cpu: Directly use get_memory_mapping() fallback handlers in place
[qemu/ar7.git] / target / arm / cpu.c
blob7aeb4b138162687d6cd5dd0adc3cd83fc499b006
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
45 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
47 ARMCPU *cpu = ARM_CPU(cs);
48 CPUARMState *env = &cpu->env;
50 if (is_a64(env)) {
51 env->pc = value;
52 env->thumb = 0;
53 } else {
54 env->regs[15] = value & ~1;
55 env->thumb = value & 1;
59 #ifdef CONFIG_TCG
60 void arm_cpu_synchronize_from_tb(CPUState *cs,
61 const TranslationBlock *tb)
63 ARMCPU *cpu = ARM_CPU(cs);
64 CPUARMState *env = &cpu->env;
67 * It's OK to look at env for the current mode here, because it's
68 * never possible for an AArch64 TB to chain to an AArch32 TB.
70 if (is_a64(env)) {
71 env->pc = tb->pc;
72 } else {
73 env->regs[15] = tb->pc;
76 #endif /* CONFIG_TCG */
78 static bool arm_cpu_has_work(CPUState *cs)
80 ARMCPU *cpu = ARM_CPU(cs);
82 return (cpu->power_state != PSCI_OFF)
83 && cs->interrupt_request &
84 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86 | CPU_INTERRUPT_EXITTB);
89 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90 void *opaque)
92 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
94 entry->hook = hook;
95 entry->opaque = opaque;
97 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
100 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
101 void *opaque)
103 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
105 entry->hook = hook;
106 entry->opaque = opaque;
108 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
111 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Reset a single ARMCPRegInfo register */
114 ARMCPRegInfo *ri = value;
115 ARMCPU *cpu = opaque;
117 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
118 return;
121 if (ri->resetfn) {
122 ri->resetfn(&cpu->env, ri);
123 return;
126 /* A zero offset is never possible as it would be regs[0]
127 * so we use it to indicate that reset is being handled elsewhere.
128 * This is basically only used for fields in non-core coprocessors
129 * (like the pxa2xx ones).
131 if (!ri->fieldoffset) {
132 return;
135 if (cpreg_field_is_64bit(ri)) {
136 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137 } else {
138 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
144 /* Purely an assertion check: we've already done reset once,
145 * so now check that running the reset for the cpreg doesn't
146 * change its value. This traps bugs where two different cpregs
147 * both try to reset the same state field but to different values.
149 ARMCPRegInfo *ri = value;
150 ARMCPU *cpu = opaque;
151 uint64_t oldvalue, newvalue;
153 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154 return;
157 oldvalue = read_raw_cp_reg(&cpu->env, ri);
158 cp_reg_reset(key, value, opaque);
159 newvalue = read_raw_cp_reg(&cpu->env, ri);
160 assert(oldvalue == newvalue);
163 static void arm_cpu_reset(DeviceState *dev)
165 CPUState *s = CPU(dev);
166 ARMCPU *cpu = ARM_CPU(s);
167 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
168 CPUARMState *env = &cpu->env;
170 acc->parent_reset(dev);
172 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
174 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
175 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
177 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
178 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
182 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
184 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
188 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189 /* 64 bit CPUs always start in 64 bit mode */
190 env->aarch64 = 1;
191 #if defined(CONFIG_USER_ONLY)
192 env->pstate = PSTATE_MODE_EL0t;
193 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
195 /* Enable all PAC keys. */
196 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197 SCTLR_EnDA | SCTLR_EnDB);
198 /* and to the FP/Neon instructions */
199 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
200 /* and to the SVE instructions */
201 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
202 /* with reasonable vector length */
203 if (cpu_isar_feature(aa64_sve, cpu)) {
204 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
207 * Enable TBI0 but not TBI1.
208 * Note that this must match useronly_clean_ptr.
210 env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
212 /* Enable MTE */
213 if (cpu_isar_feature(aa64_mte, cpu)) {
214 /* Enable tag access, but leave TCF0 as No Effect (0). */
215 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
217 * Exclude all tags, so that tag 0 is always used.
218 * This corresponds to Linux current->thread.gcr_incl = 0.
220 * Set RRND, so that helper_irg() will generate a seed later.
221 * Here in cpu_reset(), the crypto subsystem has not yet been
222 * initialized.
224 env->cp15.gcr_el1 = 0x1ffff;
226 #else
227 /* Reset into the highest available EL */
228 if (arm_feature(env, ARM_FEATURE_EL3)) {
229 env->pstate = PSTATE_MODE_EL3h;
230 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
231 env->pstate = PSTATE_MODE_EL2h;
232 } else {
233 env->pstate = PSTATE_MODE_EL1h;
235 env->pc = cpu->rvbar;
236 #endif
237 } else {
238 #if defined(CONFIG_USER_ONLY)
239 /* Userspace expects access to cp10 and cp11 for FP/Neon */
240 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
241 #endif
244 #if defined(CONFIG_USER_ONLY)
245 env->uncached_cpsr = ARM_CPU_MODE_USR;
246 /* For user mode we must enable access to coprocessors */
247 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
248 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
249 env->cp15.c15_cpar = 3;
250 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
251 env->cp15.c15_cpar = 1;
253 #else
256 * If the highest available EL is EL2, AArch32 will start in Hyp
257 * mode; otherwise it starts in SVC. Note that if we start in
258 * AArch64 then these values in the uncached_cpsr will be ignored.
260 if (arm_feature(env, ARM_FEATURE_EL2) &&
261 !arm_feature(env, ARM_FEATURE_EL3)) {
262 env->uncached_cpsr = ARM_CPU_MODE_HYP;
263 } else {
264 env->uncached_cpsr = ARM_CPU_MODE_SVC;
266 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
268 if (arm_feature(env, ARM_FEATURE_M)) {
269 uint32_t initial_msp; /* Loaded from 0x0 */
270 uint32_t initial_pc; /* Loaded from 0x4 */
271 uint8_t *rom;
272 uint32_t vecbase;
274 if (cpu_isar_feature(aa32_lob, cpu)) {
276 * LTPSIZE is constant 4 if MVE not implemented, and resets
277 * to an UNKNOWN value if MVE is implemented. We choose to
278 * always reset to 4.
280 env->v7m.ltpsize = 4;
281 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
282 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
283 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
286 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
287 env->v7m.secure = true;
288 } else {
289 /* This bit resets to 0 if security is supported, but 1 if
290 * it is not. The bit is not present in v7M, but we set it
291 * here so we can avoid having to make checks on it conditional
292 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
294 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
296 * Set NSACR to indicate "NS access permitted to everything";
297 * this avoids having to have all the tests of it being
298 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
299 * v8.1M the guest-visible value of NSACR in a CPU without the
300 * Security Extension is 0xcff.
302 env->v7m.nsacr = 0xcff;
305 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
306 * that it resets to 1, so QEMU always does that rather than making
307 * it dependent on CPU model. In v8M it is RES1.
