target/mips: Move TLB management helpers to tcg/sysemu/tlb_helper.c
[qemu/ar7.git] / linux-user / elfload.c
blobc6731013fde2a8c206be1dd8553f9427b2d00023
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
6 #include <sys/shm.h>
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
52 * Personality types.
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
57 enum {
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
84 * Return the base personality without flags.
86 #define personality(pers) (pers & PER_MASK)
88 int info_is_fdpic(struct image_info *info)
90 return info->personality == PER_LINUX_FDPIC;
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA ELFDATA2MSB
105 #else
106 #define ELF_DATA ELFDATA2LSB
107 #endif
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong target_elf_greg_t;
111 #define tswapreg(ptr) tswap64(ptr)
112 #else
113 typedef abi_ulong target_elf_greg_t;
114 #define tswapreg(ptr) tswapal(ptr)
115 #endif
117 #ifdef USE_UID16
118 typedef abi_ushort target_uid_t;
119 typedef abi_ushort target_gid_t;
120 #else
121 typedef abi_uint target_uid_t;
122 typedef abi_uint target_gid_t;
123 #endif
124 typedef abi_int target_pid_t;
126 #ifdef TARGET_I386
128 #define ELF_PLATFORM get_elf_platform()
130 static const char *get_elf_platform(void)
132 static char elf_platform[] = "i386";
133 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134 if (family > 6)
135 family = 6;
136 if (family >= 3)
137 elf_platform[1] = '0' + family;
138 return elf_platform;
141 #define ELF_HWCAP get_elf_hwcap()
143 static uint32_t get_elf_hwcap(void)
145 X86CPU *cpu = X86_CPU(thread_cpu);
147 return cpu->env.features[FEAT_1_EDX];
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
153 #define ELF_CLASS ELFCLASS64
154 #define ELF_ARCH EM_X86_64
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
158 regs->rax = 0;
159 regs->rsp = infop->start_stack;
160 regs->rip = infop->entry;
163 #define ELF_NREG 27
164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
167 * Note that ELF_NREG should be 29 as there should be place for
168 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * those.
171 * See linux kernel: arch/x86/include/asm/elf.h
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
175 (*regs)[0] = env->regs[15];
176 (*regs)[1] = env->regs[14];
177 (*regs)[2] = env->regs[13];
178 (*regs)[3] = env->regs[12];
179 (*regs)[4] = env->regs[R_EBP];
180 (*regs)[5] = env->regs[R_EBX];
181 (*regs)[6] = env->regs[11];
182 (*regs)[7] = env->regs[10];
183 (*regs)[8] = env->regs[9];
184 (*regs)[9] = env->regs[8];
185 (*regs)[10] = env->regs[R_EAX];
186 (*regs)[11] = env->regs[R_ECX];
187 (*regs)[12] = env->regs[R_EDX];
188 (*regs)[13] = env->regs[R_ESI];
189 (*regs)[14] = env->regs[R_EDI];
190 (*regs)[15] = env->regs[R_EAX]; /* XXX */
191 (*regs)[16] = env->eip;
192 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193 (*regs)[18] = env->eflags;
194 (*regs)[19] = env->regs[R_ESP];
195 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
204 #else
206 #define ELF_START_MMAP 0x80000000
209 * This is used to ensure we don't load something for the wrong architecture.
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
214 * These are used to set parameters in the core dumps.
216 #define ELF_CLASS ELFCLASS32
217 #define ELF_ARCH EM_386
219 static inline void init_thread(struct target_pt_regs *regs,
220 struct image_info *infop)
222 regs->esp = infop->start_stack;
223 regs->eip = infop->entry;
225 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226 starts %edx contains a pointer to a function which might be
227 registered using `atexit'. This provides a mean for the
228 dynamic linker to call DT_FINI functions for shared libraries
229 that have been loaded before the code runs.
231 A value of 0 tells we have no such handler. */
232 regs->edx = 0;
235 #define ELF_NREG 17
236 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
239 * Note that ELF_NREG should be 19 as there should be place for
240 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * those.
243 * See linux kernel: arch/x86/include/asm/elf.h
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
247 (*regs)[0] = env->regs[R_EBX];
248 (*regs)[1] = env->regs[R_ECX];
249 (*regs)[2] = env->regs[R_EDX];
250 (*regs)[3] = env->regs[R_ESI];
251 (*regs)[4] = env->regs[R_EDI];
252 (*regs)[5] = env->regs[R_EBP];
253 (*regs)[6] = env->regs[R_EAX];
254 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258 (*regs)[11] = env->regs[R_EAX]; /* XXX */
259 (*regs)[12] = env->eip;
260 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261 (*regs)[14] = env->eflags;
262 (*regs)[15] = env->regs[R_ESP];
263 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
265 #endif
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE 4096
270 #endif
272 #ifdef TARGET_ARM
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
277 #define ELF_START_MMAP 0x80000000
279 #define ELF_ARCH EM_ARM
280 #define ELF_CLASS ELFCLASS32
282 static inline void init_thread(struct target_pt_regs *regs,
283 struct image_info *infop)
285 abi_long stack = infop->start_stack;
286 memset(regs, 0, sizeof(*regs));
288 regs->uregs[16] = ARM_CPU_MODE_USR;
289 if (infop->entry & 1) {
290 regs->uregs[16] |= CPSR_T;
292 regs->uregs[15] = infop->entry & 0xfffffffe;
293 regs->uregs[13] = infop->start_stack;
294 /* FIXME - what to for failure of get_user()? */
295 get_user_ual(regs->uregs[2], stack + 8); /* envp */
296 get_user_ual(regs->uregs[1], stack + 4); /* envp */
297 /* XXX: it seems that r0 is zeroed after ! */
298 regs->uregs[0] = 0;
299 /* For uClinux PIC binaries. */
300 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301 regs->uregs[10] = infop->start_data;
303 /* Support ARM FDPIC. */
304 if (info_is_fdpic(infop)) {
305 /* As described in the ABI document, r7 points to the loadmap info
306 * prepared by the kernel. If an interpreter is needed, r8 points
307 * to the interpreter loadmap and r9 points to the interpreter
308 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309 * r9 points to the main program PT_DYNAMIC info.
311 regs->uregs[7] = infop->loadmap_addr;
312 if (infop->interpreter_loadmap_addr) {
313 /* Executable is dynamically loaded. */
314 regs->uregs[8] = infop->interpreter_loadmap_addr;
315 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316 } else {
317 regs->uregs[8] = 0;
318 regs->uregs[9] = infop->pt_dynamic_addr;
323 #define ELF_NREG 18
324 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
328 (*regs)[0] = tswapreg(env->regs[0]);
329 (*regs)[1] = tswapreg(env->regs[1]);
330 (*regs)[2] = tswapreg(env->regs[2]);
331 (*regs)[3] = tswapreg(env->regs[3]);
332 (*regs)[4] = tswapreg(env->regs[4]);
333 (*regs)[5] = tswapreg(env->regs[5]);
334 (*regs)[6] = tswapreg(env->regs[6]);
335 (*regs)[7] = tswapreg(env->regs[7]);
336 (*regs)[8] = tswapreg(env->regs[8]);
337 (*regs)[9] = tswapreg(env->regs[9]);
338 (*regs)[10] = tswapreg(env->regs[10]);
339 (*regs)[11] = tswapreg(env->regs[11]);
340 (*regs)[12] = tswapreg(env->regs[12]);
341 (*regs)[13] = tswapreg(env->regs[13]);
342 (*regs)[14] = tswapreg(env->regs[14]);
343 (*regs)[15] = tswapreg(env->regs[15]);
345 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE 4096
352 enum
354 ARM_HWCAP_ARM_SWP = 1 << 0,
355 ARM_HWCAP_ARM_HALF = 1 << 1,
356 ARM_HWCAP_ARM_THUMB = 1 << 2,
357 ARM_HWCAP_ARM_26BIT = 1 << 3,
358 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359 ARM_HWCAP_ARM_FPA = 1 << 5,
360 ARM_HWCAP_ARM_VFP = 1 << 6,
361 ARM_HWCAP_ARM_EDSP = 1 << 7,
362 ARM_HWCAP_ARM_JAVA = 1 << 8,
363 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
364 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
365 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
366 ARM_HWCAP_ARM_NEON = 1 << 12,
367 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
368 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
369 ARM_HWCAP_ARM_TLS = 1 << 15,
370 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
371 ARM_HWCAP_ARM_IDIVA = 1 << 17,
372 ARM_HWCAP_ARM_IDIVT = 1 << 18,
373 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
374 ARM_HWCAP_ARM_LPAE = 1 << 20,
375 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
378 enum {
379 ARM_HWCAP2_ARM_AES = 1 << 0,
380 ARM_HWCAP2_ARM_PMULL = 1 << 1,
381 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
382 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
383 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
386 /* The commpage only exists for 32 bit kernels */
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
390 static bool init_guest_commpage(void)
392 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
396 if (addr == MAP_FAILED) {
397 perror("Allocating guest commpage");
398 exit(EXIT_FAILURE);
400 if (addr != want) {
401 return false;
404 /* Set kernel helper versions; rest of page is 0. */
405 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
407 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408 perror("Protecting guest commpage");
409 exit(EXIT_FAILURE);
411 return true;
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
417 static uint32_t get_elf_hwcap(void)
419 ARMCPU *cpu = ARM_CPU(thread_cpu);
420 uint32_t hwcaps = 0;
422 hwcaps |= ARM_HWCAP_ARM_SWP;
423 hwcaps |= ARM_HWCAP_ARM_HALF;
424 hwcaps |= ARM_HWCAP_ARM_THUMB;
425 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
427 /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
431 #define GET_FEATURE_ID(feat, hwcap) \
432 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
445 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447 hwcaps |= ARM_HWCAP_ARM_VFPv3;
448 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPD32;
450 } else {
451 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
454 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
456 return hwcaps;
459 static uint32_t get_elf_hwcap2(void)
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
464 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469 return hwcaps;
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
475 #define ELF_PLATFORM get_elf_platform()
477 static const char *get_elf_platform(void)
479 CPUARMState *env = thread_cpu->env_ptr;
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END "b"
483 #else
484 # define END "l"
485 #endif
487 if (arm_feature(env, ARM_FEATURE_V8)) {
488 return "v8" END;
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 if (arm_feature(env, ARM_FEATURE_M)) {
491 return "v7m" END;
492 } else {
493 return "v7" END;
495 } else if (arm_feature(env, ARM_FEATURE_V6)) {
496 return "v6" END;
497 } else if (arm_feature(env, ARM_FEATURE_V5)) {
498 return "v5" END;
499 } else {
500 return "v4" END;
503 #undef END
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
510 #define ELF_ARCH EM_AARCH64
511 #define ELF_CLASS ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM "aarch64_be"
514 #else
515 # define ELF_PLATFORM "aarch64"
516 #endif
518 static inline void init_thread(struct target_pt_regs *regs,
519 struct image_info *infop)
521 abi_long stack = infop->start_stack;
522 memset(regs, 0, sizeof(*regs));
524 regs->pc = infop->entry & ~0x3ULL;
525 regs->sp = stack;
528 #define ELF_NREG 34
529 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532 const CPUARMState *env)
534 int i;
536 for (i = 0; i < 32; i++) {
537 (*regs)[i] = tswapreg(env->xregs[i]);
539 (*regs)[32] = tswapreg(env->pc);
540 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE 4096
546 enum {
547 ARM_HWCAP_A64_FP = 1 << 0,
548 ARM_HWCAP_A64_ASIMD = 1 << 1,
549 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
550 ARM_HWCAP_A64_AES = 1 << 3,
551 ARM_HWCAP_A64_PMULL = 1 << 4,
552 ARM_HWCAP_A64_SHA1 = 1 << 5,
553 ARM_HWCAP_A64_SHA2 = 1 << 6,
554 ARM_HWCAP_A64_CRC32 = 1 << 7,
555 ARM_HWCAP_A64_ATOMICS = 1 << 8,
556 ARM_HWCAP_A64_FPHP = 1 << 9,
557 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
558 ARM_HWCAP_A64_CPUID = 1 << 11,
559 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
560 ARM_HWCAP_A64_JSCVT = 1 << 13,
561 ARM_HWCAP_A64_FCMA = 1 << 14,
562 ARM_HWCAP_A64_LRCPC = 1 << 15,
563 ARM_HWCAP_A64_DCPOP = 1 << 16,
564 ARM_HWCAP_A64_SHA3 = 1 << 17,
565 ARM_HWCAP_A64_SM3 = 1 << 18,
566 ARM_HWCAP_A64_SM4 = 1 << 19,
567 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
568 ARM_HWCAP_A64_SHA512 = 1 << 21,
569 ARM_HWCAP_A64_SVE = 1 << 22,
570 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
571 ARM_HWCAP_A64_DIT = 1 << 24,
572 ARM_HWCAP_A64_USCAT = 1 << 25,
573 ARM_HWCAP_A64_ILRCPC = 1 << 26,
574 ARM_HWCAP_A64_FLAGM = 1 << 27,
575 ARM_HWCAP_A64_SSBS = 1 << 28,
576 ARM_HWCAP_A64_SB = 1 << 29,
577 ARM_HWCAP_A64_PACA = 1 << 30,
578 ARM_HWCAP_A64_PACG = 1UL << 31,
580 ARM_HWCAP2_A64_DCPODP = 1 << 0,
581 ARM_HWCAP2_A64_SVE2 = 1 << 1,
582 ARM_HWCAP2_A64_SVEAES = 1 << 2,
583 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
584 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
585 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
586 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
587 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
588 ARM_HWCAP2_A64_FRINT = 1 << 8,
591 #define ELF_HWCAP get_elf_hwcap()
592 #define ELF_HWCAP2 get_elf_hwcap2()
594 #define GET_FEATURE_ID(feat, hwcap) \
595 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
597 static uint32_t get_elf_hwcap(void)
599 ARMCPU *cpu = ARM_CPU(thread_cpu);
600 uint32_t hwcaps = 0;
602 hwcaps |= ARM_HWCAP_A64_FP;
603 hwcaps |= ARM_HWCAP_A64_ASIMD;
604 hwcaps |= ARM_HWCAP_A64_CPUID;
606 /* probe for the extra features */
608 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
609 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
610 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
611 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
612 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
613 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
614 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
615 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
616 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
617 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
618 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
619 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
620 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
621 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
622 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
623 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
624 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
625 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
626 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
627 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
628 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
629 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
630 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
632 return hwcaps;
635 static uint32_t get_elf_hwcap2(void)
637 ARMCPU *cpu = ARM_CPU(thread_cpu);
638 uint32_t hwcaps = 0;
640 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
641 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
642 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
644 return hwcaps;
647 #undef GET_FEATURE_ID
649 #endif /* not TARGET_AARCH64 */
650 #endif /* TARGET_ARM */
652 #ifdef TARGET_SPARC
653 #ifdef TARGET_SPARC64
655 #define ELF_START_MMAP 0x80000000
656 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
658 #ifndef TARGET_ABI32
659 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
660 #else
661 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662 #endif
664 #define ELF_CLASS ELFCLASS64
665 #define ELF_ARCH EM_SPARCV9
667 #define STACK_BIAS 2047
669 static inline void init_thread(struct target_pt_regs *regs,
670 struct image_info *infop)
672 #ifndef TARGET_ABI32
673 regs->tstate = 0;
674 #endif
675 regs->pc = infop->entry;
676 regs->npc = regs->pc + 4;
677 regs->y = 0;
678 #ifdef TARGET_ABI32
679 regs->u_regs[14] = infop->start_stack - 16 * 4;
680 #else
681 if (personality(infop->personality) == PER_LINUX32)
682 regs->u_regs[14] = infop->start_stack - 16 * 4;
683 else
684 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
685 #endif
688 #else
689 #define ELF_START_MMAP 0x80000000
690 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
691 | HWCAP_SPARC_MULDIV)
693 #define ELF_CLASS ELFCLASS32
694 #define ELF_ARCH EM_SPARC
696 static inline void init_thread(struct target_pt_regs *regs,
697 struct image_info *infop)
699 regs->psr = 0;
700 regs->pc = infop->entry;
701 regs->npc = regs->pc + 4;
702 regs->y = 0;
703 regs->u_regs[14] = infop->start_stack - 16 * 4;
