cpu: Directly use get_memory_mapping() fallback handlers in place
[qemu/ar7.git] / target / arm / helper-a64.c
blob9cc3b066e28b7b5df28b9cff1b4ac7c8eedb5de9
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "exec/gdbstub.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/exec-all.h"
32 #include "exec/cpu_ldst.h"
33 #include "qemu/int128.h"
34 #include "qemu/atomic128.h"
35 #include "tcg/tcg.h"
36 #include "fpu/softfloat.h"
37 #include <zlib.h> /* For crc32 */
39 /* C2.4.7 Multiply and divide */
40 /* special cases for 0 and LLONG_MIN are mandated by the standard */
41 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
43 if (den == 0) {
44 return 0;
46 return num / den;
49 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
51 if (den == 0) {
52 return 0;
54 if (num == LLONG_MIN && den == -1) {
55 return LLONG_MIN;
57 return num / den;
60 uint64_t HELPER(rbit64)(uint64_t x)
62 return revbit64(x);
65 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
67 update_spsel(env, imm);
70 static void daif_check(CPUARMState *env, uint32_t op,
71 uint32_t imm, uintptr_t ra)
73 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
74 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
75 raise_exception_ra(env, EXCP_UDEF,
76 syn_aa64_sysregtrap(0, extract32(op, 0, 3),
77 extract32(op, 3, 3), 4,
78 imm, 0x1f, 0),
79 exception_target_el(env), ra);
83 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
85 daif_check(env, 0x1e, imm, GETPC());
86 env->daif |= (imm << 6) & PSTATE_DAIF;
89 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
91 daif_check(env, 0x1f, imm, GETPC());
92 env->daif &= ~((imm << 6) & PSTATE_DAIF);
95 /* Convert a softfloat float_relation_ (as returned by
96 * the float*_compare functions) to the correct ARM
97 * NZCV flag state.
99 static inline uint32_t float_rel_to_flags(int res)
101 uint64_t flags;
102 switch (res) {
103 case float_relation_equal:
104 flags = PSTATE_Z | PSTATE_C;
105 break;
106 case float_relation_less:
107 flags = PSTATE_N;
108 break;
109 case float_relation_greater:
110 flags = PSTATE_C;
111 break;
112 case float_relation_unordered:
113 default:
114 flags = PSTATE_C | PSTATE_V;
115 break;
117 return flags;
120 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
122 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
125 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
127 return float_rel_to_flags(float16_compare(x, y, fp_status));
130 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
132 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
135 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
137 return float_rel_to_flags(float32_compare(x, y, fp_status));
140 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
142 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
145 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
147 return float_rel_to_flags(float64_compare(x, y, fp_status));
150 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
152 float_status *fpst = fpstp;
154 a = float32_squash_input_denormal(a, fpst);
155 b = float32_squash_input_denormal(b, fpst);
157 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
158 (float32_is_infinity(a) && float32_is_zero(b))) {
159 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
160 return make_float32((1U << 30) |
161 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
163 return float32_mul(a, b, fpst);
166 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
168 float_status *fpst = fpstp;
170 a = float64_squash_input_denormal(a, fpst);
171 b = float64_squash_input_denormal(b, fpst);
173 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
174 (float64_is_infinity(a) && float64_is_zero(b))) {
175 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
176 return make_float64((1ULL << 62) |
177 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
179 return float64_mul(a, b, fpst);
182 /* 64bit/double versions of the neon float compare functions */
183 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
185 float_status *fpst = fpstp;
186 return -float64_eq_quiet(a, b, fpst);
189 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
191 float_status *fpst = fpstp;
192 return -float64_le(b, a, fpst);
195 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
197 float_status *fpst = fpstp;
198 return -float64_lt(b, a, fpst);
201 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
202 * versions, these do a fully fused multiply-add or
203 * multiply-add-and-halve.
