor mode */
10045 new_mode = ARM_CPU_MODE_MON;
10047 offset = 4;
10048 break;
10049 case EXCP_VIRQ:
10050 new_mode = ARM_CPU_MODE_IRQ;
10051 addr = 0x18;
10052 /* Disable IRQ and imprecise data aborts. */
10053 mask = CPSR_A | CPSR_I;
10054 offset = 4;
10055 break;
10056 case EXCP_VFIQ:
10057 new_mode = ARM_CPU_MODE_FIQ;
10058 addr = 0x1c;
10059 /* Disable FIQ, IRQ and imprecise data aborts. */
10060 mask = CPSR_A | CPSR_I | CPSR_F;
10061 offset = 4;
10062 break;
10063 case EXCP_SMC:
10064 new_mode = ARM_CPU_MODE_MON;
10065 addr = 0x08;
10066 mask = CPSR_A | CPSR_I | CPSR_F;
10067 offset = 0;
10068 break;
10069 default:
10070 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10071 return; /* Never happens. Keep compiler happy. */
10074 if (new_mode == ARM_CPU_MODE_MON) {
10075 addr += env->cp15.mvbar;
10076 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10077 /* High vectors. When enabled, base address cannot be remapped. */
10078 addr += 0xffff0000;
10079 } else {
10080 /* ARM v7 architectures provide a vector base address register to remap
10081 * the interrupt vector table.
10082 * This register is only followed in non-monitor mode, and is banked.
10083 * Note: only bits 31:5 are valid.
10085 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10088 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10089 env->cp15.scr_el3 &= ~SCR_NS;
10092 take_aarch32_exception(env, new_mode, mask, offset, addr);
10095 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10098 * Return the register number of the AArch64 view of the AArch32
10099 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10100 * be that of the AArch32 mode the exception came from.
10102 int mode = env->uncached_cpsr & CPSR_M;
10104 switch (aarch32_reg) {
10105 case 0 ... 7:
10106 return aarch32_reg;
10107 case 8 ... 12:
10108 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10109 case 13:
10110 switch (mode) {
10111 case ARM_CPU_MODE_USR:
10112 case ARM_CPU_MODE_SYS:
10113 return 13;
10114 case ARM_CPU_MODE_HYP:
10115 return 15;
10116 case ARM_CPU_MODE_IRQ:
10117 return 17;
10118 case ARM_CPU_MODE_SVC:
10119 return 19;
10120 case ARM_CPU_MODE_ABT:
10121 return 21;
10122 case ARM_CPU_MODE_UND:
10123 return 23;
10124 case ARM_CPU_MODE_FIQ:
10125 return 29;
10126 default:
10127 g_assert_not_reached();
10129 case 14:
10130 switch (mode) {
10131 case ARM_CPU_MODE_USR:
10132 case ARM_CPU_MODE_SYS:
10133 case ARM_CPU_MODE_HYP:
10134 return 14;
10135 case ARM_CPU_MODE_IRQ:
10136 return 16;
10137 case ARM_CPU_MODE_SVC:
10138 return 18;
10139 case ARM_CPU_MODE_ABT:
10140 return 20;
10141 case ARM_CPU_MODE_UND:
10142 return 22;
10143 case ARM_CPU_MODE_FIQ:
10144 return 30;
10145 default:
10146 g_assert_not_reached();
10148 case 15:
10149 return 31;
10150 default:
10151 g_assert_not_reached();
10155 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10157 uint32_t ret = cpsr_read(env);
10159 /* Move DIT to the correct location for SPSR_ELx */
10160 if (ret & CPSR_DIT) {
10161 ret &= ~CPSR_DIT;
10162 ret |= PSTATE_DIT;
10164 /* Merge PSTATE.SS into SPSR_ELx */
10165 ret |= env->pstate & PSTATE_SS;
10167 return ret;
10170 /* Handle exception entry to a target EL which is using AArch64 */
10171 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10173 ARMCPU *cpu = ARM_CPU(cs);
10174 CPUARMState *env = &cpu->env;
10175 unsigned int new_el = env->exception.target_el;
10176 target_ulong addr = env->cp15.vbar_el[new_el];
10177 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10178 unsigned int old_mode;
10179 unsigned int cur_el = arm_current_el(env);
10180 int rt;
10183 * Note that new_el can never be 0. If cur_el is 0, then
10184 * el0_a64 is is_a64(), else el0_a64 is ignored.
10186 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10188 if (cur_el < new_el) {
10189 /* Entry vector offset depends on whether the implemented EL
10190 * immediately lower than the target level is using AArch32 or AArch64
10192 bool is_aa64;
10193 uint64_t hcr;
10195 switch (new_el) {
10196 case 3:
10197 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10198 break;
10199 case 2:
10200 hcr = arm_hcr_el2_eff(env);
10201 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10202 is_aa64 = (hcr & HCR_RW) != 0;
10203 break;
10205 /* fall through */
10206 case 1:
10207 is_aa64 = is_a64(env);
10208 break;
10209 default:
10210 g_assert_not_reached();
10213 if (is_aa64) {
10214 addr += 0x400;
10215 } else {
10216 addr += 0x600;
10218 } else if (pstate_read(env) & PSTATE_SP) {
10219 addr += 0x200;
10222 switch (cs->exception_index) {
10223 case EXCP_PREFETCH_ABORT:
10224 case EXCP_DATA_ABORT:
10225 env->cp15.far_el[new_el] = env->exception.vaddress;
10226 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10227 env->cp15.far_el[new_el]);
10228 /* fall through */
10229 case EXCP_BKPT:
10230 case EXCP_UDEF:
10231 case EXCP_SWI:
10232 case EXCP_HVC:
10233 case EXCP_HYP_TRAP:
10234 case EXCP_SMC:
10235 switch (syn_get_ec(env->exception.syndrome)) {
10236 case EC_ADVSIMDFPACCESSTRAP:
10238 * QEMU internal FP/SIMD syndromes from AArch32 include the
10239 * TA and coproc fields which are only exposed if the exception
10240 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10241 * AArch64 format syndrome.
10243 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10244 break;
10245 case EC_CP14RTTRAP:
10246 case EC_CP15RTTRAP:
10247 case EC_CP14DTTRAP:
10249 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10250 * the raw register field from the insn; when taking this to
10251 * AArch64 we must convert it to the AArch64 view of the register
10252 * number. Notice that we read a 4-bit AArch32 register number and
10253 * write back a 5-bit AArch64 one.
10255 rt = extract32(env->exception.syndrome, 5, 4);
10256 rt = aarch64_regnum(env, rt);
10257 env->exception.syndrome = deposit32(env->exception.syndrome,
10258 5, 5, rt);
10259 break;
10260 case EC_CP15RRTTRAP:
10261 case EC_CP14RRTTRAP:
10262 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10263 rt = extract32(env->exception.syndrome, 5, 4);
10264 rt = aarch64_regnum(env, rt);
10265 env->exception.syndrome = deposit32(env->exception.syndrome,
10266 5, 5, rt);
10267 rt = extract32(env->exception.syndrome, 10, 4);
10268 rt = aarch64_regnum(env, rt);
10269 env->exception.syndrome = deposit32(env->exception.syndrome,
10270 10, 5, rt);
10271 break;
10273 env->cp15.esr_el[new_el] = env->exception.syndrome;
10274 break;
10275 case EXCP_IRQ:
10276 case EXCP_VIRQ:
10277 addr += 0x80;
10278 break;
10279 case EXCP_FIQ:
10280 case EXCP_VFIQ:
10281 addr += 0x100;
10282 break;
10283 default:
10284 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10287 if (is_a64(env)) {
10288 old_mode = pstate_read(env);
10289 aarch64_save_sp(env, arm_current_el(env));
10290 env->elr_el[new_el] = env->pc;
10291 } else {
10292 old_mode = cpsr_read_for_spsr_elx(env);
10293 env->elr_el[new_el] = env->regs[15];
10295 aarch64_sync_32_to_64(env);
10297 env->condexec_bits = 0;
10299 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10301 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10302 env->elr_el[new_el]);
10304 if (cpu_isar_feature(aa64_pan, cpu)) {
10305 /* The value of PSTATE.PAN is normally preserved, except when ... */
10306 new_mode |= old_mode & PSTATE_PAN;
10307 switch (new_el) {
10308 case 2:
10309 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10310 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10311 != (HCR_E2H | HCR_TGE)) {
10312 break;
10314 /* fall through */
10315 case 1:
10316 /* ... the target is EL1 ... */
10317 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10318 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10319 new_mode |= PSTATE_PAN;
10321 break;
10324 if (cpu_isar_feature(aa64_mte, cpu)) {
10325 new_mode |= PSTATE_TCO;
10328 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10329 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10330 new_mode |= PSTATE_SSBS;
10331 } else {
10332 new_mode &= ~PSTATE_SSBS;
10336 pstate_write(env, PSTATE_DAIF | new_mode);
10337 env->aarch64 = 1;
10338 aarch64_restore_sp(env, new_el);
10339 helper_rebuild_hflags_a64(env, new_el);
10341 env->pc = addr;
10343 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10344 new_el, env->pc, pstate_read(env));
10348 * Do semihosting call and set the appropriate return value. All the
10349 * permission and validity checks have been done at translate time.
10351 * We only see semihosting exceptions in TCG only as they are not
10352 * trapped to the hypervisor in KVM.
10354 #ifdef CONFIG_TCG
10355 static void handle_semihosting(CPUState *cs)
10357 ARMCPU *cpu = ARM_CPU(cs);
10358 CPUARMState *env = &cpu->env;
10360 if (is_a64(env)) {
10361 qemu_log_mask(CPU_LOG_INT,
10362 "...handling as semihosting call 0x%" PRIx64 "\n",
10363 env->xregs[0]);
10364 env->xregs[0] = do_common_semihosting(cs);
10365 env->pc += 4;
10366 } else {
10367 qemu_log_mask(CPU_LOG_INT,
10368 "...handling as semihosting call 0x%x\n",
10369 env->regs[0]);
10370 env->regs[0] = do_common_semihosting(cs);
10371 env->regs[15] += env->thumb ? 2 : 4;
10374 #endif
10376 /* Handle a CPU exception for A and R profile CPUs.
10377 * Do any appropriate logging, handle PSCI calls, and then hand off
10378 * to the AArch64-entry or AArch32-entry function depending on the
10379 * target exception level's register width.
10381 * Note: this is used for both TCG (as the do_interrupt tcg op),
10382 * and KVM to re-inject guest debug exceptions, and to
10383 * inject a Synchronous-External-Abort.
10385 void arm_cpu_do_interrupt(CPUState *cs)
10387 ARMCPU *cpu = ARM_CPU(cs);
10388 CPUARMState *env = &cpu->env;
10389 unsigned int new_el = env->exception.target_el;
10391 assert(!arm_feature(env, ARM_FEATURE_M));
10393 arm_log_exception(cs->exception_index);
10394 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10395 new_el);
10396 if (qemu_loglevel_mask(CPU_LOG_INT)
10397 && !excp_is_internal(cs->exception_index)) {
10398 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10399 syn_get_ec(env->exception.syndrome),
10400 env->exception.syndrome);
10403 if (arm_is_psci_call(cpu, cs->exception_index)) {
10404 arm_handle_psci_call(cpu);
10405 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10406 return;
10410 * Semihosting semantics depend on the register width of the code
10411 * that caused the exception, not the target exception level, so
10412 * must be handled here.
10414 #ifdef CONFIG_TCG
10415 if (cs->exception_index == EXCP_SEMIHOST) {
10416 handle_semihosting(cs);
10417 return;
10419 #endif
10421 /* Hooks may change global state so BQL should be held, also the
10422 * BQL needs to be held for any modification of
10423 * cs->interrupt_request.
10425 g_assert(qemu_mutex_iothread_locked());
10427 arm_call_pre_el_change_hook(cpu);
10429 assert(!excp_is_internal(cs->exception_index));
10430 if (arm_el_is_aa64(env, new_el)) {
10431 arm_cpu_do_interrupt_aarch64(cs);
10432 } else {
10433 arm_cpu_do_interrupt_aarch32(cs);
10436 arm_call_el_change_hook(cpu);
10438 if (!kvm_enabled()) {
10439 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10442 #endif /* !CONFIG_USER_ONLY */
10444 uint64_t arm_sctlr(CPUARMState *env, int el)
10446 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10447 if (el == 0) {
10448 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10449 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10450 ? 2 : 1;
10452 return env->cp15.sctlr_el[el];
10455 /* Return the SCTLR value which controls this address translation regime */
10456 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10458 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10461 #ifndef CONFIG_USER_ONLY
10463 /* Return true if the specified stage of address translation is disabled */
10464 static inline bool regime_translation_disabled(CPUARMState *env,
10465 ARMMMUIdx mmu_idx)
10467 uint64_t hcr_el2;
10469 if (arm_feature(env, ARM_FEATURE_M)) {
10470 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10471 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10472 case R_V7M_MPU_CTRL_ENABLE_MASK:
10473 /* Enabled, but not for HardFault and NMI */
10474 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10475 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10476 /* Enabled for all cases */
10477 return false;
10478 case 0:
10479 default:
10480 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10481 * we warned about that in armv7m_nvic.c when the guest set it.