706 #endif
707 #endif
709 #ifdef TARGET_PPC
711 #define ELF_MACHINE PPC_ELF_MACHINE
712 #define ELF_START_MMAP 0x80000000
714 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
716 #define elf_check_arch(x) ( (x) == EM_PPC64 )
718 #define ELF_CLASS ELFCLASS64
720 #else
722 #define ELF_CLASS ELFCLASS32
724 #endif
726 #define ELF_ARCH EM_PPC
728 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
729 See arch/powerpc/include/asm/cputable.h. */
730 enum {
731 QEMU_PPC_FEATURE_32 = 0x80000000,
732 QEMU_PPC_FEATURE_64 = 0x40000000,
733 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
734 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
735 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
736 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
737 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
738 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
739 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
740 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
741 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
742 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
743 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
744 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
745 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
746 QEMU_PPC_FEATURE_CELL = 0x00010000,
747 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
748 QEMU_PPC_FEATURE_SMT = 0x00004000,
749 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
750 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
751 QEMU_PPC_FEATURE_PA6T = 0x00000800,
752 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
753 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
754 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
755 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
756 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
758 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
759 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
761 /* Feature definitions in AT_HWCAP2. */
762 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
763 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
764 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
765 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
766 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
767 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
768 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
769 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
771 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
772 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
773 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
774 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
777 #define ELF_HWCAP get_elf_hwcap()
779 static uint32_t get_elf_hwcap(void)
781 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
782 uint32_t features = 0;
784 /* We don't have to be terribly complete here; the high points are
785 Altivec/FP/SPE support. Anything else is just a bonus. */
786 #define GET_FEATURE(flag, feature) \
787 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
788 #define GET_FEATURE2(flags, feature) \
789 do { \
790 if ((cpu->env.insns_flags2 & flags) == flags) { \
791 features |= feature; \
793 } while (0)
794 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
795 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
796 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
797 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
798 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
799 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
800 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
801 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
802 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
803 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
804 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
805 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
806 QEMU_PPC_FEATURE_ARCH_2_06);
807 #undef GET_FEATURE
808 #undef GET_FEATURE2
810 return features;
813 #define ELF_HWCAP2 get_elf_hwcap2()
815 static uint32_t get_elf_hwcap2(void)
817 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
818 uint32_t features = 0;
820 #define GET_FEATURE(flag, feature) \
821 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
822 #define GET_FEATURE2(flag, feature) \
823 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
825 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
826 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
827 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
828 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
829 QEMU_PPC_FEATURE2_VEC_CRYPTO);
830 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
831 QEMU_PPC_FEATURE2_DARN);
833 #undef GET_FEATURE
834 #undef GET_FEATURE2
836 return features;
840 * The requirements here are:
841 * - keep the final alignment of sp (sp & 0xf)
842 * - make sure the 32-bit value at the first 16 byte aligned position of
843 * AUXV is greater than 16 for glibc compatibility.
844 * AT_IGNOREPPC is used for that.
845 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
846 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
848 #define DLINFO_ARCH_ITEMS 5
849 #define ARCH_DLINFO \
850 do { \
851 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
852 /* \
853 * Handle glibc compatibility: these magic entries must \
854 * be at the lowest addresses in the final auxv. \
855 */ \
856 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
857 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
858 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
859 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
860 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
861 } while (0)
863 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
865 _regs->gpr[1] = infop->start_stack;
866 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
867 if (get_ppc64_abi(infop) < 2) {
868 uint64_t val;
869 get_user_u64(val, infop->entry + 8);
870 _regs->gpr[2] = val + infop->load_bias;
871 get_user_u64(val, infop->entry);
872 infop->entry = val + infop->load_bias;
873 } else {
874 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
876 #endif
877 _regs->nip = infop->entry;
880 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
881 #define ELF_NREG 48
882 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
886 int i;
887 target_ulong ccr = 0;
889 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
890 (*regs)[i] = tswapreg(env->gpr[i]);
893 (*regs)[32] = tswapreg(env->nip);
894 (*regs)[33] = tswapreg(env->msr);
895 (*regs)[35] = tswapreg(env->ctr);
896 (*regs)[36] = tswapreg(env->lr);
897 (*regs)[37] = tswapreg(env->xer);
899 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
900 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
902 (*regs)[38] = tswapreg(ccr);
905 #define USE_ELF_CORE_DUMP
906 #define ELF_EXEC_PAGESIZE 4096
908 #endif
910 #ifdef TARGET_MIPS
912 #define ELF_START_MMAP 0x80000000
914 #ifdef TARGET_MIPS64
915 #define ELF_CLASS ELFCLASS64
916 #else
917 #define ELF_CLASS ELFCLASS32
918 #endif
919 #define ELF_ARCH EM_MIPS
921 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
923 #ifdef TARGET_ABI_MIPSN32
924 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
925 #else
926 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
927 #endif
929 static inline void init_thread(struct target_pt_regs *regs,
930 struct image_info *infop)
932 regs->cp0_status = 2 << CP0St_KSU;
933 regs->cp0_epc = infop->entry;
934 regs->regs[29] = infop->start_stack;
937 /* See linux kernel: arch/mips/include/asm/elf.h. */
938 #define ELF_NREG 45
939 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
941 /* See linux kernel: arch/mips/include/asm/reg.h. */
942 enum {
943 #ifdef TARGET_MIPS64
944 TARGET_EF_R0 = 0,
945 #else
946 TARGET_EF_R0 = 6,
947 #endif
948 TARGET_EF_R26 = TARGET_EF_R0 + 26,
949 TARGET_EF_R27 = TARGET_EF_R0 + 27,
950 TARGET_EF_LO = TARGET_EF_R0 + 32,
951 TARGET_EF_HI = TARGET_EF_R0 + 33,
952 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
953 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
954 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
955 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
961 int i;
963 for (i = 0; i < TARGET_EF_R0; i++) {
964 (*regs)[i] = 0;
966 (*regs)[TARGET_EF_R0] = 0;
968 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
969 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
972 (*regs)[TARGET_EF_R26] = 0;
973 (*regs)[TARGET_EF_R27] = 0;
974 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
975 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
976 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
977 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
978 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
979 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE 4096
985 /* See arch/mips/include/uapi/asm/hwcap.h. */
986 enum {
987 HWCAP_MIPS_R6 = (1 << 0),
988 HWCAP_MIPS_MSA = (1 << 1),
989 HWCAP_MIPS_CRC32 = (1 << 2),
990 HWCAP_MIPS_MIPS16 = (1 << 3),
991 HWCAP_MIPS_MDMX = (1 << 4),
992 HWCAP_MIPS_MIPS3D = (1 << 5),
993 HWCAP_MIPS_SMARTMIPS = (1 << 6),
994 HWCAP_MIPS_DSP = (1 << 7),
995 HWCAP_MIPS_DSP2 = (1 << 8),
996 HWCAP_MIPS_DSP3 = (1 << 9),
997 HWCAP_MIPS_MIPS16E2 = (1 << 10),
998 HWCAP_LOONGSON_MMI = (1 << 11),
999 HWCAP_LOONGSON_EXT = (1 << 12),
1000 HWCAP_LOONGSON_EXT2 = (1 << 13),
1001 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1004 #define ELF_HWCAP get_elf_hwcap()
1006 #define GET_FEATURE_INSN(_flag, _hwcap) \
1007 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1009 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1010 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1012 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1013 do { \
1014 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1015 hwcaps |= _hwcap; \
1017 } while (0)
1019 static uint32_t get_elf_hwcap(void)
1021 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1022 uint32_t hwcaps = 0;
1024 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1025 2, HWCAP_MIPS_R6);
1026 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1027 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1028 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1030 return hwcaps;
1033 #undef GET_FEATURE_REG_EQU
1034 #undef GET_FEATURE_REG_SET
1035 #undef GET_FEATURE_INSN
1037 #endif /* TARGET_MIPS */
1039 #ifdef TARGET_MICROBLAZE
1041 #define ELF_START_MMAP 0x80000000
1043 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1045 #define ELF_CLASS ELFCLASS32
1046 #define ELF_ARCH EM_MICROBLAZE
1048 static inline void init_thread(struct target_pt_regs *regs,
1049 struct image_info *infop)
1051 regs->pc = infop->entry;
1052 regs->r1 = infop->start_stack;
1056 #define ELF_EXEC_PAGESIZE 4096
1058 #define USE_ELF_CORE_DUMP
1059 #define ELF_NREG 38
1060 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1065 int i, pos = 0;
1067 for (i = 0; i < 32; i++) {
1068 (*regs)[pos++] = tswapreg(env->regs[i]);
1071 (*regs)[pos++] = tswapreg(env->pc);
1072 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1073 (*regs)[pos++] = 0;
1074 (*regs)[pos++] = tswapreg(env->ear);
1075 (*regs)[pos++] = 0;
1076 (*regs)[pos++] = tswapreg(env->esr);
1079 #endif /* TARGET_MICROBLAZE */
1081 #ifdef TARGET_NIOS2
1083 #define ELF_START_MMAP 0x80000000
1085 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1087 #define ELF_CLASS ELFCLASS32
1088 #define ELF_ARCH EM_ALTERA_NIOS2
1090 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1092 regs->ea = infop->entry;
1093 regs->sp = infop->start_stack;
1094 regs->estatus = 0x3;
1097 #define ELF_EXEC_PAGESIZE 4096
1099 #define USE_ELF_CORE_DUMP
1100 #define ELF_NREG 49
1101 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1103 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1104 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1105 const CPUNios2State *env)
1107 int i;
1109 (*regs)[0] = -1;
1110 for (i = 1; i < 8; i++) /* r0-r7 */
1111 (*regs)[i] = tswapreg(env->regs[i + 7]);
1113 for (i = 8; i < 16; i++) /* r8-r15 */
1114 (*regs)[i] = tswapreg(env->regs[i - 8]);
1116 for (i = 16; i < 24; i++) /* r16-r23 */
1117 (*regs)[i] = tswapreg(env->regs[i + 7]);
1118 (*regs)[24] = -1; /* R_ET */
1119 (*regs)[25] = -1; /* R_BT */
1120 (*regs)[26] = tswapreg(env->regs[R_GP]);
1121 (*regs)[27] = tswapreg(env->regs[R_SP]);
1122 (*regs)[28] = tswapreg(env->regs[R_FP]);
1123 (*regs)[29] = tswapreg(env->regs[R_EA]);
1124 (*regs)[30] = -1; /* R_SSTATUS */
1125 (*regs)[31] = tswapreg(env->regs[R_RA]);
1127 (*regs)[32] = tswapreg(env->regs[R_PC]);
1129 (*regs)[33] = -1; /* R_STATUS */
1130 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1132 for (i = 35; i < 49; i++) /* ... */
1133 (*regs)[i] = -1;
1136 #endif /* TARGET_NIOS2 */
1138 #ifdef TARGET_OPENRISC
1140 #define ELF_START_MMAP 0x08000000
1142 #define ELF_ARCH EM_OPENRISC
1143 #define ELF_CLASS ELFCLASS32
1144 #define ELF_DATA ELFDATA2MSB
1146 static inline void init_thread(struct target_pt_regs *regs,
1147 struct image_info *infop)
1149 regs->pc = infop->entry;
1150 regs->gpr[1] = infop->start_stack;
1153 #define USE_ELF_CORE_DUMP
1154 #define ELF_EXEC_PAGESIZE 8192
1156 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1157 #define ELF_NREG 34 /* gprs and pc, sr */
1158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1160 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1161 const CPUOpenRISCState *env)
1163 int i;
1165 for (i = 0; i < 32; i++) {
1166 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1168 (*regs)[32] = tswapreg(env->pc);
1169 (*regs)[33] = tswapreg(cpu_get_sr(env));
1171 #define ELF_HWCAP 0
1172 #define ELF_PLATFORM NULL
1174 #endif /* TARGET_OPENRISC */
1176 #ifdef TARGET_SH4
1178 #define ELF_START_MMAP 0x80000000
1180 #define ELF_CLASS ELFCLASS32
1181 #define ELF_ARCH EM_SH
1183 static inline void init_thread(struct target_pt_regs *regs,
1184 struct image_info *infop)
1186 /* Check other registers XXXXX */
1187 regs->pc = infop->entry;
1188 regs->regs[15] = infop->start_stack;
1191 /* See linux kernel: arch/sh/include/asm/elf.h. */
1192 #define ELF_NREG 23
1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1195 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1196 enum {
1197 TARGET_REG_PC = 16,
1198 TARGET_REG_PR = 17,
1199 TARGET_REG_SR = 18,
1200 TARGET_REG_GBR = 19,
1201 TARGET_REG_MACH = 20,
1202 TARGET_REG_MACL = 21,
1203 TARGET_REG_SYSCALL = 22
1206 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1207 const CPUSH4State *env)
1209 int i;
1211 for (i = 0; i < 16; i++) {
1212 (*regs)[i] = tswapreg(env->gregs[i]);
1215 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1216 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1217 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1218 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1219 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1220 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1221 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1224 #define USE_ELF_CORE_DUMP
1225 #define ELF_EXEC_PAGESIZE 4096
1227 enum {
1228 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1229 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1230 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1231 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1232 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1233 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1234 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1235 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1236 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1237 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1240 #define ELF_HWCAP get_elf_hwcap()
1242 static uint32_t get_elf_hwcap(void)
1244 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1245 uint32_t hwcap = 0;
1247 hwcap |= SH_CPU_HAS_FPU;
1249 if (cpu->env.features & SH_FEATURE_SH4A) {
1250 hwcap |= SH_CPU_HAS_LLSC;
1253 return hwcap;
1256 #endif
1258 #ifdef TARGET_CRIS
1260 #define ELF_START_MMAP 0x80000000
1262 #define ELF_CLASS ELFCLASS32
1263 #define ELF_ARCH EM_CRIS
1265 static inline void init_thread(struct target_pt_regs *regs,
1266 struct image_info *infop)
1268 regs->erp = infop->entry;
1271 #define ELF_EXEC_PAGESIZE 8192
1273 #endif
1275 #ifdef TARGET_M68K
1277 #define ELF_START_MMAP 0x80000000
1279 #define ELF_CLASS ELFCLASS32
1280 #define ELF_ARCH EM_68K
1282 /* ??? Does this need to do anything?