206 uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
208 float_status *fpst = fpstp;
210 a = float16_squash_input_denormal(a, fpst);
211 b = float16_squash_input_denormal(b, fpst);
213 a = float16_chs(a);
214 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
215 (float16_is_infinity(b) && float16_is_zero(a))) {
216 return float16_two;
218 return float16_muladd(a, b, float16_two, 0, fpst);
221 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
223 float_status *fpst = fpstp;
225 a = float32_squash_input_denormal(a, fpst);
226 b = float32_squash_input_denormal(b, fpst);
228 a = float32_chs(a);
229 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
230 (float32_is_infinity(b) && float32_is_zero(a))) {
231 return float32_two;
233 return float32_muladd(a, b, float32_two, 0, fpst);
236 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
238 float_status *fpst = fpstp;
240 a = float64_squash_input_denormal(a, fpst);
241 b = float64_squash_input_denormal(b, fpst);
243 a = float64_chs(a);
244 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
245 (float64_is_infinity(b) && float64_is_zero(a))) {
246 return float64_two;
248 return float64_muladd(a, b, float64_two, 0, fpst);
251 uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
253 float_status *fpst = fpstp;
255 a = float16_squash_input_denormal(a, fpst);
256 b = float16_squash_input_denormal(b, fpst);
258 a = float16_chs(a);
259 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
260 (float16_is_infinity(b) && float16_is_zero(a))) {
261 return float16_one_point_five;
263 return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
266 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
268 float_status *fpst = fpstp;
270 a = float32_squash_input_denormal(a, fpst);
271 b = float32_squash_input_denormal(b, fpst);
273 a = float32_chs(a);
274 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
275 (float32_is_infinity(b) && float32_is_zero(a))) {
276 return float32_one_point_five;
278 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
281 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
283 float_status *fpst = fpstp;
285 a = float64_squash_input_denormal(a, fpst);
286 b = float64_squash_input_denormal(b, fpst);
288 a = float64_chs(a);
289 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
290 (float64_is_infinity(b) && float64_is_zero(a))) {
291 return float64_one_point_five;
293 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
296 /* Pairwise long add: add pairs of adjacent elements into
297 * double-width elements in the result (eg _s8 is an 8x8->16 op)
299 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
301 uint64_t nsignmask = 0x0080008000800080ULL;
302 uint64_t wsignmask = 0x8000800080008000ULL;
303 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
304 uint64_t tmp1, tmp2;
305 uint64_t res, signres;
307 /* Extract odd elements, sign extend each to a 16 bit field */
308 tmp1 = a & elementmask;
309 tmp1 ^= nsignmask;
310 tmp1 |= wsignmask;
311 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
312 /* Ditto for the even elements */
313 tmp2 = (a >> 8) & elementmask;
314 tmp2 ^= nsignmask;
315 tmp2 |= wsignmask;
316 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
318 /* calculate the result by summing bits 0..14, 16..22, etc,
319 * and then adjusting the sign bits 15, 23, etc manually.
320 * This ensures the addition can't overflow the 16 bit field.
322 signres = (tmp1 ^ tmp2) & wsignmask;
323 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
324 res ^= signres;
326 return res;
329 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
331 uint64_t tmp;
333 tmp = a & 0x00ff00ff00ff00ffULL;
334 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
335 return tmp;
338 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
340 int32_t reslo, reshi;
342 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
343 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
345 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
348 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
350 uint64_t tmp;
352 tmp = a & 0x0000ffff0000ffffULL;
353 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
354 return tmp;
357 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
358 uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
360 float_status *fpst = fpstp;
361 uint16_t val16, sbit;
362 int16_t exp;
364 if (float16_is_any_nan(a)) {
