2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
30 #include "hw/fw-path-provider.h"
33 #include "sysemu/device_tree.h"
34 #include "sysemu/block-backend.h"
35 #include "sysemu/cpus.h"
36 #include "sysemu/kvm.h"
37 #include "sysemu/device_tree.h"
39 #include "migration/migration.h"
40 #include "mmu-hash64.h"
43 #include "hw/boards.h"
44 #include "hw/ppc/ppc.h"
45 #include "hw/loader.h"
47 #include "hw/ppc/spapr.h"
48 #include "hw/ppc/spapr_vio.h"
49 #include "hw/pci-host/spapr.h"
50 #include "hw/ppc/xics.h"
51 #include "hw/pci/msi.h"
53 #include "hw/pci/pci.h"
54 #include "hw/scsi/scsi.h"
55 #include "hw/virtio/virtio-scsi.h"
57 #include "exec/address-spaces.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
64 #include "hw/compat.h"
65 #include "qemu-common.h"
69 /* SLOF memory layout:
71 * SLOF raw image loaded at 0, copies its romfs right below the flat
72 * device-tree, then position SLOF itself 31M below that
74 * So we set FW_OVERHEAD to 40MB which should account for all of that
77 * We load our kernel at 4M, leaving space for SLOF initial image
79 #define FDT_MAX_SIZE 0x100000
80 #define RTAS_MAX_SIZE 0x10000
81 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
82 #define FW_MAX_SIZE 0x400000
83 #define FW_FILE_NAME "slof.bin"
84 #define FW_OVERHEAD 0x2800000
85 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
87 #define MIN_RMA_SLOF 128UL
89 #define TIMEBASE_FREQ 512000000ULL
91 #define PHANDLE_XICP 0x00001111
93 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
95 static XICSState
*try_create_xics(const char *type
, int nr_servers
,
96 int nr_irqs
, Error
**errp
)
101 dev
= qdev_create(NULL
, type
);
102 qdev_prop_set_uint32(dev
, "nr_servers", nr_servers
);
103 qdev_prop_set_uint32(dev
, "nr_irqs", nr_irqs
);
104 object_property_set_bool(OBJECT(dev
), true, "realized", &err
);
106 error_propagate(errp
, err
);
107 object_unparent(OBJECT(dev
));
110 return XICS_COMMON(dev
);
113 static XICSState
*xics_system_init(MachineState
*machine
,
114 int nr_servers
, int nr_irqs
)
116 XICSState
*icp
= NULL
;
121 if (machine_kernel_irqchip_allowed(machine
)) {
122 icp
= try_create_xics(TYPE_KVM_XICS
, nr_servers
, nr_irqs
, &err
);
124 if (machine_kernel_irqchip_required(machine
) && !icp
) {
125 error_reportf_err(err
,
126 "kernel_irqchip requested but unavailable: ");
133 icp
= try_create_xics(TYPE_XICS
, nr_servers
, nr_irqs
, &error_abort
);
139 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
143 uint32_t servers_prop
[smt_threads
];
144 uint32_t gservers_prop
[smt_threads
* 2];
145 int index
= ppc_get_vcpu_dt_id(cpu
);
147 if (cpu
->cpu_version
) {
148 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->cpu_version
);
154 /* Build interrupt servers and gservers properties */
155 for (i
= 0; i
< smt_threads
; i
++) {
156 servers_prop
[i
] = cpu_to_be32(index
+ i
);
157 /* Hack, direct the group queues back to cpu 0 */
158 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
159 gservers_prop
[i
*2 + 1] = 0;
161 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
162 servers_prop
, sizeof(servers_prop
));
166 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
167 gservers_prop
, sizeof(gservers_prop
));
172 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, CPUState
*cs
)
175 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
176 int index
= ppc_get_vcpu_dt_id(cpu
);
177 uint32_t associativity
[] = {cpu_to_be32(0x5),
181 cpu_to_be32(cs
->numa_node
),
184 /* Advertise NUMA via ibm,associativity */
185 if (nb_numa_nodes
> 1) {
186 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
187 sizeof(associativity
));
193 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
195 int ret
= 0, offset
, cpus_offset
;
198 int smt
= kvmppc_smt_threads();
199 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
202 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
203 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
204 int index
= ppc_get_vcpu_dt_id(cpu
);
206 if ((index
% smt
) != 0) {
210 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
212 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
213 if (cpus_offset
< 0) {
214 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
216 if (cpus_offset
< 0) {
220 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
222 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
228 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
229 pft_size_prop
, sizeof(pft_size_prop
));
234 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
);
239 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
,
240 ppc_get_compat_smt_threads(cpu
));
249 static size_t create_page_sizes_prop(CPUPPCState
*env
, uint32_t *prop
,
252 size_t maxcells
= maxsize
/ sizeof(uint32_t);
256 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
257 struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
259 if (!sps
->page_shift
) {
262 for (count
= 0; count
< PPC_PAGE_SIZES_MAX_SZ
; count
++) {
263 if (sps
->enc
[count
].page_shift
== 0) {
267 if ((p
- prop
) >= (maxcells
- 3 - count
* 2)) {
270 *(p
++) = cpu_to_be32(sps
->page_shift
);
271 *(p
++) = cpu_to_be32(sps
->slb_enc
);
272 *(p
++) = cpu_to_be32(count
);
273 for (j
= 0; j
< count
; j
++) {
274 *(p
++) = cpu_to_be32(sps
->enc
[j
].page_shift
);
275 *(p
++) = cpu_to_be32(sps
->enc
[j
].pte_enc
);
279 return (p
- prop
) * sizeof(uint32_t);
282 static hwaddr
spapr_node0_size(void)
284 MachineState
*machine
= MACHINE(qdev_get_machine());
288 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
289 if (numa_info
[i
].node_mem
) {
290 return MIN(pow2floor(numa_info
[i
].node_mem
),
295 return machine
->ram_size
;
302 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
303 #exp, fdt_strerror(ret)); \
308 static void add_str(GString
*s
, const gchar
*s1
)
310 g_string_append_len(s
, s1
, strlen(s1
) + 1);
313 static void *spapr_create_fdt_skel(hwaddr initrd_base
,
317 const char *kernel_cmdline
,
321 uint32_t start_prop
= cpu_to_be32(initrd_base
);
322 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
323 GString
*hypertas
= g_string_sized_new(256);
324 GString
*qemu_hypertas
= g_string_sized_new(256);
325 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
326 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(max_cpus
)};
327 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
330 add_str(hypertas
, "hcall-pft");
331 add_str(hypertas
, "hcall-term");
332 add_str(hypertas
, "hcall-dabr");
333 add_str(hypertas
, "hcall-interrupt");
334 add_str(hypertas
, "hcall-tce");
335 add_str(hypertas
, "hcall-vio");
336 add_str(hypertas
, "hcall-splpar");
337 add_str(hypertas
, "hcall-bulk");
338 add_str(hypertas
, "hcall-set-mode");
339 add_str(qemu_hypertas
, "hcall-memop1");
341 fdt
= g_malloc0(FDT_MAX_SIZE
);
342 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
345 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
348 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
350 _FDT((fdt_finish_reservemap(fdt
)));
353 _FDT((fdt_begin_node(fdt
, "")));
354 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
355 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
356 _FDT((fdt_property_string(fdt
, "compatible", "qemu,pseries")));
359 * Add info to guest to indentify which host is it being run on
360 * and what is the uuid of the guest