1283 #define ELF_PLAT_INIT(_r) */
1285 static inline void init_thread(struct target_pt_regs *regs,
1286 struct image_info *infop)
1288 regs->usp = infop->start_stack;
1289 regs->sr = 0;
1290 regs->pc = infop->entry;
1293 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1294 #define ELF_NREG 20
1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1297 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1299 (*regs)[0] = tswapreg(env->dregs[1]);
1300 (*regs)[1] = tswapreg(env->dregs[2]);
1301 (*regs)[2] = tswapreg(env->dregs[3]);
1302 (*regs)[3] = tswapreg(env->dregs[4]);
1303 (*regs)[4] = tswapreg(env->dregs[5]);
1304 (*regs)[5] = tswapreg(env->dregs[6]);
1305 (*regs)[6] = tswapreg(env->dregs[7]);
1306 (*regs)[7] = tswapreg(env->aregs[0]);
1307 (*regs)[8] = tswapreg(env->aregs[1]);
1308 (*regs)[9] = tswapreg(env->aregs[2]);
1309 (*regs)[10] = tswapreg(env->aregs[3]);
1310 (*regs)[11] = tswapreg(env->aregs[4]);
1311 (*regs)[12] = tswapreg(env->aregs[5]);
1312 (*regs)[13] = tswapreg(env->aregs[6]);
1313 (*regs)[14] = tswapreg(env->dregs[0]);
1314 (*regs)[15] = tswapreg(env->aregs[7]);
1315 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1316 (*regs)[17] = tswapreg(env->sr);
1317 (*regs)[18] = tswapreg(env->pc);
1318 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1321 #define USE_ELF_CORE_DUMP
1322 #define ELF_EXEC_PAGESIZE 8192
1324 #endif
1326 #ifdef TARGET_ALPHA
1328 #define ELF_START_MMAP (0x30000000000ULL)
1330 #define ELF_CLASS ELFCLASS64
1331 #define ELF_ARCH EM_ALPHA
1333 static inline void init_thread(struct target_pt_regs *regs,
1334 struct image_info *infop)
1336 regs->pc = infop->entry;
1337 regs->ps = 8;
1338 regs->usp = infop->start_stack;
1341 #define ELF_EXEC_PAGESIZE 8192
1343 #endif /* TARGET_ALPHA */
1345 #ifdef TARGET_S390X
1347 #define ELF_START_MMAP (0x20000000000ULL)
1349 #define ELF_CLASS ELFCLASS64
1350 #define ELF_DATA ELFDATA2MSB
1351 #define ELF_ARCH EM_S390
1353 #include "elf.h"
1355 #define ELF_HWCAP get_elf_hwcap()
1357 #define GET_FEATURE(_feat, _hwcap) \
1358 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1360 static uint32_t get_elf_hwcap(void)
1363 * Let's assume we always have esan3 and zarch.
1364 * 31-bit processes can use 64-bit registers (high gprs).
1366 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1368 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1369 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1370 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1371 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1372 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1373 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1374 hwcap |= HWCAP_S390_ETF3EH;
1376 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1378 return hwcap;
1381 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1383 regs->psw.addr = infop->entry;
1384 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1385 regs->gprs[15] = infop->start_stack;
1388 #endif /* TARGET_S390X */
1390 #ifdef TARGET_RISCV
1392 #define ELF_START_MMAP 0x80000000
1393 #define ELF_ARCH EM_RISCV
1395 #ifdef TARGET_RISCV32
1396 #define ELF_CLASS ELFCLASS32
1397 #else
1398 #define ELF_CLASS ELFCLASS64
1399 #endif
1401 static inline void init_thread(struct target_pt_regs *regs,
1402 struct image_info *infop)
1404 regs->sepc = infop->entry;
1405 regs->sp = infop->start_stack;
1408 #define ELF_EXEC_PAGESIZE 4096
1410 #endif /* TARGET_RISCV */
1412 #ifdef TARGET_HPPA
1414 #define ELF_START_MMAP 0x80000000
1415 #define ELF_CLASS ELFCLASS32
1416 #define ELF_ARCH EM_PARISC
1417 #define ELF_PLATFORM "PARISC"
1418 #define STACK_GROWS_DOWN 0
1419 #define STACK_ALIGNMENT 64
1421 static inline void init_thread(struct target_pt_regs *regs,
1422 struct image_info *infop)
1424 regs->iaoq[0] = infop->entry;
1425 regs->iaoq[1] = infop->entry + 4;
1426 regs->gr[23] = 0;
1427 regs->gr[24] = infop->arg_start;
1428 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1429 /* The top-of-stack contains a linkage buffer. */
1430 regs->gr[30] = infop->start_stack + 64;
1431 regs->gr[31] = infop->entry;
1434 #endif /* TARGET_HPPA */
1436 #ifdef TARGET_XTENSA
1438 #define ELF_START_MMAP 0x20000000
1440 #define ELF_CLASS ELFCLASS32
1441 #define ELF_ARCH EM_XTENSA
1443 static inline void init_thread(struct target_pt_regs *regs,
1444 struct image_info *infop)
1446 regs->windowbase = 0;
1447 regs->windowstart = 1;
1448 regs->areg[1] = infop->start_stack;
1449 regs->pc = infop->entry;
1452 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1453 #define ELF_NREG 128
1454 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1456 enum {
1457 TARGET_REG_PC,
1458 TARGET_REG_PS,
1459 TARGET_REG_LBEG,
1460 TARGET_REG_LEND,
1461 TARGET_REG_LCOUNT,
1462 TARGET_REG_SAR,
1463 TARGET_REG_WINDOWSTART,
1464 TARGET_REG_WINDOWBASE,
1465 TARGET_REG_THREADPTR,
1466 TARGET_REG_AR0 = 64,
1469 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1470 const CPUXtensaState *env)
1472 unsigned i;
1474 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1475 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1476 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1477 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1478 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1479 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1480 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1481 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1482 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1483 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1484 for (i = 0; i < env->config->nareg; ++i) {
1485 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1489 #define USE_ELF_CORE_DUMP
1490 #define ELF_EXEC_PAGESIZE 4096
1492 #endif /* TARGET_XTENSA */
1494 #ifdef TARGET_HEXAGON
1496 #define ELF_START_MMAP 0x20000000
1498 #define ELF_CLASS ELFCLASS32
1499 #define ELF_ARCH EM_HEXAGON
1501 static inline void init_thread(struct target_pt_regs *regs,
1502 struct image_info *infop)
1504 regs->sepc = infop->entry;
1505 regs->sp = infop->start_stack;
1508 #endif /* TARGET_HEXAGON */
1510 #ifndef ELF_PLATFORM
1511 #define ELF_PLATFORM (NULL)
1512 #endif
1514 #ifndef ELF_MACHINE
1515 #define ELF_MACHINE ELF_ARCH
1516 #endif
1518 #ifndef elf_check_arch
1519 #define elf_check_arch(x) ((x) == ELF_ARCH)
1520 #endif
1522 #ifndef elf_check_abi
1523 #define elf_check_abi(x) (1)
1524 #endif
1526 #ifndef ELF_HWCAP
1527 #define ELF_HWCAP 0
1528 #endif
1530 #ifndef STACK_GROWS_DOWN
1531 #define STACK_GROWS_DOWN 1
1532 #endif
1534 #ifndef STACK_ALIGNMENT
1535 #define STACK_ALIGNMENT 16
1536 #endif
1538 #ifdef TARGET_ABI32
1539 #undef ELF_CLASS
1540 #define ELF_CLASS ELFCLASS32
1541 #undef bswaptls
1542 #define bswaptls(ptr) bswap32s(ptr)
1543 #endif
1545 #include "elf.h"
1547 /* We must delay the following stanzas until after "elf.h". */
1548 #if defined(TARGET_AARCH64)
1550 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1551 const uint32_t *data,
1552 struct image_info *info,
1553 Error **errp)
1555 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1556 if (pr_datasz != sizeof(uint32_t)) {
1557 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1558 return false;
1560 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1561 info->note_flags = *data;
1563 return true;
1565 #define ARCH_USE_GNU_PROPERTY 1
1567 #else
1569 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1570 const uint32_t *data,
1571 struct image_info *info,
1572 Error **errp)
1574 g_assert_not_reached();
1576 #define ARCH_USE_GNU_PROPERTY 0
1578 #endif
1580 struct exec
1582 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1583 unsigned int a_text; /* length of text, in bytes */
1584 unsigned int a_data; /* length of data, in bytes */
1585 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1586 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1587 unsigned int a_entry; /* start address */
1588 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1589 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1593 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1594 #define OMAGIC 0407
1595 #define NMAGIC 0410
1596 #define ZMAGIC 0413
1597 #define QMAGIC 0314
1599 /* Necessary parameters */
1600 #define TARGET_ELF_EXEC_PAGESIZE \
1601 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1602 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1603 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1604 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1605 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1606 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1608 #define DLINFO_ITEMS 16
1610 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1612 memcpy(to, from, n);
1615 #ifdef BSWAP_NEEDED
1616 static void bswap_ehdr(struct elfhdr *ehdr)
1618 bswap16s(&ehdr->e_type); /* Object file type */
1619 bswap16s(&ehdr->e_machine); /* Architecture */
1620 bswap32s(&ehdr->e_version); /* Object file version */
1621 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1622 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1623 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1624 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1625 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1626 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1627 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1628 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1629 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1630 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1633 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1635 int i;
1636 for (i = 0; i < phnum; ++i, ++phdr) {
1637 bswap32s(&phdr->p_type); /* Segment type */
1638 bswap32s(&phdr->p_flags); /* Segment flags */
1639 bswaptls(&phdr->p_offset); /* Segment file offset */
1640 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1641 bswaptls(&phdr->p_paddr); /* Segment physical address */
1642 bswaptls(&phdr->p_filesz); /* Segment size in file */
1643 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1644 bswaptls(&phdr->p_align); /* Segment alignment */
1648 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1650 int i;
1651 for (i = 0; i < shnum; ++i, ++shdr) {
1652 bswap32s(&shdr->sh_name);
1653 bswap32s(&shdr->sh_type);
1654 bswaptls(&shdr->sh_flags);
1655 bswaptls(&shdr->sh_addr);
1656 bswaptls(&shdr->sh_offset);
1657 bswaptls(&shdr->sh_size);
1658 bswap32s(&shdr->sh_link);
1659 bswap32s(&shdr->sh_info);
1660 bswaptls(&shdr->sh_addralign);
1661 bswaptls(&shdr->sh_entsize);
1665 static void bswap_sym(struct elf_sym *sym)
1667 bswap32s(&sym->st_name);
1668 bswaptls(&sym->st_value);
1669 bswaptls(&sym->st_size);
1670 bswap16s(&sym->st_shndx);
1673 #ifdef TARGET_MIPS
1674 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1676 bswap16s(&abiflags->version);
1677 bswap32s(&abiflags->ases);
1678 bswap32s(&abiflags->isa_ext);
1679 bswap32s(&abiflags->flags1);
1680 bswap32s(&abiflags->flags2);
1682 #endif
1683 #else
1684 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1685 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1686 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1687 static inline void bswap_sym(struct elf_sym *sym) { }
1688 #ifdef TARGET_MIPS
1689 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1690 #endif
1691 #endif
1693 #ifdef USE_ELF_CORE_DUMP
1694 static int elf_core_dump(int, const CPUArchState *);
1695 #endif /* USE_ELF_CORE_DUMP */
1696 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1698 /* Verify the portions of EHDR within E_IDENT for the target.
