Merge tag 'v2.10.0-rc0'
[qemu/ar7.git] / target / arm / cpu.h
blobcd874e99e7d0293e46da6f39b81a7957237a2a95
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
42 #include "fpu/softfloat.h"
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_HVC 11 /* HyperVisor Call */
54 #define EXCP_HYP_TRAP 12
55 #define EXCP_SMC 13 /* Secure Monitor Call */
56 #define EXCP_VIRQ 14
57 #define EXCP_VFIQ 15
58 #define EXCP_SEMIHOST 16 /* semihosting call */
59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
74 /* ARM-specific interrupt pending bits. */
75 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
76 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
77 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
79 /* The usual mapping for an AArch64 system register to its AArch32
80 * counterpart is for the 32 bit world to have access to the lower
81 * half only (with writes leaving the upper half untouched). It's
82 * therefore useful to be able to pass TCG the offset of the least
83 * significant half of a uint64_t struct member.
85 #ifdef HOST_WORDS_BIGENDIAN
86 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
87 #define offsetofhigh32(S, M) offsetof(S, M)
88 #else
89 #define offsetoflow32(S, M) offsetof(S, M)
90 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
91 #endif
93 /* Meanings of the ARMCPU object's four inbound GPIO lines */
94 #define ARM_CPU_IRQ 0
95 #define ARM_CPU_FIQ 1
96 #define ARM_CPU_VIRQ 2
97 #define ARM_CPU_VFIQ 3
99 #define NB_MMU_MODES 7
100 /* ARM-specific extra insn start words:
101 * 1: Conditional execution bits
102 * 2: Partial exception syndrome for data aborts
104 #define TARGET_INSN_START_EXTRA_WORDS 2
106 /* The 2nd extra word holding syndrome info for data aborts does not use
107 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
108 * help the sleb128 encoder do a better job.
109 * When restoring the CPU state, we shift it back up.
111 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
112 #define ARM_INSN_START_WORD2_SHIFT 14
114 /* We currently assume float and double are IEEE single and double
115 precision respectively.
116 Doing runtime conversions is tricky because VFP registers may contain
117 integer values (eg. as the result of a FTOSI instruction).
118 s<2n> maps to the least significant half of d<n>
119 s<2n+1> maps to the most significant half of d<n>
122 /* CPU state for each instance of a generic timer (in cp15 c14) */
123 typedef struct ARMGenericTimer {
124 uint64_t cval; /* Timer CompareValue register */
125 uint64_t ctl; /* Timer Control register */
126 } ARMGenericTimer;
128 #define GTIMER_PHYS 0
129 #define GTIMER_VIRT 1
130 #define GTIMER_HYP 2
131 #define GTIMER_SEC 3
132 #define NUM_GTIMERS 4
134 typedef struct {
135 uint64_t raw_tcr;
136 uint32_t mask;
137 uint32_t base_mask;
138 } TCR;
140 typedef struct CPUARMState {
141 /* Regs for current mode. */
142 uint32_t regs[16];
144 /* 32/64 switch only happens when taking and returning from
145 * exceptions so the overlap semantics are taken care of then
146 * instead of having a complicated union.
148 /* Regs for A64 mode. */
149 uint64_t xregs[32];
150 uint64_t pc;
151 /* PSTATE isn't an architectural register for ARMv8. However, it is
152 * convenient for us to assemble the underlying state into a 32 bit format
153 * identical to the architectural format used for the SPSR. (This is also
154 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
155 * 'pstate' register are.) Of the PSTATE bits:
156 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
157 * semantics as for AArch32, as described in the comments on each field)
158 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
159 * DAIF (exception masks) are kept in env->daif
160 * all other bits are stored in their correct places in env->pstate
162 uint32_t pstate;
163 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
165 /* Frequently accessed CPSR bits are stored separately for efficiency.