309 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
310 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
311 if (arm_feature(env, ARM_FEATURE_V8)) {
312 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
313 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
314 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
316 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
317 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
318 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
321 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
322 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
323 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
324 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
326 /* Unlike A/R profile, M profile defines the reset LR value */
327 env->regs[14] = 0xffffffff;
329 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
331 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
332 vecbase = env->v7m.vecbase[env->v7m.secure];
333 rom = rom_ptr_for_as(s->as, vecbase, 8);
334 if (rom) {
335 /* Address zero is covered by ROM which hasn't yet been
336 * copied into physical memory.
338 initial_msp = ldl_p(rom);
339 initial_pc = ldl_p(rom + 4);
340 } else {
341 /* Address zero not covered by a ROM blob, or the ROM blob
342 * is in non-modifiable memory and this is a second reset after
343 * it got copied into memory. In the latter case, rom_ptr
344 * will return a NULL pointer and we should use ldl_phys instead.
346 initial_msp = ldl_phys(s->as, vecbase);
347 initial_pc = ldl_phys(s->as, vecbase + 4);
350 env->regs[13] = initial_msp & 0xFFFFFFFC;
351 env->regs[15] = initial_pc & ~1;
352 env->thumb = initial_pc & 1;
355 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
356 * executing as AArch32 then check if highvecs are enabled and
357 * adjust the PC accordingly.
359 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
360 env->regs[15] = 0xFFFF0000;
363 /* M profile requires that reset clears the exclusive monitor;
364 * A profile does not, but clearing it makes more sense than having it
365 * set with an exclusive access on address zero.
367 arm_clear_exclusive(env);
369 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
370 #endif
372 if (arm_feature(env, ARM_FEATURE_PMSA)) {
373 if (cpu->pmsav7_dregion > 0) {
374 if (arm_feature(env, ARM_FEATURE_V8)) {
375 memset(env->pmsav8.rbar[M_REG_NS], 0,
376 sizeof(*env->pmsav8.rbar[M_REG_NS])
377 * cpu->pmsav7_dregion);
378 memset(env->pmsav8.rlar[M_REG_NS], 0,
379 sizeof(*env->pmsav8.rlar[M_REG_NS])
380 * cpu->pmsav7_dregion);
381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382 memset(env->pmsav8.rbar[M_REG_S], 0,
383 sizeof(*env->pmsav8.rbar[M_REG_S])
384 * cpu->pmsav7_dregion);
385 memset(env->pmsav8.rlar[M_REG_S], 0,
386 sizeof(*env->pmsav8.rlar[M_REG_S])
387 * cpu->pmsav7_dregion);
389 } else if (arm_feature(env, ARM_FEATURE_V7)) {
390 memset(env->pmsav7.drbar, 0,
391 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
392 memset(env->pmsav7.drsr, 0,
393 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
394 memset(env->pmsav7.dracr, 0,
395 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
398 env->pmsav7.rnr[M_REG_NS] = 0;
399 env->pmsav7.rnr[M_REG_S] = 0;
400 env->pmsav8.mair0[M_REG_NS] = 0;
401 env->pmsav8.mair0[M_REG_S] = 0;
402 env->pmsav8.mair1[M_REG_NS] = 0;
403 env->pmsav8.mair1[M_REG_S] = 0;
406 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
407 if (cpu->sau_sregion > 0) {
408 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
409 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
411 env->sau.rnr = 0;
412 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
413 * the Cortex-M33 does.
415 env->sau.ctrl = 0;
418 set_flush_to_zero(1, &env->vfp.standard_fp_status);
419 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
420 set_default_nan_mode(1, &env->vfp.standard_fp_status);
421 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
422 set_float_detect_tininess(float_tininess_before_rounding,
423 &env->vfp.fp_status);
424 set_float_detect_tininess(float_tininess_before_rounding,
425 &env->vfp.standard_fp_status);
426 set_float_detect_tininess(float_tininess_before_rounding,
427 &env->vfp.fp_status_f16);
428 set_float_detect_tininess(float_tininess_before_rounding,
429 &env->vfp.standard_fp_status_f16);
430 #ifndef CONFIG_USER_ONLY
431 if (kvm_enabled()) {
432 kvm_arm_reset_vcpu(cpu);
434 #endif
436 hw_breakpoint_update_all(cpu);
437 hw_watchpoint_update_all(cpu);
438 arm_rebuild_hflags(env);
441 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
442 unsigned int target_el,
443 unsigned int cur_el, bool secure,
444 uint64_t hcr_el2)
446 CPUARMState *env = cs->env_ptr;
447 bool pstate_unmasked;
448 bool unmasked = false;
451 * Don't take exceptions if they target a lower EL.
452 * This check should catch any exceptions that would not be taken
453 * but left pending.
455 if (cur_el > target_el) {
456 return false;
459 switch (excp_idx) {
460 case EXCP_FIQ:
461 pstate_unmasked = !(env->daif & PSTATE_F);
462 break;
464 case EXCP_IRQ:
465 pstate_unmasked = !(env->daif & PSTATE_I);
466 break;
468 case EXCP_VFIQ:
469 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
470 /* VFIQs are only taken when hypervized. */
471 return false;
473 return !(env->daif & PSTATE_F);
474 case EXCP_VIRQ:
475 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
476 /* VIRQs are only taken when hypervized. */
477 return false;
479 return !(env->daif & PSTATE_I);
480 default:
481 g_assert_not_reached();
485 * Use the target EL, current execution state and SCR/HCR settings to
486 * determine whether the corresponding CPSR bit is used to mask the
487 * interrupt.
489 if ((target_el > cur_el) && (target_el != 1)) {
490 /* Exceptions targeting a higher EL may not be maskable */
491 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
493 * 64-bit masking rules are simple: exceptions to EL3
494 * can't be masked, and exceptions to EL2 can only be
495 * masked from Secure state. The HCR and SCR settings
496 * don't affect the masking logic, only the interrupt routing.
498 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
499 unmasked = true;
501 } else {
503 * The old 32-bit-only environment has a more complicated
504 * masking setup. HCR and SCR bits not only affect interrupt
505 * routing but also change the behaviour of masking.
507 bool hcr, scr;
509 switch (excp_idx) {
510 case EXCP_FIQ:
512 * If FIQs are routed to EL3 or EL2 then there are cases where
513 * we override the CPSR.F in determining if the exception is
514 * masked or not. If neither of these are set then we fall back
515 * to the CPSR.F setting otherwise we further assess the state
516 * below.
518 hcr = hcr_el2 & HCR_FMO;
519 scr = (env->cp15.scr_el3 & SCR_FIQ);
522 * When EL3 is 32-bit, the SCR.FW bit controls whether the
523 * CPSR.F bit masks FIQ interrupts when taken in non-secure
524 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
525 * when non-secure but only when FIQs are only routed to EL3.