365 float16 nan = a;
366 if (float16_is_signaling_nan(a, fpst)) {
367 float_raise(float_flag_invalid, fpst);
368 nan = float16_silence_nan(a, fpst);
370 if (fpst->default_nan_mode) {
371 nan = float16_default_nan(fpst);
373 return nan;
376 a = float16_squash_input_denormal(a, fpst);
378 val16 = float16_val(a);
379 sbit = 0x8000 & val16;
380 exp = extract32(val16, 10, 5);
382 if (exp == 0) {
383 return make_float16(deposit32(sbit, 10, 5, 0x1e));
384 } else {
385 return make_float16(deposit32(sbit, 10, 5, ~exp));
389 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
391 float_status *fpst = fpstp;
392 uint32_t val32, sbit;
393 int32_t exp;
395 if (float32_is_any_nan(a)) {
396 float32 nan = a;
397 if (float32_is_signaling_nan(a, fpst)) {
398 float_raise(float_flag_invalid, fpst);
399 nan = float32_silence_nan(a, fpst);
401 if (fpst->default_nan_mode) {
402 nan = float32_default_nan(fpst);
404 return nan;
407 a = float32_squash_input_denormal(a, fpst);
409 val32 = float32_val(a);
410 sbit = 0x80000000ULL & val32;
411 exp = extract32(val32, 23, 8);
413 if (exp == 0) {
414 return make_float32(sbit | (0xfe << 23));
415 } else {
416 return make_float32(sbit | (~exp & 0xff) << 23);
420 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
422 float_status *fpst = fpstp;
423 uint64_t val64, sbit;
424 int64_t exp;
426 if (float64_is_any_nan(a)) {
427 float64 nan = a;
428 if (float64_is_signaling_nan(a, fpst)) {
429 float_raise(float_flag_invalid, fpst);
430 nan = float64_silence_nan(a, fpst);
432 if (fpst->default_nan_mode) {
433 nan = float64_default_nan(fpst);
435 return nan;
438 a = float64_squash_input_denormal(a, fpst);
440 val64 = float64_val(a);
441 sbit = 0x8000000000000000ULL & val64;
442 exp = extract64(float64_val(a), 52, 11);
444 if (exp == 0) {
445 return make_float64(sbit | (0x7feULL << 52));
446 } else {
447 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
451 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
453 /* Von Neumann rounding is implemented by using round-to-zero
454 * and then setting the LSB of the result if Inexact was raised.
456 float32 r;
457 float_status *fpst = &env->vfp.fp_status;
458 float_status tstat = *fpst;
459 int exflags;
461 set_float_rounding_mode(float_round_to_zero, &tstat);
462 set_float_exception_flags(0, &tstat);
463 r = float64_to_float32(a, &tstat);
464 exflags = get_float_exception_flags(&tstat);
465 if (exflags & float_flag_inexact) {
466 r = make_float32(float32_val(r) | 1);
468 exflags |= get_float_exception_flags(fpst);
469 set_float_exception_flags(exflags, fpst);
470 return r;
473 /* 64-bit versions of the CRC helpers. Note that although the operation
474 * (and the prototypes of crc32c() and crc32() mean that only the bottom
475 * 32 bits of the accumulator and result are used, we pass and return
476 * uint64_t for convenience of the generated code. Unlike the 32-bit
477 * instruction set versions, val may genuinely have 64 bits of data in it.
478 * The upper bytes of val (above the number specified by 'bytes') must have
479 * been zeroed out by the caller.
481 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
483 uint8_t buf[8];
485 stq_le_p(buf, val);
487 /* zlib crc32 converts the accumulator and output to one's complement. */
488 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
491 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
493 uint8_t buf[8];
495 stq_le_p(buf, val);
497 /* Linux crc32c converts the output to one's complement. */
498 return crc32c(acc, buf, bytes) ^ 0xffffffff;
501 uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
502 uint64_t new_lo, uint64_t new_hi)
504 Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
505 Int128 newv = int128_make128(new_lo, new_hi);
506 Int128 oldv;
507 uintptr_t ra = GETPC();
508 uint64_t o0, o1;
509 bool success;
511 #ifdef CONFIG_USER_ONLY
512 /* ??? Enforce alignment. */
513 uint64_t *haddr = g2h(env_cpu(env), addr);
515 set_helper_retaddr(ra);
516 o0 = ldq_le_p(haddr + 0);
517 o1 = ldq_le_p(haddr + 1);
518 oldv = int128_make128(o0, o1);
520 success = int128_eq(oldv, cmpv);
521 if (success) {
522 stq_le_p(haddr + 0, int128_getlo(newv));
523 stq_le_p(haddr + 1, int128_gethi(newv));
525 clear_helper_retaddr();
526 #else
527 int mem_idx = cpu_mmu_index(env, false);
528 TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
529 TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
531 o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