10483 return true;
10487 hcr_el2 = arm_hcr_el2_eff(env);
10489 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10490 /* HCR.DC means HCR.VM behaves as 1 */
10491 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10494 if (hcr_el2 & HCR_TGE) {
10495 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10496 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10497 return true;
10501 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10502 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10503 return true;
10506 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10509 static inline bool regime_translation_big_endian(CPUARMState *env,
10510 ARMMMUIdx mmu_idx)
10512 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10515 /* Return the TTBR associated with this translation regime */
10516 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10517 int ttbrn)
10519 if (mmu_idx == ARMMMUIdx_Stage2) {
10520 return env->cp15.vttbr_el2;
10522 if (mmu_idx == ARMMMUIdx_Stage2_S) {
10523 return env->cp15.vsttbr_el2;
10525 if (ttbrn == 0) {
10526 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10527 } else {
10528 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10532 #endif /* !CONFIG_USER_ONLY */
10534 /* Convert a possible stage1+2 MMU index into the appropriate
10535 * stage 1 MMU index
10537 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10539 switch (mmu_idx) {
10540 case ARMMMUIdx_SE10_0:
10541 return ARMMMUIdx_Stage1_SE0;
10542 case ARMMMUIdx_SE10_1:
10543 return ARMMMUIdx_Stage1_SE1;
10544 case ARMMMUIdx_SE10_1_PAN:
10545 return ARMMMUIdx_Stage1_SE1_PAN;
10546 case ARMMMUIdx_E10_0:
10547 return ARMMMUIdx_Stage1_E0;
10548 case ARMMMUIdx_E10_1:
10549 return ARMMMUIdx_Stage1_E1;
10550 case ARMMMUIdx_E10_1_PAN:
10551 return ARMMMUIdx_Stage1_E1_PAN;
10552 default:
10553 return mmu_idx;
10557 /* Return true if the translation regime is using LPAE format page tables */
10558 static inline bool regime_using_lpae_format(CPUARMState *env,
10559 ARMMMUIdx mmu_idx)
10561 int el = regime_el(env, mmu_idx);
10562 if (el == 2 || arm_el_is_aa64(env, el)) {
10563 return true;
10565 if (arm_feature(env, ARM_FEATURE_LPAE)
10566 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10567 return true;
10569 return false;
10572 /* Returns true if the stage 1 translation regime is using LPAE format page
10573 * tables. Used when raising alignment exceptions, whose FSR changes depending
10574 * on whether the long or short descriptor format is in use. */
10575 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10577 mmu_idx = stage_1_mmu_idx(mmu_idx);
10579 return regime_using_lpae_format(env, mmu_idx);
10582 #ifndef CONFIG_USER_ONLY
10583 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10585 switch (mmu_idx) {
10586 case ARMMMUIdx_SE10_0:
10587 case ARMMMUIdx_E20_0:
10588 case ARMMMUIdx_SE20_0:
10589 case ARMMMUIdx_Stage1_E0:
10590 case ARMMMUIdx_Stage1_SE0:
10591 case ARMMMUIdx_MUser:
10592 case ARMMMUIdx_MSUser:
10593 case ARMMMUIdx_MUserNegPri:
10594 case ARMMMUIdx_MSUserNegPri:
10595 return true;
10596 default:
10597 return false;
10598 case ARMMMUIdx_E10_0:
10599 case ARMMMUIdx_E10_1:
10600 case ARMMMUIdx_E10_1_PAN:
10601 g_assert_not_reached();
10605 /* Translate section/page access permissions to page
10606 * R/W protection flags
10608 * @env: CPUARMState
10609 * @mmu_idx: MMU index indicating required translation regime
10610 * @ap: The 3-bit access permissions (AP[2:0])
10611 * @domain_prot: The 2-bit domain access permissions
10613 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10614 int ap, int domain_prot)
10616 bool is_user = regime_is_user(env, mmu_idx);
10618 if (domain_prot == 3) {
10619 return PAGE_READ | PAGE_WRITE;
10622 switch (ap) {
10623 case 0:
10624 if (arm_feature(env, ARM_FEATURE_V7)) {
10625 return 0;
10627 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10628 case SCTLR_S:
10629 return is_user ? 0 : PAGE_READ;
10630 case SCTLR_R:
10631 return PAGE_READ;
10632 default:
10633 return 0;
10635 case 1:
10636 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10637 case 2:
10638 if (is_user) {
10639 return PAGE_READ;
10640 } else {
10641 return PAGE_READ | PAGE_WRITE;
10643 case 3:
10644 return PAGE_READ | PAGE_WRITE;
10645 case 4: /* Reserved. */
10646 return 0;
10647 case 5:
10648 return is_user ? 0 : PAGE_READ;
10649 case 6:
10650 return PAGE_READ;
10651 case 7:
10652 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10653 return 0;
10655 return PAGE_READ;
10656 default:
10657 g_assert_not_reached();
10661 /* Translate section/page access permissions to page
10662 * R/W protection flags.
10664 * @ap: The 2-bit simple AP (AP[2:1])
10665 * @is_user: TRUE if accessing from PL0
10667 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10669 switch (ap) {
10670 case 0:
10671 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10672 case 1:
10673 return PAGE_READ | PAGE_WRITE;
10674 case 2:
10675 return is_user ? 0 : PAGE_READ;
10676 case 3:
10677 return PAGE_READ;
10678 default:
10679 g_assert_not_reached();
10683 static inline int
10684 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10686 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10689 /* Translate S2 section/page access permissions to protection flags
10691 * @env: CPUARMState
10692 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10693 * @xn: XN (execute-never) bits
10694 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10696 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10698 int prot = 0;
10700 if (s2ap & 1) {
10701 prot |= PAGE_READ;
10703 if (s2ap & 2) {
10704 prot |= PAGE_WRITE;
10707 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10708 switch (xn) {
10709 case 0:
10710 prot |= PAGE_EXEC;
10711 break;
10712 case 1:
10713 if (s1_is_el0) {
10714 prot |= PAGE_EXEC;
10716 break;
10717 case 2:
10718 break;
10719 case 3:
10720 if (!s1_is_el0) {
10721 prot |= PAGE_EXEC;
10723 break;
10724 default:
10725 g_assert_not_reached();
10727 } else {
10728 if (!extract32(xn, 1, 1)) {
10729 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10730 prot |= PAGE_EXEC;
10734 return prot;
10737 /* Translate section/page access permissions to protection flags
10739 * @env: CPUARMState
10740 * @mmu_idx: MMU index indicating required translation regime
10741 * @is_aa64: TRUE if AArch64
10742 * @ap: The 2-bit simple AP (AP[2:1])
10743 * @ns: NS (non-secure) bit
10744 * @xn: XN (execute-never) bit
10745 * @pxn: PXN (privileged execute-never) bit
10747 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10748 int ap, int ns, int xn, int pxn)
10750 bool is_user = regime_is_user(env, mmu_idx);
10751 int prot_rw, user_rw;
10752 bool have_wxn;
10753 int wxn = 0;
10755 assert(mmu_idx != ARMMMUIdx_Stage2);
10756 assert(mmu_idx != ARMMMUIdx_Stage2_S);
10758 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10759 if (is_user) {
10760 prot_rw = user_rw;
10761 } else {
10762 if (user_rw && regime_is_pan(env, mmu_idx)) {
10763 /* PAN forbids data accesses but doesn't affect insn fetch */
10764 prot_rw = 0;
10765 } else {
10766 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10770 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10771 return prot_rw;
10774 /* TODO have_wxn should be replaced with
10775 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10776 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10777 * compatible processors have EL2, which is required for [U]WXN.
10779 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10781 if (have_wxn) {
10782 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10785 if (is_aa64) {
10786 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10787 xn = pxn || (user_rw & PAGE_WRITE);
10789 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10790 switch (regime_el(env, mmu_idx)) {
10791 case 1:
10792 case 3:
10793 if (is_user) {
10794 xn = xn || !(user_rw & PAGE_READ);
10795 } else {
10796 int uwxn = 0;
10797 if (have_wxn) {
10798 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10800 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10801 (uwxn && (user_rw & PAGE_WRITE));
10803 break;
10804 case 2:
10805 break;
10807 } else {
10808 xn = wxn = 0;
10811 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10812 return prot_rw;
10814 return prot_rw | PAGE_EXEC;
10817 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10818 uint32_t *table, uint32_t address)
10820 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10821 TCR *tcr = regime_tcr(env, mmu_idx);
10823 if (address & tcr->mask) {
10824 if (tcr->raw_tcr & TTBCR_PD1) {
10825 /* Translation table walk disabled for TTBR1 */
10826 return false;
10828 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10829 } else {
10830 if (tcr->raw_tcr & TTBCR_PD0) {
10831 /* Translation table walk disabled for TTBR0 */
10832 return false;
10834 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10836 *table |= (address >> 18) & 0x3ffc;
10837 return true;
10840 /* Translate a S1 pagetable walk through S2 if needed. */
10841 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10842 hwaddr addr, bool *is_secure,
10843 ARMMMUFaultInfo *fi)
10845 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10846 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10847 target_ulong s2size;
10848 hwaddr s2pa;
10849 int s2prot;
10850 int ret;
10851 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10852 : ARMMMUIdx_Stage2;
10853 ARMCacheAttrs cacheattrs = {};
10854 MemTxAttrs txattrs = {};
10856 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10857 &s2pa, &txattrs, &s2prot, &s2size, fi,
10858 &cacheattrs);
10859 if (ret) {
10860 assert(fi->type != ARMFault_None);
10861 fi->s2addr = addr;
10862 fi->stage2 = true;
10863 fi->s1ptw = true;
10864 fi->s1ns = !*is_secure;
10865 return ~0;
10867 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10868 (cacheattrs.attrs & 0xf0) == 0) {
10870 * PTW set and S1 walk touched S2 Device memory:
10871 * generate Permission fault.