1699 This can be performed before bswapping the entire header. */
1700 static bool elf_check_ident(struct elfhdr *ehdr)
1702 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1703 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1704 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1705 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1706 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1707 && ehdr->e_ident[EI_DATA] == ELF_DATA
1708 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1711 /* Verify the portions of EHDR outside of E_IDENT for the target.
1712 This has to wait until after bswapping the header. */
1713 static bool elf_check_ehdr(struct elfhdr *ehdr)
1715 return (elf_check_arch(ehdr->e_machine)
1716 && elf_check_abi(ehdr->e_flags)
1717 && ehdr->e_ehsize == sizeof(struct elfhdr)
1718 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1719 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1723 * 'copy_elf_strings()' copies argument/envelope strings from user
1724 * memory to free pages in kernel mem. These are in a format ready
1725 * to be put directly into the top of new user memory.
1728 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1729 abi_ulong p, abi_ulong stack_limit)
1731 char *tmp;
1732 int len, i;
1733 abi_ulong top = p;
1735 if (!p) {
1736 return 0; /* bullet-proofing */
1739 if (STACK_GROWS_DOWN) {
1740 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1741 for (i = argc - 1; i >= 0; --i) {
1742 tmp = argv[i];
1743 if (!tmp) {
1744 fprintf(stderr, "VFS: argc is wrong");
1745 exit(-1);
1747 len = strlen(tmp) + 1;
1748 tmp += len;
1750 if (len > (p - stack_limit)) {
1751 return 0;
1753 while (len) {
1754 int bytes_to_copy = (len > offset) ? offset : len;
1755 tmp -= bytes_to_copy;
1756 p -= bytes_to_copy;
1757 offset -= bytes_to_copy;
1758 len -= bytes_to_copy;
1760 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1762 if (offset == 0) {
1763 memcpy_to_target(p, scratch, top - p);
1764 top = p;
1765 offset = TARGET_PAGE_SIZE;
1769 if (p != top) {
1770 memcpy_to_target(p, scratch + offset, top - p);
1772 } else {
1773 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1774 for (i = 0; i < argc; ++i) {
1775 tmp = argv[i];
1776 if (!tmp) {
1777 fprintf(stderr, "VFS: argc is wrong");
1778 exit(-1);
1780 len = strlen(tmp) + 1;
1781 if (len > (stack_limit - p)) {
1782 return 0;
1784 while (len) {
1785 int bytes_to_copy = (len > remaining) ? remaining : len;
1787 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1789 tmp += bytes_to_copy;
1790 remaining -= bytes_to_copy;
1791 p += bytes_to_copy;
1792 len -= bytes_to_copy;
1794 if (remaining == 0) {
1795 memcpy_to_target(top, scratch, p - top);
1796 top = p;
1797 remaining = TARGET_PAGE_SIZE;
1801 if (p != top) {
1802 memcpy_to_target(top, scratch, p - top);
1806 return p;
1809 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1810 * argument/environment space. Newer kernels (>2.6.33) allow more,
1811 * dependent on stack size, but guarantee at least 32 pages for
1812 * backwards compatibility.
1814 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1816 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1817 struct image_info *info)
1819 abi_ulong size, error, guard;
1821 size = guest_stack_size;
1822 if (size < STACK_LOWER_LIMIT) {
1823 size = STACK_LOWER_LIMIT;
1825 guard = TARGET_PAGE_SIZE;
1826 if (guard < qemu_real_host_page_size) {
1827 guard = qemu_real_host_page_size;
1830 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1831 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1832 if (error == -1) {
1833 perror("mmap stack");
1834 exit(-1);
1837 /* We reserve one extra page at the top of the stack as guard. */
1838 if (STACK_GROWS_DOWN) {
1839 target_mprotect(error, guard, PROT_NONE);
1840 info->stack_limit = error + guard;
1841 return info->stack_limit + size - sizeof(void *);
1842 } else {
1843 target_mprotect(error + size, guard, PROT_NONE);
1844 info->stack_limit = error + size;
1845 return error;
1849 /* Map and zero the bss. We need to explicitly zero any fractional pages
1850 after the data section (i.e. bss). */
1851 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1853 uintptr_t host_start, host_map_start, host_end;
1855 last_bss = TARGET_PAGE_ALIGN(last_bss);
1857 /* ??? There is confusion between qemu_real_host_page_size and
1858 qemu_host_page_size here and elsewhere in target_mmap, which
1859 may lead to the end of the data section mapping from the file
1860 not being mapped. At least there was an explicit test and
1861 comment for that here, suggesting that "the file size must
1862 be known". The comment probably pre-dates the introduction
1863 of the fstat system call in target_mmap which does in fact
1864 find out the size. What isn't clear is if the workaround
1865 here is still actually needed. For now, continue with it,
1866 but merge it with the "normal" mmap that would allocate the bss. */
1868 host_start = (uintptr_t) g2h_untagged(elf_bss);
1869 host_end = (uintptr_t) g2h_untagged(last_bss);
1870 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1872 if (host_map_start < host_end) {
1873 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1874 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1875 if (p == MAP_FAILED) {
1876 perror("cannot mmap brk");
1877 exit(-1);
1881 /* Ensure that the bss page(s) are valid */
1882 if ((page_get_flags(last_bss-1) & prot) != prot) {
1883 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1886 if (host_start < host_map_start) {
1887 memset((void *)host_start, 0, host_map_start - host_start);
1891 #ifdef TARGET_ARM
1892 static int elf_is_fdpic(struct elfhdr *exec)
1894 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1896 #else
1897 /* Default implementation, always false. */
1898 static int elf_is_fdpic(struct elfhdr *exec)
1900 return 0;
1902 #endif
1904 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1906 uint16_t n;
1907 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1909 /* elf32_fdpic_loadseg */
1910 n = info->nsegs;
1911 while (n--) {
1912 sp -= 12;
1913 put_user_u32(loadsegs[n].addr, sp+0);
1914 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1915 put_user_u32(loadsegs[n].p_memsz, sp+8);
1918 /* elf32_fdpic_loadmap */
1919 sp -= 4;
1920 put_user_u16(0, sp+0); /* version */
1921 put_user_u16(info->nsegs, sp+2); /* nsegs */
1923 info->personality = PER_LINUX_FDPIC;
1924 info->loadmap_addr = sp;
1926 return sp;
1929 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1930 struct elfhdr *exec,
1931 struct image_info *info,
1932 struct image_info *interp_info)
1934 abi_ulong sp;
1935 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1936 int size;
1937 int i;
1938 abi_ulong u_rand_bytes;
1939 uint8_t k_rand_bytes[16];
1940 abi_ulong u_platform;
1941 const char *k_platform;
1942 const int n = sizeof(elf_addr_t);
1944 sp = p;
1946 /* Needs to be before we load the env/argc/... */
1947 if (elf_is_fdpic(exec)) {
1948 /* Need 4 byte alignment for these structs */
1949 sp &= ~3;
1950 sp = loader_build_fdpic_loadmap(info, sp);
1951 info->other_info = interp_info;
1952 if (interp_info) {
1953 interp_info->other_info = info;
1954 sp = loader_build_fdpic_loadmap(interp_info, sp);
1955 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1956 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1957 } else {
1958 info->interpreter_loadmap_addr = 0;
1959 info->interpreter_pt_dynamic_addr = 0;
1963 u_platform = 0;
1964 k_platform = ELF_PLATFORM;
1965 if (k_platform) {
1966 size_t len = strlen(k_platform) + 1;
1967 if (STACK_GROWS_DOWN) {
1968 sp -= (len + n - 1) & ~(n - 1);
1969 u_platform = sp;
1970 /* FIXME - check return value of memcpy_to_target() for failure */
1971 memcpy_to_target(sp, k_platform, len);
1972 } else {
1973 memcpy_to_target(sp, k_platform, len);
1974 u_platform = sp;
1975 sp += len + 1;
1979 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1980 * the argv and envp pointers.
1982 if (STACK_GROWS_DOWN) {
1983 sp = QEMU_ALIGN_DOWN(sp, 16);
1984 } else {
1985 sp = QEMU_ALIGN_UP(sp, 16);
1989 * Generate 16 random bytes for userspace PRNG seeding.
1991 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1992 if (STACK_GROWS_DOWN) {
1993 sp -= 16;
1994 u_rand_bytes = sp;
1995 /* FIXME - check return value of memcpy_to_target() for failure */
1996 memcpy_to_target(sp, k_rand_bytes, 16);
1997 } else {
1998 memcpy_to_target(sp, k_rand_bytes, 16);
1999 u_rand_bytes = sp;
2000 sp += 16;
2003 size = (DLINFO_ITEMS + 1) * 2;
2004 if (k_platform)
2005 size += 2;
2006 #ifdef DLINFO_ARCH_ITEMS
2007 size += DLINFO_ARCH_ITEMS * 2;
2008 #endif
2009 #ifdef ELF_HWCAP2
2010 size += 2;
2011 #endif
2012 info->auxv_len = size * n;
2014 size += envc + argc + 2;
2015 size += 1; /* argc itself */
2016 size *= n;
2018 /* Allocate space and finalize stack alignment for entry now. */
2019 if (STACK_GROWS_DOWN) {
2020 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2021 sp = u_argc;
2022 } else {
2023 u_argc = sp;
2024 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2027 u_argv = u_argc + n;
2028 u_envp = u_argv + (argc + 1) * n;
2029 u_auxv = u_envp + (envc + 1) * n;
2030 info->saved_auxv = u_auxv;
2031 info->arg_start = u_argv;
2032 info->arg_end = u_argv + argc * n;
2034 /* This is correct because Linux defines
2035 * elf_addr_t as Elf32_Off / Elf64_Off
2037 #define NEW_AUX_ENT(id, val) do { \
2038 put_user_ual(id, u_auxv); u_auxv += n; \
2039 put_user_ual(val, u_auxv); u_auxv += n; \
2040 } while(0)
2042 #ifdef ARCH_DLINFO
2044 * ARCH_DLINFO must come first so platform specific code can enforce
2045 * special alignment requirements on the AUXV if necessary (eg. PPC).
2047 ARCH_DLINFO;
2048 #endif
2049 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2050 * on info->auxv_len will trigger.
2052 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2053 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2054 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2055 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2056 /* Target doesn't support host page size alignment */
2057 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2058 } else {
2059 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2060 qemu_host_page_size)));
2062 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2063 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2064 NEW_AUX_ENT(AT_ENTRY, info->entry);
2065 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2066 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2067 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2068 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2069 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2070 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2071 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2072 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2073 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2075 #ifdef ELF_HWCAP2
2076 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2077 #endif
2079 if (u_platform) {
2080 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2082 NEW_AUX_ENT (AT_NULL, 0);
2083 #undef NEW_AUX_ENT
2085 /* Check that our initial calculation of the auxv length matches how much
2086 * we actually put into it.