532 o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
533 oldv = int128_make128(o0, o1);
535 success = int128_eq(oldv, cmpv);
536 if (success) {
537 helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
538 helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
540 #endif
542 return !success;
545 uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
546 uint64_t new_lo, uint64_t new_hi)
548 Int128 oldv, cmpv, newv;
549 uintptr_t ra = GETPC();
550 bool success;
551 int mem_idx;
552 TCGMemOpIdx oi;
554 assert(HAVE_CMPXCHG128);
556 mem_idx = cpu_mmu_index(env, false);
557 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
559 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
560 newv = int128_make128(new_lo, new_hi);
561 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
563 success = int128_eq(oldv, cmpv);
564 return !success;
567 uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
568 uint64_t new_lo, uint64_t new_hi)
571 * High and low need to be switched here because this is not actually a
572 * 128bit store but two doublewords stored consecutively
574 Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
575 Int128 newv = int128_make128(new_hi, new_lo);
576 Int128 oldv;
577 uintptr_t ra = GETPC();
578 uint64_t o0, o1;
579 bool success;
581 #ifdef CONFIG_USER_ONLY
582 /* ??? Enforce alignment. */
583 uint64_t *haddr = g2h(env_cpu(env), addr);
585 set_helper_retaddr(ra);
586 o1 = ldq_be_p(haddr + 0);
587 o0 = ldq_be_p(haddr + 1);
588 oldv = int128_make128(o0, o1);
590 success = int128_eq(oldv, cmpv);
591 if (success) {
592 stq_be_p(haddr + 0, int128_gethi(newv));
593 stq_be_p(haddr + 1, int128_getlo(newv));
595 clear_helper_retaddr();
596 #else
597 int mem_idx = cpu_mmu_index(env, false);
598 TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
599 TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
601 o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
602 o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
603 oldv = int128_make128(o0, o1);
605 success = int128_eq(oldv, cmpv);
606 if (success) {
607 helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
608 helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
610 #endif
612 return !success;
615 uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
616 uint64_t new_lo, uint64_t new_hi)
618 Int128 oldv, cmpv, newv;
619 uintptr_t ra = GETPC();
620 bool success;
621 int mem_idx;
622 TCGMemOpIdx oi;
624 assert(HAVE_CMPXCHG128);
626 mem_idx = cpu_mmu_index(env, false);
627 oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
630 * High and low need to be switched here because this is not actually a
631 * 128bit store but two doublewords stored consecutively
633 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
634 newv = int128_make128(new_hi, new_lo);
635 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
637 success = int128_eq(oldv, cmpv);
638 return !success;
641 /* Writes back the old data into Rs. */
642 void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
643 uint64_t new_lo, uint64_t new_hi)
645 Int128 oldv, cmpv, newv;
646 uintptr_t ra = GETPC();
647 int mem_idx;
648 TCGMemOpIdx oi;
650 assert(HAVE_CMPXCHG128);
652 mem_idx = cpu_mmu_index(env, false);
653 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
655 cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]);
656 newv = int128_make128(new_lo, new_hi);
657 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
659 env->xregs[rs] = int128_getlo(oldv);
660 env->xregs[rs + 1] = int128_gethi(oldv);
663 void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
664 uint64_t new_hi, uint64_t new_lo)
666 Int128 oldv, cmpv, newv;
667 uintptr_t ra = GETPC();
668 int mem_idx;
669 TCGMemOpIdx oi;
671 assert(HAVE_CMPXCHG128);
673 mem_idx = cpu_mmu_index(env, false);
674 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
676 cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]);
677 newv = int128_make128(new_lo, new_hi);
678 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
680 env->xregs[rs + 1] = int128_getlo(oldv);
681 env->xregs[rs] = int128_gethi(oldv);
685 * AdvSIMD half-precision
688 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
690 #define ADVSIMD_HALFOP(name) \
691 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
693 float_status *fpst = fpstp; \
694 return float16_ ## name(a, b, fpst); \
697 ADVSIMD_HALFOP(add)