10873 fi->type = ARMFault_Permission;
10874 fi->s2addr = addr;
10875 fi->stage2 = true;
10876 fi->s1ptw = true;
10877 fi->s1ns = !*is_secure;
10878 return ~0;
10881 if (arm_is_secure_below_el3(env)) {
10882 /* Check if page table walk is to secure or non-secure PA space. */
10883 if (*is_secure) {
10884 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10885 } else {
10886 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10888 } else {
10889 assert(!*is_secure);
10892 addr = s2pa;
10894 return addr;
10897 /* All loads done in the course of a page table walk go through here. */
10898 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10899 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10901 ARMCPU *cpu = ARM_CPU(cs);
10902 CPUARMState *env = &cpu->env;
10903 MemTxAttrs attrs = {};
10904 MemTxResult result = MEMTX_OK;
10905 AddressSpace *as;
10906 uint32_t data;
10908 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10909 attrs.secure = is_secure;
10910 as = arm_addressspace(cs, attrs);
10911 if (fi->s1ptw) {
10912 return 0;
10914 if (regime_translation_big_endian(env, mmu_idx)) {
10915 data = address_space_ldl_be(as, addr, attrs, &result);
10916 } else {
10917 data = address_space_ldl_le(as, addr, attrs, &result);
10919 if (result == MEMTX_OK) {
10920 return data;
10922 fi->type = ARMFault_SyncExternalOnWalk;
10923 fi->ea = arm_extabort_type(result);
10924 return 0;
10927 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10928 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10930 ARMCPU *cpu = ARM_CPU(cs);
10931 CPUARMState *env = &cpu->env;
10932 MemTxAttrs attrs = {};
10933 MemTxResult result = MEMTX_OK;
10934 AddressSpace *as;
10935 uint64_t data;
10937 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10938 attrs.secure = is_secure;
10939 as = arm_addressspace(cs, attrs);
10940 if (fi->s1ptw) {
10941 return 0;
10943 if (regime_translation_big_endian(env, mmu_idx)) {
10944 data = address_space_ldq_be(as, addr, attrs, &result);
10945 } else {
10946 data = address_space_ldq_le(as, addr, attrs, &result);
10948 if (result == MEMTX_OK) {
10949 return data;
10951 fi->type = ARMFault_SyncExternalOnWalk;
10952 fi->ea = arm_extabort_type(result);
10953 return 0;
10956 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10957 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10958 hwaddr *phys_ptr, int *prot,
10959 target_ulong *page_size,
10960 ARMMMUFaultInfo *fi)
10962 CPUState *cs = env_cpu(env);
10963 int level = 1;
10964 uint32_t table;
10965 uint32_t desc;
10966 int type;
10967 int ap;
10968 int domain = 0;
10969 int domain_prot;
10970 hwaddr phys_addr;
10971 uint32_t dacr;
10973 /* Pagetable walk. */
10974 /* Lookup l1 descriptor. */
10975 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10976 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10977 fi->type = ARMFault_Translation;
10978 goto do_fault;
10980 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10981 mmu_idx, fi);
10982 if (fi->type != ARMFault_None) {
10983 goto do_fault;
10985 type = (desc & 3);
10986 domain = (desc >> 5) & 0x0f;
10987 if (regime_el(env, mmu_idx) == 1) {
10988 dacr = env->cp15.dacr_ns;
10989 } else {
10990 dacr = env->cp15.dacr_s;
10992 domain_prot = (dacr >> (domain * 2)) & 3;
10993 if (type == 0) {
10994 /* Section translation fault. */
10995 fi->type = ARMFault_Translation;
10996 goto do_fault;
10998 if (type != 2) {
10999 level = 2;
11001 if (domain_prot == 0 || domain_prot == 2) {
11002 fi->type = ARMFault_Domain;
11003 goto do_fault;
11005 if (type == 2) {
11006 /* 1Mb section. */
11007 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11008 ap = (desc >> 10) & 3;
11009 *page_size = 1024 * 1024;
11010 } else {
11011 /* Lookup l2 entry. */
11012 if (type == 1) {
11013 /* Coarse pagetable. */
11014 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11015 } else {
11016 /* Fine pagetable. */
11017 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11019 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11020 mmu_idx, fi);
11021 if (fi->type != ARMFault_None) {
11022 goto do_fault;
11024 switch (desc & 3) {
11025 case 0: /* Page translation fault. */
11026 fi->type = ARMFault_Translation;
11027 goto do_fault;
11028 case 1: /* 64k page. */
11029 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11030 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11031 *page_size = 0x10000;
11032 break;
11033 case 2: /* 4k page. */
11034 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11035 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11036 *page_size = 0x1000;
11037 break;
11038 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11039 if (type == 1) {
11040 /* ARMv6/XScale extended small page format */
11041 if (arm_feature(env, ARM_FEATURE_XSCALE)
11042 || arm_feature(env, ARM_FEATURE_V6)) {
11043 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11044 *page_size = 0x1000;
11045 } else {
11046 /* UNPREDICTABLE in ARMv5; we choose to take a
11047 * page translation fault.
11049 fi->type = ARMFault_Translation;
11050 goto do_fault;
11052 } else {
11053 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11054 *page_size = 0x400;
11056 ap = (desc >> 4) & 3;
11057 break;
11058 default:
11059 /* Never happens, but compiler isn't smart enough to tell. */
11060 abort();
11063 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11064 *prot |= *prot ? PAGE_EXEC : 0;
11065 if (!(*prot & (1 << access_type))) {
11066 /* Access permission fault. */
11067 fi->type = ARMFault_Permission;
11068 goto do_fault;
11070 *phys_ptr = phys_addr;
11071 return false;
11072 do_fault:
11073 fi->domain = domain;
11074 fi->level = level;
11075 return true;
11078 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11079 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11080 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11081 target_ulong *page_size, ARMMMUFaultInfo *fi)
11083 CPUState *cs = env_cpu(env);
11084 ARMCPU *cpu = env_archcpu(env);
11085 int level = 1;
11086 uint32_t table;
11087 uint32_t desc;
11088 uint32_t xn;
11089 uint32_t pxn = 0;
11090 int type;
11091 int ap;
11092 int domain = 0;
11093 int domain_prot;
11094 hwaddr phys_addr;
11095 uint32_t dacr;
11096 bool ns;
11098 /* Pagetable walk. */
11099 /* Lookup l1 descriptor. */
11100 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11101 /* Section translation fault if page walk is disabled by PD0 or PD1 */
11102 fi->type = ARMFault_Translation;
11103 goto do_fault;
11105 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11106 mmu_idx, fi);
11107 if (fi->type != ARMFault_None) {
11108 goto do_fault;
11110 type = (desc & 3);
11111 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11112 /* Section translation fault, or attempt to use the encoding
11113 * which is Reserved on implementations without PXN.
11115 fi->type = ARMFault_Translation;
11116 goto do_fault;
11118 if ((type == 1) || !(desc & (1 << 18))) {
11119 /* Page or Section. */
11120 domain = (desc >> 5) & 0x0f;
11122 if (regime_el(env, mmu_idx) == 1) {
11123 dacr = env->cp15.dacr_ns;
11124 } else {
11125 dacr = env->cp15.dacr_s;
11127 if (type == 1) {
11128 level = 2;
11130 domain_prot = (dacr >> (domain * 2)) & 3;
11131 if (domain_prot == 0 || domain_prot == 2) {
11132 /* Section or Page domain fault */
11133 fi->type = ARMFault_Domain;
11134 goto do_fault;
11136 if (type != 1) {
11137 if (desc & (1 << 18)) {
11138 /* Supersection. */
11139 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11140 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11141 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11142 *page_size = 0x1000000;
11143 } else {
11144 /* Section. */
11145 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11146 *page_size = 0x100000;
11148 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11149 xn = desc & (1 << 4);
11150 pxn = desc & 1;
11151 ns = extract32(desc, 19, 1);
11152 } else {
11153 if (cpu_isar_feature(aa32_pxn, cpu)) {
11154 pxn = (desc >> 2) & 1;
11156 ns = extract32(desc, 3, 1);
11157 /* Lookup l2 entry. */
11158 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11159 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11160 mmu_idx, fi);
11161 if (fi->type != ARMFault_None) {
11162 goto do_fault;
11164 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11165 switch (desc & 3) {
11166 case 0: /* Page translation fault. */
11167 fi->type = ARMFault_Translation;
11168 goto do_fault;
11169 case 1: /* 64k page. */
11170 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11171 xn = desc & (1 << 15);
11172 *page_size = 0x10000;
11173 break;
11174 case 2: case 3: /* 4k page. */
11175 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11176 xn = desc & 1;
11177 *page_size = 0x1000;
11178 break;
11179 default:
11180 /* Never happens, but compiler isn't smart enough to tell. */
11181 abort();
11184 if (domain_prot == 3) {
11185 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11186 } else {
11187 if (pxn && !regime_is_user(env, mmu_idx)) {
11188 xn = 1;
11190 if (xn && access_type == MMU_INST_FETCH) {
11191 fi->type = ARMFault_Permission;
11192 goto do_fault;
11195 if (arm_feature(env, ARM_FEATURE_V6K) &&
11196 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11197 /* The simplified model uses AP[0] as an access control bit. */
11198 if ((ap & 1) == 0) {
11199 /* Access flag fault. */
11200 fi->type = ARMFault_AccessFlag;
11201 goto do_fault;
11203 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11204 } else {
11205 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11207 if (*prot && !xn) {
11208 *prot |= PAGE_EXEC;
11210 if (!(*prot & (1 << access_type))) {
11211 /* Access permission fault. */
11212 fi->type = ARMFault_Permission;
11213 goto do_fault;
11216 if (ns) {
11217 /* The NS bit will (as required by the architecture) have no effect if
11218 * the CPU doesn't support TZ or this is a non-secure translation
11219 * regime, because the attribute will already be non-secure.
11221 attrs->secure = false;
11223 *phys_ptr = phys_addr;
11224 return false;
11225 do_fault:
11226 fi->domain = domain;
11227 fi->level = level;
11228 return true;
11232 * check_s2_mmu_setup
11233 * @cpu: ARMCPU
11234 * @is_aa64: True if the translation regime is in AArch64 state
11235 * @startlevel: Suggested starting level
11236 * @inputsize: Bitsize of IPAs
11237 * @stride: Page-table stride (See the ARM ARM)
11239 * Returns true if the suggested S2 translation parameters are OK and
11240 * false otherwise.
11242 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11243 int inputsize, int stride)
11245 const int grainsize = stride + 3;
11246 int startsizecheck;
11248 /* Negative levels are never allowed. */
11249 if (level < 0) {
11250 return false;
11253 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11254 if (startsizecheck < 1 || startsizecheck > stride + 4) {
11255 return false;
11258 if (is_aa64) {
11259 CPUARMState *env = &cpu->env;
11260 unsigned int pamax = arm_pamax(cpu);
11262 switch (stride) {
11263 case 13: /* 64KB Pages. */
11264 if (level == 0 || (level == 1 && pamax <= 42)) {
11265 return false;
11267 break;
11268 case 11: /* 16KB Pages. */
11269 if (level == 0 || (level == 1 && pamax <= 40)) {
11270 return false;
11272 break;
11273 case 9: /* 4KB Pages. */
11274 if (level == 0 && pamax <= 42) {
11275 return false;
11277 break;
11278 default:
11279 g_assert_not_reached();
11282 /* Inputsize checks. */
11283 if (inputsize > pamax &&
11284 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11285 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11286 return false;
11288 } else {
11289 /* AArch32 only supports 4KB pages. Assert on that. */
11290 assert(stride == 9);
11292 if (level == 0) {
11293 return false;
11296 return true;
11299 /* Translate from the 4-bit stage 2 representation of
11300 * memory attributes (without cache-allocation hints) to
11301 * the 8-bit representation of the stage 1 MAIR registers
11302 * (which includes allocation hints).
11304 * ref: shared/translation/attrs/S2AttrDecode()
11305 * .../S2ConvertAttrsHints()
11307 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11309 uint8_t hiattr = extract32(s2attrs, 2, 2);
11310 uint8_t loattr = extract32(s2attrs, 0, 2);
11311 uint8_t hihint = 0, lohint = 0;
11313 if (hiattr != 0) { /* normal memory */
11314 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11315 hiattr = loattr = 1; /* non-cacheable */
11316 } else {
11317 if (hiattr != 1) { /* Write-through or write-back */
11318 hihint = 3; /* RW allocate */
11320 if (loattr != 1) { /* Write-through or write-back */
11321 lohint = 3; /* RW allocate */
11326 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11328 #endif /* !CONFIG_USER_ONLY */
11330 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11332 if (regime_has_2_ranges(mmu_idx)) {
11333 return extract64(tcr, 37, 2);
11334 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11335 return 0; /* VTCR_EL2 */
11336 } else {
11337 /* Replicate the single TBI bit so we always have 2 bits. */
11338 return extract32(tcr, 20, 1) * 3;
11342 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11344 if (regime_has_2_ranges(mmu_idx)) {
11345 return extract64(tcr, 51, 2);
11346 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11347 return 0; /* VTCR_EL2 */
11348 } else {
11349 /* Replicate the single TBID bit so we always have 2 bits. */
11350 return extract32(tcr, 29, 1) * 3;
11354 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11356 if (regime_has_2_ranges(mmu_idx)) {
11357 return extract64(tcr, 57, 2);
11358 } else {
11359 /* Replicate the single TCMA bit so we always have 2 bits. */
11360 return extract32(tcr, 30, 1) * 3;
11364 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11365 ARMMMUIdx mmu_idx, bool data)
11367 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11368 bool epd, hpd, using16k, using64k;
11369 int select, tsz, tbi, max_tsz;
11371 if (!regime_has_2_ranges(mmu_idx)) {
11372 select = 0;
11373 tsz = extract32(tcr, 0, 6);
11374 using64k = extract32(tcr, 14, 1);
11375 using16k = extract32(tcr, 15, 1);
11376 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11377 /* VTCR_EL2 */
11378 hpd = false;
11379 } else {
11380 hpd = extract32(tcr, 24, 1);
11382 epd = false;
11383 } else {
11385 * Bit 55 is always between the two regions, and is canonical for
11386 * determining if address tagging is enabled.