362 if (kvmppc_get_host_model(&buf
)) {
363 _FDT((fdt_property_string(fdt
, "host-model", buf
)));
366 if (kvmppc_get_host_serial(&buf
)) {
367 _FDT((fdt_property_string(fdt
, "host-serial", buf
)));
371 buf
= g_strdup_printf(UUID_FMT
, qemu_uuid
[0], qemu_uuid
[1],
372 qemu_uuid
[2], qemu_uuid
[3], qemu_uuid
[4],
373 qemu_uuid
[5], qemu_uuid
[6], qemu_uuid
[7],
374 qemu_uuid
[8], qemu_uuid
[9], qemu_uuid
[10],
375 qemu_uuid
[11], qemu_uuid
[12], qemu_uuid
[13],
376 qemu_uuid
[14], qemu_uuid
[15]);
378 _FDT((fdt_property_string(fdt
, "vm,uuid", buf
)));
380 _FDT((fdt_property_string(fdt
, "system-id", buf
)));
384 if (qemu_get_vm_name()) {
385 _FDT((fdt_property_string(fdt
, "ibm,partition-name",
386 qemu_get_vm_name())));
389 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
390 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
393 _FDT((fdt_begin_node(fdt
, "chosen")));
395 /* Set Form1_affinity */
396 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
398 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
399 _FDT((fdt_property(fdt
, "linux,initrd-start",
400 &start_prop
, sizeof(start_prop
))));
401 _FDT((fdt_property(fdt
, "linux,initrd-end",
402 &end_prop
, sizeof(end_prop
))));
404 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
405 cpu_to_be64(kernel_size
) };
407 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
409 _FDT((fdt_property(fdt
, "qemu,boot-kernel-le", NULL
, 0)));
413 _FDT((fdt_property_cell(fdt
, "qemu,boot-menu", boot_menu
)));
415 _FDT((fdt_property_cell(fdt
, "qemu,graphic-width", graphic_width
)));
416 _FDT((fdt_property_cell(fdt
, "qemu,graphic-height", graphic_height
)));
417 _FDT((fdt_property_cell(fdt
, "qemu,graphic-depth", graphic_depth
)));
419 _FDT((fdt_end_node(fdt
)));
422 _FDT((fdt_begin_node(fdt
, "rtas")));
424 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
425 add_str(hypertas
, "hcall-multi-tce");
427 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas
->str
,
429 g_string_free(hypertas
, TRUE
);
430 _FDT((fdt_property(fdt
, "qemu,hypertas-functions", qemu_hypertas
->str
,
431 qemu_hypertas
->len
)));
432 g_string_free(qemu_hypertas
, TRUE
);
434 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
435 refpoints
, sizeof(refpoints
))));
437 _FDT((fdt_property_cell(fdt
, "rtas-error-log-max", RTAS_ERROR_LOG_MAX
)));
438 _FDT((fdt_property_cell(fdt
, "rtas-event-scan-rate",
439 RTAS_EVENT_SCAN_RATE
)));
442 _FDT((fdt_property(fdt
, "ibm,change-msix-capable", NULL
, 0)));
446 * According to PAPR, rtas ibm,os-term does not guarantee a return
447 * back to the guest cpu.
449 * While an additional ibm,extended-os-term property indicates that
450 * rtas call return will always occur. Set this property.
452 _FDT((fdt_property(fdt
, "ibm,extended-os-term", NULL
, 0)));
454 _FDT((fdt_end_node(fdt
)));
456 /* interrupt controller */
457 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
459 _FDT((fdt_property_string(fdt
, "device_type",
460 "PowerPC-External-Interrupt-Presentation")));
461 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
462 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
463 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
464 interrupt_server_ranges_prop
,
465 sizeof(interrupt_server_ranges_prop
))));
466 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
467 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
468 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
470 _FDT((fdt_end_node(fdt
)));
473 _FDT((fdt_begin_node(fdt
, "vdevice")));
475 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
476 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
477 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
478 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
479 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
480 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
482 _FDT((fdt_end_node(fdt
)));
485 spapr_events_fdt_skel(fdt
, epow_irq
);
487 /* /hypervisor node */
489 uint8_t hypercall
[16];
491 /* indicate KVM hypercall interface */
492 _FDT((fdt_begin_node(fdt
, "hypervisor")));
493 _FDT((fdt_property_string(fdt
, "compatible", "linux,kvm")));
494 if (kvmppc_has_cap_fixup_hcalls()) {
496 * Older KVM versions with older guest kernels were broken with the
497 * magic page, don't allow the guest to map it.
499 kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
501 _FDT((fdt_property(fdt
, "hcall-instructions", hypercall
,
502 sizeof(hypercall
))));
504 _FDT((fdt_end_node(fdt
)));
507 _FDT((fdt_end_node(fdt
))); /* close root node */
508 _FDT((fdt_finish(fdt
)));
513 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
516 uint32_t associativity
[] = {
517 cpu_to_be32(0x4), /* length */
518 cpu_to_be32(0x0), cpu_to_be32(0x0),
519 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
522 uint64_t mem_reg_property
[2];
525 mem_reg_property
[0] = cpu_to_be64(start
);
526 mem_reg_property
[1] = cpu_to_be64(size
);
528 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
529 off
= fdt_add_subnode(fdt
, 0, mem_name
);
531 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
532 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
533 sizeof(mem_reg_property
))));
534 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
535 sizeof(associativity
))));
539 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
541 MachineState
*machine
= MACHINE(spapr
);
542 hwaddr mem_start
, node_size
;
543 int i
, nb_nodes
= nb_numa_nodes
;
544 NodeInfo
*nodes
= numa_info
;
547 /* No NUMA nodes, assume there is just one node with whole RAM */
548 if (!nb_numa_nodes
) {
550 ramnode
.node_mem
= machine
->ram_size
;
554 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
555 if (!nodes
[i
].node_mem
) {
558 if (mem_start
>= machine
->ram_size
) {
561 node_size
= nodes
[i
].node_mem
;
562 if (node_size
> machine
->ram_size
- mem_start
) {
563 node_size
= machine
->ram_size
- mem_start
;
567 /* ppc_spapr_init() checks for rma_size <= node0_size already */
568 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
569 mem_start
+= spapr
->rma_size
;
570 node_size
-= spapr
->rma_size
;
572 for ( ; node_size
; ) {
573 hwaddr sizetmp
= pow2floor(node_size
);
575 /* mem_start != 0 here */
576 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
577 sizetmp
= 1ULL << ctzl(mem_start
);
580 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
581 node_size
-= sizetmp
;
582 mem_start
+= sizetmp
;
589 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
590 sPAPRMachineState
*spapr
)
592 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
593 CPUPPCState
*env
= &cpu
->env
;
594 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
595 int index
= ppc_get_vcpu_dt_id(cpu
);
596 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
597 0xffffffff, 0xffffffff};
598 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
599 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
600 uint32_t page_sizes_prop
[64];
601 size_t page_sizes_prop_size
;
602 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
603 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
605 /* Note: we keep CI large pages off for now because a 64K capable guest
606 * provisioned with large pages might otherwise try to map a qemu
607 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
608 * even if that qemu runs on a 4k host.