527 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
528 break;
529 case EXCP_IRQ:
531 * When EL3 execution state is 32-bit, if HCR.IMO is set then
532 * we may override the CPSR.I masking when in non-secure state.
533 * The SCR.IRQ setting has already been taken into consideration
534 * when setting the target EL, so it does not have a further
535 * affect here.
537 hcr = hcr_el2 & HCR_IMO;
538 scr = false;
539 break;
540 default:
541 g_assert_not_reached();
544 if ((scr || hcr) && !secure) {
545 unmasked = true;
551 * The PSTATE bits only mask the interrupt if we have not overriden the
552 * ability above.
554 return unmasked || pstate_unmasked;
557 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
559 CPUClass *cc = CPU_GET_CLASS(cs);
560 CPUARMState *env = cs->env_ptr;
561 uint32_t cur_el = arm_current_el(env);
562 bool secure = arm_is_secure(env);
563 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
564 uint32_t target_el;
565 uint32_t excp_idx;
567 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
569 if (interrupt_request & CPU_INTERRUPT_FIQ) {
570 excp_idx = EXCP_FIQ;
571 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
572 if (arm_excp_unmasked(cs, excp_idx, target_el,
573 cur_el, secure, hcr_el2)) {
574 goto found;
577 if (interrupt_request & CPU_INTERRUPT_HARD) {
578 excp_idx = EXCP_IRQ;
579 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
580 if (arm_excp_unmasked(cs, excp_idx, target_el,
581 cur_el, secure, hcr_el2)) {
582 goto found;
585 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
586 excp_idx = EXCP_VIRQ;
587 target_el = 1;
588 if (arm_excp_unmasked(cs, excp_idx, target_el,
589 cur_el, secure, hcr_el2)) {
590 goto found;
593 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
594 excp_idx = EXCP_VFIQ;
595 target_el = 1;
596 if (arm_excp_unmasked(cs, excp_idx, target_el,
597 cur_el, secure, hcr_el2)) {
598 goto found;
601 return false;
603 found:
604 cs->exception_index = excp_idx;
605 env->exception.target_el = target_el;
606 cc->tcg_ops->do_interrupt(cs);
607 return true;
610 void arm_cpu_update_virq(ARMCPU *cpu)
613 * Update the interrupt level for VIRQ, which is the logical OR of
614 * the HCR_EL2.VI bit and the input line level from the GIC.
616 CPUARMState *env = &cpu->env;
617 CPUState *cs = CPU(cpu);
619 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
620 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
622 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
623 if (new_state) {
624 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
625 } else {
626 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
631 void arm_cpu_update_vfiq(ARMCPU *cpu)
634 * Update the interrupt level for VFIQ, which is the logical OR of
635 * the HCR_EL2.VF bit and the input line level from the GIC.
637 CPUARMState *env = &cpu->env;
638 CPUState *cs = CPU(cpu);
640 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
641 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
643 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
644 if (new_state) {
645 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
646 } else {
647 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
652 #ifndef CONFIG_USER_ONLY
653 static void arm_cpu_set_irq(void *opaque, int irq, int level)
655 ARMCPU *cpu = opaque;
656 CPUARMState *env = &cpu->env;
657 CPUState *cs = CPU(cpu);
658 static const int mask[] = {
659 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
660 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
661 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
662 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
665 if (level) {
666 env->irq_line_state |= mask[irq];
667 } else {
668 env->irq_line_state &= ~mask[irq];
671 switch (irq) {
672 case ARM_CPU_VIRQ:
673 assert(arm_feature(env, ARM_FEATURE_EL2));
674 arm_cpu_update_virq(cpu);
675 break;
676 case ARM_CPU_VFIQ:
677 assert(arm_feature(env, ARM_FEATURE_EL2));
678 arm_cpu_update_vfiq(cpu);
679 break;
680 case ARM_CPU_IRQ:
681 case ARM_CPU_FIQ:
682 if (level) {
683 cpu_interrupt(cs, mask[irq]);
684 } else {
685 cpu_reset_interrupt(cs, mask[irq]);
687 break;
688 default:
689 g_assert_not_reached();
693 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
695 #ifdef CONFIG_KVM
696 ARMCPU *cpu = opaque;
697 CPUARMState *env = &cpu->env;
698 CPUState *cs = CPU(cpu);
699 uint32_t linestate_bit;
700 int irq_id;
702 switch (irq) {
703 case ARM_CPU_IRQ:
704 irq_id = KVM_ARM_IRQ_CPU_IRQ;
705 linestate_bit = CPU_INTERRUPT_HARD;
706 break;
707 case ARM_CPU_FIQ:
708 irq_id = KVM_ARM_IRQ_CPU_FIQ;
709 linestate_bit = CPU_INTERRUPT_FIQ;
710 break;
711 default:
712 g_assert_not_reached();
715 if (level) {
716 env->irq_line_state |= linestate_bit;
717 } else {
718 env->irq_line_state &= ~linestate_bit;
720 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
721 #endif
724 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
726 ARMCPU *cpu = ARM_CPU(cs);
727 CPUARMState *env = &cpu->env;
729 cpu_synchronize_state(cs);
730 return arm_cpu_data_is_big_endian(env);
733 #endif
735 static int
736 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
738 return print_insn_arm(pc | 1, info);
741 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
743 ARMCPU *ac = ARM_CPU(cpu);
744 CPUARMState *env = &ac->env;
745 bool sctlr_b;
747 if (is_a64(env)) {
748 /* We might not be compiled with the A64 disassembler
749 * because it needs a C++ compiler. Leave print_insn
750 * unset in this case to use the caller default behaviour.