11388 select = extract64(va, 55, 1);
11389 if (!select) {
11390 tsz = extract32(tcr, 0, 6);
11391 epd = extract32(tcr, 7, 1);
11392 using64k = extract32(tcr, 14, 1);
11393 using16k = extract32(tcr, 15, 1);
11394 hpd = extract64(tcr, 41, 1);
11395 } else {
11396 int tg = extract32(tcr, 30, 2);
11397 using16k = tg == 1;
11398 using64k = tg == 3;
11399 tsz = extract32(tcr, 16, 6);
11400 epd = extract32(tcr, 23, 1);
11401 hpd = extract64(tcr, 42, 1);
11405 if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11406 max_tsz = 48 - using64k;
11407 } else {
11408 max_tsz = 39;
11411 tsz = MIN(tsz, max_tsz);
11412 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
11414 /* Present TBI as a composite with TBID. */
11415 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11416 if (!data) {
11417 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11419 tbi = (tbi >> select) & 1;
11421 return (ARMVAParameters) {
11422 .tsz = tsz,
11423 .select = select,
11424 .tbi = tbi,
11425 .epd = epd,
11426 .hpd = hpd,
11427 .using16k = using16k,
11428 .using64k = using64k,
11432 #ifndef CONFIG_USER_ONLY
11433 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11434 ARMMMUIdx mmu_idx)
11436 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11437 uint32_t el = regime_el(env, mmu_idx);
11438 int select, tsz;
11439 bool epd, hpd;
11441 assert(mmu_idx != ARMMMUIdx_Stage2_S);
11443 if (mmu_idx == ARMMMUIdx_Stage2) {
11444 /* VTCR */
11445 bool sext = extract32(tcr, 4, 1);
11446 bool sign = extract32(tcr, 3, 1);
11449 * If the sign-extend bit is not the same as t0sz[3], the result
11450 * is unpredictable. Flag this as a guest error.
11452 if (sign != sext) {
11453 qemu_log_mask(LOG_GUEST_ERROR,
11454 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11456 tsz = sextract32(tcr, 0, 4) + 8;
11457 select = 0;
11458 hpd = false;
11459 epd = false;
11460 } else if (el == 2) {
11461 /* HTCR */
11462 tsz = extract32(tcr, 0, 3);
11463 select = 0;
11464 hpd = extract64(tcr, 24, 1);
11465 epd = false;
11466 } else {
11467 int t0sz = extract32(tcr, 0, 3);
11468 int t1sz = extract32(tcr, 16, 3);
11470 if (t1sz == 0) {
11471 select = va > (0xffffffffu >> t0sz);
11472 } else {
11473 /* Note that we will detect errors later. */
11474 select = va >= ~(0xffffffffu >> t1sz);
11476 if (!select) {
11477 tsz = t0sz;
11478 epd = extract32(tcr, 7, 1);
11479 hpd = extract64(tcr, 41, 1);
11480 } else {
11481 tsz = t1sz;
11482 epd = extract32(tcr, 23, 1);
11483 hpd = extract64(tcr, 42, 1);
11485 /* For aarch32, hpd0 is not enabled without t2e as well. */
11486 hpd &= extract32(tcr, 6, 1);
11489 return (ARMVAParameters) {
11490 .tsz = tsz,
11491 .select = select,
11492 .epd = epd,
11493 .hpd = hpd,
11498 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11500 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11501 * prot and page_size may not be filled in, and the populated fsr value provides
11502 * information on why the translation aborted, in the format of a long-format
11503 * DFSR/IFSR fault register, with the following caveats:
11504 * * the WnR bit is never set (the caller must do this).
11506 * @env: CPUARMState
11507 * @address: virtual address to get physical address for
11508 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11509 * @mmu_idx: MMU index indicating required translation regime
11510 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11511 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11512 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11513 * @phys_ptr: set to the physical address corresponding to the virtual address
11514 * @attrs: set to the memory transaction attributes to use
11515 * @prot: set to the permissions for the page containing phys_ptr
11516 * @page_size_ptr: set to the size of the page containing phys_ptr
11517 * @fi: set to fault info if the translation fails
11518 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11520 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11521 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11522 bool s1_is_el0,
11523 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11524 target_ulong *page_size_ptr,
11525 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11527 ARMCPU *cpu = env_archcpu(env);
11528 CPUState *cs = CPU(cpu);
11529 /* Read an LPAE long-descriptor translation table. */
11530 ARMFaultType fault_type = ARMFault_Translation;
11531 uint32_t level;
11532 ARMVAParameters param;
11533 uint64_t ttbr;
11534 hwaddr descaddr, indexmask, indexmask_grainsize;
11535 uint32_t tableattrs;
11536 target_ulong page_size;
11537 uint32_t attrs;
11538 int32_t stride;
11539 int addrsize, inputsize;
11540 TCR *tcr = regime_tcr(env, mmu_idx);
11541 int ap, ns, xn, pxn;
11542 uint32_t el = regime_el(env, mmu_idx);
11543 uint64_t descaddrmask;
11544 bool aarch64 = arm_el_is_aa64(env, el);
11545 bool guarded = false;
11547 /* TODO: This code does not support shareability levels. */
11548 if (aarch64) {
11549 param = aa64_va_parameters(env, address, mmu_idx,
11550 access_type != MMU_INST_FETCH);
11551 level = 0;
11552 addrsize = 64 - 8 * param.tbi;
11553 inputsize = 64 - param.tsz;
11554 } else {
11555 param = aa32_va_parameters(env, address, mmu_idx);
11556 level = 1;
11557 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11558 inputsize = addrsize - param.tsz;
11562 * We determined the region when collecting the parameters, but we
11563 * have not yet validated that the address is valid for the region.
11564 * Extract the top bits and verify that they all match select.
11566 * For aa32, if inputsize == addrsize, then we have selected the
11567 * region by exclusion in aa32_va_parameters and there is no more
11568 * validation to do here.
11570 if (inputsize < addrsize) {
11571 target_ulong top_bits = sextract64(address, inputsize,
11572 addrsize - inputsize);
11573 if (-top_bits != param.select) {
11574 /* The gap between the two regions is a Translation fault */
11575 fault_type = ARMFault_Translation;
11576 goto do_fault;
11580 if (param.using64k) {
11581 stride = 13;
11582 } else if (param.using16k) {
11583 stride = 11;
11584 } else {
11585 stride = 9;
11588 /* Note that QEMU ignores shareability and cacheability attributes,
11589 * so we don't need to do anything with the SH, ORGN, IRGN fields
11590 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11591 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11592 * implement any ASID-like capability so we can ignore it (instead
11593 * we will always flush the TLB any time the ASID is changed).
11595 ttbr = regime_ttbr(env, mmu_idx, param.select);
11597 /* Here we should have set up all the parameters for the translation:
11598 * inputsize, ttbr, epd, stride, tbi
11601 if (param.epd) {
11602 /* Translation table walk disabled => Translation fault on TLB miss
11603 * Note: This is always 0 on 64-bit EL2 and EL3.
11605 goto do_fault;
11608 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11609 /* The starting level depends on the virtual address size (which can
11610 * be up to 48 bits) and the translation granule size. It indicates
11611 * the number of strides (stride bits at a time) needed to
11612 * consume the bits of the input address. In the pseudocode this is:
11613 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11614 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11615 * our 'stride + 3' and 'stride' is our 'stride'.
11616 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11617 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11618 * = 4 - (inputsize - 4) / stride;
11620 level = 4 - (inputsize - 4) / stride;
11621 } else {
11622 /* For stage 2 translations the starting level is specified by the
11623 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11625 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11626 uint32_t startlevel;
11627 bool ok;
11629 if (!aarch64 || stride == 9) {
11630 /* AArch32 or 4KB pages */
11631 startlevel = 2 - sl0;
11633 if (cpu_isar_feature(aa64_st, cpu)) {
11634 startlevel &= 3;
11636 } else {
11637 /* 16KB or 64KB pages */
11638 startlevel = 3 - sl0;
11641 /* Check that the starting level is valid. */
11642 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11643 inputsize, stride);
11644 if (!ok) {
11645 fault_type = ARMFault_Translation;
11646 goto do_fault;
11648 level = startlevel;
11651 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11652 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11654 /* Now we can extract the actual base address from the TTBR */
11655 descaddr = extract64(ttbr, 0, 48);
11657 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11658 * and also to mask out CnP (bit 0) which could validly be non-zero.
11660 descaddr &= ~indexmask;
11662 /* The address field in the descriptor goes up to bit 39 for ARMv7
11663 * but up to bit 47 for ARMv8, but we use the descaddrmask
11664 * up to bit 39 for AArch32, because we don't need other bits in that case
11665 * to construct next descriptor address (anyway they should be all zeroes).
11667 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11668 ~indexmask_grainsize;
11670 /* Secure accesses start with the page table in secure memory and
11671 * can be downgraded to non-secure at any step. Non-secure accesses
11672 * remain non-secure. We implement this by just ORing in the NSTable/NS
11673 * bits at each step.
11675 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11676 for (;;) {
11677 uint64_t descriptor;
11678 bool nstable;
11680 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11681 descaddr &= ~7ULL;
11682 nstable = extract32(tableattrs, 4, 1);
11683 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11684 if (fi->type != ARMFault_None) {
11685 goto do_fault;
11688 if (!(descriptor & 1) ||
11689 (!(descriptor & 2) && (level == 3))) {
11690 /* Invalid, or the Reserved level 3 encoding */
11691 goto do_fault;
11693 descaddr = descriptor & descaddrmask;
11695 if ((descriptor & 2) && (level < 3)) {
11696 /* Table entry. The top five bits are attributes which may
11697 * propagate down through lower levels of the table (and
11698 * which are all arranged so that 0 means "no effect", so
11699 * we can gather them up by ORing in the bits at each level).
11701 tableattrs |= extract64(descriptor, 59, 5);
11702 level++;
11703 indexmask = indexmask_grainsize;
11704 continue;
11706 /* Block entry at level 1 or 2, or page entry at level 3.
11707 * These are basically the same thing, although the number
11708 * of bits we pull in from the vaddr varies.
11710 page_size = (1ULL << ((stride * (4 - level)) + 3));
11711 descaddr |= (address & (page_size - 1));
11712 /* Extract attributes from the descriptor */
11713 attrs = extract64(descriptor, 2, 10)
11714 | (extract64(descriptor, 52, 12) << 10);
11716 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11717 /* Stage 2 table descriptors do not include any attribute fields */
11718 break;
11720 /* Merge in attributes from table descriptors */
11721 attrs |= nstable << 3; /* NS */
11722 guarded = extract64(descriptor, 50, 1); /* GP */
11723 if (param.hpd) {
11724 /* HPD disables all the table attributes except NSTable. */
11725 break;
11727 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11728 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11729 * means "force PL1 access only", which means forcing AP[1] to 0.
11731 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11732 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11733 break;
11735 /* Here descaddr is the final physical address, and attributes
11736 * are all in attrs.
11738 fault_type = ARMFault_AccessFlag;
11739 if ((attrs & (1 << 8)) == 0) {
11740 /* Access flag */
11741 goto do_fault;
11744 ap = extract32(attrs, 4, 2);
11746 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11747 ns = mmu_idx == ARMMMUIdx_Stage2;
11748 xn = extract32(attrs, 11, 2);
11749 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11750 } else {
11751 ns = extract32(attrs, 3, 1);
11752 xn = extract32(attrs, 12, 1);
11753 pxn = extract32(attrs, 11, 1);
11754 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11757 fault_type = ARMFault_Permission;
11758 if (!(*prot & (1 << access_type))) {
11759 goto do_fault;
11762 if (ns) {
11763 /* The NS bit will (as required by the architecture) have no effect if
11764 * the CPU doesn't support TZ or this is a non-secure translation
11765 * regime, because the attribute will already be non-secure.
11767 txattrs->secure = false;
11769 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11770 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11771 arm_tlb_bti_gp(txattrs) = true;
11774 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11775 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11776 } else {
11777 /* Index into MAIR registers for cache attributes */
11778 uint8_t attrindx = extract32(attrs, 0, 3);
11779 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11780 assert(attrindx <= 7);
11781 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11783 cacheattrs->shareability = extract32(attrs, 6, 2);
11785 *phys_ptr = descaddr;
11786 *page_size_ptr = page_size;
11787 return false;
11789 do_fault:
11790 fi->type = fault_type;
11791 fi->level = level;
11792 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11793 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11794 mmu_idx == ARMMMUIdx_Stage2_S);
11795 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11796 return true;
11799 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11800 ARMMMUIdx mmu_idx,
11801 int32_t address, int *prot)
11803 if (!arm_feature(env, ARM_FEATURE_M)) {
11804 *prot = PAGE_READ | PAGE_WRITE;
11805 switch (address) {
11806 case 0xF0000000 ... 0xFFFFFFFF:
11807 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11808 /* hivecs execing is ok */
11809 *prot |= PAGE_EXEC;
11811 break;
11812 case 0x00000000 ... 0x7FFFFFFF:
11813 *prot |= PAGE_EXEC;
11814 break;
11816 } else {
11817 /* Default system address map for M profile cores.