166 This contains all the other bits. Use cpsr_{read,write} to access
167 the whole CPSR. */
168 uint32_t uncached_cpsr;
169 uint32_t spsr;
171 /* Banked registers. */
172 uint64_t banked_spsr[8];
173 uint32_t banked_r13[8];
174 uint32_t banked_r14[8];
176 /* These hold r8-r12. */
177 uint32_t usr_regs[5];
178 uint32_t fiq_regs[5];
180 /* cpsr flag cache for faster execution */
181 uint32_t CF; /* 0 or 1 */
182 uint32_t VF; /* V is the bit 31. All other bits are undefined */
183 uint32_t NF; /* N is bit 31. All other bits are undefined. */
184 uint32_t ZF; /* Z set if zero. */
185 uint32_t QF; /* 0 or 1 */
186 uint32_t GE; /* cpsr[19:16] */
187 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
188 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
189 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
191 uint64_t elr_el[4]; /* AArch64 exception link regs */
192 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
194 /* System control coprocessor (cp15) */
195 struct {
196 uint32_t c0_cpuid;
197 union { /* Cache size selection */
198 struct {
199 uint64_t _unused_csselr0;
200 uint64_t csselr_ns;
201 uint64_t _unused_csselr1;
202 uint64_t csselr_s;
204 uint64_t csselr_el[4];
206 union { /* System control register. */
207 struct {
208 uint64_t _unused_sctlr;
209 uint64_t sctlr_ns;
210 uint64_t hsctlr;
211 uint64_t sctlr_s;
213 uint64_t sctlr_el[4];
215 uint64_t cpacr_el1; /* Architectural feature access control register */
216 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
217 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
218 uint64_t sder; /* Secure debug enable register. */
219 uint32_t nsacr; /* Non-secure access control register. */
220 union { /* MMU translation table base 0. */
221 struct {
222 uint64_t _unused_ttbr0_0;
223 uint64_t ttbr0_ns;
224 uint64_t _unused_ttbr0_1;
225 uint64_t ttbr0_s;
227 uint64_t ttbr0_el[4];
229 union { /* MMU translation table base 1. */
230 struct {
231 uint64_t _unused_ttbr1_0;
232 uint64_t ttbr1_ns;
233 uint64_t _unused_ttbr1_1;
234 uint64_t ttbr1_s;
236 uint64_t ttbr1_el[4];
238 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
239 /* MMU translation table base control. */
240 TCR tcr_el[4];
241 TCR vtcr_el2; /* Virtualization Translation Control. */
242 uint32_t c2_data; /* MPU data cacheable bits. */
243 uint32_t c2_insn; /* MPU instruction cacheable bits. */
244 union { /* MMU domain access control register
245 * MPU write buffer control.
247 struct {
248 uint64_t dacr_ns;
249 uint64_t dacr_s;
251 struct {
252 uint64_t dacr32_el2;
255 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
256 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
257 uint64_t hcr_el2; /* Hypervisor configuration register */
258 uint64_t scr_el3; /* Secure configuration register. */
259 union { /* Fault status registers. */
260 struct {
261 uint64_t ifsr_ns;
262 uint64_t ifsr_s;
264 struct {
265 uint64_t ifsr32_el2;
268 union {
269 struct {
270 uint64_t _unused_dfsr;
271 uint64_t dfsr_ns;
272 uint64_t hsr;
273 uint64_t dfsr_s;
275 uint64_t esr_el[4];
277 uint32_t c6_region[8]; /* MPU base/size registers. */
278 union { /* Fault address registers. */
279 struct {
280 uint64_t _unused_far0;
281 #ifdef HOST_WORDS_BIGENDIAN
282 uint32_t ifar_ns;
283 uint32_t dfar_ns;
284 uint32_t ifar_s;
285 uint32_t dfar_s;
286 #else
287 uint32_t dfar_ns;
288 uint32_t ifar_ns;
289 uint32_t dfar_s;
290 uint32_t ifar_s;
291 #endif
292 uint64_t _unused_far3;
294 uint64_t far_el[4];
296 uint64_t hpfar_el2;
297 uint64_t hstr_el2;
298 union { /* Translation result. */
299 struct {
300 uint64_t _unused_par_0;
301 uint64_t par_ns;
302 uint64_t _unused_par_1;
303 uint64_t par_s;
305 uint64_t par_el[4];
308 uint32_t c6_rgnr;
310 uint32_t c9_insn; /* Cache lockdown registers. */
311 uint32_t c9_data;
312 uint64_t c9_pmcr; /* performance monitor control register */
313 uint64_t c9_pmcnten; /* perf monitor counter enables */
314 uint32_t c9_pmovsr; /* perf monitor overflow status */
315 uint32_t c9_pmuserenr; /* perf monitor user enable */
316 uint64_t c9_pmselr; /* perf monitor counter selection register */