752 #if defined(CONFIG_ARM_A64_DIS)
753 info->print_insn = print_insn_arm_a64;
754 #endif
755 info->cap_arch = CS_ARCH_ARM64;
756 info->cap_insn_unit = 4;
757 info->cap_insn_split = 4;
758 } else {
759 int cap_mode;
760 if (env->thumb) {
761 info->print_insn = print_insn_thumb1;
762 info->cap_insn_unit = 2;
763 info->cap_insn_split = 4;
764 cap_mode = CS_MODE_THUMB;
765 } else {
766 info->print_insn = print_insn_arm;
767 info->cap_insn_unit = 4;
768 info->cap_insn_split = 4;
769 cap_mode = CS_MODE_ARM;
771 if (arm_feature(env, ARM_FEATURE_V8)) {
772 cap_mode |= CS_MODE_V8;
774 if (arm_feature(env, ARM_FEATURE_M)) {
775 cap_mode |= CS_MODE_MCLASS;
777 info->cap_arch = CS_ARCH_ARM;
778 info->cap_mode = cap_mode;
781 sctlr_b = arm_sctlr_b(env);
782 if (bswap_code(sctlr_b)) {
783 #ifdef TARGET_WORDS_BIGENDIAN
784 info->endian = BFD_ENDIAN_LITTLE;
785 #else
786 info->endian = BFD_ENDIAN_BIG;
787 #endif
789 info->flags &= ~INSN_ARM_BE32;
790 #ifndef CONFIG_USER_ONLY
791 if (sctlr_b) {
792 info->flags |= INSN_ARM_BE32;
794 #endif
797 #ifdef TARGET_AARCH64
799 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
801 ARMCPU *cpu = ARM_CPU(cs);
802 CPUARMState *env = &cpu->env;
803 uint32_t psr = pstate_read(env);
804 int i;
805 int el = arm_current_el(env);
806 const char *ns_status;
808 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
809 for (i = 0; i < 32; i++) {
810 if (i == 31) {
811 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
812 } else {
813 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
814 (i + 2) % 3 ? " " : "\n");
818 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
819 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
820 } else {
821 ns_status = "";
823 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
824 psr,
825 psr & PSTATE_N ? 'N' : '-',
826 psr & PSTATE_Z ? 'Z' : '-',
827 psr & PSTATE_C ? 'C' : '-',
828 psr & PSTATE_V ? 'V' : '-',
829 ns_status,
831 psr & PSTATE_SP ? 'h' : 't');
833 if (cpu_isar_feature(aa64_bti, cpu)) {
834 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
836 if (!(flags & CPU_DUMP_FPU)) {
837 qemu_fprintf(f, "\n");
838 return;
840 if (fp_exception_el(env, el) != 0) {
841 qemu_fprintf(f, " FPU disabled\n");
842 return;
844 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
845 vfp_get_fpcr(env), vfp_get_fpsr(env));
847 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
848 int j, zcr_len = sve_zcr_len_for_el(env, el);
850 for (i = 0; i <= FFR_PRED_NUM; i++) {
851 bool eol;
852 if (i == FFR_PRED_NUM) {
853 qemu_fprintf(f, "FFR=");
854 /* It's last, so end the line. */
855 eol = true;
856 } else {
857 qemu_fprintf(f, "P%02d=", i);
858 switch (zcr_len) {
859 case 0:
860 eol = i % 8 == 7;
861 break;
862 case 1:
863 eol = i % 6 == 5;
864 break;
865 case 2:
866 case 3:
867 eol = i % 3 == 2;
868 break;
869 default:
870 /* More than one quadword per predicate. */
871 eol = true;
872 break;
875 for (j = zcr_len / 4; j >= 0; j--) {
876 int digits;
877 if (j * 4 + 4 <= zcr_len + 1) {
878 digits = 16;
879 } else {
880 digits = (zcr_len % 4 + 1) * 4;
882 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
883 env->vfp.pregs[i].p[j],
884 j ? ":" : eol ? "\n" : " ");
888 for (i = 0; i < 32; i++) {
889 if (zcr_len == 0) {
890 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
891 i, env->vfp.zregs[i].d[1],
892 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
893 } else if (zcr_len == 1) {
894 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
895 ":%016" PRIx64 ":%016" PRIx64 "\n",
896 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
897 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
898 } else {
899 for (j = zcr_len; j >= 0; j--) {
900 bool odd = (zcr_len - j) % 2 != 0;
901 if (j == zcr_len) {
902 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
903 } else if (!odd) {
904 if (j > 0) {
905 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
906 } else {
907 qemu_fprintf(f, " [%x]=", j);
910 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
911 env->vfp.zregs[i].d[j * 2 + 1],
912 env->vfp.zregs[i].d[j * 2],
913 odd || j == 0 ? "\n" : ":");
917 } else {
918 for (i = 0; i < 32; i++) {
919 uint64_t *q = aa64_vfp_qreg(env, i);
920 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
921 i, q[1], q[0], (i & 1 ? "\n" : " "));
926 #else
928 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
930 g_assert_not_reached();
933 #endif
935 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
937 ARMCPU *cpu = ARM_CPU(cs);
938 CPUARMState *env = &cpu->env;
939 int i;
941 if (is_a64(env)) {
942 aarch64_cpu_dump_state(cs, f, flags);
943 return;
946 for (i = 0; i < 16; i++) {
947 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
948 if ((i % 4) == 3) {
949 qemu_fprintf(f, "\n");
950 } else {
951 qemu_fprintf(f, " ");
955 if (arm_feature(env, ARM_FEATURE_M)) {
956 uint32_t xpsr = xpsr_read(env);
957 const char *mode;
958 const char *ns_status = "";
960 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
961 ns_status = env->v7m.secure ? "S " : "NS ";
964 if (xpsr & XPSR_EXCP) {
965 mode = "handler";
966 } else {
967 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
968 mode = "unpriv-thread";
969 } else {
970 mode = "priv-thread";
974 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
975 xpsr,
976 xpsr & XPSR_N ? 'N' : '-',
977 xpsr & XPSR_Z ? 'Z' : '-',
978 xpsr & XPSR_C ? 'C' : '-',
979 xpsr & XPSR_V ? 'V' : '-',
980 xpsr & XPSR_T ? 'T' : 'A',
981 ns_status,
982 mode);
983 } else {
984 uint32_t psr = cpsr_read(env);
985 const char *ns_status = "";
987 if (arm_feature(env, ARM_FEATURE_EL3) &&
988 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
989 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
992 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
993 psr,
994 psr & CPSR_N ? 'N' : '-',
995 psr & CPSR_Z ? 'Z' : '-',
996 psr & CPSR_C ? 'C' : '-',
997 psr & CPSR_V ? 'V' : '-',
998 psr & CPSR_T ? 'T' : 'A',
999 ns_status,
1000 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1003 if (flags & CPU_DUMP_FPU) {
1004 int numvfpregs = 0;
1005 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1006 numvfpregs = 32;
1007 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1008 numvfpregs = 16;
1010 for (i = 0; i < numvfpregs; i++) {
1011 uint64_t v = *aa32_vfp_dreg(env, i);
1012 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1013 i * 2, (uint32_t)v,
1014 i * 2 + 1, (uint32_t)(v >> 32),
1015 i, v);
1017 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1021 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1023 uint32_t Aff1 = idx / clustersz;
1024 uint32_t Aff0 = idx % clustersz;
1025 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1028 static void cpreg_hashtable_data_destroy(gpointer data)
1031 * Destroy function for cpu->cp_regs hashtable data entries.
1032 * We must free the name string because it was g_strdup()ed in
1033 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1034 * from r->name because we know we definitely allocated it.
1036 ARMCPRegInfo *r = data;
1038 g_free((void *)r->name);
1039 g_free(r);
1042 static void arm_cpu_initfn(Object *obj)
1044 ARMCPU *cpu = ARM_CPU(obj);
1046 cpu_set_cpustate_pointers(cpu);
1047 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1048 g_free, cpreg_hashtable_data_destroy);
1050 QLIST_INIT(&cpu->pre_el_change_hooks);
1051 QLIST_INIT(&cpu->el_change_hooks);
1053 #ifndef CONFIG_USER_ONLY
1054 /* Our inbound IRQ and FIQ lines */
1055 if (kvm_enabled()) {
1056 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1057 * the same interface as non-KVM CPUs.