11818 * The architecture specifies which regions are execute-never;
11819 * at the MPU level no other checks are defined.
11821 switch (address) {
11822 case 0x00000000 ... 0x1fffffff: /* ROM */
11823 case 0x20000000 ... 0x3fffffff: /* SRAM */
11824 case 0x60000000 ... 0x7fffffff: /* RAM */
11825 case 0x80000000 ... 0x9fffffff: /* RAM */
11826 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11827 break;
11828 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11829 case 0xa0000000 ... 0xbfffffff: /* Device */
11830 case 0xc0000000 ... 0xdfffffff: /* Device */
11831 case 0xe0000000 ... 0xffffffff: /* System */
11832 *prot = PAGE_READ | PAGE_WRITE;
11833 break;
11834 default:
11835 g_assert_not_reached();
11840 static bool pmsav7_use_background_region(ARMCPU *cpu,
11841 ARMMMUIdx mmu_idx, bool is_user)
11843 /* Return true if we should use the default memory map as a
11844 * "background" region if there are no hits against any MPU regions.
11846 CPUARMState *env = &cpu->env;
11848 if (is_user) {
11849 return false;
11852 if (arm_feature(env, ARM_FEATURE_M)) {
11853 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11854 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11855 } else {
11856 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11860 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11862 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11863 return arm_feature(env, ARM_FEATURE_M) &&
11864 extract32(address, 20, 12) == 0xe00;
11867 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11869 /* True if address is in the M profile system region
11870 * 0xe0000000 - 0xffffffff
11872 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11875 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11876 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11877 hwaddr *phys_ptr, int *prot,
11878 target_ulong *page_size,
11879 ARMMMUFaultInfo *fi)
11881 ARMCPU *cpu = env_archcpu(env);
11882 int n;
11883 bool is_user = regime_is_user(env, mmu_idx);
11885 *phys_ptr = address;
11886 *page_size = TARGET_PAGE_SIZE;
11887 *prot = 0;
11889 if (regime_translation_disabled(env, mmu_idx) ||
11890 m_is_ppb_region(env, address)) {
11891 /* MPU disabled or M profile PPB access: use default memory map.
11892 * The other case which uses the default memory map in the
11893 * v7M ARM ARM pseudocode is exception vector reads from the vector
11894 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11895 * which always does a direct read using address_space_ldl(), rather
11896 * than going via this function, so we don't need to check that here.
11898 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11899 } else { /* MPU enabled */
11900 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11901 /* region search */
11902 uint32_t base = env->pmsav7.drbar[n];
11903 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11904 uint32_t rmask;
11905 bool srdis = false;
11907 if (!(env->pmsav7.drsr[n] & 0x1)) {
11908 continue;
11911 if (!rsize) {
11912 qemu_log_mask(LOG_GUEST_ERROR,
11913 "DRSR[%d]: Rsize field cannot be 0\n", n);
11914 continue;
11916 rsize++;
11917 rmask = (1ull << rsize) - 1;
11919 if (base & rmask) {
11920 qemu_log_mask(LOG_GUEST_ERROR,
11921 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11922 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11923 n, base, rmask);
11924 continue;
11927 if (address < base || address > base + rmask) {
11929 * Address not in this region. We must check whether the
11930 * region covers addresses in the same page as our address.
11931 * In that case we must not report a size that covers the
11932 * whole page for a subsequent hit against a different MPU
11933 * region or the background region, because it would result in
11934 * incorrect TLB hits for subsequent accesses to addresses that
11935 * are in this MPU region.
11937 if (ranges_overlap(base, rmask,
11938 address & TARGET_PAGE_MASK,
11939 TARGET_PAGE_SIZE)) {
11940 *page_size = 1;
11942 continue;
11945 /* Region matched */
11947 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11948 int i, snd;
11949 uint32_t srdis_mask;
11951 rsize -= 3; /* sub region size (power of 2) */
11952 snd = ((address - base) >> rsize) & 0x7;
11953 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11955 srdis_mask = srdis ? 0x3 : 0x0;
11956 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11957 /* This will check in groups of 2, 4 and then 8, whether
11958 * the subregion bits are consistent. rsize is incremented
11959 * back up to give the region size, considering consistent
11960 * adjacent subregions as one region. Stop testing if rsize
11961 * is already big enough for an entire QEMU page.
11963 int snd_rounded = snd & ~(i - 1);
11964 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11965 snd_rounded + 8, i);
11966 if (srdis_mask ^ srdis_multi) {
11967 break;
11969 srdis_mask = (srdis_mask << i) | srdis_mask;
11970 rsize++;
11973 if (srdis) {
11974 continue;
11976 if (rsize < TARGET_PAGE_BITS) {
11977 *page_size = 1 << rsize;
11979 break;
11982 if (n == -1) { /* no hits */
11983 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11984 /* background fault */
11985 fi->type = ARMFault_Background;
11986 return true;
11988 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11989 } else { /* a MPU hit! */
11990 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11991 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11993 if (m_is_system_region(env, address)) {
11994 /* System space is always execute never */
11995 xn = 1;
11998 if (is_user) { /* User mode AP bit decoding */
11999 switch (ap) {
12000 case 0:
12001 case 1:
12002 case 5:
12003 break; /* no access */
12004 case 3:
12005 *prot |= PAGE_WRITE;
12006 /* fall through */
12007 case 2:
12008 case 6:
12009 *prot |= PAGE_READ | PAGE_EXEC;
12010 break;
12011 case 7:
12012 /* for v7M, same as 6; for R profile a reserved value */
12013 if (arm_feature(env, ARM_FEATURE_M)) {
12014 *prot |= PAGE_READ | PAGE_EXEC;
12015 break;
12017 /* fall through */
12018 default:
12019 qemu_log_mask(LOG_GUEST_ERROR,
12020 "DRACR[%d]: Bad value for AP bits: 0x%"
12021 PRIx32 "\n", n, ap);
12023 } else { /* Priv. mode AP bits decoding */
12024 switch (ap) {
12025 case 0:
12026 break; /* no access */
12027 case 1:
12028 case 2:
12029 case 3:
12030 *prot |= PAGE_WRITE;
12031 /* fall through */
12032 case 5:
12033 case 6:
12034 *prot |= PAGE_READ | PAGE_EXEC;
12035 break;
12036 case 7:
12037 /* for v7M, same as 6; for R profile a reserved value */
12038 if (arm_feature(env, ARM_FEATURE_M)) {
12039 *prot |= PAGE_READ | PAGE_EXEC;
12040 break;
12042 /* fall through */
12043 default:
12044 qemu_log_mask(LOG_GUEST_ERROR,
12045 "DRACR[%d]: Bad value for AP bits: 0x%"
12046 PRIx32 "\n", n, ap);
12050 /* execute never */
12051 if (xn) {
12052 *prot &= ~PAGE_EXEC;
12057 fi->type = ARMFault_Permission;
12058 fi->level = 1;
12059 return !(*prot & (1 << access_type));
12062 static bool v8m_is_sau_exempt(CPUARMState *env,
12063 uint32_t address, MMUAccessType access_type)
12065 /* The architecture specifies that certain address ranges are
12066 * exempt from v8M SAU/IDAU checks.
12068 return
12069 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12070 (address >= 0xe0000000 && address <= 0xe0002fff) ||
12071 (address >= 0xe000e000 && address <= 0xe000efff) ||
12072 (address >= 0xe002e000 && address <= 0xe002efff) ||
12073 (address >= 0xe0040000 && address <= 0xe0041fff) ||
12074 (address >= 0xe00ff000 && address <= 0xe00fffff);
12077 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12078 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12079 V8M_SAttributes *sattrs)
12081 /* Look up the security attributes for this address. Compare the
12082 * pseudocode SecurityCheck() function.
12083 * We assume the caller has zero-initialized *sattrs.
12085 ARMCPU *cpu = env_archcpu(env);
12086 int r;
12087 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12088 int idau_region = IREGION_NOTVALID;
12089 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12090 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12092 if (cpu->idau) {
12093 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12094 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12096 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12097 &idau_nsc);
12100 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12101 /* 0xf0000000..0xffffffff is always S for insn fetches */
12102 return;
12105 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12106 sattrs->ns = !regime_is_secure(env, mmu_idx);
12107 return;
12110 if (idau_region != IREGION_NOTVALID) {
12111 sattrs->irvalid = true;
12112 sattrs->iregion = idau_region;
12115 switch (env->sau.ctrl & 3) {
12116 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12117 break;
12118 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12119 sattrs->ns = true;
12120 break;
12121 default: /* SAU.ENABLE == 1 */
12122 for (r = 0; r < cpu->sau_sregion; r++) {
12123 if (env->sau.rlar[r] & 1) {
12124 uint32_t base = env->sau.rbar[r] & ~0x1f;
12125 uint32_t limit = env->sau.rlar[r] | 0x1f;
12127 if (base <= address && limit >= address) {
12128 if (base > addr_page_base || limit < addr_page_limit) {
12129 sattrs->subpage = true;
12131 if (sattrs->srvalid) {
12132 /* If we hit in more than one region then we must report
12133 * as Secure, not NS-Callable, with no valid region
12134 * number info.
12136 sattrs->ns = false;
12137 sattrs->nsc = false;
12138 sattrs->sregion = 0;
12139 sattrs->srvalid = false;
12140 break;
12141 } else {
12142 if (env->sau.rlar[r] & 2) {
12143 sattrs->nsc = true;
12144 } else {
12145 sattrs->ns = true;
12147 sattrs->srvalid = true;
12148 sattrs->sregion = r;
12150 } else {
12152 * Address not in this region. We must check whether the
12153 * region covers addresses in the same page as our address.
12154 * In that case we must not report a size that covers the
12155 * whole page for a subsequent hit against a different MPU
12156 * region or the background region, because it would result
12157 * in incorrect TLB hits for subsequent accesses to
12158 * addresses that are in this MPU region.
12160 if (limit >= base &&
12161 ranges_overlap(base, limit - base + 1,
12162 addr_page_base,
12163 TARGET_PAGE_SIZE)) {
12164 sattrs->subpage = true;
12169 break;
12173 * The IDAU will override the SAU lookup results if it specifies
12174 * higher security than the SAU does.
12176 if (!idau_ns) {
12177 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12178 sattrs->ns = false;
12179 sattrs->nsc = idau_nsc;
12184 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12185 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12186 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12187 int *prot, bool *is_subpage,
12188 ARMMMUFaultInfo *fi, uint32_t *mregion)
12190 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12191 * that a full phys-to-virt translation does).
12192 * mregion is (if not NULL) set to the region number which matched,
12193 * or -1 if no region number is returned (MPU off, address did not
12194 * hit a region, address hit in multiple regions).
12195 * We set is_subpage to true if the region hit doesn't cover the
12196 * entire TARGET_PAGE the address is within.
12198 ARMCPU *cpu = env_archcpu(env);
12199 bool is_user = regime_is_user(env, mmu_idx);
12200 uint32_t secure = regime_is_secure(env, mmu_idx);
12201 int n;
12202 int matchregion = -1;
12203 bool hit = false;
12204 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12205 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12207 *is_subpage = false;
12208 *phys_ptr = address;
12209 *prot = 0;
12210 if (mregion) {
12211 *mregion = -1;
12214 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12215 * was an exception vector read from the vector table (which is always
12216 * done using the default system address map), because those accesses
12217 * are done in arm_v7m_load_vector(), which always does a direct
12218 * read using address_space_ldl(), rather than going via this function.
12220 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12221 hit = true;
12222 } else if (m_is_ppb_region(env, address)) {
12223 hit = true;
12224 } else {
12225 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12226 hit = true;
12229 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12230 /* region search */
12231 /* Note that the base address is bits [31:5] from the register
12232 * with bits [4:0] all zeroes, but the limit address is bits
12233 * [31:5] from the register with bits [4:0] all ones.
12235 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12236 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12238 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12239 /* Region disabled */
12240 continue;
12243 if (address < base || address > limit) {
12245 * Address not in this region. We must check whether the
12246 * region covers addresses in the same page as our address.
12247 * In that case we must not report a size that covers the
12248 * whole page for a subsequent hit against a different MPU
12249 * region or the background region, because it would result in
12250 * incorrect TLB hits for subsequent accesses to addresses that
12251 * are in this MPU region.
