Include hw/hw.h exactly where needed
[qemu/ar7.git] / hw / mips / boston.c
blobce86b75664dd85c27a42e1dcc7dd57623bafc639
1 /*
2 * MIPS Boston development board emulation.
4 * Copyright (c) 2016 Imagination Technologies
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/cps.h"
31 #include "hw/mips/cpudevs.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/log.h"
36 #include "chardev/char.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/qtest.h"
41 #include <libfdt.h>
43 #define TYPE_MIPS_BOSTON "mips-boston"
44 #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
46 typedef struct {
47 SysBusDevice parent_obj;
49 MachineState *mach;
50 MIPSCPSState cps;
51 SerialState *uart;
53 CharBackend lcd_display;
54 char lcd_content[8];
55 bool lcd_inited;
57 hwaddr kernel_entry;
58 hwaddr fdt_base;
59 } BostonState;
61 enum boston_plat_reg {
62 PLAT_FPGA_BUILD = 0x00,
63 PLAT_CORE_CL = 0x04,
64 PLAT_WRAPPER_CL = 0x08,
65 PLAT_SYSCLK_STATUS = 0x0c,
66 PLAT_SOFTRST_CTL = 0x10,
67 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
68 PLAT_DDR3_STATUS = 0x14,
69 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
70 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
71 PLAT_PCIE_STATUS = 0x18,
72 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
73 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
74 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
75 PLAT_FLASH_CTL = 0x1c,
76 PLAT_SPARE0 = 0x20,
77 PLAT_SPARE1 = 0x24,
78 PLAT_SPARE2 = 0x28,
79 PLAT_SPARE3 = 0x2c,
80 PLAT_MMCM_DIV = 0x30,
81 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
82 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
83 #define PLAT_MMCM_DIV_MUL_SHIFT 16
84 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
85 PLAT_BUILD_CFG = 0x34,
86 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
87 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
88 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
89 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
90 PLAT_DDR_CFG = 0x38,
91 #define PLAT_DDR_CFG_SIZE (0xf << 0)
92 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
93 PLAT_NOC_PCIE0_ADDR = 0x3c,
94 PLAT_NOC_PCIE1_ADDR = 0x40,
95 PLAT_NOC_PCIE2_ADDR = 0x44,
96 PLAT_SYS_CTL = 0x48,
99 static void boston_lcd_event(void *opaque, int event)
101 BostonState *s = opaque;
102 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
103 qemu_chr_fe_printf(&s->lcd_display, " ");
104 s->lcd_inited = true;
108 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
109 unsigned size)
111 BostonState *s = opaque;
112 uint64_t val = 0;
114 switch (size) {
115 case 8:
116 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
117 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
118 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
119 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
120 /* fall through */
121 case 4:
122 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
123 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
124 /* fall through */
125 case 2:
126 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
127 /* fall through */
128 case 1:
129 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
130 break;
133 return val;
136 static void boston_lcd_write(void *opaque, hwaddr addr,
137 uint64_t val, unsigned size)
139 BostonState *s = opaque;
141 switch (size) {
142 case 8:
143 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
144 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
145 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
146 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
147 /* fall through */
148 case 4:
149 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
150 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
151 /* fall through */
152 case 2:
153 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
154 /* fall through */
155 case 1:
156 s->lcd_content[(addr + 0) & 0x7] = val;
157 break;
160 qemu_chr_fe_printf(&s->lcd_display,
161 "\r%-8.8s", s->lcd_content);
164 static const MemoryRegionOps boston_lcd_ops = {
165 .read = boston_lcd_read,
166 .write = boston_lcd_write,
167 .endianness = DEVICE_NATIVE_ENDIAN,
170 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
171 unsigned size)
173 BostonState *s = opaque;
174 uint32_t gic_freq, val;
176 if (size != 4) {
177 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
178 return 0;
181 switch (addr & 0xffff) {
182 case PLAT_FPGA_BUILD:
183 case PLAT_CORE_CL:
184 case PLAT_WRAPPER_CL:
185 return 0;
186 case PLAT_DDR3_STATUS:
187 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
188 case PLAT_MMCM_DIV:
189 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
190 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
191 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
192 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
193 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
194 return val;
195 case PLAT_BUILD_CFG:
196 val = PLAT_BUILD_CFG_PCIE0_EN;
197 val |= PLAT_BUILD_CFG_PCIE1_EN;
198 val |= PLAT_BUILD_CFG_PCIE2_EN;
199 return val;
200 case PLAT_DDR_CFG:
201 val = s->mach->ram_size / GiB;
202 assert(!(val & ~PLAT_DDR_CFG_SIZE));