610 * We can later add this bit back when we are confident this is not
611 * an issue (!HV KVM or 64K host)
613 uint8_t pa_features_206
[] = { 6, 0,
614 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
615 uint8_t pa_features_207
[] = { 24, 0,
616 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
617 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
618 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
619 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
620 uint8_t *pa_features
;
623 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
624 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
626 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
627 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
628 env
->dcache_line_size
)));
629 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
630 env
->dcache_line_size
)));
631 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
632 env
->icache_line_size
)));
633 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
634 env
->icache_line_size
)));
636 if (pcc
->l1_dcache_size
) {
637 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
638 pcc
->l1_dcache_size
)));
640 fprintf(stderr
, "Warning: Unknown L1 dcache size for cpu\n");
642 if (pcc
->l1_icache_size
) {
643 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
644 pcc
->l1_icache_size
)));
646 fprintf(stderr
, "Warning: Unknown L1 icache size for cpu\n");
649 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
650 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
651 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
652 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
653 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
654 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
656 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
657 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
660 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
661 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
662 segs
, sizeof(segs
))));
665 /* Advertise VMX/VSX (vector extensions) if available
666 * 0 / no property == no vector extensions
667 * 1 == VMX / Altivec available
668 * 2 == VSX available */
669 if (env
->insns_flags
& PPC_ALTIVEC
) {
670 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
672 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
675 /* Advertise DFP (Decimal Floating Point) if available
676 * 0 / no property == no DFP
677 * 1 == DFP available */
678 if (env
->insns_flags2
& PPC2_DFP
) {
679 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
682 page_sizes_prop_size
= create_page_sizes_prop(env
, page_sizes_prop
,
683 sizeof(page_sizes_prop
));
684 if (page_sizes_prop_size
) {
685 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
686 page_sizes_prop
, page_sizes_prop_size
)));
689 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
690 if (env
->mmu_model
== POWERPC_MMU_2_06
) {
691 pa_features
= pa_features_206
;
692 pa_size
= sizeof(pa_features_206
);
693 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
694 pa_features
= pa_features_207
;
695 pa_size
= sizeof(pa_features_207
);
697 if (env
->ci_large_pages
) {
698 pa_features
[3] |= 0x20;
700 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
702 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
703 cs
->cpu_index
/ vcpus_per_socket
)));
705 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
706 pft_size_prop
, sizeof(pft_size_prop
))));
708 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
));
710 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
,
711 ppc_get_compat_smt_threads(cpu
)));
714 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
719 int smt
= kvmppc_smt_threads();
721 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
723 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
724 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
727 * We walk the CPUs in reverse order to ensure that CPU DT nodes
728 * created by fdt_add_subnode() end up in the right order in FDT
729 * for the guest kernel the enumerate the CPUs correctly.
731 CPU_FOREACH_REVERSE(cs
) {
732 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
733 int index
= ppc_get_vcpu_dt_id(cpu
);
734 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
737 if ((index
% smt
) != 0) {
741 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
742 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
745 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
751 * Adds ibm,dynamic-reconfiguration-memory node.
752 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
753 * of this device tree node.
755 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
757 MachineState
*machine
= MACHINE(spapr
);
759 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
760 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
761 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
762 uint32_t *int_buf
, *cur_index
, buf_len
;
763 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
766 * Allocate enough buffer size to fit in ibm,dynamic-memory
767 * or ibm,associativity-lookup-arrays
769 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
771 cur_index
= int_buf
= g_malloc0(buf_len
);
773 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
775 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
776 sizeof(prop_lmb_size
));
781 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
786 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
791 /* ibm,dynamic-memory */
792 int_buf
[0] = cpu_to_be32(nr_lmbs
);
794 for (i
= 0; i
< nr_lmbs
; i
++) {
795 sPAPRDRConnector
*drc
;
796 sPAPRDRConnectorClass
*drck
;
797 uint64_t addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;;
798 uint32_t *dynamic_memory
= cur_index
;
800 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
803 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
805 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
806 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
807 dynamic_memory
[2] = cpu_to_be32(drck
->get_index(drc
));
808 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
809 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
810 if (addr
< machine
->ram_size
||
811 memory_region_present(get_system_memory(), addr
)) {
812 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
814 dynamic_memory
[5] = cpu_to_be32(0);
817 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
819 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
824 /* ibm,associativity-lookup-arrays */
826 int_buf
[0] = cpu_to_be32(nr_nodes
);
827 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
829 for (i
= 0; i
< nr_nodes
; i
++) {
830 uint32_t associativity
[] = {
836 memcpy(cur_index
, associativity
, sizeof(associativity
));
839 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
840 (cur_index
- int_buf
) * sizeof(uint32_t));
846 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
847 target_ulong addr
, target_ulong size
,
848 bool cpu_update
, bool memory_update
)
850 void *fdt
, *fdt_skel
;
851 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
852 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
856 /* Create sceleton */
857 fdt_skel
= g_malloc0(size
);
858 _FDT((fdt_create(fdt_skel
, size
)));
859 _FDT((fdt_begin_node(fdt_skel
, "")));
860 _FDT((fdt_end_node(fdt_skel
)));
861 _FDT((fdt_finish(fdt_skel
)));
862 fdt
= g_malloc0(size
);
863 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
866 /* Fixup cpu nodes */
868 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
871 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
872 if (memory_update
&& smc
->dr_lmb_enabled
) {
873 _FDT((spapr_populate_drconf_memory(spapr
, fdt
)));
876 /* Pack resulting tree */
877 _FDT((fdt_pack(fdt
)));
879 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