12253 if (limit >= base &&
12254 ranges_overlap(base, limit - base + 1,
12255 addr_page_base,
12256 TARGET_PAGE_SIZE)) {
12257 *is_subpage = true;
12259 continue;
12262 if (base > addr_page_base || limit < addr_page_limit) {
12263 *is_subpage = true;
12266 if (matchregion != -1) {
12267 /* Multiple regions match -- always a failure (unlike
12268 * PMSAv7 where highest-numbered-region wins)
12270 fi->type = ARMFault_Permission;
12271 fi->level = 1;
12272 return true;
12275 matchregion = n;
12276 hit = true;
12280 if (!hit) {
12281 /* background fault */
12282 fi->type = ARMFault_Background;
12283 return true;
12286 if (matchregion == -1) {
12287 /* hit using the background region */
12288 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12289 } else {
12290 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12291 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12292 bool pxn = false;
12294 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12295 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12298 if (m_is_system_region(env, address)) {
12299 /* System space is always execute never */
12300 xn = 1;
12303 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12304 if (*prot && !xn && !(pxn && !is_user)) {
12305 *prot |= PAGE_EXEC;
12307 /* We don't need to look the attribute up in the MAIR0/MAIR1
12308 * registers because that only tells us about cacheability.
12310 if (mregion) {
12311 *mregion = matchregion;
12315 fi->type = ARMFault_Permission;
12316 fi->level = 1;
12317 return !(*prot & (1 << access_type));
12321 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12322 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12323 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12324 int *prot, target_ulong *page_size,
12325 ARMMMUFaultInfo *fi)
12327 uint32_t secure = regime_is_secure(env, mmu_idx);
12328 V8M_SAttributes sattrs = {};
12329 bool ret;
12330 bool mpu_is_subpage;
12332 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12333 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12334 if (access_type == MMU_INST_FETCH) {
12335 /* Instruction fetches always use the MMU bank and the
12336 * transaction attribute determined by the fetch address,
12337 * regardless of CPU state. This is painful for QEMU
12338 * to handle, because it would mean we need to encode
12339 * into the mmu_idx not just the (user, negpri) information
12340 * for the current security state but also that for the
12341 * other security state, which would balloon the number
12342 * of mmu_idx values needed alarmingly.
12343 * Fortunately we can avoid this because it's not actually
12344 * possible to arbitrarily execute code from memory with
12345 * the wrong security attribute: it will always generate
12346 * an exception of some kind or another, apart from the
12347 * special case of an NS CPU executing an SG instruction
12348 * in S&NSC memory. So we always just fail the translation
12349 * here and sort things out in the exception handler
12350 * (including possibly emulating an SG instruction).
12352 if (sattrs.ns != !secure) {
12353 if (sattrs.nsc) {
12354 fi->type = ARMFault_QEMU_NSCExec;
12355 } else {
12356 fi->type = ARMFault_QEMU_SFault;
12358 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12359 *phys_ptr = address;
12360 *prot = 0;
12361 return true;
12363 } else {
12364 /* For data accesses we always use the MMU bank indicated
12365 * by the current CPU state, but the security attributes
12366 * might downgrade a secure access to nonsecure.
12368 if (sattrs.ns) {
12369 txattrs->secure = false;
12370 } else if (!secure) {
12371 /* NS access to S memory must fault.
12372 * Architecturally we should first check whether the
12373 * MPU information for this address indicates that we
12374 * are doing an unaligned access to Device memory, which
12375 * should generate a UsageFault instead. QEMU does not
12376 * currently check for that kind of unaligned access though.
12377 * If we added it we would need to do so as a special case
12378 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12380 fi->type = ARMFault_QEMU_SFault;
12381 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12382 *phys_ptr = address;
12383 *prot = 0;
12384 return true;
12389 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12390 txattrs, prot, &mpu_is_subpage, fi, NULL);
12391 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12392 return ret;
12395 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12396 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12397 hwaddr *phys_ptr, int *prot,
12398 ARMMMUFaultInfo *fi)
12400 int n;
12401 uint32_t mask;
12402 uint32_t base;
12403 bool is_user = regime_is_user(env, mmu_idx);
12405 if (regime_translation_disabled(env, mmu_idx)) {
12406 /* MPU disabled. */
12407 *phys_ptr = address;
12408 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12409 return false;
12412 *phys_ptr = address;
12413 for (n = 7; n >= 0; n--) {
12414 base = env->cp15.c6_region[n];
12415 if ((base & 1) == 0) {
12416 continue;
12418 mask = 1 << ((base >> 1) & 0x1f);
12419 /* Keep this shift separate from the above to avoid an
12420 (undefined) << 32. */
12421 mask = (mask << 1) - 1;
12422 if (((base ^ address) & ~mask) == 0) {
12423 break;
12426 if (n < 0) {
12427 fi->type = ARMFault_Background;
12428 return true;
12431 if (access_type == MMU_INST_FETCH) {
12432 mask = env->cp15.pmsav5_insn_ap;
12433 } else {
12434 mask = env->cp15.pmsav5_data_ap;
12436 mask = (mask >> (n * 4)) & 0xf;
12437 switch (mask) {
12438 case 0:
12439 fi->type = ARMFault_Permission;
12440 fi->level = 1;
12441 return true;
12442 case 1:
12443 if (is_user) {
12444 fi->type = ARMFault_Permission;
12445 fi->level = 1;
12446 return true;
12448 *prot = PAGE_READ | PAGE_WRITE;
12449 break;
12450 case 2:
12451 *prot = PAGE_READ;
12452 if (!is_user) {
12453 *prot |= PAGE_WRITE;
12455 break;
12456 case 3:
12457 *prot = PAGE_READ | PAGE_WRITE;
12458 break;
12459 case 5:
12460 if (is_user) {
12461 fi->type = ARMFault_Permission;
12462 fi->level = 1;
12463 return true;
12465 *prot = PAGE_READ;
12466 break;
12467 case 6:
12468 *prot = PAGE_READ;
12469 break;
12470 default:
12471 /* Bad permission. */
12472 fi->type = ARMFault_Permission;
12473 fi->level = 1;
12474 return true;
12476 *prot |= PAGE_EXEC;
12477 return false;
12480 /* Combine either inner or outer cacheability attributes for normal
12481 * memory, according to table D4-42 and pseudocode procedure
12482 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12484 * NB: only stage 1 includes allocation hints (RW bits), leading to
12485 * some asymmetry.
12487 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12489 if (s1 == 4 || s2 == 4) {
12490 /* non-cacheable has precedence */
12491 return 4;
12492 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12493 /* stage 1 write-through takes precedence */
12494 return s1;
12495 } else if (extract32(s2, 2, 2) == 2) {
12496 /* stage 2 write-through takes precedence, but the allocation hint
12497 * is still taken from stage 1
12499 return (2 << 2) | extract32(s1, 0, 2);
12500 } else { /* write-back */
12501 return s1;
12505 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12506 * and CombineS1S2Desc()
12508 * @s1: Attributes from stage 1 walk
12509 * @s2: Attributes from stage 2 walk
12511 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12513 uint8_t s1lo, s2lo, s1hi, s2hi;
12514 ARMCacheAttrs ret;
12515 bool tagged = false;
12517 if (s1.attrs == 0xf0) {
12518 tagged = true;
12519 s1.attrs = 0xff;
12522 s1lo = extract32(s1.attrs, 0, 4);
12523 s2lo = extract32(s2.attrs, 0, 4);
12524 s1hi = extract32(s1.attrs, 4, 4);
12525 s2hi = extract32(s2.attrs, 4, 4);
12527 /* Combine shareability attributes (table D4-43) */
12528 if (s1.shareability == 2 || s2.shareability == 2) {
12529 /* if either are outer-shareable, the result is outer-shareable */
12530 ret.shareability = 2;
12531 } else if (s1.shareability == 3 || s2.shareability == 3) {
12532 /* if either are inner-shareable, the result is inner-shareable */
12533 ret.shareability = 3;
12534 } else {
12535 /* both non-shareable */
12536 ret.shareability = 0;
12539 /* Combine memory type and cacheability attributes */
12540 if (s1hi == 0 || s2hi == 0) {
12541 /* Device has precedence over normal */
12542 if (s1lo == 0 || s2lo == 0) {
12543 /* nGnRnE has precedence over anything */
12544 ret.attrs = 0;
12545 } else if (s1lo == 4 || s2lo == 4) {
12546 /* non-Reordering has precedence over Reordering */
12547 ret.attrs = 4; /* nGnRE */
12548 } else if (s1lo == 8 || s2lo == 8) {
12549 /* non-Gathering has precedence over Gathering */
12550 ret.attrs = 8; /* nGRE */
12551 } else {
12552 ret.attrs = 0xc; /* GRE */
12555 /* Any location for which the resultant memory type is any
12556 * type of Device memory is always treated as Outer Shareable.
12558 ret.shareability = 2;
12559 } else { /* Normal memory */
12560 /* Outer/inner cacheability combine independently */
12561 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12562 | combine_cacheattr_nibble(s1lo, s2lo);
12564 if (ret.attrs == 0x44) {
12565 /* Any location for which the resultant memory type is Normal
12566 * Inner Non-cacheable, Outer Non-cacheable is always treated
12567 * as Outer Shareable.
12569 ret.shareability = 2;
12573 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12574 if (tagged && ret.attrs == 0xff) {
12575 ret.attrs = 0xf0;
12578 return ret;
12582 /* get_phys_addr - get the physical address for this virtual address
12584 * Find the physical address corresponding to the given virtual address,
12585 * by doing a translation table walk on MMU based systems or using the
12586 * MPU state on MPU based systems.
12588 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12589 * prot and page_size may not be filled in, and the populated fsr value provides
12590 * information on why the translation aborted, in the format of a
12591 * DFSR/IFSR fault register, with the following caveats:
12592 * * we honour the short vs long DFSR format differences.
12593 * * the WnR bit is never set (the caller must do this).
12594 * * for PSMAv5 based systems we don't bother to return a full FSR format
12595 * value.
12597 * @env: CPUARMState
12598 * @address: virtual address to get physical address for
12599 * @access_type: 0 for read, 1 for write, 2 for execute
12600 * @mmu_idx: MMU index indicating required translation regime
12601 * @phys_ptr: set to the physical address corresponding to the virtual address
12602 * @attrs: set to the memory transaction attributes to use
12603 * @prot: set to the permissions for the page containing phys_ptr
12604 * @page_size: set to the size of the page containing phys_ptr
12605 * @fi: set to fault info if the translation fails
12606 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12608 bool get_phys_addr(CPUARMState *env, target_ulong address,
12609 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12610 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12611 target_ulong *page_size,
12612 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12614 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12616 if (mmu_idx != s1_mmu_idx) {
12617 /* Call ourselves recursively to do the stage 1 and then stage 2
12618 * translations if mmu_idx is a two-stage regime.
12620 if (arm_feature(env, ARM_FEATURE_EL2)) {
12621 hwaddr ipa;
12622 int s2_prot;
12623 int ret;
12624 ARMCacheAttrs cacheattrs2 = {};
12625 ARMMMUIdx s2_mmu_idx;
12626 bool is_el0;
12628 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12629 attrs, prot, page_size, fi, cacheattrs);
12631 /* If S1 fails or S2 is disabled, return early. */
12632 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12633 *phys_ptr = ipa;
12634 return ret;
12637 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12638 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12640 /* S1 is done. Now do S2 translation. */
12641 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12642 phys_ptr, attrs, &s2_prot,
12643 page_size, fi, &cacheattrs2);
12644 fi->s2addr = ipa;
12645 /* Combine the S1 and S2 perms. */
12646 *prot &= s2_prot;
12648 /* If S2 fails, return early. */
12649 if (ret) {
12650 return ret;
12653 /* Combine the S1 and S2 cache attributes. */
12654 if (arm_hcr_el2_eff(env) & HCR_DC) {
12656 * HCR.DC forces the first stage attributes to
12657 * Normal Non-Shareable,
12658 * Inner Write-Back Read-Allocate Write-Allocate,
12659 * Outer Write-Back Read-Allocate Write-Allocate.
12660 * Do not overwrite Tagged within attrs.
12662 if (cacheattrs->attrs != 0xf0) {
12663 cacheattrs->attrs = 0xff;
12665 cacheattrs->shareability = 0;
12667 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12669 /* Check if IPA translates to secure or non-secure PA space. */
12670 if (arm_is_secure_below_el3(env)) {
12671 if (attrs->secure) {
12672 attrs->secure =
12673 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12674 } else {
12675 attrs->secure =
12676 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12677 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12680 return 0;
12681 } else {
12683 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12685 mmu_idx = stage_1_mmu_idx(mmu_idx);
12689 /* The page table entries may downgrade secure to non-secure, but
12690 * cannot upgrade an non-secure translation regime's attributes
12691 * to secure.