203 val |= PLAT_DDR_CFG_MHZ;
204 return val;
205 default:
206 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
207 addr & 0xffff);
208 return 0;
212 static void boston_platreg_write(void *opaque, hwaddr addr,
213 uint64_t val, unsigned size)
215 if (size != 4) {
216 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
217 return;
220 switch (addr & 0xffff) {
221 case PLAT_FPGA_BUILD:
222 case PLAT_CORE_CL:
223 case PLAT_WRAPPER_CL:
224 case PLAT_DDR3_STATUS:
225 case PLAT_PCIE_STATUS:
226 case PLAT_MMCM_DIV:
227 case PLAT_BUILD_CFG:
228 case PLAT_DDR_CFG:
229 /* read only */
230 break;
231 case PLAT_SOFTRST_CTL:
232 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
233 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
235 break;
236 default:
237 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
238 " = 0x%" PRIx64 "\n", addr & 0xffff, val);
239 break;
243 static const MemoryRegionOps boston_platreg_ops = {
244 .read = boston_platreg_read,
245 .write = boston_platreg_write,
246 .endianness = DEVICE_NATIVE_ENDIAN,
249 static const TypeInfo boston_device = {
250 .name = TYPE_MIPS_BOSTON,
251 .parent = TYPE_SYS_BUS_DEVICE,
252 .instance_size = sizeof(BostonState),
255 static void boston_register_types(void)
257 type_register_static(&boston_device);
259 type_init(boston_register_types)
261 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
262 bool is_64b)
264 const uint32_t cm_base = 0x16100000;
265 const uint32_t gic_base = 0x16120000;
266 const uint32_t cpc_base = 0x16200000;
268 /* Move CM GCRs */
269 if (is_64b) {
270 stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */
271 stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */
272 } else {
273 stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */
274 stl_p(p++, 0x00084100); /* sll $8, $8, 4 */
276 stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */
277 stl_p(p++, 0x01094025); /* or $8, $9 */
278 stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */
279 if (is_64b) {
280 stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */
281 } else {
282 stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */
284 stl_p(p++, 0x012a4025); /* or $8, $10 */
286 /* Move & enable GIC GCRs */
287 stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */
288 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
289 if (is_64b) {
290 stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */
291 } else {
292 stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */
295 /* Move & enable CPC GCRs */
296 stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */
297 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
298 if (is_64b) {
299 stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */
300 } else {
301 stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */
305 * Setup argument registers to follow the UHI boot protocol:
307 * a0/$4 = -2
308 * a1/$5 = virtual address of FDT
309 * a2/$6 = 0
310 * a3/$7 = 0
312 stl_p(p++, 0x2404fffe); /* li $4, -2 */
313 /* lui $5, hi(fdt_addr) */
314 stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
315 if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */
316 stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
318 stl_p(p++, 0x34060000); /* li $6, 0 */
319 stl_p(p++, 0x34070000); /* li $7, 0 */
321 /* Load kernel entry address & jump to it */
322 /* lui $25, hi(kernel_entry) */
323 stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
324 /* ori $25, lo(kernel_entry) */
325 stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
326 stl_p(p++, 0x03200009); /* jr $25 */
329 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
330 const void *match_data, hwaddr *load_addr)
332 BostonState *s = BOSTON(opaque);
333 MachineState *machine = s->mach;
334 const char *cmdline;
335 int err;
336 void *fdt;
337 size_t fdt_sz, ram_low_sz, ram_high_sz;
339 fdt_sz = fdt_totalsize(fdt_orig) * 2;
340 fdt = g_malloc0(fdt_sz);
342 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
343 if (err) {
344 fprintf(stderr, "unable to open FDT\n");
345 return NULL;
348 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
349 ? machine->kernel_cmdline : " ";
350 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
351 if (err < 0) {
352 fprintf(stderr, "couldn't set /chosen/bootargs\n");
353 return NULL;
356 ram_low_sz = MIN(256 * MiB, machine->ram_size);
357 ram_high_sz = machine->ram_size - ram_low_sz;
358 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
359 1, 0x00000000, 1, ram_low_sz,
360 1, 0x90000000, 1, ram_high_sz);
362 fdt = g_realloc(fdt, fdt_totalsize(fdt));
363 qemu_fdt_dumpdtb(fdt, fdt_sz);
365 s->fdt_base = *load_addr;
367 return fdt;
370 static const void *boston_kernel_filter(void *opaque, const void *kernel,
371 hwaddr *load_addr, hwaddr *entry_addr)
373 BostonState *s = BOSTON(opaque);
375 s->kernel_entry = *entry_addr;
377 return kernel;
380 static const struct fit_loader_match boston_matches[] = {
381 { "img,boston" },
382 { NULL },
385 static const struct fit_loader boston_fit_loader = {
386 .matches = boston_matches,
387 .addr_to_phys = cpu_mips_kseg0_to_phys,
388 .fdt_filter = boston_fdt_filter,