698 ADVSIMD_HALFOP(sub)
699 ADVSIMD_HALFOP(mul)
700 ADVSIMD_HALFOP(div)
701 ADVSIMD_HALFOP(min)
702 ADVSIMD_HALFOP(max)
703 ADVSIMD_HALFOP(minnum)
704 ADVSIMD_HALFOP(maxnum)
706 #define ADVSIMD_TWOHALFOP(name) \
707 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
709 float16 a1, a2, b1, b2; \
710 uint32_t r1, r2; \
711 float_status *fpst = fpstp; \
712 a1 = extract32(two_a, 0, 16); \
713 a2 = extract32(two_a, 16, 16); \
714 b1 = extract32(two_b, 0, 16); \
715 b2 = extract32(two_b, 16, 16); \
716 r1 = float16_ ## name(a1, b1, fpst); \
717 r2 = float16_ ## name(a2, b2, fpst); \
718 return deposit32(r1, 16, 16, r2); \
721 ADVSIMD_TWOHALFOP(add)
722 ADVSIMD_TWOHALFOP(sub)
723 ADVSIMD_TWOHALFOP(mul)
724 ADVSIMD_TWOHALFOP(div)
725 ADVSIMD_TWOHALFOP(min)
726 ADVSIMD_TWOHALFOP(max)
727 ADVSIMD_TWOHALFOP(minnum)
728 ADVSIMD_TWOHALFOP(maxnum)
730 /* Data processing - scalar floating-point and advanced SIMD */
731 static float16 float16_mulx(float16 a, float16 b, void *fpstp)
733 float_status *fpst = fpstp;
735 a = float16_squash_input_denormal(a, fpst);
736 b = float16_squash_input_denormal(b, fpst);
738 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
739 (float16_is_infinity(a) && float16_is_zero(b))) {
740 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
741 return make_float16((1U << 14) |
742 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
744 return float16_mul(a, b, fpst);
747 ADVSIMD_HALFOP(mulx)
748 ADVSIMD_TWOHALFOP(mulx)
750 /* fused multiply-accumulate */
751 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
752 void *fpstp)
754 float_status *fpst = fpstp;
755 return float16_muladd(a, b, c, 0, fpst);
758 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
759 uint32_t two_c, void *fpstp)
761 float_status *fpst = fpstp;
762 float16 a1, a2, b1, b2, c1, c2;
763 uint32_t r1, r2;
764 a1 = extract32(two_a, 0, 16);
765 a2 = extract32(two_a, 16, 16);
766 b1 = extract32(two_b, 0, 16);
767 b2 = extract32(two_b, 16, 16);
768 c1 = extract32(two_c, 0, 16);
769 c2 = extract32(two_c, 16, 16);
770 r1 = float16_muladd(a1, b1, c1, 0, fpst);
771 r2 = float16_muladd(a2, b2, c2, 0, fpst);
772 return deposit32(r1, 16, 16, r2);
776 * Floating point comparisons produce an integer result. Softfloat
777 * routines return float_relation types which we convert to the 0/-1
778 * Neon requires.
781 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
783 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
785 float_status *fpst = fpstp;
786 int compare = float16_compare_quiet(a, b, fpst);
787 return ADVSIMD_CMPRES(compare == float_relation_equal);
790 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
792 float_status *fpst = fpstp;
793 int compare = float16_compare(a, b, fpst);
794 return ADVSIMD_CMPRES(compare == float_relation_greater ||
795 compare == float_relation_equal);
798 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
800 float_status *fpst = fpstp;
801 int compare = float16_compare(a, b, fpst);
802 return ADVSIMD_CMPRES(compare == float_relation_greater);
805 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
807 float_status *fpst = fpstp;
808 float16 f0 = float16_abs(a);
809 float16 f1 = float16_abs(b);
810 int compare = float16_compare(f0, f1, fpst);
811 return ADVSIMD_CMPRES(compare == float_relation_greater ||
812 compare == float_relation_equal);
815 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
817 float_status *fpst = fpstp;
818 float16 f0 = float16_abs(a);
819 float16 f1 = float16_abs(b);
820 int compare = float16_compare(f0, f1, fpst);
821 return ADVSIMD_CMPRES(compare == float_relation_greater);
824 /* round to integral */
825 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
827 return float16_round_to_int(x, fp_status);
830 uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
832 int old_flags = get_float_exception_flags(fp_status), new_flags;
833 float16 ret;
835 ret = float16_round_to_int(x, fp_status);
837 /* Suppress any inexact exceptions the conversion produced */
838 if (!(old_flags & float_flag_inexact)) {
839 new_flags = get_float_exception_flags(fp_status);
840 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
843 return ret;
847 * Half-precision floating point conversion functions
849 * There are a multitude of conversion functions with various
850 * different rounding modes. This is dealt with by the calling code
851 * setting the mode appropriately before calling the helper.