12693 attrs->secure = regime_is_secure(env, mmu_idx);
12694 attrs->user = regime_is_user(env, mmu_idx);
12696 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12697 * In v7 and earlier it affects all stage 1 translations.
12699 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12700 && !arm_feature(env, ARM_FEATURE_V8)) {
12701 if (regime_el(env, mmu_idx) == 3) {
12702 address += env->cp15.fcseidr_s;
12703 } else {
12704 address += env->cp15.fcseidr_ns;
12708 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12709 bool ret;
12710 *page_size = TARGET_PAGE_SIZE;
12712 if (arm_feature(env, ARM_FEATURE_V8)) {
12713 /* PMSAv8 */
12714 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12715 phys_ptr, attrs, prot, page_size, fi);
12716 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12717 /* PMSAv7 */
12718 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12719 phys_ptr, prot, page_size, fi);
12720 } else {
12721 /* Pre-v7 MPU */
12722 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12723 phys_ptr, prot, fi);
12725 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12726 " mmu_idx %u -> %s (prot %c%c%c)\n",
12727 access_type == MMU_DATA_LOAD ? "reading" :
12728 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12729 (uint32_t)address, mmu_idx,
12730 ret ? "Miss" : "Hit",
12731 *prot & PAGE_READ ? 'r' : '-',
12732 *prot & PAGE_WRITE ? 'w' : '-',
12733 *prot & PAGE_EXEC ? 'x' : '-');
12735 return ret;
12738 /* Definitely a real MMU, not an MPU */
12740 if (regime_translation_disabled(env, mmu_idx)) {
12741 uint64_t hcr;
12742 uint8_t memattr;
12745 * MMU disabled. S1 addresses within aa64 translation regimes are
12746 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12748 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12749 int r_el = regime_el(env, mmu_idx);
12750 if (arm_el_is_aa64(env, r_el)) {
12751 int pamax = arm_pamax(env_archcpu(env));
12752 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12753 int addrtop, tbi;
12755 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12756 if (access_type == MMU_INST_FETCH) {
12757 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12759 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12760 addrtop = (tbi ? 55 : 63);
12762 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12763 fi->type = ARMFault_AddressSize;
12764 fi->level = 0;
12765 fi->stage2 = false;
12766 return 1;
12770 * When TBI is disabled, we've just validated that all of the
12771 * bits above PAMax are zero, so logically we only need to
12772 * clear the top byte for TBI. But it's clearer to follow
12773 * the pseudocode set of addrdesc.paddress.
12775 address = extract64(address, 0, 52);
12778 *phys_ptr = address;
12779 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12780 *page_size = TARGET_PAGE_SIZE;
12782 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12783 hcr = arm_hcr_el2_eff(env);
12784 cacheattrs->shareability = 0;
12785 if (hcr & HCR_DC) {
12786 if (hcr & HCR_DCT) {
12787 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12788 } else {
12789 memattr = 0xff; /* Normal, WB, RWA */
12791 } else if (access_type == MMU_INST_FETCH) {
12792 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12793 memattr = 0xee; /* Normal, WT, RA, NT */
12794 } else {
12795 memattr = 0x44; /* Normal, NC, No */
12797 cacheattrs->shareability = 2; /* outer sharable */
12798 } else {
12799 memattr = 0x00; /* Device, nGnRnE */
12801 cacheattrs->attrs = memattr;
12802 return 0;
12805 if (regime_using_lpae_format(env, mmu_idx)) {
12806 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12807 phys_ptr, attrs, prot, page_size,
12808 fi, cacheattrs);
12809 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12810 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12811 phys_ptr, attrs, prot, page_size, fi);
12812 } else {
12813 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12814 phys_ptr, prot, page_size, fi);
12818 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12819 MemTxAttrs *attrs)
12821 ARMCPU *cpu = ARM_CPU(cs);
12822 CPUARMState *env = &cpu->env;
12823 hwaddr phys_addr;
12824 target_ulong page_size;
12825 int prot;
12826 bool ret;
12827 ARMMMUFaultInfo fi = {};
12828 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12829 ARMCacheAttrs cacheattrs = {};
12831 *attrs = (MemTxAttrs) {};
12833 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12834 attrs, &prot, &page_size, &fi, &cacheattrs);
12836 if (ret) {
12837 return -1;
12839 return phys_addr;
12842 #endif
12844 /* Note that signed overflow is undefined in C. The following routines are
12845 careful to use unsigned types where modulo arithmetic is required.
12846 Failure to do so _will_ break on newer gcc. */
12848 /* Signed saturating arithmetic. */
12850 /* Perform 16-bit signed saturating addition. */
12851 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12853 uint16_t res;
12855 res = a + b;
12856 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12857 if (a & 0x8000)
12858 res = 0x8000;
12859 else
12860 res = 0x7fff;
12862 return res;
12865 /* Perform 8-bit signed saturating addition. */
12866 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12868 uint8_t res;
12870 res = a + b;
12871 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12872 if (a & 0x80)
12873 res = 0x80;
12874 else
12875 res = 0x7f;
12877 return res;
12880 /* Perform 16-bit signed saturating subtraction. */
12881 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12883 uint16_t res;
12885 res = a - b;
12886 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12887 if (a & 0x8000)
12888 res = 0x8000;
12889 else
12890 res = 0x7fff;
12892 return res;
12895 /* Perform 8-bit signed saturating subtraction. */
12896 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12898 uint8_t res;
12900 res = a - b;
12901 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12902 if (a & 0x80)
12903 res = 0x80;
12904 else
12905 res = 0x7f;
12907 return res;
12910 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12911 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12912 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12913 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12914 #define PFX q
12916 #include "op_addsub.h"
12918 /* Unsigned saturating arithmetic. */
12919 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12921 uint16_t res;
12922 res = a + b;
12923 if (res < a)
12924 res = 0xffff;
12925 return res;
12928 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12930 if (a > b)
12931 return a - b;
12932 else
12933 return 0;
12936 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12938 uint8_t res;
12939 res = a + b;
12940 if (res < a)
12941 res = 0xff;
12942 return res;
12945 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12947 if (a > b)
12948 return a - b;
12949 else
12950 return 0;
12953 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12954 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12955 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12956 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12957 #define PFX uq
12959 #include "op_addsub.h"
12961 /* Signed modulo arithmetic. */
12962 #define SARITH16(a, b, n, op) do { \
12963 int32_t sum; \
12964 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12965 RESULT(sum, n, 16); \
12966 if (sum >= 0) \
12967 ge |= 3 << (n * 2); \
12968 } while(0)
12970 #define SARITH8(a, b, n, op) do { \
12971 int32_t sum; \
12972 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12973 RESULT(sum, n, 8); \
12974 if (sum >= 0) \
12975 ge |= 1 << n; \
12976 } while(0)
12979 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12980 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12981 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12982 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12983 #define PFX s
12984 #define ARITH_GE
12986 #include "op_addsub.h"
12988 /* Unsigned modulo arithmetic. */
12989 #define ADD16(a, b, n) do { \
12990 uint32_t sum; \
12991 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12992 RESULT(sum, n, 16); \
12993 if ((sum >> 16) == 1) \
12994 ge |= 3 << (n * 2); \
12995 } while(0)
12997 #define ADD8(a, b, n) do { \
12998 uint32_t sum; \
12999 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13000 RESULT(sum, n, 8); \
13001 if ((sum >> 8) == 1) \
13002 ge |= 1 << n; \
13003 } while(0)
13005 #define SUB16(a, b, n) do { \
13006 uint32_t sum; \
13007 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13008 RESULT(sum, n, 16); \
13009 if ((sum >> 16) == 0) \
13010 ge |= 3 << (n * 2); \
13011 } while(0)
13013 #define SUB8(a, b, n) do { \
13014 uint32_t sum; \
13015 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13016 RESULT(sum, n, 8); \
13017 if ((sum >> 8) == 0) \
13018 ge |= 1 << n; \
13019 } while(0)
13021 #define PFX u
13022 #define ARITH_GE
13024 #include "op_addsub.h"
13026 /* Halved signed arithmetic. */
13027 #define ADD16(a, b, n) \
13028 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13029 #define SUB16(a, b, n) \
13030 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13031 #define ADD8(a, b, n) \
13032 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13033 #define SUB8(a, b, n) \
13034 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13035 #define PFX sh
13037 #include "op_addsub.h"
13039 /* Halved unsigned arithmetic. */
13040 #define ADD16(a, b, n) \
13041 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13042 #define SUB16(a, b, n) \
13043 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13044 #define ADD8(a, b, n) \
13045 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13046 #define SUB8(a, b, n) \
13047 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13048 #define PFX uh
13050 #include "op_addsub.h"
13052 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13054 if (a > b)
13055 return a - b;
13056 else
13057 return b - a;
13060 /* Unsigned sum of absolute byte differences. */
13061 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13063 uint32_t sum;
13064 sum = do_usad(a, b);
13065 sum += do_usad(a >> 8, b >> 8);
13066 sum += do_usad(a >> 16, b >> 16);
13067 sum += do_usad(a >> 24, b >> 24);
13068 return sum;
13071 /* For ARMv6 SEL instruction. */
13072 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13074 uint32_t mask;
13076 mask = 0;
13077 if (flags & 1)
13078 mask |= 0xff;
13079 if (flags & 2)
13080 mask |= 0xff00;
13081 if (flags & 4)
13082 mask |= 0xff0000;
13083 if (flags & 8)
13084 mask |= 0xff000000;
13085 return (a & mask) | (b & ~mask);
13088 /* CRC helpers.
13089 * The upper bytes of val (above the number specified by 'bytes') must have
13090 * been zeroed out by the caller.
13092 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13094 uint8_t buf[4];
13096 stl_le_p(buf, val);
13098 /* zlib crc32 converts the accumulator and output to one's complement. */
13099 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13102 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13104 uint8_t buf[4];
13106 stl_le_p(buf, val);
13108 /* Linux crc32c converts the output to one's complement. */
13109 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13112 /* Return the exception level to which FP-disabled exceptions should
13113 * be taken, or 0 if FP is enabled.
13115 int fp_exception_el(CPUARMState *env, int cur_el)
13117 #ifndef CONFIG_USER_ONLY
13118 /* CPACR and the CPTR registers don't exist before v6, so FP is
13119 * always accessible
13121 if (!arm_feature(env, ARM_FEATURE_V6)) {
13122 return 0;
13125 if (arm_feature(env, ARM_FEATURE_M)) {
13126 /* CPACR can cause a NOCP UsageFault taken to current security state */
13127 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13128 return 1;
13131 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13132 if (!extract32(env->v7m.nsacr, 10, 1)) {
13133 /* FP insns cause a NOCP UsageFault taken to Secure */
13134 return 3;
13138 return 0;
13141 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13142 * 0, 2 : trap EL0 and EL1/PL1 accesses
13143 * 1 : trap only EL0 accesses
13144 * 3 : trap no accesses
13145 * This register is ignored if E2H+TGE are both set.
13147 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13148 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13150 switch (fpen) {
13151 case 0:
13152 case 2:
13153 if (cur_el == 0 || cur_el == 1) {
13154 /* Trap to PL1, which might be EL1 or EL3 */
13155 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13156 return 3;
13158 return 1;
13160 if (cur_el == 3 && !is_a64(env)) {
13161 /* Secure PL1 running at EL3 */
13162 return 3;
13164 break;
13165 case 1:
13166 if (cur_el == 0) {
13167 return 1;
13169 break;
13170 case 3:
13171 break;
13176 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13177 * to control non-secure access to the FPU. It doesn't have any
13178 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13180 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13181 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13182 if (!extract32(env->cp15.nsacr, 10, 1)) {
13183 /* FP insns act as UNDEF */
13184 return cur_el == 2 ? 2 : 1;
13188 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13189 * check because zero bits in the registers mean "don't trap".