2088 assert(info->auxv_len == u_auxv - info->saved_auxv);
2090 put_user_ual(argc, u_argc);
2092 p = info->arg_strings;
2093 for (i = 0; i < argc; ++i) {
2094 put_user_ual(p, u_argv);
2095 u_argv += n;
2096 p += target_strlen(p) + 1;
2098 put_user_ual(0, u_argv);
2100 p = info->env_strings;
2101 for (i = 0; i < envc; ++i) {
2102 put_user_ual(p, u_envp);
2103 u_envp += n;
2104 p += target_strlen(p) + 1;
2106 put_user_ual(0, u_envp);
2108 return sp;
2111 #ifndef ARM_COMMPAGE
2112 #define ARM_COMMPAGE 0
2113 #define init_guest_commpage() true
2114 #endif
2116 static void pgb_fail_in_use(const char *image_name)
2118 error_report("%s: requires virtual address space that is in use "
2119 "(omit the -B option or choose a different value)",
2120 image_name);
2121 exit(EXIT_FAILURE);
2124 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2125 abi_ulong guest_hiaddr, long align)
2127 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2128 void *addr, *test;
2130 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2131 fprintf(stderr, "Requested guest base %p does not satisfy "
2132 "host minimum alignment (0x%lx)\n",
2133 (void *)guest_base, align);
2134 exit(EXIT_FAILURE);
2137 /* Sanity check the guest binary. */
2138 if (reserved_va) {
2139 if (guest_hiaddr > reserved_va) {
2140 error_report("%s: requires more than reserved virtual "
2141 "address space (0x%" PRIx64 " > 0x%lx)",
2142 image_name, (uint64_t)guest_hiaddr, reserved_va);
2143 exit(EXIT_FAILURE);
2145 } else {
2146 #if HOST_LONG_BITS < TARGET_ABI_BITS
2147 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2148 error_report("%s: requires more virtual address space "
2149 "than the host can provide (0x%" PRIx64 ")",
2150 image_name, (uint64_t)guest_hiaddr - guest_base);
2151 exit(EXIT_FAILURE);
2153 #endif
2157 * Expand the allocation to the entire reserved_va.
2158 * Exclude the mmap_min_addr hole.
2160 if (reserved_va) {
2161 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2162 : mmap_min_addr - guest_base);
2163 guest_hiaddr = reserved_va;
2166 /* Reserve the address space for the binary, or reserved_va. */
2167 test = g2h_untagged(guest_loaddr);
2168 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2169 if (test != addr) {
2170 pgb_fail_in_use(image_name);
2175 * pgd_find_hole_fallback: potential mmap address
2176 * @guest_size: size of available space
2177 * @brk: location of break
2178 * @align: memory alignment
2180 * This is a fallback method for finding a hole in the host address
2181 * space if we don't have the benefit of being able to access
2182 * /proc/self/map. It can potentially take a very long time as we can
2183 * only dumbly iterate up the host address space seeing if the
2184 * allocation would work.
2186 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2187 long align, uintptr_t offset)
2189 uintptr_t base;
2191 /* Start (aligned) at the bottom and work our way up */
2192 base = ROUND_UP(mmap_min_addr, align);
2194 while (true) {
2195 uintptr_t align_start, end;
2196 align_start = ROUND_UP(base, align);
2197 end = align_start + guest_size + offset;
2199 /* if brk is anywhere in the range give ourselves some room to grow. */
2200 if (align_start <= brk && brk < end) {
2201 base = brk + (16 * MiB);
2202 continue;
2203 } else if (align_start + guest_size < align_start) {
2204 /* we have run out of space */
2205 return -1;
2206 } else {
2207 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2208 MAP_FIXED_NOREPLACE;
2209 void * mmap_start = mmap((void *) align_start, guest_size,
2210 PROT_NONE, flags, -1, 0);
2211 if (mmap_start != MAP_FAILED) {
2212 munmap(mmap_start, guest_size);
2213 if (mmap_start == (void *) align_start) {
2214 return (uintptr_t) mmap_start + offset;
2217 base += qemu_host_page_size;
2222 /* Return value for guest_base, or -1 if no hole found. */
2223 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2224 long align, uintptr_t offset)
2226 GSList *maps, *iter;
2227 uintptr_t this_start, this_end, next_start, brk;
2228 intptr_t ret = -1;
2230 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2232 maps = read_self_maps();
2234 /* Read brk after we've read the maps, which will malloc. */
2235 brk = (uintptr_t)sbrk(0);
2237 if (!maps) {
2238 ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2239 return ret == -1 ? -1 : ret - guest_loaddr;
2242 /* The first hole is before the first map entry. */
2243 this_start = mmap_min_addr;
2245 for (iter = maps; iter;
2246 this_start = next_start, iter = g_slist_next(iter)) {
2247 uintptr_t align_start, hole_size;
2249 this_end = ((MapInfo *)iter->data)->start;
2250 next_start = ((MapInfo *)iter->data)->end;
2251 align_start = ROUND_UP(this_start + offset, align);
2253 /* Skip holes that are too small. */
2254 if (align_start >= this_end) {
2255 continue;
2257 hole_size = this_end - align_start;
2258 if (hole_size < guest_size) {
2259 continue;
2262 /* If this hole contains brk, give ourselves some room to grow. */
2263 if (this_start <= brk && brk < this_end) {
2264 hole_size -= guest_size;
2265 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2266 align_start += 1 * GiB;
2267 } else if (hole_size >= 16 * MiB) {
2268 align_start += 16 * MiB;
2269 } else {
2270 align_start = (this_end - guest_size) & -align;
2271 if (align_start < this_start) {
2272 continue;
2277 /* Record the lowest successful match. */
2278 if (ret < 0) {
2279 ret = align_start - guest_loaddr;
2281 /* If this hole contains the identity map, select it. */
2282 if (align_start <= guest_loaddr &&
2283 guest_loaddr + guest_size <= this_end) {
2284 ret = 0;
2286 /* If this hole ends above the identity map, stop looking. */
2287 if (this_end >= guest_loaddr) {
2288 break;
2291 free_self_maps(maps);
2293 return ret;
2296 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2297 abi_ulong orig_hiaddr, long align)
2299 uintptr_t loaddr = orig_loaddr;
2300 uintptr_t hiaddr = orig_hiaddr;
2301 uintptr_t offset = 0;
2302 uintptr_t addr;
2304 if (hiaddr != orig_hiaddr) {
2305 error_report("%s: requires virtual address space that the "
2306 "host cannot provide (0x%" PRIx64 ")",
2307 image_name, (uint64_t)orig_hiaddr);
2308 exit(EXIT_FAILURE);
2311 loaddr &= -align;
2312 if (ARM_COMMPAGE) {
2314 * Extend the allocation to include the commpage.
2315 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2316 * need to ensure there is space bellow the guest_base so we
2317 * can map the commpage in the place needed when the address
2318 * arithmetic wraps around.
2320 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2321 hiaddr = (uintptr_t) 4 << 30;
2322 } else {
2323 offset = -(ARM_COMMPAGE & -align);
2327 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2328 if (addr == -1) {
2330 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2331 * that can satisfy both. But as the normal arm32 link base address
2332 * is ~32k, and we extend down to include the commpage, making the
2333 * overhead only ~96k, this is unlikely.
2335 error_report("%s: Unable to allocate %#zx bytes of "
2336 "virtual address space", image_name,
2337 (size_t)(hiaddr - loaddr));
2338 exit(EXIT_FAILURE);
2341 guest_base = addr;
2344 static void pgb_dynamic(const char *image_name, long align)
2347 * The executable is dynamic and does not require a fixed address.
2348 * All we need is a commpage that satisfies align.
2349 * If we do not need a commpage, leave guest_base == 0.
2351 if (ARM_COMMPAGE) {
2352 uintptr_t addr, commpage;
2354 /* 64-bit hosts should have used reserved_va. */
2355 assert(sizeof(uintptr_t) == 4);
2358 * By putting the commpage at the first hole, that puts guest_base
2359 * just above that, and maximises the positive guest addresses.
2361 commpage = ARM_COMMPAGE & -align;
2362 addr = pgb_find_hole(commpage, -commpage, align, 0);
2363 assert(addr != -1);
2364 guest_base = addr;
2368 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2369 abi_ulong guest_hiaddr, long align)
2371 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2372 void *addr, *test;
2374 if (guest_hiaddr > reserved_va) {
2375 error_report("%s: requires more than reserved virtual "
2376 "address space (0x%" PRIx64 " > 0x%lx)",
2377 image_name, (uint64_t)guest_hiaddr, reserved_va);
2378 exit(EXIT_FAILURE);
2381 /* Widen the "image" to the entire reserved address space. */
2382 pgb_static(image_name, 0, reserved_va, align);
2384 /* osdep.h defines this as 0 if it's missing */
2385 flags |= MAP_FIXED_NOREPLACE;
2387 /* Reserve the memory on the host. */
2388 assert(guest_base != 0);
2389 test = g2h_untagged(0);
2390 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2391 if (addr == MAP_FAILED || addr != test) {
2392 error_report("Unable to reserve 0x%lx bytes of virtual address "
2393 "space at %p (%s) for use as guest address space (check your"
2394 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2395 "using -R option)", reserved_va, test, strerror(errno));
2396 exit(EXIT_FAILURE);
2400 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2401 abi_ulong guest_hiaddr)
2403 /* In order to use host shmat, we must be able to honor SHMLBA. */
2404 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2406 if (have_guest_base) {
2407 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2408 } else if (reserved_va) {
2409 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2410 } else if (guest_loaddr) {
2411 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2412 } else {
2413 pgb_dynamic(image_name, align);
2416 /* Reserve and initialize the commpage. */
2417 if (!init_guest_commpage()) {
2419 * With have_guest_base, the user has selected the address and
2420 * we are trying to work with that. Otherwise, we have selected
2421 * free space and init_guest_commpage must succeeded.
2423 assert(have_guest_base);
2424 pgb_fail_in_use(image_name);
2427 assert(QEMU_IS_ALIGNED(guest_base, align));
2428 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2429 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2432 enum {
2433 /* The string "GNU\0" as a magic number. */
2434 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2435 NOTE_DATA_SZ = 1 * KiB,
2436 NOTE_NAME_SZ = 4,
2437 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2441 * Process a single gnu_property entry.
2442 * Return false for error.
2444 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2445 struct image_info *info, bool have_prev_type,
2446 uint32_t *prev_type, Error **errp)
2448 uint32_t pr_type, pr_datasz, step;
2450 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2451 goto error_data;
2453 datasz -= *off;
2454 data += *off / sizeof(uint32_t);
2456 if (datasz < 2 * sizeof(uint32_t)) {
2457 goto error_data;
2459 pr_type = data[0];
2460 pr_datasz = data[1];
2461 data += 2;
2462 datasz -= 2 * sizeof(uint32_t);
2463 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2464 if (step > datasz) {
2465 goto error_data;
2468 /* Properties are supposed to be unique and sorted on pr_type. */
2469 if (have_prev_type && pr_type <= *prev_type) {
2470 if (pr_type == *prev_type) {
2471 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2472 } else {
2473 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2475 return false;
2477 *prev_type = pr_type;
2479 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2480 return false;
2483 *off += 2 * sizeof(uint32_t) + step;
2484 return true;
2486 error_data:
2487 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2488 return false;
2491 /* Process NT_GNU_PROPERTY_TYPE_0. */
2492 static bool parse_elf_properties(int image_fd,
2493 struct image_info *info,
2494 const struct elf_phdr *phdr,
2495 char bprm_buf[BPRM_BUF_SIZE],
2496 Error **errp)
2498 union {
2499 struct elf_note nhdr;
2500 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2501 } note;
2503 int n, off, datasz;
2504 bool have_prev_type;
2505 uint32_t prev_type;
2507 /* Unless the arch requires properties, ignore them. */
2508 if (!ARCH_USE_GNU_PROPERTY) {
2509 return true;
2512 /* If the properties are crazy large, that's too bad. */
2513 n = phdr->p_filesz;
2514 if (n > sizeof(note)) {
2515 error_setg(errp, "PT_GNU_PROPERTY too large");
2516 return false;
2518 if (n < sizeof(note.nhdr)) {
2519 error_setg(errp, "PT_GNU_PROPERTY too small");
2520 return false;
2523 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2524 memcpy(&note, bprm_buf + phdr->p_offset, n);
2525 } else {
2526 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2527 if (len != n) {
2528 error_setg_errno(errp, errno, "Error reading file header");
2529 return false;
2534 * The contents of a valid PT_GNU_PROPERTY is a sequence
2535 * of uint32_t -- swap them all now.
2537 #ifdef BSWAP_NEEDED
2538 for (int i = 0; i < n / 4; i++) {
2539 bswap32s(note.data + i);
2541 #endif
2544 * Note that nhdr is 3 words, and that the "name" described by namesz
2545 * immediately follows nhdr and is thus at the 4th word. Further, all
2546 * of the inputs to the kernel's round_up are multiples of 4.
2548 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2549 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2550 note.data[3] != GNU0_MAGIC) {
2551 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2552 return false;
2554 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2556 datasz = note.nhdr.n_descsz + off;
2557 if (datasz > n) {
2558 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2559 return false;
2562 have_prev_type = false;
2563 prev_type = 0;
2564 while (1) {
2565 if (off == datasz) {
2566 return true; /* end, exit ok */
2568 if (!parse_elf_property(note.data, &off, datasz, info,
2569 have_prev_type, &prev_type, errp)) {
2570 return false;
2572 have_prev_type = true;
2576 /* Load an ELF image into the address space.
2578 IMAGE_NAME is the filename of the image, to use in error messages.
2579 IMAGE_FD is the open file descriptor for the image.
2581 BPRM_BUF is a copy of the beginning of the file; this of course
2582 contains the elf file header at offset 0. It is assumed that this
2583 buffer is sufficiently aligned to present no problems to the host
2584 in accessing data at aligned offsets within the buffer.