880 trace_spapr_cas_failed(size
);
884 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
885 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
886 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
892 static void spapr_finalize_fdt(sPAPRMachineState
*spapr
,
897 MachineState
*machine
= MACHINE(qdev_get_machine());
898 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
899 const char *boot_device
= machine
->boot_order
;
906 fdt
= g_malloc(FDT_MAX_SIZE
);
908 /* open out the base tree into a temp buffer for the final tweaks */
909 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
911 ret
= spapr_populate_memory(spapr
, fdt
);
913 fprintf(stderr
, "couldn't setup memory nodes in fdt\n");
917 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
919 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
923 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
924 ret
= spapr_rng_populate_dt(fdt
);
926 fprintf(stderr
, "could not set up rng device in the fdt\n");
931 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
932 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
936 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
941 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
943 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
947 spapr_populate_cpus_dt_node(fdt
, spapr
);
949 bootlist
= get_boot_devices_list(&cb
, true);
950 if (cb
&& bootlist
) {
951 int offset
= fdt_path_offset(fdt
, "/chosen");
955 for (i
= 0; i
< cb
; i
++) {
956 if (bootlist
[i
] == '\n') {
961 ret
= fdt_setprop_string(fdt
, offset
, "qemu,boot-list", bootlist
);
964 if (boot_device
&& strlen(boot_device
)) {
965 int offset
= fdt_path_offset(fdt
, "/chosen");
970 fdt_setprop_string(fdt
, offset
, "qemu,boot-device", boot_device
);
973 if (!spapr
->has_graphics
) {
974 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
977 if (smc
->dr_lmb_enabled
) {
978 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
981 _FDT((fdt_pack(fdt
)));
983 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
984 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
985 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
989 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
990 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
996 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
998 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1001 static void emulate_spapr_hypercall(PowerPCCPU
*cpu
)
1003 CPUPPCState
*env
= &cpu
->env
;
1006 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1007 env
->gpr
[3] = H_PRIVILEGE
;
1009 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1013 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1014 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1015 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1016 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1017 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1019 static void spapr_alloc_htab(sPAPRMachineState
*spapr
)
1024 /* allocate hash page table. For now we always make this 16mb,
1025 * later we should probably make it scale to the size of guest
1028 shift
= kvmppc_reset_htab(spapr
->htab_shift
);
1031 * For HV KVM, host kernel will return -ENOMEM when requested
1032 * HTAB size can't be allocated.
1034 error_setg(&error_abort
, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1035 } else if (shift
> 0) {
1037 * Kernel handles htab, we don't need to allocate one
1039 * Older kernels can fall back to lower HTAB shift values,
1040 * but we don't allow booting of such guests.
1042 if (shift
!= spapr
->htab_shift
) {
1043 error_setg(&error_abort
, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1046 spapr
->htab_shift
= shift
;
1047 kvmppc_kern_htab
= true;
1050 spapr
->htab
= qemu_memalign(HTAB_SIZE(spapr
), HTAB_SIZE(spapr
));
1053 memset(spapr
->htab
, 0, HTAB_SIZE(spapr
));
1055 for (index
= 0; index
< HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
; index
++) {
1056 DIRTY_HPTE(HPTE(spapr
->htab
, index
));
1062 * Clear HTAB entries during reset.
1064 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1065 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1067 static void spapr_reset_htab(sPAPRMachineState
*spapr
)
1072 shift
= kvmppc_reset_htab(spapr
->htab_shift
);
1074 error_setg(&error_abort
, "Failed to reset HTAB");
1075 } else if (shift
> 0) {
1076 if (shift
!= spapr
->htab_shift
) {
1077 error_setg(&error_abort
, "Requested HTAB allocation failed during reset");
1080 /* Tell readers to update their file descriptor */
1081 if (spapr
->htab_fd
>= 0) {
1082 spapr
->htab_fd_stale
= true;
1085 memset(spapr
->htab
, 0, HTAB_SIZE(spapr
));
1087 for (index
= 0; index
< HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
; index
++) {
1088 DIRTY_HPTE(HPTE(spapr
->htab
, index
));
1092 /* Update the RMA size if necessary */
1093 if (spapr
->vrma_adjust
) {
1094 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(),
1099 static int find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1101 bool matched
= false;
1103 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1108 error_report("Device %s is not supported by this machine yet.",
1109 qdev_fw_name(DEVICE(sbdev
)));
1117 * A guest reset will cause spapr->htab_fd to become stale if being used.
1118 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1120 static int spapr_check_htab_fd(sPAPRMachineState
*spapr
)
1124 if (spapr
->htab_fd_stale
) {
1125 close(spapr
->htab_fd
);
1126 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1127 if (spapr
->htab_fd
< 0) {
1128 error_report("Unable to open fd for reading hash table from KVM: "
1129 "%s", strerror(errno
));
1132 spapr
->htab_fd_stale
= false;
1138 static void ppc_spapr_reset(void)
1140 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1141 PowerPCCPU
*first_ppc_cpu
;
1142 uint32_t rtas_limit
;
1144 /* Check for unknown sysbus devices */
1145 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1147 /* Reset the hash table & recalc the RMA */
1148 spapr_reset_htab(spapr
);
1150 qemu_devices_reset();
1153 * We place the device tree and RTAS just below either the top of the RMA,
1154 * or just below 2GB, whichever is lowere, so that it can be
1155 * processed with 32-bit real mode code if necessary
1157 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1158 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1159 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
1162 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
1165 /* Copy RTAS over */
1166 cpu_physical_memory_write(spapr
->rtas_addr
, spapr
->rtas_blob
,
1169 /* Set up the entry state */
1170 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1171 first_ppc_cpu
->env
.gpr
[3] = spapr
->fdt_addr
;
1172 first_ppc_cpu
->env
.gpr
[5] = 0;
1173 first_cpu
->halted
= 0;
1174 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1178 static void spapr_cpu_reset(void *opaque
)
1180 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1181 PowerPCCPU
*cpu
= opaque
;
1182 CPUState
*cs
= CPU(cpu
);
1183 CPUPPCState
*env
= &cpu
->env
;
1187 /* All CPUs start halted. CPU0 is unhalted from the machine level
1188 * reset code and the rest are explicitly started up by the guest
1189 * using an RTAS call */
1192 env
->spr
[SPR_HIOR
] = 0;
1194 env
->external_htab
= (uint8_t *)spapr
->htab
;
1195 if (kvm_enabled() && !env
->external_htab
) {
1197 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1198 * functions do the right thing.
1200 env
->external_htab
= (void *)1;
1202 env
->htab_base
= -1;
1204 * htab_mask is the mask used to normalize hash value to PTEG index.
1205 * htab_shift is log2 of hash table size.
1206 * We have 8 hpte per group, and each hpte is 16 bytes.
1207 * ie have 128 bytes per hpte entry.