317 uint64_t c9_pminten; /* perf monitor interrupt enables */
318 union { /* Memory attribute redirection */
319 struct {
320 #ifdef HOST_WORDS_BIGENDIAN
321 uint64_t _unused_mair_0;
322 uint32_t mair1_ns;
323 uint32_t mair0_ns;
324 uint64_t _unused_mair_1;
325 uint32_t mair1_s;
326 uint32_t mair0_s;
327 #else
328 uint64_t _unused_mair_0;
329 uint32_t mair0_ns;
330 uint32_t mair1_ns;
331 uint64_t _unused_mair_1;
332 uint32_t mair0_s;
333 uint32_t mair1_s;
334 #endif
336 uint64_t mair_el[4];
338 union { /* vector base address register */
339 struct {
340 uint64_t _unused_vbar;
341 uint64_t vbar_ns;
342 uint64_t hvbar;
343 uint64_t vbar_s;
345 uint64_t vbar_el[4];
347 uint32_t mvbar; /* (monitor) vector base address register */
348 struct { /* FCSE PID. */
349 uint32_t fcseidr_ns;
350 uint32_t fcseidr_s;
352 union { /* Context ID. */
353 struct {
354 uint64_t _unused_contextidr_0;
355 uint64_t contextidr_ns;
356 uint64_t _unused_contextidr_1;
357 uint64_t contextidr_s;
359 uint64_t contextidr_el[4];
361 union { /* User RW Thread register. */
362 struct {
363 uint64_t tpidrurw_ns;
364 uint64_t tpidrprw_ns;
365 uint64_t htpidr;
366 uint64_t _tpidr_el3;
368 uint64_t tpidr_el[4];
370 /* The secure banks of these registers don't map anywhere */
371 uint64_t tpidrurw_s;
372 uint64_t tpidrprw_s;
373 uint64_t tpidruro_s;
375 union { /* User RO Thread register. */
376 uint64_t tpidruro_ns;
377 uint64_t tpidrro_el[1];
379 uint64_t c14_cntfrq; /* Counter Frequency register */
380 uint64_t c14_cntkctl; /* Timer Control register */
381 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
382 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
383 ARMGenericTimer c14_timer[NUM_GTIMERS];
384 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
385 uint32_t c15_ticonfig; /* TI925T configuration byte. */
386 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
387 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
388 uint32_t c15_threadid; /* TI debugger thread-ID. */
389 uint32_t c15_config_base_address; /* SCU base address. */
390 uint32_t c15_diagnostic; /* diagnostic register */
391 uint32_t c15_power_diagnostic;
392 uint32_t c15_power_control; /* power control */
393 uint64_t dbgbvr[16]; /* breakpoint value registers */
394 uint64_t dbgbcr[16]; /* breakpoint control registers */
395 uint64_t dbgwvr[16]; /* watchpoint value registers */
396 uint64_t dbgwcr[16]; /* watchpoint control registers */
397 uint64_t mdscr_el1;
398 uint64_t oslsr_el1; /* OS Lock Status */
399 uint64_t mdcr_el2;
400 uint64_t mdcr_el3;
401 /* If the counter is enabled, this stores the last time the counter
402 * was reset. Otherwise it stores the counter value
404 uint64_t c15_ccnt;
405 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
406 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
407 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
408 } cp15;
410 struct {
411 uint32_t other_sp;
412 uint32_t vecbase;
413 uint32_t basepri;
414 uint32_t control;
415 uint32_t ccr; /* Configuration and Control */
416 uint32_t cfsr; /* Configurable Fault Status */
417 uint32_t hfsr; /* HardFault Status */
418 uint32_t dfsr; /* Debug Fault Status Register */
419 uint32_t mmfar; /* MemManage Fault Address */
420 uint32_t bfar; /* BusFault Address */
421 unsigned mpu_ctrl; /* MPU_CTRL (some bits kept in sctlr_el[1]) */
422 int exception;
423 } v7m;
425 /* Information associated with an exception about to be taken:
426 * code which raises an exception must set cs->exception_index and
427 * the relevant parts of this structure; the cpu_do_interrupt function
428 * will then set the guest-visible registers as part of the exception
429 * entry process.
431 struct {
432 uint32_t syndrome; /* AArch64 format syndrome register */
433 uint32_t fsr; /* AArch32 format fault status register info */
434 uint64_t vaddress; /* virtual addr associated with exception, if any */
435 uint32_t target_el; /* EL the exception should be targeted for */
436 /* If we implement EL2 we will also need to store information
437 * about the intermediate physical address for stage 2 faults.