2586 On return: INFO values will be filled in, as necessary or available. */
2588 static void load_elf_image(const char *image_name, int image_fd,
2589 struct image_info *info, char **pinterp_name,
2590 char bprm_buf[BPRM_BUF_SIZE])
2592 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2593 struct elf_phdr *phdr;
2594 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2595 int i, retval, prot_exec;
2596 Error *err = NULL;
2598 /* First of all, some simple consistency checks */
2599 if (!elf_check_ident(ehdr)) {
2600 error_setg(&err, "Invalid ELF image for this architecture");
2601 goto exit_errmsg;
2603 bswap_ehdr(ehdr);
2604 if (!elf_check_ehdr(ehdr)) {
2605 error_setg(&err, "Invalid ELF image for this architecture");
2606 goto exit_errmsg;
2609 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2610 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2611 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2612 } else {
2613 phdr = (struct elf_phdr *) alloca(i);
2614 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2615 if (retval != i) {
2616 goto exit_read;
2619 bswap_phdr(phdr, ehdr->e_phnum);
2621 info->nsegs = 0;
2622 info->pt_dynamic_addr = 0;
2624 mmap_lock();
2627 * Find the maximum size of the image and allocate an appropriate
2628 * amount of memory to handle that. Locate the interpreter, if any.
2630 loaddr = -1, hiaddr = 0;
2631 info->alignment = 0;
2632 for (i = 0; i < ehdr->e_phnum; ++i) {
2633 struct elf_phdr *eppnt = phdr + i;
2634 if (eppnt->p_type == PT_LOAD) {
2635 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2636 if (a < loaddr) {
2637 loaddr = a;
2639 a = eppnt->p_vaddr + eppnt->p_memsz;
2640 if (a > hiaddr) {
2641 hiaddr = a;
2643 ++info->nsegs;
2644 info->alignment |= eppnt->p_align;
2645 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2646 g_autofree char *interp_name = NULL;
2648 if (*pinterp_name) {
2649 error_setg(&err, "Multiple PT_INTERP entries");
2650 goto exit_errmsg;
2653 interp_name = g_malloc(eppnt->p_filesz);
2655 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2656 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2657 eppnt->p_filesz);
2658 } else {
2659 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2660 eppnt->p_offset);
2661 if (retval != eppnt->p_filesz) {
2662 goto exit_read;
2665 if (interp_name[eppnt->p_filesz - 1] != 0) {
2666 error_setg(&err, "Invalid PT_INTERP entry");
2667 goto exit_errmsg;
2669 *pinterp_name = g_steal_pointer(&interp_name);
2670 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2671 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2672 goto exit_errmsg;
2677 if (pinterp_name != NULL) {
2679 * This is the main executable.
2681 * Reserve extra space for brk.
2682 * We hold on to this space while placing the interpreter
2683 * and the stack, lest they be placed immediately after
2684 * the data segment and block allocation from the brk.
2686 * 16MB is chosen as "large enough" without being so large
2687 * as to allow the result to not fit with a 32-bit guest on
2688 * a 32-bit host.
2690 info->reserve_brk = 16 * MiB;
2691 hiaddr += info->reserve_brk;
2693 if (ehdr->e_type == ET_EXEC) {
2695 * Make sure that the low address does not conflict with
2696 * MMAP_MIN_ADDR or the QEMU application itself.
2698 probe_guest_base(image_name, loaddr, hiaddr);
2699 } else {
2701 * The binary is dynamic, but we still need to
2702 * select guest_base. In this case we pass a size.
2704 probe_guest_base(image_name, 0, hiaddr - loaddr);
2709 * Reserve address space for all of this.
2711 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2712 * exactly the address range that is required.
2714 * Otherwise this is ET_DYN, and we are searching for a location
2715 * that can hold the memory space required. If the image is
2716 * pre-linked, LOADDR will be non-zero, and the kernel should
2717 * honor that address if it happens to be free.
2719 * In both cases, we will overwrite pages in this range with mappings
2720 * from the executable.
2722 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2723 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2724 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2725 -1, 0);
2726 if (load_addr == -1) {
2727 goto exit_mmap;
2729 load_bias = load_addr - loaddr;
2731 if (elf_is_fdpic(ehdr)) {
2732 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2733 g_malloc(sizeof(*loadsegs) * info->nsegs);
2735 for (i = 0; i < ehdr->e_phnum; ++i) {
2736 switch (phdr[i].p_type) {
2737 case PT_DYNAMIC:
2738 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2739 break;
2740 case PT_LOAD:
2741 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2742 loadsegs->p_vaddr = phdr[i].p_vaddr;
2743 loadsegs->p_memsz = phdr[i].p_memsz;
2744 ++loadsegs;
2745 break;
2750 info->load_bias = load_bias;
2751 info->code_offset = load_bias;
2752 info->data_offset = load_bias;
2753 info->load_addr = load_addr;
2754 info->entry = ehdr->e_entry + load_bias;
2755 info->start_code = -1;
2756 info->end_code = 0;
2757 info->start_data = -1;
2758 info->end_data = 0;
2759 info->brk = 0;
2760 info->elf_flags = ehdr->e_flags;
2762 prot_exec = PROT_EXEC;
2763 #ifdef TARGET_AARCH64
2765 * If the BTI feature is present, this indicates that the executable
2766 * pages of the startup binary should be mapped with PROT_BTI, so that
2767 * branch targets are enforced.
2769 * The startup binary is either the interpreter or the static executable.
2770 * The interpreter is responsible for all pages of a dynamic executable.
2772 * Elf notes are backward compatible to older cpus.
2773 * Do not enable BTI unless it is supported.
2775 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2776 && (pinterp_name == NULL || *pinterp_name == 0)
2777 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2778 prot_exec |= TARGET_PROT_BTI;
2780 #endif
2782 for (i = 0; i < ehdr->e_phnum; i++) {
2783 struct elf_phdr *eppnt = phdr + i;
2784 if (eppnt->p_type == PT_LOAD) {
2785 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2786 int elf_prot = 0;
2788 if (eppnt->p_flags & PF_R) {
2789 elf_prot |= PROT_READ;
2791 if (eppnt->p_flags & PF_W) {
2792 elf_prot |= PROT_WRITE;
2794 if (eppnt->p_flags & PF_X) {
2795 elf_prot |= prot_exec;
2798 vaddr = load_bias + eppnt->p_vaddr;
2799 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2800 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2802 vaddr_ef = vaddr + eppnt->p_filesz;
2803 vaddr_em = vaddr + eppnt->p_memsz;
2806 * Some segments may be completely empty, with a non-zero p_memsz
2807 * but no backing file segment.
2809 if (eppnt->p_filesz != 0) {
2810 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2811 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2812 MAP_PRIVATE | MAP_FIXED,
2813 image_fd, eppnt->p_offset - vaddr_po);
2815 if (error == -1) {
2816 goto exit_mmap;
2820 * If the load segment requests extra zeros (e.g. bss), map it.
2822 if (eppnt->p_filesz < eppnt->p_memsz) {
2823 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2825 } else if (eppnt->p_memsz != 0) {
2826 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2827 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2828 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2829 -1, 0);
2831 if (error == -1) {
2832 goto exit_mmap;
2836 /* Find the full program boundaries. */
2837 if (elf_prot & PROT_EXEC) {
2838 if (vaddr < info->start_code) {
2839 info->start_code = vaddr;
2841 if (vaddr_ef > info->end_code) {
2842 info->end_code = vaddr_ef;
2845 if (elf_prot & PROT_WRITE) {
2846 if (vaddr < info->start_data) {
2847 info->start_data = vaddr;
2849 if (vaddr_ef > info->end_data) {
2850 info->end_data = vaddr_ef;
2853 if (vaddr_em > info->brk) {
2854 info->brk = vaddr_em;
2856 #ifdef TARGET_MIPS
2857 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2858 Mips_elf_abiflags_v0 abiflags;
2859 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2860 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2861 goto exit_errmsg;
2863 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2864 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2865 sizeof(Mips_elf_abiflags_v0));
2866 } else {
2867 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2868 eppnt->p_offset);
2869 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2870 goto exit_read;
2873 bswap_mips_abiflags(&abiflags);
2874 info->fp_abi = abiflags.fp_abi;
2875 #endif
2879 if (info->end_data == 0) {
2880 info->start_data = info->end_code;
2881 info->end_data = info->end_code;
2884 if (qemu_log_enabled()) {
2885 load_symbols(ehdr, image_fd, load_bias);
2888 mmap_unlock();
2890 close(image_fd);
2891 return;
2893 exit_read:
2894 if (retval >= 0) {
2895 error_setg(&err, "Incomplete read of file header");
2896 } else {
2897 error_setg_errno(&err, errno, "Error reading file header");
2899 goto exit_errmsg;
2900 exit_mmap:
2901 error_setg_errno(&err, errno, "Error mapping file");
2902 goto exit_errmsg;
2903 exit_errmsg:
2904 error_reportf_err(err, "%s: ", image_name);
2905 exit(-1);
2908 static void load_elf_interp(const char *filename, struct image_info *info,
2909 char bprm_buf[BPRM_BUF_SIZE])
2911 int fd, retval;
2912 Error *err = NULL;
2914 fd = open(path(filename), O_RDONLY);
2915 if (fd < 0) {
2916 error_setg_file_open(&err, errno, filename);
2917 error_report_err(err);
2918 exit(-1);
2921 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2922 if (retval < 0) {
2923 error_setg_errno(&err, errno, "Error reading file header");
2924 error_reportf_err(err, "%s: ", filename);
2925 exit(-1);
2928 if (retval < BPRM_BUF_SIZE) {
2929 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2932 load_elf_image(filename, fd, info, NULL, bprm_buf);
2935 static int symfind(const void *s0, const void *s1)
2937 target_ulong addr = *(target_ulong *)s0;
2938 struct elf_sym *sym = (struct elf_sym *)s1;
2939 int result = 0;
2940 if (addr < sym->st_value) {
2941 result = -1;
2942 } else if (addr >= sym->st_value + sym->st_size) {
2943 result = 1;
2945 return result;
2948 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2950 #if ELF_CLASS == ELFCLASS32
2951 struct elf_sym *syms = s->disas_symtab.elf32;
2952 #else
2953 struct elf_sym *syms = s->disas_symtab.elf64;
2954 #endif
2956 // binary search
2957 struct elf_sym *sym;
2959 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2960 if (sym != NULL) {
2961 return s->disas_strtab + sym->st_name;
2964 return "";
2967 /* FIXME: This should use elf_ops.h */
2968 static int symcmp(const void *s0, const void *s1)
2970 struct elf_sym *sym0 = (struct elf_sym *)s0;
2971 struct elf_sym *sym1 = (struct elf_sym *)s1;
2972 return (sym0->st_value < sym1->st_value)
2973 ? -1
2974 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2977 /* Best attempt to load symbols from this ELF object. */
2978 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2980 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2981 uint64_t segsz;
2982 struct elf_shdr *shdr;
2983 char *strings = NULL;
2984 struct syminfo *s = NULL;
2985 struct elf_sym *new_syms, *syms = NULL;
2987 shnum = hdr->e_shnum;
2988 i = shnum * sizeof(struct elf_shdr);
2989 shdr = (struct elf_shdr *)alloca(i);
2990 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2991 return;
2994 bswap_shdr(shdr, shnum);
2995 for (i = 0; i < shnum; ++i) {
2996 if (shdr[i].sh_type == SHT_SYMTAB) {
2997 sym_idx = i;
2998 str_idx = shdr[i].sh_link;
2999 goto found;
3003 /* There will be no symbol table if the file was stripped. */
3004 return;
3006 found:
3007 /* Now know where the strtab and symtab are. Snarf them. */
3008 s = g_try_new(struct syminfo, 1);
3009 if (!s) {
3010 goto give_up;
3013 segsz = shdr[str_idx].sh_size;
3014 s->disas_strtab = strings = g_try_malloc(segsz);
3015 if (!strings ||
3016 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3017 goto give_up;
3020 segsz = shdr[sym_idx].sh_size;
3021 syms = g_try_malloc(segsz);
3022 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3023 goto give_up;
3026 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3027 /* Implausibly large symbol table: give up rather than ploughing
3028 * on with the number of symbols calculation overflowing
3030 goto give_up;
3032 nsyms = segsz / sizeof(struct elf_sym);
3033 for (i = 0; i < nsyms; ) {
3034 bswap_sym(syms + i);
3035 /* Throw away entries which we do not need. */
3036 if (syms[i].st_shndx == SHN_UNDEF
3037 || syms[i].st_shndx >= SHN_LORESERVE
3038 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3039 if (i < --nsyms) {
3040 syms[i] = syms[nsyms];
3042 } else {
3043 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3044 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3045 syms[i].st_value &= ~(target_ulong)1;
3046 #endif
3047 syms[i].st_value += load_bias;
3048 i++;
3052 /* No "useful" symbol. */
3053 if (nsyms == 0) {
3054 goto give_up;
3057 /* Attempt to free the storage associated with the local symbols
3058 that we threw away. Whether or not this has any effect on the
3059 memory allocation depends on the malloc implementation and how
3060 many symbols we managed to discard. */
3061 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3062 if (new_syms == NULL) {
3063 goto give_up;
3065 syms = new_syms;
3067 qsort(syms, nsyms, sizeof(*syms), symcmp);
3069 s->disas_num_syms = nsyms;
3070 #if ELF_CLASS == ELFCLASS32
3071 s->disas_symtab.elf32 = syms;
3072 #else
3073 s->disas_symtab.elf64 = syms;
3074 #endif
3075 s->lookup_symbol = lookup_symbolxx;
3076 s->next = syminfos;
3077 syminfos = s;
3079 return;
3081 give_up:
3082 g_free(s);
3083 g_free(strings);
3084 g_free(syms);
3087 uint32_t get_elf_eflags(int fd)
3089 struct elfhdr ehdr;
3090 off_t offset;
3091 int ret;
3093 /* Read ELF header */
3094 offset = lseek(fd, 0, SEEK_SET);
3095 if (offset == (off_t) -1) {
3096 return 0;
3098 ret = read(fd, &ehdr, sizeof(ehdr));
3099 if (ret < sizeof(ehdr)) {
3100 return 0;
3102 offset = lseek(fd, offset, SEEK_SET);
3103 if (offset == (off_t) -1) {
3104 return 0;
3107 /* Check ELF signature */
3108 if (!elf_check_ident(&ehdr)) {
3109 return 0;
3112 /* check header */
3113 bswap_ehdr(&ehdr);
3114 if (!elf_check_ehdr(&ehdr)) {
3115 return 0;
3118 /* return architecture id */
3119 return ehdr.e_flags;
3122 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3124 struct image_info interp_info;
3125 struct elfhdr elf_ex;
3126 char *elf_interpreter = NULL;
3127 char *scratch;
3129 memset(&interp_info, 0, sizeof(interp_info));
3130 #ifdef TARGET_MIPS
3131 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3132 #endif
3134 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3136 load_elf_image(bprm->filename, bprm->fd, info,
3137 &elf_interpreter, bprm->buf);
3139 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3140 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3141 when we load the interpreter. */
3142 elf_ex = *(struct elfhdr *)bprm->buf;
3144 /* Do this so that we can load the interpreter, if need be. We will
3145 change some of these later */
3146 bprm->p = setup_arg_pages(bprm, info);
3148 scratch = g_new0(char, TARGET_PAGE_SIZE);
3149 if (STACK_GROWS_DOWN) {
3150 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3151 bprm->p, info->stack_limit);
3152 info->file_string = bprm->p;
3153 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3154 bprm->p, info->stack_limit);
3155 info->env_strings = bprm->p;
3156 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3157 bprm->p, info->stack_limit);
3158 info->arg_strings = bprm->p;
3159 } else {
3160 info->arg_strings = bprm->p;
3161 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3162 bprm->p, info->stack_limit);
3163 info->env_strings = bprm->p;
3164 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3165 bprm->p, info->stack_limit);
3166 info->file_string = bprm->p;
3167 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3168 bprm->p, info->stack_limit);
3171 g_free(scratch);
3173 if (!bprm->p) {
3174 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3175 exit(-1);
3178 if (elf_interpreter) {
3179 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3181 /* If the program interpreter is one of these two, then assume
3182 an iBCS2 image. Otherwise assume a native linux image. */
3184 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3185 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3186 info->personality = PER_SVR4;
3188 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3189 and some applications "depend" upon this behavior. Since
3190 we do not have the power to recompile these, we emulate
3191 the SVr4 behavior. Sigh. */
3192 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3193 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3195 #ifdef TARGET_MIPS
3196 info->interp_fp_abi = interp_info.fp_abi;
3197 #endif
3200 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3201 info, (elf_interpreter ? &interp_info : NULL));
3202 info->start_stack = bprm->p;
3204 /* If we have an interpreter, set that as the program's entry point.