1209 env
->htab_mask
= (1ULL << (spapr
->htab_shift
- 7)) - 1;
1210 env
->spr
[SPR_SDR1
] = (target_ulong
)(uintptr_t)spapr
->htab
|
1211 (spapr
->htab_shift
- 18);
1214 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1216 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1217 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1220 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1224 qdev_init_nofail(dev
);
1226 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1229 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1231 DeviceState
*dev
= qdev_create(NULL
, TYPE_SPAPR_RTC
);
1233 qdev_init_nofail(dev
);
1236 object_property_add_alias(qdev_get_machine(), "rtc-time",
1237 OBJECT(spapr
->rtc
), "date", NULL
);
1240 /* Returns whether we want to use VGA or not */
1241 static int spapr_vga_init(PCIBus
*pci_bus
)
1243 switch (vga_interface_type
) {
1250 return pci_vga_init(pci_bus
) != NULL
;
1252 fprintf(stderr
, "This vga model is not supported,"
1253 "currently it only supports -vga std\n");
1258 static int spapr_post_load(void *opaque
, int version_id
)
1260 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1263 /* In earlier versions, there was no separate qdev for the PAPR
1264 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1265 * So when migrating from those versions, poke the incoming offset
1266 * value into the RTC device */
1267 if (version_id
< 3) {
1268 err
= spapr_rtc_import_offset(spapr
->rtc
, spapr
->rtc_offset
);
1274 static bool version_before_3(void *opaque
, int version_id
)
1276 return version_id
< 3;
1279 static const VMStateDescription vmstate_spapr
= {
1282 .minimum_version_id
= 1,
1283 .post_load
= spapr_post_load
,
1284 .fields
= (VMStateField
[]) {
1285 /* used to be @next_irq */
1286 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1289 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1291 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1292 VMSTATE_END_OF_LIST()
1296 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1298 sPAPRMachineState
*spapr
= opaque
;
1300 /* "Iteration" header */
1301 qemu_put_be32(f
, spapr
->htab_shift
);
1304 spapr
->htab_save_index
= 0;
1305 spapr
->htab_first_pass
= true;
1307 assert(kvm_enabled());
1309 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1310 spapr
->htab_fd_stale
= false;
1311 if (spapr
->htab_fd
< 0) {
1312 fprintf(stderr
, "Unable to open fd for reading hash table from KVM: %s\n",
1322 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1325 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1326 int index
= spapr
->htab_save_index
;
1327 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1329 assert(spapr
->htab_first_pass
);
1334 /* Consume invalid HPTEs */
1335 while ((index
< htabslots
)
1336 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1338 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1341 /* Consume valid HPTEs */
1343 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1344 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1346 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1349 if (index
> chunkstart
) {
1350 int n_valid
= index
- chunkstart
;
1352 qemu_put_be32(f
, chunkstart
);
1353 qemu_put_be16(f
, n_valid
);
1354 qemu_put_be16(f
, 0);
1355 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1356 HASH_PTE_SIZE_64
* n_valid
);
1358 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1362 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1364 if (index
>= htabslots
) {
1365 assert(index
== htabslots
);
1367 spapr
->htab_first_pass
= false;
1369 spapr
->htab_save_index
= index
;
1372 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1375 bool final
= max_ns
< 0;
1376 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1377 int examined
= 0, sent
= 0;
1378 int index
= spapr
->htab_save_index
;
1379 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1381 assert(!spapr
->htab_first_pass
);
1384 int chunkstart
, invalidstart
;
1386 /* Consume non-dirty HPTEs */
1387 while ((index
< htabslots
)
1388 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1394 /* Consume valid dirty HPTEs */
1395 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1396 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1397 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1398 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1403 invalidstart
= index
;
1404 /* Consume invalid dirty HPTEs */
1405 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1406 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1407 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1408 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1413 if (index
> chunkstart
) {
1414 int n_valid
= invalidstart
- chunkstart
;
1415 int n_invalid
= index
- invalidstart
;
1417 qemu_put_be32(f
, chunkstart
);
1418 qemu_put_be16(f
, n_valid
);
1419 qemu_put_be16(f
, n_invalid
);
1420 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1421 HASH_PTE_SIZE_64
* n_valid
);
1422 sent
+= index
- chunkstart
;
1424 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1429 if (examined
>= htabslots
) {
1433 if (index
>= htabslots
) {
1434 assert(index
== htabslots
);
1437 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1439 if (index
>= htabslots
) {
1440 assert(index
== htabslots
);
1444 spapr
->htab_save_index
= index
;
1446 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1449 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1450 #define MAX_KVM_BUF_SIZE 2048
1452 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1454 sPAPRMachineState
*spapr
= opaque
;
1457 /* Iteration header */
1458 qemu_put_be32(f
, 0);
1461 assert(kvm_enabled());
1463 rc
= spapr_check_htab_fd(spapr
);
1468 rc
= kvmppc_save_htab(f
, spapr
->htab_fd
,
1469 MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1473 } else if (spapr
->htab_first_pass
) {
1474 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1476 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1480 qemu_put_be32(f
, 0);
1481 qemu_put_be16(f
, 0);
1482 qemu_put_be16(f
, 0);
1487 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1489 sPAPRMachineState
*spapr
= opaque
;
1491 /* Iteration header */
1492 qemu_put_be32(f
, 0);
1497 assert(kvm_enabled());
1499 rc
= spapr_check_htab_fd(spapr
);
1504 rc
= kvmppc_save_htab(f
, spapr
->htab_fd
, MAX_KVM_BUF_SIZE
, -1);
1508 close(spapr
->htab_fd
);
1509 spapr
->htab_fd
= -1;
1511 htab_save_later_pass(f
, spapr
, -1);
1515 qemu_put_be32(f
, 0);
1516 qemu_put_be16(f
, 0);
1517 qemu_put_be16(f
, 0);
1522 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1524 sPAPRMachineState
*spapr
= opaque
;
1525 uint32_t section_hdr
;
1528 if (version_id
< 1 || version_id
> 1) {
1529 fprintf(stderr
, "htab_load() bad version\n");
1533 section_hdr
= qemu_get_be32(f
);
1536 /* First section, just the hash shift */
1537 if (spapr
->htab_shift
!= section_hdr
) {
1538 error_report("htab_shift mismatch: source %d target %d",
1539 section_hdr
, spapr
->htab_shift
);
1546 assert(kvm_enabled());
1548 fd
= kvmppc_get_htab_fd(true);
1550 fprintf(stderr
, "Unable to open fd to restore KVM hash table: %s\n",
1557 uint16_t n_valid
, n_invalid
;
1559 index
= qemu_get_be32(f
);
1560 n_valid
= qemu_get_be16(f
);
1561 n_invalid
= qemu_get_be16(f
);
1563 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1568 if ((index
+ n_valid
+ n_invalid
) >
1569 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1570 /* Bad index in stream */
1571 fprintf(stderr
, "htab_load() bad index %d (%hd+%hd entries) "
1572 "in htab stream (htab_shift=%d)\n", index
, n_valid
, n_invalid
,
1579 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1580 HASH_PTE_SIZE_64
* n_valid
);
1583 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1584 HASH_PTE_SIZE_64
* n_invalid
);
1591 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
1606 static SaveVMHandlers savevm_htab_handlers
= {
1607 .save_live_setup
= htab_save_setup
,
1608 .save_live_iterate
= htab_save_iterate
,
1609 .save_live_complete_precopy
= htab_save_complete
,
1610 .load_state
= htab_load
,
1613 static void spapr_boot_set(void *opaque
, const char *boot_device
,
1616 MachineState
*machine
= MACHINE(qdev_get_machine());
1617 machine
->boot_order
= g_strdup(boot_device
);
1620 static void spapr_cpu_init(sPAPRMachineState
*spapr
, PowerPCCPU
*cpu
)
1622 CPUPPCState
*env
= &cpu
->env
;
1624 /* Set time-base frequency to 512 MHz */
1625 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
1627 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1628 * MSR[IP] should never be set.