1059 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1060 } else {
1061 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1064 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1065 ARRAY_SIZE(cpu->gt_timer_outputs));
1067 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1068 "gicv3-maintenance-interrupt", 1);
1069 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1070 "pmu-interrupt", 1);
1071 #endif
1073 /* DTB consumers generally don't in fact care what the 'compatible'
1074 * string is, so always provide some string and trust that a hypothetical
1075 * picky DTB consumer will also provide a helpful error message.
1077 cpu->dtb_compatible = "qemu,unknown";
1078 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1079 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1081 if (tcg_enabled()) {
1082 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1086 static Property arm_cpu_gt_cntfrq_property =
1087 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1088 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1090 static Property arm_cpu_reset_cbar_property =
1091 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1093 static Property arm_cpu_reset_hivecs_property =
1094 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1096 static Property arm_cpu_rvbar_property =
1097 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1099 #ifndef CONFIG_USER_ONLY
1100 static Property arm_cpu_has_el2_property =
1101 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1103 static Property arm_cpu_has_el3_property =
1104 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1105 #endif
1107 static Property arm_cpu_cfgend_property =
1108 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1110 static Property arm_cpu_has_vfp_property =
1111 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1113 static Property arm_cpu_has_neon_property =
1114 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1116 static Property arm_cpu_has_dsp_property =
1117 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1119 static Property arm_cpu_has_mpu_property =
1120 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1122 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1123 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1124 * the right value for that particular CPU type, and we don't want
1125 * to override that with an incorrect constant value.
1127 static Property arm_cpu_pmsav7_dregion_property =
1128 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1129 pmsav7_dregion,
1130 qdev_prop_uint32, uint32_t);
1132 static bool arm_get_pmu(Object *obj, Error **errp)
1134 ARMCPU *cpu = ARM_CPU(obj);
1136 return cpu->has_pmu;
1139 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1141 ARMCPU *cpu = ARM_CPU(obj);
1143 if (value) {
1144 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1145 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1146 return;
1148 set_feature(&cpu->env, ARM_FEATURE_PMU);
1149 } else {
1150 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1152 cpu->has_pmu = value;
1155 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1158 * The exact approach to calculating guest ticks is:
1160 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1161 * NANOSECONDS_PER_SECOND);
1163 * We don't do that. Rather we intentionally use integer division
1164 * truncation below and in the caller for the conversion of host monotonic
1165 * time to guest ticks to provide the exact inverse for the semantics of
1166 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1167 * it loses precision when representing frequencies where
1168 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1169 * provide an exact inverse leads to scheduling timers with negative
1170 * periods, which in turn leads to sticky behaviour in the guest.
1172 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1173 * cannot become zero.
1175 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1176 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1179 void arm_cpu_post_init(Object *obj)
1181 ARMCPU *cpu = ARM_CPU(obj);
1183 /* M profile implies PMSA. We have to do this here rather than
1184 * in realize with the other feature-implication checks because
1185 * we look at the PMSA bit to see if we should add some properties.
1187 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1188 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1191 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1192 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1193 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1196 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1197 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1200 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1201 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1204 #ifndef CONFIG_USER_ONLY
1205 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1206 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1207 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1209 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1211 object_property_add_link(obj, "secure-memory",
1212 TYPE_MEMORY_REGION,
1213 (Object **)&cpu->secure_memory,
1214 qdev_prop_allow_set_link_before_realize,
1215 OBJ_PROP_LINK_STRONG);
1218 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1219 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1221 #endif
1223 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1224 cpu->has_pmu = true;
1225 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1229 * Allow user to turn off VFP and Neon support, but only for TCG --
1230 * KVM does not currently allow us to lie to the guest about its
1231 * ID/feature registers, so the guest always sees what the host has.
1233 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1234 ? cpu_isar_feature(aa64_fp_simd, cpu)
1235 : cpu_isar_feature(aa32_vfp, cpu)) {
1236 cpu->has_vfp = true;
1237 if (!kvm_enabled()) {
1238 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1242 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1243 cpu->has_neon = true;
1244 if (!kvm_enabled()) {
1245 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1249 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1250 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1251 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1254 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1255 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1256 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1257 qdev_property_add_static(DEVICE(obj),
1258 &arm_cpu_pmsav7_dregion_property);
1262 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1263 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1264 qdev_prop_allow_set_link_before_realize,
1265 OBJ_PROP_LINK_STRONG);
1267 * M profile: initial value of the Secure VTOR. We can't just use
1268 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1269 * the property to be set after realize.
1271 object_property_add_uint32_ptr(obj, "init-svtor",
1272 &cpu->init_svtor,
1273 OBJ_PROP_FLAG_READWRITE);
1276 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1278 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1279 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1282 if (kvm_enabled()) {
1283 kvm_arm_add_vcpu_properties(obj);
1286 #ifndef CONFIG_USER_ONLY
1287 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1288 cpu_isar_feature(aa64_mte, cpu)) {
1289 object_property_add_link(obj, "tag-memory",
1290 TYPE_MEMORY_REGION,
1291 (Object **)&cpu->tag_memory,
1292 qdev_prop_allow_set_link_before_realize,
1293 OBJ_PROP_LINK_STRONG);
1295 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1296 object_property_add_link(obj, "secure-tag-memory",
1297 TYPE_MEMORY_REGION,
1298 (Object **)&cpu->secure_tag_memory,
1299 qdev_prop_allow_set_link_before_realize,
1300 OBJ_PROP_LINK_STRONG);
1303 #endif
1306 static void arm_cpu_finalizefn(Object *obj)
1308 ARMCPU *cpu = ARM_CPU(obj);
1309 ARMELChangeHook *hook, *next;
1311 g_hash_table_destroy(cpu->cp_regs);
1313 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1314 QLIST_REMOVE(hook, node);
1315 g_free(hook);
1317 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1318 QLIST_REMOVE(hook, node);
1319 g_free(hook);
1321 #ifndef CONFIG_USER_ONLY
1322 if (cpu->pmu_timer) {
1323 timer_free(cpu->pmu_timer);
1325 #endif
1328 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1330 Error *local_err = NULL;
1332 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1333 arm_cpu_sve_finalize(cpu, &local_err);
1334 if (local_err != NULL) {
1335 error_propagate(errp, local_err);
1336 return;
1340 * KVM does not support modifications to this feature.
1341 * We have not registered the cpu properties when KVM
1342 * is in use, so the user will not be able to set them.