854 uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
856 float_status *fpst = fpstp;
858 /* Invalid if we are passed a NaN */
859 if (float16_is_any_nan(a)) {
860 float_raise(float_flag_invalid, fpst);
861 return 0;
863 return float16_to_int16(a, fpst);
866 uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
868 float_status *fpst = fpstp;
870 /* Invalid if we are passed a NaN */
871 if (float16_is_any_nan(a)) {
872 float_raise(float_flag_invalid, fpst);
873 return 0;
875 return float16_to_uint16(a, fpst);
878 static int el_from_spsr(uint32_t spsr)
880 /* Return the exception level that this SPSR is requesting a return to,
881 * or -1 if it is invalid (an illegal return)
883 if (spsr & PSTATE_nRW) {
884 switch (spsr & CPSR_M) {
885 case ARM_CPU_MODE_USR:
886 return 0;
887 case ARM_CPU_MODE_HYP:
888 return 2;
889 case ARM_CPU_MODE_FIQ:
890 case ARM_CPU_MODE_IRQ:
891 case ARM_CPU_MODE_SVC:
892 case ARM_CPU_MODE_ABT:
893 case ARM_CPU_MODE_UND:
894 case ARM_CPU_MODE_SYS:
895 return 1;
896 case ARM_CPU_MODE_MON:
897 /* Returning to Mon from AArch64 is never possible,
898 * so this is an illegal return.
900 default:
901 return -1;
903 } else {
904 if (extract32(spsr, 1, 1)) {
905 /* Return with reserved M[1] bit set */
906 return -1;
908 if (extract32(spsr, 0, 4) == 1) {
909 /* return to EL0 with M[0] bit set */
910 return -1;
912 return extract32(spsr, 2, 2);
916 static void cpsr_write_from_spsr_elx(CPUARMState *env,
917 uint32_t val)
919 uint32_t mask;
921 /* Save SPSR_ELx.SS into PSTATE. */
922 env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
923 val &= ~PSTATE_SS;
925 /* Move DIT to the correct location for CPSR */
926 if (val & PSTATE_DIT) {
927 val &= ~PSTATE_DIT;
928 val |= CPSR_DIT;
931 mask = aarch32_cpsr_valid_mask(env->features, \
932 &env_archcpu(env)->isar);
933 cpsr_write(env, val, mask, CPSRWriteRaw);
936 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
938 int cur_el = arm_current_el(env);
939 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
940 uint32_t spsr = env->banked_spsr[spsr_idx];
941 int new_el;
942 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
944 aarch64_save_sp(env, cur_el);
946 arm_clear_exclusive(env);
948 /* We must squash the PSTATE.SS bit to zero unless both of the
949 * following hold:
950 * 1. debug exceptions are currently disabled
951 * 2. singlestep will be active in the EL we return to
952 * We check 1 here and 2 after we've done the pstate/cpsr write() to
953 * transition to the EL we're going to.
955 if (arm_generate_debug_exceptions(env)) {
956 spsr &= ~PSTATE_SS;
959 new_el = el_from_spsr(spsr);
960 if (new_el == -1) {
961 goto illegal_return;
963 if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
964 /* Disallow return to an EL which is unimplemented or higher
965 * than the current one.
967 goto illegal_return;
970 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
971 /* Return to an EL which is configured for a different register width */
972 goto illegal_return;
975 if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
976 goto illegal_return;
979 qemu_mutex_lock_iothread();
980 arm_call_pre_el_change_hook(env_archcpu(env));
981 qemu_mutex_unlock_iothread();
983 if (!return_to_aa64) {
984 env->aarch64 = 0;
985 /* We do a raw CPSR write because aarch64_sync_64_to_32()
986 * will sort the register banks out for us, and we've already
987 * caught all the bad-mode cases in el_from_spsr().