1630 env
->msr_mask
&= ~(1 << 6);
1632 /* Tell KVM that we're in PAPR mode */
1633 if (kvm_enabled()) {
1634 kvmppc_set_papr(cpu
);
1637 if (cpu
->max_compat
) {
1638 if (ppc_set_compat(cpu
, cpu
->max_compat
) < 0) {
1643 xics_cpu_setup(spapr
->icp
, cpu
);
1645 qemu_register_reset(spapr_cpu_reset
, cpu
);
1649 * Reset routine for LMB DR devices.
1651 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1652 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1653 * when it walks all its children devices. LMB devices reset occurs
1654 * as part of spapr_ppc_reset().
1656 static void spapr_drc_reset(void *opaque
)
1658 sPAPRDRConnector
*drc
= opaque
;
1659 DeviceState
*d
= DEVICE(drc
);
1666 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
1668 MachineState
*machine
= MACHINE(spapr
);
1669 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
1670 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
1673 for (i
= 0; i
< nr_lmbs
; i
++) {
1674 sPAPRDRConnector
*drc
;
1677 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
1678 drc
= spapr_dr_connector_new(OBJECT(spapr
), SPAPR_DR_CONNECTOR_TYPE_LMB
,
1680 qemu_register_reset(spapr_drc_reset
, drc
);
1685 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1686 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1687 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1689 static void spapr_validate_node_memory(MachineState
*machine
)
1693 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
||
1694 machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1695 error_report("Can't support memory configuration where RAM size "
1696 "0x" RAM_ADDR_FMT
" or maxmem size "
1697 "0x" RAM_ADDR_FMT
" isn't aligned to %llu MB",
1698 machine
->ram_size
, machine
->maxram_size
,
1699 SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
1703 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1704 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
1705 error_report("Can't support memory configuration where memory size"
1706 " %" PRIx64
" of node %d isn't aligned to %llu MB",
1707 numa_info
[i
].node_mem
, i
,
1708 SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
1714 /* pSeries LPAR / sPAPR hardware init */
1715 static void ppc_spapr_init(MachineState
*machine
)
1717 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1718 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1719 const char *kernel_filename
= machine
->kernel_filename
;
1720 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1721 const char *initrd_filename
= machine
->initrd_filename
;
1725 MemoryRegion
*sysmem
= get_system_memory();
1726 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1727 MemoryRegion
*rma_region
;
1729 hwaddr rma_alloc_size
;
1730 hwaddr node0_size
= spapr_node0_size();
1731 uint32_t initrd_base
= 0;
1732 long kernel_size
= 0, initrd_size
= 0;
1733 long load_limit
, fw_size
;
1734 bool kernel_le
= false;
1737 msi_supported
= true;
1739 QLIST_INIT(&spapr
->phbs
);
1741 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
1743 /* Allocate RMA if necessary */
1744 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
1746 if (rma_alloc_size
== -1) {
1747 error_report("Unable to create RMA");
1751 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
1752 spapr
->rma_size
= rma_alloc_size
;
1754 spapr
->rma_size
= node0_size
;
1756 /* With KVM, we don't actually know whether KVM supports an
1757 * unbounded RMA (PR KVM) or is limited by the hash table size
1758 * (HV KVM using VRMA), so we always assume the latter
1760 * In that case, we also limit the initial allocations for RTAS
1761 * etc... to 256M since we have no way to know what the VRMA size
1762 * is going to be as it depends on the size of the hash table
1763 * isn't determined yet.
1765 if (kvm_enabled()) {
1766 spapr
->vrma_adjust
= 1;
1767 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
1771 if (spapr
->rma_size
> node0_size
) {
1772 fprintf(stderr
, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")\n",
1777 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1778 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
1780 /* We aim for a hash table of size 1/128 the size of RAM. The
1781 * normal rule of thumb is 1/64 the size of RAM, but that's much
1782 * more than needed for the Linux guests we support. */
1783 spapr
->htab_shift
= 18; /* Minimum architected size */
1784 while (spapr
->htab_shift
<= 46) {
1785 if ((1ULL << (spapr
->htab_shift
+ 7)) >= machine
->maxram_size
) {
1788 spapr
->htab_shift
++;
1790 spapr_alloc_htab(spapr
);
1792 /* Set up Interrupt Controller before we create the VCPUs */
1793 spapr
->icp
= xics_system_init(machine
,
1794 DIV_ROUND_UP(max_cpus
* kvmppc_smt_threads(),
1798 if (smc
->dr_lmb_enabled
) {
1799 spapr_validate_node_memory(machine
);
1803 if (machine
->cpu_model
== NULL
) {
1804 machine
->cpu_model
= kvm_enabled() ? "host" : "POWER7";
1806 for (i
= 0; i
< smp_cpus
; i
++) {
1807 cpu
= cpu_ppc_init(machine
->cpu_model
);
1809 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
1812 spapr_cpu_init(spapr
, cpu
);
1815 if (kvm_enabled()) {
1816 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1817 kvmppc_enable_logical_ci_hcalls();
1818 kvmppc_enable_set_mode_hcall();
1822 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
1824 memory_region_add_subregion(sysmem
, 0, ram
);
1826 if (rma_alloc_size
&& rma
) {
1827 rma_region
= g_new(MemoryRegion
, 1);
1828 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
1829 rma_alloc_size
, rma
);
1830 vmstate_register_ram_global(rma_region
);
1831 memory_region_add_subregion(sysmem
, 0, rma_region
);
1834 /* initialize hotplug memory address space */
1835 if (machine
->ram_size
< machine
->maxram_size
) {
1836 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
1838 if (machine
->ram_slots
> SPAPR_MAX_RAM_SLOTS
) {
1839 error_report("Specified number of memory slots %" PRIu64
1840 " exceeds max supported %d",
1841 machine
->ram_slots
, SPAPR_MAX_RAM_SLOTS
);
1845 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
1846 SPAPR_HOTPLUG_MEM_ALIGN
);
1847 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
1848 "hotplug-memory", hotplug_mem_size
);
1849 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
1850 &spapr
->hotplug_memory
.mr
);
1853 if (smc
->dr_lmb_enabled
) {
1854 spapr_create_lmb_dr_connectors(spapr
);
1857 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
1859 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1862 spapr
->rtas_size
= get_image_size(filename
);
1863 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
1864 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
1865 error_report("Could not load LPAR rtas '%s'", filename
);
1868 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
1869 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1870 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