1344 if (!kvm_enabled()) {
1345 arm_cpu_pauth_finalize(cpu, &local_err);
1346 if (local_err != NULL) {
1347 error_propagate(errp, local_err);
1348 return;
1353 if (kvm_enabled()) {
1354 kvm_arm_steal_time_finalize(cpu, &local_err);
1355 if (local_err != NULL) {
1356 error_propagate(errp, local_err);
1357 return;
1362 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1364 CPUState *cs = CPU(dev);
1365 ARMCPU *cpu = ARM_CPU(dev);
1366 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1367 CPUARMState *env = &cpu->env;
1368 int pagebits;
1369 Error *local_err = NULL;
1370 bool no_aa32 = false;
1372 /* If we needed to query the host kernel for the CPU features
1373 * then it's possible that might have failed in the initfn, but
1374 * this is the first point where we can report it.
1376 if (cpu->host_cpu_probe_failed) {
1377 if (!kvm_enabled()) {
1378 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1379 } else {
1380 error_setg(errp, "Failed to retrieve host CPU features");
1382 return;
1385 #ifndef CONFIG_USER_ONLY
1386 /* The NVIC and M-profile CPU are two halves of a single piece of
1387 * hardware; trying to use one without the other is a command line
1388 * error and will result in segfaults if not caught here.
1390 if (arm_feature(env, ARM_FEATURE_M)) {
1391 if (!env->nvic) {
1392 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1393 return;
1395 } else {
1396 if (env->nvic) {
1397 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1398 return;
1403 uint64_t scale;
1405 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1406 if (!cpu->gt_cntfrq_hz) {
1407 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1408 cpu->gt_cntfrq_hz);
1409 return;
1411 scale = gt_cntfrq_period_ns(cpu);
1412 } else {
1413 scale = GTIMER_SCALE;
1416 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1417 arm_gt_ptimer_cb, cpu);
1418 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1419 arm_gt_vtimer_cb, cpu);
1420 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1421 arm_gt_htimer_cb, cpu);
1422 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1423 arm_gt_stimer_cb, cpu);
1424 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1425 arm_gt_hvtimer_cb, cpu);
1427 #endif
1429 cpu_exec_realizefn(cs, &local_err);
1430 if (local_err != NULL) {
1431 error_propagate(errp, local_err);
1432 return;
1435 arm_cpu_finalize_features(cpu, &local_err);
1436 if (local_err != NULL) {
1437 error_propagate(errp, local_err);
1438 return;
1441 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1442 cpu->has_vfp != cpu->has_neon) {
1444 * This is an architectural requirement for AArch64; AArch32 is
1445 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1447 error_setg(errp,
1448 "AArch64 CPUs must have both VFP and Neon or neither");
1449 return;
1452 if (!cpu->has_vfp) {
1453 uint64_t t;
1454 uint32_t u;
1456 t = cpu->isar.id_aa64isar1;
1457 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1458 cpu->isar.id_aa64isar1 = t;
1460 t = cpu->isar.id_aa64pfr0;
1461 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1462 cpu->isar.id_aa64pfr0 = t;
1464 u = cpu->isar.id_isar6;
1465 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1466 cpu->isar.id_isar6 = u;
1468 u = cpu->isar.mvfr0;
1469 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1470 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1471 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1472 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1473 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1474 if (!arm_feature(env, ARM_FEATURE_M)) {
1475 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1476 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1478 cpu->isar.mvfr0 = u;
1480 u = cpu->isar.mvfr1;
1481 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1482 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1483 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1484 if (arm_feature(env, ARM_FEATURE_M)) {
1485 u = FIELD_DP32(u, MVFR1, FP16, 0);
1487 cpu->isar.mvfr1 = u;
1489 u = cpu->isar.mvfr2;
1490 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1491 cpu->isar.mvfr2 = u;
1494 if (!cpu->has_neon) {
1495 uint64_t t;
1496 uint32_t u;
1498 unset_feature(env, ARM_FEATURE_NEON);
1500 t = cpu->isar.id_aa64isar0;
1501 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1502 cpu->isar.id_aa64isar0 = t;
1504 t = cpu->isar.id_aa64isar1;
1505 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1506 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1507 cpu->isar.id_aa64isar1 = t;
1509 t = cpu->isar.id_aa64pfr0;
1510 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1511 cpu->isar.id_aa64pfr0 = t;
1513 u = cpu->isar.id_isar5;
1514 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1515 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1516 cpu->isar.id_isar5 = u;
1518 u = cpu->isar.id_isar6;
1519 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1520 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1521 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1522 cpu->isar.id_isar6 = u;
1524 if (!arm_feature(env, ARM_FEATURE_M)) {
1525 u = cpu->isar.mvfr1;
1526 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1527 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1528 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1529 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1530 cpu->isar.mvfr1 = u;
1532 u = cpu->isar.mvfr2;
1533 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1534 cpu->isar.mvfr2 = u;
1538 if (!cpu->has_neon && !cpu->has_vfp) {
1539 uint64_t t;
1540 uint32_t u;
1542 t = cpu->isar.id_aa64isar0;
1543 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1544 cpu->isar.id_aa64isar0 = t;
1546 t = cpu->isar.id_aa64isar1;
1547 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1548 cpu->isar.id_aa64isar1 = t;
1550 u = cpu->isar.mvfr0;
1551 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1552 cpu->isar.mvfr0 = u;
1554 /* Despite the name, this field covers both VFP and Neon */
1555 u = cpu->isar.mvfr1;
1556 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1557 cpu->isar.mvfr1 = u;
1560 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1561 uint32_t u;
1563 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1565 u = cpu->isar.id_isar1;
1566 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1567 cpu->isar.id_isar1 = u;
1569 u = cpu->isar.id_isar2;
1570 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1571 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1572 cpu->isar.id_isar2 = u;
1574 u = cpu->isar.id_isar3;
1575 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1576 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1577 cpu->isar.id_isar3 = u;
1580 /* Some features automatically imply others: */
1581 if (arm_feature(env, ARM_FEATURE_V8)) {
1582 if (arm_feature(env, ARM_FEATURE_M)) {
1583 set_feature(env, ARM_FEATURE_V7);
1584 } else {
1585 set_feature(env, ARM_FEATURE_V7VE);
1590 * There exist AArch64 cpus without AArch32 support. When KVM
1591 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1592 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1593 * As a general principle, we also do not make ID register
1594 * consistency checks anywhere unless using TCG, because only
1595 * for TCG would a consistency-check failure be a QEMU bug.
1597 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1598 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1601 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1602 /* v7 Virtualization Extensions. In real hardware this implies
1603 * EL2 and also the presence of the Security Extensions.
1604 * For QEMU, for backwards-compatibility we implement some
1605 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1606 * include the various other features that V7VE implies.
1607 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1608 * Security Extensions is ARM_FEATURE_EL3.