989 cpsr_write_from_spsr_elx(env, spsr);
990 if (!arm_singlestep_active(env)) {
991 env->pstate &= ~PSTATE_SS;
993 aarch64_sync_64_to_32(env);
995 if (spsr & CPSR_T) {
996 env->regs[15] = new_pc & ~0x1;
997 } else {
998 env->regs[15] = new_pc & ~0x3;
1000 helper_rebuild_hflags_a32(env, new_el);
1001 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1002 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1003 cur_el, new_el, env->regs[15]);
1004 } else {
1005 int tbii;
1007 env->aarch64 = 1;
1008 spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
1009 pstate_write(env, spsr);
1010 if (!arm_singlestep_active(env)) {
1011 env->pstate &= ~PSTATE_SS;
1013 aarch64_restore_sp(env, new_el);
1014 helper_rebuild_hflags_a64(env, new_el);
1017 * Apply TBI to the exception return address. We had to delay this
1018 * until after we selected the new EL, so that we could select the
1019 * correct TBI+TBID bits. This is made easier by waiting until after
1020 * the hflags rebuild, since we can pull the composite TBII field
1021 * from there.
1023 tbii = EX_TBFLAG_A64(env->hflags, TBII);
1024 if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
1025 /* TBI is enabled. */
1026 int core_mmu_idx = cpu_mmu_index(env, false);
1027 if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
1028 new_pc = sextract64(new_pc, 0, 56);
1029 } else {
1030 new_pc = extract64(new_pc, 0, 56);
1033 env->pc = new_pc;
1035 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1036 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1037 cur_el, new_el, env->pc);
1041 * Note that cur_el can never be 0. If new_el is 0, then
1042 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
1044 aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
1046 qemu_mutex_lock_iothread();
1047 arm_call_el_change_hook(env_archcpu(env));
1048 qemu_mutex_unlock_iothread();
1050 return;
1052 illegal_return:
1053 /* Illegal return events of various kinds have architecturally
1054 * mandated behaviour:
1055 * restore NZCV and DAIF from SPSR_ELx
1056 * set PSTATE.IL
1057 * restore PC from ELR_ELx
1058 * no change to exception level, execution state or stack pointer
1060 env->pstate |= PSTATE_IL;
1061 env->pc = new_pc;
1062 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1063 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1064 pstate_write(env, spsr);
1065 if (!arm_singlestep_active(env)) {
1066 env->pstate &= ~PSTATE_SS;
1068 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1069 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1073 * Square Root and Reciprocal square root
1076 uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
1078 float_status *s = fpstp;
1080 return float16_sqrt(a, s);
1083 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
1086 * Implement DC ZVA, which zeroes a fixed-length block of memory.
1087 * Note that we do not implement the (architecturally mandated)
1088 * alignment fault for attempts to use this on Device memory
1089 * (which matches the usual QEMU behaviour of not implementing either
1090 * alignment faults or any memory attribute handling).
1092 int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
1093 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
1094 int mmu_idx = cpu_mmu_index(env, false);
1095 void *mem;
1098 * Trapless lookup. In addition to actual invalid page, may
1099 * return NULL for I/O, watchpoints, clean pages, etc.
1101 mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
1103 #ifndef CONFIG_USER_ONLY
1104 if (unlikely(!mem)) {
1105 uintptr_t ra = GETPC();
1108 * Trap if accessing an invalid page. DC_ZVA requires that we supply
1109 * the original pointer for an invalid page. But watchpoints require
1110 * that we probe the actual space. So do both.
1112 (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
1113 mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
1115 if (unlikely(!mem)) {
1117 * The only remaining reason for mem == NULL is I/O.
1118 * Just do a series of byte writes as the architecture demands.
1120 for (int i = 0; i < blocklen; i++) {
1121 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
1123 return;
1126 #endif
1128 memset(mem, 0, blocklen);