439 } exception;
441 /* Thumb-2 EE state. */
442 uint32_t teecr;
443 uint32_t teehbr;
445 /* VFP coprocessor state. */
446 struct {
447 /* VFP/Neon register state. Note that the mapping between S, D and Q
448 * views of the register bank differs between AArch64 and AArch32:
449 * In AArch32:
450 * Qn = regs[2n+1]:regs[2n]
451 * Dn = regs[n]
452 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
453 * (and regs[32] to regs[63] are inaccessible)
454 * In AArch64:
455 * Qn = regs[2n+1]:regs[2n]
456 * Dn = regs[2n]
457 * Sn = regs[2n] bits 31..0
458 * This corresponds to the architecturally defined mapping between
459 * the two execution states, and means we do not need to explicitly
460 * map these registers when changing states.
462 float64 regs[64];
464 uint32_t xregs[16];
465 /* We store these fpcsr fields separately for convenience. */
466 int vec_len;
467 int vec_stride;
469 /* scratch space when Tn are not sufficient. */
470 uint32_t scratch[8];
472 /* fp_status is the "normal" fp status. standard_fp_status retains
473 * values corresponding to the ARM "Standard FPSCR Value", ie
474 * default-NaN, flush-to-zero, round-to-nearest and is used by
475 * any operations (generally Neon) which the architecture defines
476 * as controlled by the standard FPSCR value rather than the FPSCR.
478 * To avoid having to transfer exception bits around, we simply
479 * say that the FPSCR cumulative exception flags are the logical
480 * OR of the flags in the two fp statuses. This relies on the
481 * only thing which needs to read the exception flags being
482 * an explicit FPSCR read.
484 float_status fp_status;
485 float_status standard_fp_status;
486 } vfp;
487 uint64_t exclusive_addr;
488 uint64_t exclusive_val;
489 uint64_t exclusive_high;
491 /* iwMMXt coprocessor state. */
492 struct {
493 uint64_t regs[16];
494 uint64_t val;
496 uint32_t cregs[16];
497 } iwmmxt;
499 #if defined(CONFIG_USER_ONLY)
500 /* For usermode syscall translation. */
501 int eabi;
502 #endif
504 struct CPUBreakpoint *cpu_breakpoint[16];
505 struct CPUWatchpoint *cpu_watchpoint[16];
507 /* Fields up to this point are cleared by a CPU reset */
508 struct {} end_reset_fields;
510 CPU_COMMON
512 /* Fields after CPU_COMMON are preserved across CPU reset. */
514 /* Internal CPU feature flags. */
515 uint64_t features;
517 /* PMSAv7 MPU */
518 struct {
519 uint32_t *drbar;
520 uint32_t *drsr;
521 uint32_t *dracr;
522 } pmsav7;
524 void *nvic;
525 const struct arm_boot_info *boot_info;
526 /* Store GICv3CPUState to access from this struct */
527 void *gicv3state;
528 } CPUARMState;
531 * ARMELChangeHook:
532 * type of a function which can be registered via arm_register_el_change_hook()
533 * to get callbacks when the CPU changes its exception level or mode.
535 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
538 /* These values map onto the return values for
539 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
540 typedef enum ARMPSCIState {
541 PSCI_ON = 0,
542 PSCI_OFF = 1,
543 PSCI_ON_PENDING = 2
544 } ARMPSCIState;
547 * ARMCPU:
548 * @env: #CPUARMState
550 * An ARM CPU core.
552 struct ARMCPU {
553 /*< private >*/
554 CPUState parent_obj;
555 /*< public >*/
557 CPUARMState env;
559 /* Coprocessor information */
560 GHashTable *cp_regs;
561 /* For marshalling (mostly coprocessor) register state between the
562 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
563 * we use these arrays.
565 /* List of register indexes managed via these arrays; (full KVM style
566 * 64 bit indexes, not CPRegInfo 32 bit indexes)
568 uint64_t *cpreg_indexes;
569 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
570 uint64_t *cpreg_values;
571 /* Length of the indexes, values, reset_values arrays */
572 int32_t cpreg_array_len;
573 /* These are used only for migration: incoming data arrives in
574 * these fields and is sanity checked in post_load before copying
575 * to the working data structures above.