1610 assert(!tcg_enabled() || no_aa32 ||
1611 cpu_isar_feature(aa32_arm_div, cpu));
1612 set_feature(env, ARM_FEATURE_LPAE);
1613 set_feature(env, ARM_FEATURE_V7);
1615 if (arm_feature(env, ARM_FEATURE_V7)) {
1616 set_feature(env, ARM_FEATURE_VAPA);
1617 set_feature(env, ARM_FEATURE_THUMB2);
1618 set_feature(env, ARM_FEATURE_MPIDR);
1619 if (!arm_feature(env, ARM_FEATURE_M)) {
1620 set_feature(env, ARM_FEATURE_V6K);
1621 } else {
1622 set_feature(env, ARM_FEATURE_V6);
1625 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1626 * non-EL3 configs. This is needed by some legacy boards.
1628 set_feature(env, ARM_FEATURE_VBAR);
1630 if (arm_feature(env, ARM_FEATURE_V6K)) {
1631 set_feature(env, ARM_FEATURE_V6);
1632 set_feature(env, ARM_FEATURE_MVFR);
1634 if (arm_feature(env, ARM_FEATURE_V6)) {
1635 set_feature(env, ARM_FEATURE_V5);
1636 if (!arm_feature(env, ARM_FEATURE_M)) {
1637 assert(!tcg_enabled() || no_aa32 ||
1638 cpu_isar_feature(aa32_jazelle, cpu));
1639 set_feature(env, ARM_FEATURE_AUXCR);
1642 if (arm_feature(env, ARM_FEATURE_V5)) {
1643 set_feature(env, ARM_FEATURE_V4T);
1645 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1646 set_feature(env, ARM_FEATURE_V7MP);
1648 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1649 set_feature(env, ARM_FEATURE_CBAR);
1651 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1652 !arm_feature(env, ARM_FEATURE_M)) {
1653 set_feature(env, ARM_FEATURE_THUMB_DSP);
1657 * We rely on no XScale CPU having VFP so we can use the same bits in the
1658 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1660 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1661 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1662 !arm_feature(env, ARM_FEATURE_XSCALE));
1664 if (arm_feature(env, ARM_FEATURE_V7) &&
1665 !arm_feature(env, ARM_FEATURE_M) &&
1666 !arm_feature(env, ARM_FEATURE_PMSA)) {
1667 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1668 * can use 4K pages.
1670 pagebits = 12;
1671 } else {
1672 /* For CPUs which might have tiny 1K pages, or which have an
1673 * MPU and might have small region sizes, stick with 1K pages.
1675 pagebits = 10;
1677 if (!set_preferred_target_page_bits(pagebits)) {
1678 /* This can only ever happen for hotplugging a CPU, or if
1679 * the board code incorrectly creates a CPU which it has
1680 * promised via minimum_page_size that it will not.
1682 error_setg(errp, "This CPU requires a smaller page size than the "
1683 "system is using");
1684 return;
1687 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1688 * We don't support setting cluster ID ([16..23]) (known as Aff2
1689 * in later ARM ARM versions), or any of the higher affinity level fields,
1690 * so these bits always RAZ.
1692 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1693 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1694 ARM_DEFAULT_CPUS_PER_CLUSTER);
1697 if (cpu->reset_hivecs) {
1698 cpu->reset_sctlr |= (1 << 13);
1701 if (cpu->cfgend) {
1702 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1703 cpu->reset_sctlr |= SCTLR_EE;
1704 } else {
1705 cpu->reset_sctlr |= SCTLR_B;
1709 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1710 /* If the has_el3 CPU property is disabled then we need to disable the
1711 * feature.
1713 unset_feature(env, ARM_FEATURE_EL3);
1715 /* Disable the security extension feature bits in the processor feature
1716 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1718 cpu->isar.id_pfr1 &= ~0xf0;
1719 cpu->isar.id_aa64pfr0 &= ~0xf000;
1722 if (!cpu->has_el2) {
1723 unset_feature(env, ARM_FEATURE_EL2);
1726 if (!cpu->has_pmu) {
1727 unset_feature(env, ARM_FEATURE_PMU);
1729 if (arm_feature(env, ARM_FEATURE_PMU)) {
1730 pmu_init(cpu);
1732 if (!kvm_enabled()) {
1733 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1734 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1737 #ifndef CONFIG_USER_ONLY
1738 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1739 cpu);
1740 #endif
1741 } else {
1742 cpu->isar.id_aa64dfr0 =
1743 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1744 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1745 cpu->pmceid0 = 0;
1746 cpu->pmceid1 = 0;
1749 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1750 /* Disable the hypervisor feature bits in the processor feature
1751 * registers if we don't have EL2. These are id_pfr1[15:12] and
1752 * id_aa64pfr0_el1[11:8].
1754 cpu->isar.id_aa64pfr0 &= ~0xf00;
1755 cpu->isar.id_pfr1 &= ~0xf000;
1758 #ifndef CONFIG_USER_ONLY
1759 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1761 * Disable the MTE feature bits if we do not have tag-memory
1762 * provided by the machine.
1764 cpu->isar.id_aa64pfr1 =
1765 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1767 #endif
1769 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1770 * to false or by setting pmsav7-dregion to 0.
1772 if (!cpu->has_mpu) {
1773 cpu->pmsav7_dregion = 0;
1775 if (cpu->pmsav7_dregion == 0) {
1776 cpu->has_mpu = false;
1779 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1780 arm_feature(env, ARM_FEATURE_V7)) {
1781 uint32_t nr = cpu->pmsav7_dregion;
1783 if (nr > 0xff) {
1784 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1785 return;
1788 if (nr) {
1789 if (arm_feature(env, ARM_FEATURE_V8)) {
1790 /* PMSAv8 */
1791 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1792 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1793 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1794 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1795 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1797 } else {
1798 env->pmsav7.drbar = g_new0(uint32_t, nr);
1799 env->pmsav7.drsr = g_new0(uint32_t, nr);
1800 env->pmsav7.dracr = g_new0(uint32_t, nr);
1805 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1806 uint32_t nr = cpu->sau_sregion;
1808 if (nr > 0xff) {
1809 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1810 return;
1813 if (nr) {
1814 env->sau.rbar = g_new0(uint32_t, nr);
1815 env->sau.rlar = g_new0(uint32_t, nr);
1819 if (arm_feature(env, ARM_FEATURE_EL3)) {
1820 set_feature(env, ARM_FEATURE_VBAR);
1823 register_cp_regs_for_features(cpu);
1824 arm_cpu_register_gdb_regs_for_features(cpu);
1826 init_cpreg_list(cpu);
1828 #ifndef CONFIG_USER_ONLY
1829 MachineState *ms = MACHINE(qdev_get_machine());
1830 unsigned int smp_cpus = ms->smp.cpus;
1831 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1834 * We must set cs->num_ases to the final value before
1835 * the first call to cpu_address_space_init.