13192 /* CPTR_EL2 : present in v7VE or v8 */
13193 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13194 && arm_is_el2_enabled(env)) {
13195 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13196 return 2;
13199 /* CPTR_EL3 : present in v8 */
13200 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13201 /* Trap all FP ops to EL3 */
13202 return 3;
13204 #endif
13205 return 0;
13208 /* Return the exception level we're running at if this is our mmu_idx */
13209 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13211 if (mmu_idx & ARM_MMU_IDX_M) {
13212 return mmu_idx & ARM_MMU_IDX_M_PRIV;
13215 switch (mmu_idx) {
13216 case ARMMMUIdx_E10_0:
13217 case ARMMMUIdx_E20_0:
13218 case ARMMMUIdx_SE10_0:
13219 case ARMMMUIdx_SE20_0:
13220 return 0;
13221 case ARMMMUIdx_E10_1:
13222 case ARMMMUIdx_E10_1_PAN:
13223 case ARMMMUIdx_SE10_1:
13224 case ARMMMUIdx_SE10_1_PAN:
13225 return 1;
13226 case ARMMMUIdx_E2:
13227 case ARMMMUIdx_E20_2:
13228 case ARMMMUIdx_E20_2_PAN:
13229 case ARMMMUIdx_SE2:
13230 case ARMMMUIdx_SE20_2:
13231 case ARMMMUIdx_SE20_2_PAN:
13232 return 2;
13233 case ARMMMUIdx_SE3:
13234 return 3;
13235 default:
13236 g_assert_not_reached();
13240 #ifndef CONFIG_TCG
13241 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13243 g_assert_not_reached();
13245 #endif
13247 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13249 ARMMMUIdx idx;
13250 uint64_t hcr;
13252 if (arm_feature(env, ARM_FEATURE_M)) {
13253 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13256 /* See ARM pseudo-function ELIsInHost. */
13257 switch (el) {
13258 case 0:
13259 hcr = arm_hcr_el2_eff(env);
13260 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13261 idx = ARMMMUIdx_E20_0;
13262 } else {
13263 idx = ARMMMUIdx_E10_0;
13265 break;
13266 case 1:
13267 if (env->pstate & PSTATE_PAN) {
13268 idx = ARMMMUIdx_E10_1_PAN;
13269 } else {
13270 idx = ARMMMUIdx_E10_1;
13272 break;
13273 case 2:
13274 /* Note that TGE does not apply at EL2. */
13275 if (arm_hcr_el2_eff(env) & HCR_E2H) {
13276 if (env->pstate & PSTATE_PAN) {
13277 idx = ARMMMUIdx_E20_2_PAN;
13278 } else {
13279 idx = ARMMMUIdx_E20_2;
13281 } else {
13282 idx = ARMMMUIdx_E2;
13284 break;
13285 case 3:
13286 return ARMMMUIdx_SE3;
13287 default:
13288 g_assert_not_reached();
13291 if (arm_is_secure_below_el3(env)) {
13292 idx &= ~ARM_MMU_IDX_A_NS;
13295 return idx;
13298 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13300 return arm_mmu_idx_el(env, arm_current_el(env));
13303 #ifndef CONFIG_USER_ONLY
13304 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13306 return stage_1_mmu_idx(arm_mmu_idx(env));
13308 #endif
13310 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13311 ARMMMUIdx mmu_idx,
13312 CPUARMTBFlags flags)
13314 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13315 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13317 if (arm_singlestep_active(env)) {
13318 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13320 return flags;
13323 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13324 ARMMMUIdx mmu_idx,
13325 CPUARMTBFlags flags)
13327 bool sctlr_b = arm_sctlr_b(env);
13329 if (sctlr_b) {
13330 DP_TBFLAG_A32(flags, SCTLR__B, 1);
13332 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13333 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13335 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13337 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13340 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13341 ARMMMUIdx mmu_idx)
13343 CPUARMTBFlags flags = {};
13344 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13346 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13347 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13348 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13351 if (arm_v7m_is_handler_mode(env)) {
13352 DP_TBFLAG_M32(flags, HANDLER, 1);
13356 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13357 * is suppressing them because the requested execution priority
13358 * is less than 0.
13360 if (arm_feature(env, ARM_FEATURE_V8) &&
13361 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13362 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13363 DP_TBFLAG_M32(flags, STACKCHECK, 1);
13366 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13369 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13371 CPUARMTBFlags flags = {};
13373 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13374 return flags;
13377 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13378 ARMMMUIdx mmu_idx)
13380 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13381 int el = arm_current_el(env);
13383 if (arm_sctlr(env, el) & SCTLR_A) {
13384 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13387 if (arm_el_is_aa64(env, 1)) {
13388 DP_TBFLAG_A32(flags, VFPEN, 1);
13391 if (el < 2 && env->cp15.hstr_el2 &&
13392 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13393 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13396 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13399 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13400 ARMMMUIdx mmu_idx)
13402 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13403 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13404 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13405 uint64_t sctlr;
13406 int tbii, tbid;
13408 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13410 /* Get control bits for tagged addresses. */
13411 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13412 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13414 DP_TBFLAG_A64(flags, TBII, tbii);
13415 DP_TBFLAG_A64(flags, TBID, tbid);
13417 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13418 int sve_el = sve_exception_el(env, el);
13419 uint32_t zcr_len;
13422 * If SVE is disabled, but FP is enabled,
13423 * then the effective len is 0.
13425 if (sve_el != 0 && fp_el == 0) {
13426 zcr_len = 0;
13427 } else {
13428 zcr_len = sve_zcr_len_for_el(env, el);
13430 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13431 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13434 sctlr = regime_sctlr(env, stage1);
13436 if (sctlr & SCTLR_A) {
13437 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13440 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13441 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13444 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13446 * In order to save space in flags, we record only whether
13447 * pauth is "inactive", meaning all insns are implemented as
13448 * a nop, or "active" when some action must be performed.
13449 * The decision of which action to take is left to a helper.
13451 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13452 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13456 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13457 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13458 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13459 DP_TBFLAG_A64(flags, BT, 1);
13463 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13464 if (!(env->pstate & PSTATE_UAO)) {
13465 switch (mmu_idx) {
13466 case ARMMMUIdx_E10_1:
13467 case ARMMMUIdx_E10_1_PAN:
13468 case ARMMMUIdx_SE10_1:
13469 case ARMMMUIdx_SE10_1_PAN:
13470 /* TODO: ARMv8.3-NV */
13471 DP_TBFLAG_A64(flags, UNPRIV, 1);
13472 break;
13473 case ARMMMUIdx_E20_2:
13474 case ARMMMUIdx_E20_2_PAN:
13475 case ARMMMUIdx_SE20_2:
13476 case ARMMMUIdx_SE20_2_PAN:
13478 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13479 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13481 if (env->cp15.hcr_el2 & HCR_TGE) {
13482 DP_TBFLAG_A64(flags, UNPRIV, 1);
13484 break;
13485 default:
13486 break;
13490 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13492 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13493 * if all accesses must be Unchecked:
13494 * 1) If no TBI, then there are no tags in the address to check,
13495 * 2) If Tag Check Override, then all accesses are Unchecked,
13496 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13497 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13499 if (allocation_tag_access_enabled(env, el, sctlr)) {
13500 DP_TBFLAG_A64(flags, ATA, 1);
13501 if (tbid
13502 && !(env->pstate & PSTATE_TCO)
13503 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13504 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13507 /* And again for unprivileged accesses, if required. */
13508 if (EX_TBFLAG_A64(flags, UNPRIV)
13509 && tbid
13510 && !(env->pstate & PSTATE_TCO)
13511 && (sctlr & SCTLR_TCF0)
13512 && allocation_tag_access_enabled(env, 0, sctlr)) {
13513 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13515 /* Cache TCMA as well as TBI. */
13516 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13519 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13522 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13524 int el = arm_current_el(env);
13525 int fp_el = fp_exception_el(env, el);
13526 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13528 if (is_a64(env)) {
13529 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13530 } else if (arm_feature(env, ARM_FEATURE_M)) {
13531 return rebuild_hflags_m32(env, fp_el, mmu_idx);
13532 } else {
13533 return rebuild_hflags_a32(env, fp_el, mmu_idx);
13537 void arm_rebuild_hflags(CPUARMState *env)
13539 env->hflags = rebuild_hflags_internal(env);
13543 * If we have triggered a EL state change we can't rely on the
13544 * translator having passed it to us, we need to recompute.
13546 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13548 int el = arm_current_el(env);
13549 int fp_el = fp_exception_el(env, el);
13550 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13552 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13555 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13557 int fp_el = fp_exception_el(env, el);
13558 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13560 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13564 * If we have triggered a EL state change we can't rely on the
13565 * translator having passed it to us, we need to recompute.
13567 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13569 int el = arm_current_el(env);
13570 int fp_el = fp_exception_el(env, el);
13571 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13572 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13575 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13577 int fp_el = fp_exception_el(env, el);
13578 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13580 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13583 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13585 int fp_el = fp_exception_el(env, el);
13586 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13588 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13591 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13593 #ifdef CONFIG_DEBUG_TCG
13594 CPUARMTBFlags c = env->hflags;
13595 CPUARMTBFlags r = rebuild_hflags_internal(env);
13597 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13598 fprintf(stderr, "TCG hflags mismatch "
13599 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13600 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13601 c.flags, c.flags2, r.flags, r.flags2);
13602 abort();
13604 #endif
13607 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13608 target_ulong *cs_base, uint32_t *pflags)
13610 CPUARMTBFlags flags;
13612 assert_hflags_rebuild_correctly(env);
13613 flags = env->hflags;
13615 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13616 *pc = env->pc;
13617 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13618 DP_TBFLAG_A64(flags, BTYPE, env->btype);
13620 } else {
13621 *pc = env->regs[15];
13623 if (arm_feature(env, ARM_FEATURE_M)) {
13624 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13625 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13626 != env->v7m.secure) {
13627 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13630 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13631 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13632 (env->v7m.secure &&
13633 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13635 * ASPEN is set, but FPCA/SFPA indicate that there is no
13636 * active FP context; we must create a new FP context before
13637 * executing any FP insn.
13639 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13642 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13643 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13644 DP_TBFLAG_M32(flags, LSPACT, 1);
13646 } else {
13648 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13649 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13651 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13652 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13653 } else {
13654 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13655 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13657 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13658 DP_TBFLAG_A32(flags, VFPEN, 1);
13662 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13663 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13667 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13668 * states defined in the ARM ARM for software singlestep:
13669 * SS_ACTIVE PSTATE.SS State
13670 * 0 x Inactive (the TB flag for SS is always 0)
13671 * 1 0 Active-pending
13672 * 1 1 Active-not-pending
13673 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13675 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13676 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13679 *pflags = flags.flags;
13680 *cs_base = flags.flags2;
13683 #ifdef TARGET_AARCH64
13685 * The manual says that when SVE is enabled and VQ is widened the
13686 * implementation is allowed to zero the previously inaccessible
13687 * portion of the registers. The corollary to that is that when
13688 * SVE is enabled and VQ is narrowed we are also allowed to zero
13689 * the now inaccessible portion of the registers.
13691 * The intent of this is that no predicate bit beyond VQ is ever set.
13692 * Which means that some operations on predicate registers themselves
13693 * may operate on full uint64_t or even unrolled across the maximum
13694 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13695 * may well be cheaper than conditionals to restrict the operation
13696 * to the relevant portion of a uint16_t[16].
13698 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13700 int i, j;
13701 uint64_t pmask;
13703 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13704 assert(vq <= env_archcpu(env)->sve_max_vq);
13706 /* Zap the high bits of the zregs. */
13707 for (i = 0; i < 32; i++) {
13708 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13711 /* Zap the high bits of the pregs and ffr. */
13712 pmask = 0;
13713 if (vq & 3) {
13714 pmask = ~(-1ULL << (16 * (vq & 3)));
13716 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13717 for (i = 0; i < 17; ++i) {
13718 env->vfp.pregs[i].p[j] &= pmask;
13720 pmask = 0;
13725 * Notice a change in SVE vector size when changing EL.
13727 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13728 int new_el, bool el0_a64)
13730 ARMCPU *cpu = env_archcpu(env);
13731 int old_len, new_len;
13732 bool old_a64, new_a64;
13734 /* Nothing to do if no SVE. */
13735 if (!cpu_isar_feature(aa64_sve, cpu)) {
13736 return;
13739 /* Nothing to do if FP is disabled in either EL. */
13740 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13741 return;
13745 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13746 * at ELx, or not available because the EL is in AArch32 state, then
13747 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13748 * has an effective value of 0".
13750 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13751 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13752 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13753 * we already have the correct register contents when encountering the
13754 * vq0->vq0 transition between EL0->EL1.
13756 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13757 old_len = (old_a64 && !sve_exception_el(env, old_el)
13758 ? sve_zcr_len_for_el(env, old_el) : 0);
13759 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13760 new_len = (new_a64 && !sve_exception_el(env, new_el)
13761 ? sve_zcr_len_for_el(env, new_el) : 0);
13763 /* When changing vector length, clear inaccessible state. */
13764 if (new_len < old_len) {
13765 aarch64_sve_narrow_vq(env, new_len + 1);
13768 #endif