577 uint64_t *cpreg_vmstate_indexes;
578 uint64_t *cpreg_vmstate_values;
579 int32_t cpreg_vmstate_array_len;
581 /* Timers used by the generic (architected) timer */
582 QEMUTimer *gt_timer[NUM_GTIMERS];
583 /* GPIO outputs for generic timer */
584 qemu_irq gt_timer_outputs[NUM_GTIMERS];
585 /* GPIO output for GICv3 maintenance interrupt signal */
586 qemu_irq gicv3_maintenance_interrupt;
588 /* MemoryRegion to use for secure physical accesses */
589 MemoryRegion *secure_memory;
591 /* 'compatible' string for this CPU for Linux device trees */
592 const char *dtb_compatible;
594 /* PSCI version for this CPU
595 * Bits[31:16] = Major Version
596 * Bits[15:0] = Minor Version
598 uint32_t psci_version;
600 /* Should CPU start in PSCI powered-off state? */
601 bool start_powered_off;
603 /* Current power state, access guarded by BQL */
604 ARMPSCIState power_state;
606 /* CPU has virtualization extension */
607 bool has_el2;
608 /* CPU has security extension */
609 bool has_el3;
610 /* CPU has PMU (Performance Monitor Unit) */
611 bool has_pmu;
613 /* CPU has memory protection unit */
614 bool has_mpu;
615 /* PMSAv7 MPU number of supported regions */
616 uint32_t pmsav7_dregion;
618 /* PSCI conduit used to invoke PSCI methods
619 * 0 - disabled, 1 - smc, 2 - hvc
621 uint32_t psci_conduit;
623 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
624 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
626 uint32_t kvm_target;
628 /* KVM init features for this CPU */
629 uint32_t kvm_init_features[7];
631 /* Uniprocessor system with MP extensions */
632 bool mp_is_up;
634 /* The instance init functions for implementation-specific subclasses
635 * set these fields to specify the implementation-dependent values of
636 * various constant registers and reset values of non-constant
637 * registers.
638 * Some of these might become QOM properties eventually.
639 * Field names match the official register names as defined in the
640 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
641 * is used for reset values of non-constant registers; no reset_
642 * prefix means a constant register.
644 uint32_t midr;
645 uint32_t revidr;
646 uint32_t reset_fpsid;
647 uint32_t mvfr0;
648 uint32_t mvfr1;
649 uint32_t mvfr2;
650 uint32_t ctr;
651 uint32_t reset_sctlr;
652 uint32_t id_pfr0;
653 uint32_t id_pfr1;
654 uint32_t id_dfr0;
655 uint32_t pmceid0;
656 uint32_t pmceid1;
657 uint32_t id_afr0;
658 uint32_t id_mmfr0;
659 uint32_t id_mmfr1;
660 uint32_t id_mmfr2;
661 uint32_t id_mmfr3;
662 uint32_t id_mmfr4;
663 uint32_t id_isar0;
664 uint32_t id_isar1;
665 uint32_t id_isar2;
666 uint32_t id_isar3;
667 uint32_t id_isar4;
668 uint32_t id_isar5;
669 uint64_t id_aa64pfr0;
670 uint64_t id_aa64pfr1;
671 uint64_t id_aa64dfr0;
672 uint64_t id_aa64dfr1;
673 uint64_t id_aa64afr0;
674 uint64_t id_aa64afr1;
675 uint64_t id_aa64isar0;
676 uint64_t id_aa64isar1;
677 uint64_t id_aa64mmfr0;
678 uint64_t id_aa64mmfr1;
679 uint32_t dbgdidr;
680 uint32_t clidr;
681 uint64_t mp_affinity; /* MP ID without feature bits */
682 /* The elements of this array are the CCSIDR values for each cache,
683 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
685 uint32_t ccsidr[16];
686 uint64_t reset_cbar;
687 uint32_t reset_auxcr;
688 bool reset_hivecs;
689 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
690 uint32_t dcz_blocksize;
691 uint64_t rvbar;
693 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
694 int gic_num_lrs; /* number of list registers */
695 int gic_vpribits; /* number of virtual priority bits */
696 int gic_vprebits; /* number of virtual preemption bits */
698 /* Whether the cfgend input is high (i.e. this CPU should reset into
699 * big-endian mode). This setting isn't used directly: instead it modifies
700 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
701 * architecture version.