1875 /* Set up EPOW events infrastructure */
1876 spapr_events_init(spapr
);
1878 /* Set up the RTC RTAS interfaces */
1879 spapr_rtc_create(spapr
);
1881 /* Set up VIO bus */
1882 spapr
->vio_bus
= spapr_vio_bus_init();
1884 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
1885 if (serial_hds
[i
]) {
1886 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
1890 /* We always have at least the nvram device on VIO */
1891 spapr_create_nvram(spapr
);
1894 spapr_pci_rtas_init();
1896 phb
= spapr_create_phb(spapr
, 0);
1898 for (i
= 0; i
< nb_nics
; i
++) {
1899 NICInfo
*nd
= &nd_table
[i
];
1902 nd
->model
= g_strdup("ibmveth");
1905 if (strcmp(nd
->model
, "ibmveth") == 0) {
1906 spapr_vlan_create(spapr
->vio_bus
, nd
);
1908 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
1912 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
1913 spapr_vscsi_create(spapr
->vio_bus
);
1917 if (spapr_vga_init(phb
->bus
)) {
1918 spapr
->has_graphics
= true;
1919 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
1923 if (smc
->use_ohci_by_default
) {
1924 pci_create_simple(phb
->bus
, -1, "pci-ohci");
1926 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
1929 if (spapr
->has_graphics
) {
1930 USBBus
*usb_bus
= usb_bus_find(-1);
1932 usb_create_simple(usb_bus
, "usb-kbd");
1933 usb_create_simple(usb_bus
, "usb-mouse");
1937 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
1938 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
1939 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
1943 if (kernel_filename
) {
1944 uint64_t lowaddr
= 0;
1946 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
1947 NULL
, &lowaddr
, NULL
, 1, PPC_ELF_MACHINE
, 0);
1948 if (kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
1949 kernel_size
= load_elf(kernel_filename
,
1950 translate_kernel_address
, NULL
,
1951 NULL
, &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
, 0);
1952 kernel_le
= kernel_size
> 0;
1954 if (kernel_size
< 0) {
1955 fprintf(stderr
, "qemu: error loading %s: %s\n",
1956 kernel_filename
, load_elf_strerror(kernel_size
));
1961 if (initrd_filename
) {
1962 /* Try to locate the initrd in the gap between the kernel
1963 * and the firmware. Add a bit of space just in case
1965 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
1966 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
1967 load_limit
- initrd_base
);
1968 if (initrd_size
< 0) {
1969 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
1979 if (bios_name
== NULL
) {
1980 bios_name
= FW_FILE_NAME
;
1982 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1984 error_report("Could not find LPAR firmware '%s'", bios_name
);
1987 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
1989 error_report("Could not load LPAR firmware '%s'", filename
);
1994 /* FIXME: Should register things through the MachineState's qdev
1995 * interface, this is a legacy from the sPAPREnvironment structure
1996 * which predated MachineState but had a similar function */
1997 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
1998 register_savevm_live(NULL
, "spapr/htab", -1, 1,
1999 &savevm_htab_handlers
, spapr
);
2001 /* Prepare the device tree */
2002 spapr
->fdt_skel
= spapr_create_fdt_skel(initrd_base
, initrd_size
,
2003 kernel_size
, kernel_le
,
2005 spapr
->check_exception_irq
);
2006 assert(spapr
->fdt_skel
!= NULL
);
2009 QTAILQ_INIT(&spapr
->ccs_list
);
2010 qemu_register_reset(spapr_ccs_reset_hook
, spapr
);
2012 qemu_register_boot_set(spapr_boot_set
, spapr
);
2015 static int spapr_kvm_type(const char *vm_type
)
2021 if (!strcmp(vm_type
, "HV")) {
2025 if (!strcmp(vm_type
, "PR")) {
2029 error_report("Unknown kvm-type specified '%s'", vm_type
);
2034 * Implementation of an interface to adjust firmware path
2035 * for the bootindex property handling.
2037 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2040 #define CAST(type, obj, name) \
2041 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2042 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2043 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2046 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2047 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2048 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2052 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2053 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2054 * in the top 16 bits of the 64-bit LUN
2056 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2057 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2058 (uint64_t)id
<< 48);
2059 } else if (virtio
) {
2061 * We use SRP luns of the form 01000000 | (target << 8) | lun
2062 * in the top 32 bits of the 64-bit LUN
2063 * Note: the quote above is from SLOF and it is wrong,
2064 * the actual binding is:
2065 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2067 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2068 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2069 (uint64_t)id
<< 32);
2072 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2073 * in the top 32 bits of the 64-bit LUN
2075 unsigned usb_port
= atoi(usb
->port
->path
);
2076 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2077 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2078 (uint64_t)id
<< 32);
2083 /* Replace "pci" with "pci@800000020000000" */
2084 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2090 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2092 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2094 return g_strdup(spapr
->kvm_type
);
2097 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2099 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2101 g_free(spapr
->kvm_type
);
2102 spapr
->kvm_type
= g_strdup(value
);
2105 static void spapr_machine_initfn(Object
*obj
)
2107 object_property_add_str(obj
, "kvm-type",
2108 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2109 object_property_set_description(obj
, "kvm-type",
2110 "Specifies the KVM virtualization mode (HV, PR)",
2114 static void spapr_machine_finalizefn(Object
*obj
)
2116 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2118 g_free(spapr
->kvm_type
);
2121 static void ppc_cpu_do_nmi_on_cpu(void *arg
)
2125 cpu_synchronize_state(cs
);
2126 ppc_cpu_do_system_reset(cs
);
2129 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2134 async_run_on_cpu(cs
, ppc_cpu_do_nmi_on_cpu
, cs
);
2138 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr
, uint64_t size
,
2139 uint32_t node
, Error
**errp
)
2141 sPAPRDRConnector
*drc
;
2142 sPAPRDRConnectorClass
*drck
;
2143 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2144 int i
, fdt_offset
, fdt_size
;
2148 * Check for DRC connectors and send hotplug notification to the
2149 * guest only in case of hotplugged memory. This allows cold plugged
2150 * memory to be specified at boot time.