1837 if (cpu->tag_memory != NULL) {
1838 cs->num_ases = 3 + has_secure;
1839 } else {
1840 cs->num_ases = 1 + has_secure;
1843 if (has_secure) {
1844 if (!cpu->secure_memory) {
1845 cpu->secure_memory = cs->memory;
1847 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1848 cpu->secure_memory);
1851 if (cpu->tag_memory != NULL) {
1852 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1853 cpu->tag_memory);
1854 if (has_secure) {
1855 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1856 cpu->secure_tag_memory);
1860 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1862 /* No core_count specified, default to smp_cpus. */
1863 if (cpu->core_count == -1) {
1864 cpu->core_count = smp_cpus;
1866 #endif
1868 if (tcg_enabled()) {
1869 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1872 * We only support DCZ blocklen that fits on one page.
1874 * Architectually this is always true. However TARGET_PAGE_SIZE
1875 * is variable and, for compatibility with -machine virt-2.7,
1876 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1877 * But even then, while the largest architectural DCZ blocklen
1878 * is 2KiB, no cpu actually uses such a large blocklen.
1880 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1883 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1884 * both nibbles of each byte storing tag data may be written at once.
1885 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1887 if (cpu_isar_feature(aa64_mte, cpu)) {
1888 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1892 qemu_init_vcpu(cs);
1893 cpu_reset(cs);
1895 acc->parent_realize(dev, errp);
1898 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1900 ObjectClass *oc;
1901 char *typename;
1902 char **cpuname;
1903 const char *cpunamestr;
1905 cpuname = g_strsplit(cpu_model, ",", 1);
1906 cpunamestr = cpuname[0];
1907 #ifdef CONFIG_USER_ONLY
1908 /* For backwards compatibility usermode emulation allows "-cpu any",
1909 * which has the same semantics as "-cpu max".
1911 if (!strcmp(cpunamestr, "any")) {
1912 cpunamestr = "max";
1914 #endif
1915 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1916 oc = object_class_by_name(typename);
1917 g_strfreev(cpuname);
1918 g_free(typename);
1919 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1920 object_class_is_abstract(oc)) {
1921 return NULL;
1923 return oc;
1926 static Property arm_cpu_properties[] = {
1927 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1928 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1929 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1930 mp_affinity, ARM64_AFFINITY_INVALID),
1931 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1932 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1933 DEFINE_PROP_END_OF_LIST()
1936 static gchar *arm_gdb_arch_name(CPUState *cs)
1938 ARMCPU *cpu = ARM_CPU(cs);
1939 CPUARMState *env = &cpu->env;
1941 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1942 return g_strdup("iwmmxt");
1944 return g_strdup("arm");
1947 #ifdef CONFIG_TCG
1948 static struct TCGCPUOps arm_tcg_ops = {
1949 .initialize = arm_translate_init,
1950 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1951 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1952 .tlb_fill = arm_cpu_tlb_fill,
1953 .debug_excp_handler = arm_debug_excp_handler,
1955 #if !defined(CONFIG_USER_ONLY)
1956 .do_interrupt = arm_cpu_do_interrupt,
1957 .do_transaction_failed = arm_cpu_do_transaction_failed,
1958 .do_unaligned_access = arm_cpu_do_unaligned_access,
1959 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1960 .debug_check_watchpoint = arm_debug_check_watchpoint,
1961 #endif /* !CONFIG_USER_ONLY */
1963 #endif /* CONFIG_TCG */
1965 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1967 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1968 CPUClass *cc = CPU_CLASS(acc);
1969 DeviceClass *dc = DEVICE_CLASS(oc);
1971 device_class_set_parent_realize(dc, arm_cpu_realizefn,
1972 &acc->parent_realize);
1974 device_class_set_props(dc, arm_cpu_properties);
1975 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
1977 cc->class_by_name = arm_cpu_class_by_name;
1978 cc->has_work = arm_cpu_has_work;
1979 cc->dump_state = arm_cpu_dump_state;
1980 cc->set_pc = arm_cpu_set_pc;
1981 cc->gdb_read_register = arm_cpu_gdb_read_register;
1982 cc->gdb_write_register = arm_cpu_gdb_write_register;
1983 #ifndef CONFIG_USER_ONLY
1984 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1985 cc->asidx_from_attrs = arm_asidx_from_attrs;
1986 cc->vmsd = &vmstate_arm_cpu;
1987 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1988 cc->write_elf64_note = arm_cpu_write_elf64_note;
1989 cc->write_elf32_note = arm_cpu_write_elf32_note;
1990 #endif
1991 cc->gdb_num_core_regs = 26;
1992 cc->gdb_core_xml_file = "arm-core.xml";
1993 cc->gdb_arch_name = arm_gdb_arch_name;
1994 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1995 cc->gdb_stop_before_watchpoint = true;
1996 cc->disas_set_info = arm_disas_set_info;
1998 #ifdef CONFIG_TCG
1999 cc->tcg_ops = &arm_tcg_ops;
2000 #endif /* CONFIG_TCG */
2003 #ifdef CONFIG_KVM
2004 static void arm_host_initfn(Object *obj)
2006 ARMCPU *cpu = ARM_CPU(obj);
2008 kvm_arm_set_cpu_features_from_host(cpu);
2009 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2010 aarch64_add_sve_properties(obj);
2012 arm_cpu_post_init(obj);
2015 static const TypeInfo host_arm_cpu_type_info = {
2016 .name = TYPE_ARM_HOST_CPU,
2017 .parent = TYPE_AARCH64_CPU,
2018 .instance_init = arm_host_initfn,
2021 #endif
2023 static void arm_cpu_instance_init(Object *obj)
2025 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2027 acc->info->initfn(obj);
2028 arm_cpu_post_init(obj);
2031 static void cpu_register_class_init(ObjectClass *oc, void *data)
2033 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2035 acc->info = data;
2038 void arm_cpu_register(const ARMCPUInfo *info)
2040 TypeInfo type_info = {
2041 .parent = TYPE_ARM_CPU,
2042 .instance_size = sizeof(ARMCPU),
2043 .instance_align = __alignof__(ARMCPU),
2044 .instance_init = arm_cpu_instance_init,
2045 .class_size = sizeof(ARMCPUClass),
2046 .class_init = info->class_init ?: cpu_register_class_init,
2047 .class_data = (void *)info,
2050 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2051 type_register(&type_info);
2052 g_free((void *)type_info.name);
2055 static const TypeInfo arm_cpu_type_info = {
2056 .name = TYPE_ARM_CPU,
2057 .parent = TYPE_CPU,
2058 .instance_size = sizeof(ARMCPU),
2059 .instance_align = __alignof__(ARMCPU),
2060 .instance_init = arm_cpu_initfn,
2061 .instance_finalize = arm_cpu_finalizefn,
2062 .abstract = true,
2063 .class_size = sizeof(ARMCPUClass),
2064 .class_init = arm_cpu_class_init,
2067 static void arm_cpu_register_types(void)
2069 type_register_static(&arm_cpu_type_info);
2071 #ifdef CONFIG_KVM
2072 type_register_static(&host_arm_cpu_type_info);
2073 #endif
2076 type_init(arm_cpu_register_types)