3205 Copy the load_bias as well, to help PPC64 interpret the entry
3206 point as a function descriptor. Do this after creating elf tables
3207 so that we copy the original program entry point into the AUXV. */
3208 if (elf_interpreter) {
3209 info->load_bias = interp_info.load_bias;
3210 info->entry = interp_info.entry;
3211 g_free(elf_interpreter);
3214 #ifdef USE_ELF_CORE_DUMP
3215 bprm->core_dump = &elf_core_dump;
3216 #endif
3219 * If we reserved extra space for brk, release it now.
3220 * The implementation of do_brk in syscalls.c expects to be able
3221 * to mmap pages in this space.
3223 if (info->reserve_brk) {
3224 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3225 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3226 target_munmap(start_brk, end_brk - start_brk);
3229 return 0;
3232 #ifdef USE_ELF_CORE_DUMP
3234 * Definitions to generate Intel SVR4-like core files.
3235 * These mostly have the same names as the SVR4 types with "target_elf_"
3236 * tacked on the front to prevent clashes with linux definitions,
3237 * and the typedef forms have been avoided. This is mostly like
3238 * the SVR4 structure, but more Linuxy, with things that Linux does
3239 * not support and which gdb doesn't really use excluded.
3241 * Fields we don't dump (their contents is zero) in linux-user qemu
3242 * are marked with XXX.
3244 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3246 * Porting ELF coredump for target is (quite) simple process. First you
3247 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3248 * the target resides):
3250 * #define USE_ELF_CORE_DUMP
3252 * Next you define type of register set used for dumping. ELF specification
3253 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3255 * typedef <target_regtype> target_elf_greg_t;
3256 * #define ELF_NREG <number of registers>
3257 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3259 * Last step is to implement target specific function that copies registers
3260 * from given cpu into just specified register set. Prototype is:
3262 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3263 * const CPUArchState *env);
3265 * Parameters:
3266 * regs - copy register values into here (allocated and zeroed by caller)
3267 * env - copy registers from here
3269 * Example for ARM target is provided in this file.
3272 /* An ELF note in memory */
3273 struct memelfnote {
3274 const char *name;
3275 size_t namesz;
3276 size_t namesz_rounded;
3277 int type;
3278 size_t datasz;
3279 size_t datasz_rounded;
3280 void *data;
3281 size_t notesz;
3284 struct target_elf_siginfo {
3285 abi_int si_signo; /* signal number */
3286 abi_int si_code; /* extra code */
3287 abi_int si_errno; /* errno */
3290 struct target_elf_prstatus {
3291 struct target_elf_siginfo pr_info; /* Info associated with signal */
3292 abi_short pr_cursig; /* Current signal */
3293 abi_ulong pr_sigpend; /* XXX */
3294 abi_ulong pr_sighold; /* XXX */
3295 target_pid_t pr_pid;
3296 target_pid_t pr_ppid;
3297 target_pid_t pr_pgrp;
3298 target_pid_t pr_sid;
3299 struct target_timeval pr_utime; /* XXX User time */
3300 struct target_timeval pr_stime; /* XXX System time */
3301 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3302 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3303 target_elf_gregset_t pr_reg; /* GP registers */
3304 abi_int pr_fpvalid; /* XXX */
3307 #define ELF_PRARGSZ (80) /* Number of chars for args */
3309 struct target_elf_prpsinfo {
3310 char pr_state; /* numeric process state */
3311 char pr_sname; /* char for pr_state */
3312 char pr_zomb; /* zombie */
3313 char pr_nice; /* nice val */
3314 abi_ulong pr_flag; /* flags */
3315 target_uid_t pr_uid;
3316 target_gid_t pr_gid;
3317 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3318 /* Lots missing */
3319 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3320 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3323 /* Here is the structure in which status of each thread is captured. */
3324 struct elf_thread_status {
3325 QTAILQ_ENTRY(elf_thread_status) ets_link;
3326 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3327 #if 0
3328 elf_fpregset_t fpu; /* NT_PRFPREG */
3329 struct task_struct *thread;
3330 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3331 #endif
3332 struct memelfnote notes[1];
3333 int num_notes;
3336 struct elf_note_info {
3337 struct memelfnote *notes;
3338 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3339 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3341 QTAILQ_HEAD(, elf_thread_status) thread_list;
3342 #if 0
3344 * Current version of ELF coredump doesn't support
3345 * dumping fp regs etc.
3347 elf_fpregset_t *fpu;
3348 elf_fpxregset_t *xfpu;
3349 int thread_status_size;
3350 #endif
3351 int notes_size;
3352 int numnote;
3355 struct vm_area_struct {
3356 target_ulong vma_start; /* start vaddr of memory region */
3357 target_ulong vma_end; /* end vaddr of memory region */
3358 abi_ulong vma_flags; /* protection etc. flags for the region */
3359 QTAILQ_ENTRY(vm_area_struct) vma_link;
3362 struct mm_struct {
3363 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3364 int mm_count; /* number of mappings */
3367 static struct mm_struct *vma_init(void);
3368 static void vma_delete(struct mm_struct *);
3369 static int vma_add_mapping(struct mm_struct *, target_ulong,
3370 target_ulong, abi_ulong);
3371 static int vma_get_mapping_count(const struct mm_struct *);
3372 static struct vm_area_struct *vma_first(const struct mm_struct *);
3373 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3374 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3375 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3376 unsigned long flags);
3378 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3379 static void fill_note(struct memelfnote *, const char *, int,
3380 unsigned int, void *);
3381 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3382 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3383 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3384 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3385 static size_t note_size(const struct memelfnote *);
3386 static void free_note_info(struct elf_note_info *);
3387 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3388 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3389 static int core_dump_filename(const TaskState *, char *, size_t);
3391 static int dump_write(int, const void *, size_t);
3392 static int write_note(struct memelfnote *, int);
3393 static int write_note_info(struct elf_note_info *, int);
3395 #ifdef BSWAP_NEEDED
3396 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3398 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3399 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3400 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3401 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3402 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3403 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3404 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3405 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3406 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3407 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3408 /* cpu times are not filled, so we skip them */
3409 /* regs should be in correct format already */
3410 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3413 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3415 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3416 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3417 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3418 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3419 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3420 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3421 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3424 static void bswap_note(struct elf_note *en)
3426 bswap32s(&en->n_namesz);
3427 bswap32s(&en->n_descsz);
3428 bswap32s(&en->n_type);
3430 #else
3431 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3432 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3433 static inline void bswap_note(struct elf_note *en) { }
3434 #endif /* BSWAP_NEEDED */
3437 * Minimal support for linux memory regions. These are needed
3438 * when we are finding out what memory exactly belongs to
3439 * emulated process. No locks needed here, as long as
3440 * thread that received the signal is stopped.
3443 static struct mm_struct *vma_init(void)
3445 struct mm_struct *mm;
3447 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3448 return (NULL);
3450 mm->mm_count = 0;
3451 QTAILQ_INIT(&mm->mm_mmap);
3453 return (mm);
3456 static void vma_delete(struct mm_struct *mm)
3458 struct vm_area_struct *vma;
3460 while ((vma = vma_first(mm)) != NULL) {
3461 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3462 g_free(vma);
3464 g_free(mm);
3467 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3468 target_ulong end, abi_ulong flags)
3470 struct vm_area_struct *vma;
3472 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3473 return (-1);
3475 vma->vma_start = start;
3476 vma->vma_end = end;
3477 vma->vma_flags = flags;
3479 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3480 mm->mm_count++;
3482 return (0);
3485 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3487 return (QTAILQ_FIRST(&mm->mm_mmap));
3490 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3492 return (QTAILQ_NEXT(vma, vma_link));
3495 static int vma_get_mapping_count(const struct mm_struct *mm)
3497 return (mm->mm_count);
3501 * Calculate file (dump) size of given memory region.
3503 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3505 /* if we cannot even read the first page, skip it */
3506 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3507 return (0);
3510 * Usually we don't dump executable pages as they contain
3511 * non-writable code that debugger can read directly from
3512 * target library etc. However, thread stacks are marked
3513 * also executable so we read in first page of given region
3514 * and check whether it contains elf header. If there is
3515 * no elf header, we dump it.
3517 if (vma->vma_flags & PROT_EXEC) {
3518 char page[TARGET_PAGE_SIZE];
3520 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3521 return 0;
3523 if ((page[EI_MAG0] == ELFMAG0) &&
3524 (page[EI_MAG1] == ELFMAG1) &&
3525 (page[EI_MAG2] == ELFMAG2) &&
3526 (page[EI_MAG3] == ELFMAG3)) {
3528 * Mappings are possibly from ELF binary. Don't dump
3529 * them.
3531 return (0);
3535 return (vma->vma_end - vma->vma_start);
3538 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3539 unsigned long flags)
3541 struct mm_struct *mm = (struct mm_struct *)priv;
3543 vma_add_mapping(mm, start, end, flags);
3544 return (0);
3547 static void fill_note(struct memelfnote *note, const char *name, int type,
3548 unsigned int sz, void *data)
3550 unsigned int namesz;
3552 namesz = strlen(name) + 1;
3553 note->name = name;
3554 note->namesz = namesz;
3555 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3556 note->type = type;
3557 note->datasz = sz;
3558 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3560 note->data = data;
3563 * We calculate rounded up note size here as specified by
3564 * ELF document.