2152 if (!dev
->hotplugged
) {
2156 for (i
= 0; i
< nr_lmbs
; i
++) {
2157 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2158 addr
/SPAPR_MEMORY_BLOCK_SIZE
);
2161 fdt
= create_device_tree(&fdt_size
);
2162 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2163 SPAPR_MEMORY_BLOCK_SIZE
);
2165 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2166 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, errp
);
2167 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2169 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
, nr_lmbs
);
2172 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2173 uint32_t node
, Error
**errp
)
2175 Error
*local_err
= NULL
;
2176 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2177 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2178 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2179 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2180 uint64_t align
= memory_region_get_alignment(mr
);
2181 uint64_t size
= memory_region_size(mr
);
2184 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2185 error_setg(&local_err
, "Hotplugged memory size must be a multiple of "
2186 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
2190 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, &local_err
);
2195 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2197 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2201 spapr_add_lmbs(dev
, addr
, size
, node
, &error_abort
);
2204 error_propagate(errp
, local_err
);
2207 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
2208 DeviceState
*dev
, Error
**errp
)
2210 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2212 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2215 if (!smc
->dr_lmb_enabled
) {
2216 error_setg(errp
, "Memory hotplug not supported for this machine");
2219 node
= object_property_get_int(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
2225 * Currently PowerPC kernel doesn't allow hot-adding memory to
2226 * memory-less node, but instead will silently add the memory
2227 * to the first node that has some memory. This causes two
2228 * unexpected behaviours for the user.
2230 * - Memory gets hotplugged to a different node than what the user
2232 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2233 * to memory-less node, a reboot will set things accordingly
2234 * and the previously hotplugged memory now ends in the right node.
2235 * This appears as if some memory moved from one node to another.
2237 * So until kernel starts supporting memory hotplug to memory-less
2238 * nodes, just prevent such attempts upfront in QEMU.
2240 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
2241 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
2246 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
2250 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
2251 DeviceState
*dev
, Error
**errp
)
2253 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2254 error_setg(errp
, "Memory hot unplug not supported by sPAPR");
2258 static HotplugHandler
*spapr_get_hotpug_handler(MachineState
*machine
,
2261 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2262 return HOTPLUG_HANDLER(machine
);
2267 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index
)
2269 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2270 * socket means much for the paravirtualized PAPR platform) */
2271 return cpu_index
/ smp_threads
/ smp_cores
;
2274 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
2276 MachineClass
*mc
= MACHINE_CLASS(oc
);
2277 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
2278 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
2279 NMIClass
*nc
= NMI_CLASS(oc
);
2280 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2282 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
2285 * We set up the default / latest behaviour here. The class_init
2286 * functions for the specific versioned machine types can override
2287 * these details for backwards compatibility
2289 mc
->init
= ppc_spapr_init
;
2290 mc
->reset
= ppc_spapr_reset
;
2291 mc
->block_default_type
= IF_SCSI
;
2292 mc
->max_cpus
= MAX_CPUMASK_BITS
;
2293 mc
->no_parallel
= 1;
2294 mc
->default_boot_order
= "";
2295 mc
->default_ram_size
= 512 * M_BYTE
;
2296 mc
->kvm_type
= spapr_kvm_type
;
2297 mc
->has_dynamic_sysbus
= true;
2298 mc
->pci_allow_0_address
= true;
2299 mc
->get_hotplug_handler
= spapr_get_hotpug_handler
;
2300 hc
->plug
= spapr_machine_device_plug
;
2301 hc
->unplug
= spapr_machine_device_unplug
;
2302 mc
->cpu_index_to_socket_id
= spapr_cpu_index_to_socket_id
;
2304 smc
->dr_lmb_enabled
= true;
2305 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
2306 nc
->nmi_monitor_handler
= spapr_nmi
;
2309 static const TypeInfo spapr_machine_info
= {
2310 .name
= TYPE_SPAPR_MACHINE
,
2311 .parent
= TYPE_MACHINE
,
2313 .instance_size
= sizeof(sPAPRMachineState
),
2314 .instance_init
= spapr_machine_initfn
,
2315 .instance_finalize
= spapr_machine_finalizefn
,
2316 .class_size
= sizeof(sPAPRMachineClass
),
2317 .class_init
= spapr_machine_class_init
,
2318 .interfaces
= (InterfaceInfo
[]) {
2319 { TYPE_FW_PATH_PROVIDER
},
2321 { TYPE_HOTPLUG_HANDLER
},
2326 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2327 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2330 MachineClass *mc = MACHINE_CLASS(oc); \
2331 spapr_machine_##suffix##_class_options(mc); \
2333 mc->alias = "pseries"; \
2334 mc->is_default = 1; \
2337 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2339 MachineState *machine = MACHINE(obj); \
2340 spapr_machine_##suffix##_instance_options(machine); \
2342 static const TypeInfo spapr_machine_##suffix##_info = { \
2343 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2344 .parent = TYPE_SPAPR_MACHINE, \
2345 .class_init = spapr_machine_##suffix##_class_init, \
2346 .instance_init = spapr_machine_##suffix##_instance_init, \
2348 static void spapr_machine_register_##suffix(void) \
2350 type_register(&spapr_machine_##suffix##_info); \
2352 machine_init(spapr_machine_register_##suffix)
2357 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
2361 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
2363 /* Defaults for the latest behaviour inherited from the base class */
2366 DEFINE_SPAPR_MACHINE(2_6
, "2.6", true);
2371 #define SPAPR_COMPAT_2_5 \
2374 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
2378 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
2380 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
2382 spapr_machine_2_6_class_options(mc
);
2383 smc
->use_ohci_by_default
= true;
2384 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
2387 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
2392 #define SPAPR_COMPAT_2_4 \
2395 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
2397 spapr_machine_2_5_instance_options(machine
);
2400 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
2402 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
2404 spapr_machine_2_5_class_options(mc
);
2405 smc
->dr_lmb_enabled
= false;
2406 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
2409 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
2414 #define SPAPR_COMPAT_2_3 \
2418 .driver = "spapr-pci-host-bridge",\
2419 .property = "dynamic-reconfiguration",\
2423 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
2425 spapr_machine_2_4_instance_options(machine
);
2426 savevm_skip_section_footers();
2427 global_state_set_optional();
2430 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
2432 spapr_machine_2_4_class_options(mc
);
2433 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
2435 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
2441 #define SPAPR_COMPAT_2_2 \
2445 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2446 .property = "mem_win_size",\
2447 .value = "0x20000000",\
2450 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
2452 spapr_machine_2_3_instance_options(machine
);
2455 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
2457 spapr_machine_2_3_class_options(mc
);
2458 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
2460 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
2465 #define SPAPR_COMPAT_2_1 \
2469 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
2471 spapr_machine_2_2_instance_options(machine
);
2474 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
2476 spapr_machine_2_2_class_options(mc
);
2477 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
2479 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
2481 static void spapr_machine_register_types(void)
2483 type_register_static(&spapr_machine_info
);
2486 type_init(spapr_machine_register_types
)