389 .kernel_filter = boston_kernel_filter,
392 static inline XilinxPCIEHost *
393 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
394 hwaddr cfg_base, uint64_t cfg_size,
395 hwaddr mmio_base, uint64_t mmio_size,
396 qemu_irq irq, bool link_up)
398 DeviceState *dev;
399 MemoryRegion *cfg, *mmio;
401 dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
403 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
404 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
405 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
406 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
407 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
408 qdev_prop_set_bit(dev, "link_up", link_up);
410 qdev_init_nofail(dev);
412 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
413 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
415 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
416 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
418 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
420 return XILINX_PCIE_HOST(dev);
423 static void boston_mach_init(MachineState *machine)
425 DeviceState *dev;
426 BostonState *s;
427 Error *err = NULL;
428 MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
429 MemoryRegion *sys_mem = get_system_memory();
430 XilinxPCIEHost *pcie2;
431 PCIDevice *ahci;
432 DriveInfo *hd[6];
433 Chardev *chr;
434 int fw_size, fit_err;
435 bool is_64b;
437 if ((machine->ram_size % GiB) ||
438 (machine->ram_size > (2 * GiB))) {
439 error_report("Memory size must be 1GB or 2GB");
440 exit(1);
443 dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
444 qdev_init_nofail(dev);
446 s = BOSTON(dev);
447 s->mach = machine;
449 if (!cpu_supports_cps_smp(machine->cpu_type)) {
450 error_report("Boston requires CPUs which support CPS");
451 exit(1);
454 is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
456 sysbus_init_child_obj(OBJECT(machine), "cps", OBJECT(&s->cps),
457 sizeof(s->cps), TYPE_MIPS_CPS);
458 object_property_set_str(OBJECT(&s->cps), machine->cpu_type, "cpu-type",
459 &err);
460 object_property_set_int(OBJECT(&s->cps), machine->smp.cpus, "num-vp", &err);
461 object_property_set_bool(OBJECT(&s->cps), true, "realized", &err);
463 if (err != NULL) {
464 error_report("%s", error_get_pretty(err));
465 exit(1);
468 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
470 flash = g_new(MemoryRegion, 1);
471 memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB, &err);
472 memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
474 ddr = g_new(MemoryRegion, 1);
475 memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
476 machine->ram_size);
477 memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
479 ddr_low_alias = g_new(MemoryRegion, 1);
480 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
481 ddr, 0, MIN(machine->ram_size, (256 * MiB)));
482 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
484 xilinx_pcie_init(sys_mem, 0,
485 0x10000000, 32 * MiB,
486 0x40000000, 1 * GiB,
487 get_cps_irq(&s->cps, 2), false);
489 xilinx_pcie_init(sys_mem, 1,
490 0x12000000, 32 * MiB,
491 0x20000000, 512 * MiB,
492 get_cps_irq(&s->cps, 1), false);
494 pcie2 = xilinx_pcie_init(sys_mem, 2,
495 0x14000000, 32 * MiB,
496 0x16000000, 1 * MiB,
497 get_cps_irq(&s->cps, 0), true);
499 platreg = g_new(MemoryRegion, 1);
500 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
501 "boston-platregs", 0x1000);
502 memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
504 s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
505 get_cps_irq(&s->cps, 3), 10000000,
506 serial_hd(0), DEVICE_NATIVE_ENDIAN);
508 lcd = g_new(MemoryRegion, 1);
509 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
510 memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
512 chr = qemu_chr_new("lcd", "vc:320x240", NULL);
513 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
514 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
515 boston_lcd_event, NULL, s, NULL, true);
517 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
518 PCI_DEVFN(0, 0),
519 true, TYPE_ICH9_AHCI);
520 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
521 ide_drive_get(hd, ahci_get_num_ports(ahci));
522 ahci_ide_create_devs(ahci, hd);
524 if (machine->firmware) {
525 fw_size = load_image_targphys(machine->firmware,
526 0x1fc00000, 4 * MiB);
527 if (fw_size == -1) {
528 error_report("unable to load firmware image '%s'",
529 machine->firmware);
530 exit(1);
532 } else if (machine->kernel_filename) {
533 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
534 if (fit_err) {
535 error_report("unable to load FIT image");
536 exit(1);
539 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
540 s->kernel_entry, s->fdt_base, is_64b);
541 } else if (!qtest_enabled()) {
542 error_report("Please provide either a -kernel or -bios argument");
543 exit(1);
547 static void boston_mach_class_init(MachineClass *mc)
549 mc->desc = "MIPS Boston";
550 mc->init = boston_mach_init;
551 mc->block_default_type = IF_IDE;
552 mc->default_ram_size = 1 * GiB;
553 mc->max_cpus = 16;
554 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
557 DEFINE_MACHINE("boston", boston_mach_class_init)