3566 note->notesz = sizeof (struct elf_note) +
3567 note->namesz_rounded + note->datasz_rounded;
3570 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3571 uint32_t flags)
3573 (void) memset(elf, 0, sizeof(*elf));
3575 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3576 elf->e_ident[EI_CLASS] = ELF_CLASS;
3577 elf->e_ident[EI_DATA] = ELF_DATA;
3578 elf->e_ident[EI_VERSION] = EV_CURRENT;
3579 elf->e_ident[EI_OSABI] = ELF_OSABI;
3581 elf->e_type = ET_CORE;
3582 elf->e_machine = machine;
3583 elf->e_version = EV_CURRENT;
3584 elf->e_phoff = sizeof(struct elfhdr);
3585 elf->e_flags = flags;
3586 elf->e_ehsize = sizeof(struct elfhdr);
3587 elf->e_phentsize = sizeof(struct elf_phdr);
3588 elf->e_phnum = segs;
3590 bswap_ehdr(elf);
3593 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3595 phdr->p_type = PT_NOTE;
3596 phdr->p_offset = offset;
3597 phdr->p_vaddr = 0;
3598 phdr->p_paddr = 0;
3599 phdr->p_filesz = sz;
3600 phdr->p_memsz = 0;
3601 phdr->p_flags = 0;
3602 phdr->p_align = 0;
3604 bswap_phdr(phdr, 1);
3607 static size_t note_size(const struct memelfnote *note)
3609 return (note->notesz);
3612 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3613 const TaskState *ts, int signr)
3615 (void) memset(prstatus, 0, sizeof (*prstatus));
3616 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3617 prstatus->pr_pid = ts->ts_tid;
3618 prstatus->pr_ppid = getppid();
3619 prstatus->pr_pgrp = getpgrp();
3620 prstatus->pr_sid = getsid(0);
3622 bswap_prstatus(prstatus);
3625 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3627 char *base_filename;
3628 unsigned int i, len;
3630 (void) memset(psinfo, 0, sizeof (*psinfo));
3632 len = ts->info->arg_end - ts->info->arg_start;
3633 if (len >= ELF_PRARGSZ)
3634 len = ELF_PRARGSZ - 1;
3635 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3636 return -EFAULT;
3637 for (i = 0; i < len; i++)
3638 if (psinfo->pr_psargs[i] == 0)
3639 psinfo->pr_psargs[i] = ' ';
3640 psinfo->pr_psargs[len] = 0;
3642 psinfo->pr_pid = getpid();
3643 psinfo->pr_ppid = getppid();
3644 psinfo->pr_pgrp = getpgrp();
3645 psinfo->pr_sid = getsid(0);
3646 psinfo->pr_uid = getuid();
3647 psinfo->pr_gid = getgid();
3649 base_filename = g_path_get_basename(ts->bprm->filename);
3651 * Using strncpy here is fine: at max-length,
3652 * this field is not NUL-terminated.
3654 (void) strncpy(psinfo->pr_fname, base_filename,
3655 sizeof(psinfo->pr_fname));
3657 g_free(base_filename);
3658 bswap_psinfo(psinfo);
3659 return (0);
3662 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3664 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3665 elf_addr_t orig_auxv = auxv;
3666 void *ptr;
3667 int len = ts->info->auxv_len;
3670 * Auxiliary vector is stored in target process stack. It contains
3671 * {type, value} pairs that we need to dump into note. This is not
3672 * strictly necessary but we do it here for sake of completeness.
3675 /* read in whole auxv vector and copy it to memelfnote */
3676 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3677 if (ptr != NULL) {
3678 fill_note(note, "CORE", NT_AUXV, len, ptr);
3679 unlock_user(ptr, auxv, len);
3684 * Constructs name of coredump file. We have following convention
3685 * for the name:
3686 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3688 * Returns 0 in case of success, -1 otherwise (errno is set).
3690 static int core_dump_filename(const TaskState *ts, char *buf,
3691 size_t bufsize)
3693 char timestamp[64];
3694 char *base_filename = NULL;
3695 struct timeval tv;
3696 struct tm tm;
3698 assert(bufsize >= PATH_MAX);
3700 if (gettimeofday(&tv, NULL) < 0) {
3701 (void) fprintf(stderr, "unable to get current timestamp: %s",
3702 strerror(errno));
3703 return (-1);
3706 base_filename = g_path_get_basename(ts->bprm->filename);
3707 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3708 localtime_r(&tv.tv_sec, &tm));
3709 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3710 base_filename, timestamp, (int)getpid());
3711 g_free(base_filename);
3713 return (0);
3716 static int dump_write(int fd, const void *ptr, size_t size)
3718 const char *bufp = (const char *)ptr;
3719 ssize_t bytes_written, bytes_left;
3720 struct rlimit dumpsize;
3721 off_t pos;
3723 bytes_written = 0;
3724 getrlimit(RLIMIT_CORE, &dumpsize);
3725 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3726 if (errno == ESPIPE) { /* not a seekable stream */
3727 bytes_left = size;
3728 } else {
3729 return pos;
3731 } else {
3732 if (dumpsize.rlim_cur <= pos) {
3733 return -1;
3734 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3735 bytes_left = size;
3736 } else {
3737 size_t limit_left=dumpsize.rlim_cur - pos;
3738 bytes_left = limit_left >= size ? size : limit_left ;
3743 * In normal conditions, single write(2) should do but
3744 * in case of socket etc. this mechanism is more portable.
3746 do {
3747 bytes_written = write(fd, bufp, bytes_left);
3748 if (bytes_written < 0) {
3749 if (errno == EINTR)
3750 continue;
3751 return (-1);
3752 } else if (bytes_written == 0) { /* eof */
3753 return (-1);
3755 bufp += bytes_written;
3756 bytes_left -= bytes_written;
3757 } while (bytes_left > 0);
3759 return (0);
3762 static int write_note(struct memelfnote *men, int fd)
3764 struct elf_note en;
3766 en.n_namesz = men->namesz;
3767 en.n_type = men->type;
3768 en.n_descsz = men->datasz;
3770 bswap_note(&en);
3772 if (dump_write(fd, &en, sizeof(en)) != 0)
3773 return (-1);
3774 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3775 return (-1);
3776 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3777 return (-1);
3779 return (0);
3782 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3784 CPUState *cpu = env_cpu((CPUArchState *)env);
3785 TaskState *ts = (TaskState *)cpu->opaque;
3786 struct elf_thread_status *ets;
3788 ets = g_malloc0(sizeof (*ets));
3789 ets->num_notes = 1; /* only prstatus is dumped */
3790 fill_prstatus(&ets->prstatus, ts, 0);
3791 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3792 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3793 &ets->prstatus);
3795 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3797 info->notes_size += note_size(&ets->notes[0]);
3800 static void init_note_info(struct elf_note_info *info)
3802 /* Initialize the elf_note_info structure so that it is at
3803 * least safe to call free_note_info() on it. Must be
3804 * called before calling fill_note_info().
3806 memset(info, 0, sizeof (*info));
3807 QTAILQ_INIT(&info->thread_list);
3810 static int fill_note_info(struct elf_note_info *info,
3811 long signr, const CPUArchState *env)
3813 #define NUMNOTES 3
3814 CPUState *cpu = env_cpu((CPUArchState *)env);
3815 TaskState *ts = (TaskState *)cpu->opaque;
3816 int i;
3818 info->notes = g_new0(struct memelfnote, NUMNOTES);
3819 if (info->notes == NULL)
3820 return (-ENOMEM);
3821 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3822 if (info->prstatus == NULL)
3823 return (-ENOMEM);
3824 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3825 if (info->prstatus == NULL)
3826 return (-ENOMEM);
3829 * First fill in status (and registers) of current thread
3830 * including process info & aux vector.
3832 fill_prstatus(info->prstatus, ts, signr);
3833 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3834 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3835 sizeof (*info->prstatus), info->prstatus);
3836 fill_psinfo(info->psinfo, ts);
3837 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3838 sizeof (*info->psinfo), info->psinfo);
3839 fill_auxv_note(&info->notes[2], ts);
3840 info->numnote = 3;
3842 info->notes_size = 0;
3843 for (i = 0; i < info->numnote; i++)
3844 info->notes_size += note_size(&info->notes[i]);
3846 /* read and fill status of all threads */
3847 cpu_list_lock();
3848 CPU_FOREACH(cpu) {
3849 if (cpu == thread_cpu) {
3850 continue;
3852 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3854 cpu_list_unlock();
3856 return (0);
3859 static void free_note_info(struct elf_note_info *info)
3861 struct elf_thread_status *ets;
3863 while (!QTAILQ_EMPTY(&info->thread_list)) {
3864 ets = QTAILQ_FIRST(&info->thread_list);
3865 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3866 g_free(ets);
3869 g_free(info->prstatus);
3870 g_free(info->psinfo);
3871 g_free(info->notes);
3874 static int write_note_info(struct elf_note_info *info, int fd)
3876 struct elf_thread_status *ets;
3877 int i, error = 0;
3879 /* write prstatus, psinfo and auxv for current thread */
3880 for (i = 0; i < info->numnote; i++)
3881 if ((error = write_note(&info->notes[i], fd)) != 0)
3882 return (error);
3884 /* write prstatus for each thread */
3885 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3886 if ((error = write_note(&ets->notes[0], fd)) != 0)
3887 return (error);
3890 return (0);
3894 * Write out ELF coredump.
3896 * See documentation of ELF object file format in:
3897 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3899 * Coredump format in linux is following:
3901 * 0 +----------------------+ \
3902 * | ELF header | ET_CORE |
3903 * +----------------------+ |
3904 * | ELF program headers | |--- headers
3905 * | - NOTE section | |
3906 * | - PT_LOAD sections | |
3907 * +----------------------+ /
3908 * | NOTEs: |
3909 * | - NT_PRSTATUS |
3910 * | - NT_PRSINFO |
3911 * | - NT_AUXV |
3912 * +----------------------+ <-- aligned to target page
3913 * | Process memory dump |
3914 * : :
3915 * . .
3916 * : :
3917 * | |
3918 * +----------------------+
3920 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3921 * NT_PRSINFO -> struct elf_prpsinfo
3922 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3924 * Format follows System V format as close as possible. Current
3925 * version limitations are as follows:
3926 * - no floating point registers are dumped
3928 * Function returns 0 in case of success, negative errno otherwise.
3930 * TODO: make this work also during runtime: it should be
3931 * possible to force coredump from running process and then
3932 * continue processing. For example qemu could set up SIGUSR2
3933 * handler (provided that target process haven't registered
3934 * handler for that) that does the dump when signal is received.
3936 static int elf_core_dump(int signr, const CPUArchState *env)
3938 const CPUState *cpu = env_cpu((CPUArchState *)env);
3939 const TaskState *ts = (const TaskState *)cpu->opaque;
3940 struct vm_area_struct *vma = NULL;
3941 char corefile[PATH_MAX];
3942 struct elf_note_info info;
3943 struct elfhdr elf;
3944 struct elf_phdr phdr;
3945 struct rlimit dumpsize;
3946 struct mm_struct *mm = NULL;
3947 off_t offset = 0, data_offset = 0;
3948 int segs = 0;
3949 int fd = -1;
3951 init_note_info(&info);
3953 errno = 0;
3954 getrlimit(RLIMIT_CORE, &dumpsize);
3955 if (dumpsize.rlim_cur == 0)
3956 return 0;
3958 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3959 return (-errno);
3961 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3962 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3963 return (-errno);
3966 * Walk through target process memory mappings and
3967 * set up structure containing this information. After
3968 * this point vma_xxx functions can be used.
3970 if ((mm = vma_init()) == NULL)
3971 goto out;
3973 walk_memory_regions(mm, vma_walker);
3974 segs = vma_get_mapping_count(mm);
3977 * Construct valid coredump ELF header. We also
3978 * add one more segment for notes.
3980 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3981 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3982 goto out;
3984 /* fill in the in-memory version of notes */
3985 if (fill_note_info(&info, signr, env) < 0)
3986 goto out;
3988 offset += sizeof (elf); /* elf header */
3989 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3991 /* write out notes program header */
3992 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3994 offset += info.notes_size;
3995 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3996 goto out;
3999 * ELF specification wants data to start at page boundary so
4000 * we align it here.
4002 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4005 * Write program headers for memory regions mapped in
4006 * the target process.
4008 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4009 (void) memset(&phdr, 0, sizeof (phdr));
4011 phdr.p_type = PT_LOAD;
4012 phdr.p_offset = offset;
4013 phdr.p_vaddr = vma->vma_start;
4014 phdr.p_paddr = 0;
4015 phdr.p_filesz = vma_dump_size(vma);
4016 offset += phdr.p_filesz;
4017 phdr.p_memsz = vma->vma_end - vma->vma_start;
4018 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4019 if (vma->vma_flags & PROT_WRITE)
4020 phdr.p_flags |= PF_W;
4021 if (vma->vma_flags & PROT_EXEC)
4022 phdr.p_flags |= PF_X;
4023 phdr.p_align = ELF_EXEC_PAGESIZE;
4025 bswap_phdr(&phdr, 1);
4026 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4027 goto out;
4032 * Next we write notes just after program headers. No
4033 * alignment needed here.
4035 if (write_note_info(&info, fd) < 0)
4036 goto out;
4038 /* align data to page boundary */
4039 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4040 goto out;
4043 * Finally we can dump process memory into corefile as well.
4045 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4046 abi_ulong addr;
4047 abi_ulong end;
4049 end = vma->vma_start + vma_dump_size(vma);
4051 for (addr = vma->vma_start; addr < end;
4052 addr += TARGET_PAGE_SIZE) {
4053 char page[TARGET_PAGE_SIZE];
4054 int error;
4057 * Read in page from target process memory and
4058 * write it to coredump file.
4060 error = copy_from_user(page, addr, sizeof (page));
4061 if (error != 0) {
4062 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4063 addr);
4064 errno = -error;
4065 goto out;
4067 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4068 goto out;
4072 out:
4073 free_note_info(&info);
4074 if (mm != NULL)
4075 vma_delete(mm);
4076 (void) close(fd);
4078 if (errno != 0)
4079 return (-errno);
4080 return (0);
4082 #endif /* USE_ELF_CORE_DUMP */
4084 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4086 init_thread(regs, infop);