703 bool cfgend;
705 ARMELChangeHook *el_change_hook;
706 void *el_change_hook_opaque;
708 int32_t node_id; /* NUMA node this CPU belongs to */
710 /* Used to synchronize KVM and QEMU in-kernel device levels */
711 uint8_t device_irq_level;
714 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
716 return container_of(env, ARMCPU, env);
719 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
721 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
723 #define ENV_OFFSET offsetof(ARMCPU, env)
725 #ifndef CONFIG_USER_ONLY
726 extern const struct VMStateDescription vmstate_arm_cpu;
727 #endif
729 void arm_cpu_do_interrupt(CPUState *cpu);
730 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
731 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
733 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
734 int flags);
736 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
737 MemTxAttrs *attrs);
739 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
740 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
742 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
743 int cpuid, void *opaque);
744 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
745 int cpuid, void *opaque);
747 #ifdef TARGET_AARCH64
748 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
749 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
750 #endif
752 ARMCPU *cpu_arm_init(const char *cpu_model);
753 target_ulong do_arm_semihosting(CPUARMState *env);
754 void aarch64_sync_32_to_64(CPUARMState *env);
755 void aarch64_sync_64_to_32(CPUARMState *env);
757 static inline bool is_a64(CPUARMState *env)
759 return env->aarch64;
762 /* you can call this signal handler from your SIGBUS and SIGSEGV
763 signal handlers to inform the virtual CPU of exceptions. non zero
764 is returned if the signal was handled by the virtual CPU. */
765 int cpu_arm_signal_handler(int host_signum, void *pinfo,
766 void *puc);
769 * pmccntr_sync
770 * @env: CPUARMState
772 * Synchronises the counter in the PMCCNTR. This must always be called twice,
773 * once before any action that might affect the timer and again afterwards.
774 * The function is used to swap the state of the register if required.
775 * This only happens when not in user mode (!CONFIG_USER_ONLY)
777 void pmccntr_sync(CPUARMState *env);
779 /* SCTLR bit meanings. Several bits have been reused in newer
780 * versions of the architecture; in that case we define constants
781 * for both old and new bit meanings. Code which tests against those
782 * bits should probably check or otherwise arrange that the CPU
783 * is the architectural version it expects.
785 #define SCTLR_M (1U << 0)
786 #define SCTLR_A (1U << 1)
787 #define SCTLR_C (1U << 2)
788 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
789 #define SCTLR_SA (1U << 3)
790 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
791 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
792 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
793 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
794 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
795 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
796 #define SCTLR_ITD (1U << 7) /* v8 onward */
797 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
798 #define SCTLR_SED (1U << 8) /* v8 onward */
799 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
800 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
801 #define SCTLR_F (1U << 10) /* up to v6 */
802 #define SCTLR_SW (1U << 10) /* v7 onward */
803 #define SCTLR_Z (1U << 11)
804 #define SCTLR_I (1U << 12)
805 #define SCTLR_V (1U << 13)
806 #define SCTLR_RR (1U << 14) /* up to v7 */
807 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
808 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
809 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
810 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
811 #define SCTLR_nTWI (1U << 16) /* v8 onward */
812 #define SCTLR_HA (1U << 17)
813 #define SCTLR_BR (1U << 17) /* PMSA only */
814 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
815 #define SCTLR_nTWE (1U << 18) /* v8 onward */
816 #define SCTLR_WXN (1U << 19)
817 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
818 #define SCTLR_UWXN (1U << 20) /* v7 onward */
819 #define SCTLR_FI (1U << 21)
820 #define SCTLR_U (1U << 22)
821 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
822 #define SCTLR_VE (1U << 24) /* up to v7 */
823 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
824 #define SCTLR_EE (1U << 25)
825 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
826 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
827 #define SCTLR_NMFI (1U << 27)
828 #define SCTLR_TRE (1U << 28)
829 #define SCTLR_AFE (1U << 29)
830 #define SCTLR_TE (1U << 30)
832 #define CPTR_TCPAC (1U << 31)
833 #define CPTR_TTA (1U << 20)
834 #define CPTR_TFP (1U << 10)
836 #define MDCR_EPMAD (1U << 21)
837 #define MDCR_EDAD (1U << 20)
838 #define MDCR_SPME (1U << 17)
839 #define MDCR_SDD (1U << 16)
840 #define MDCR_SPD (3U << 14)
841 #define MDCR_TDRA (1U << 11)
842 #define MDCR_TDOSA (1U << 10)
843 #define MDCR_TDA (1U << 9)
844 #define MDCR_TDE (1U << 8)
845 #define MDCR_HPME (1U << 7)
846 #define MDCR_TPM (1U << 6)
847 #define MDCR_TPMCR (1U << 5)
849 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
850 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
852 #define CPSR_M (0x1fU)
853 #define CPSR_T (1U << 5)
854 #define CPSR_F (1U << 6)
855 #define CPSR_I (1U << 7)
856 #define CPSR_A (1U << 8)
857 #define CPSR_E (1U << 9)
858 #define CPSR_IT_2_7 (0xfc00U)
859 #define CPSR_GE (0xfU << 16)
860 #define CPSR_IL (1U << 20)
861 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
862 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
863 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
864 * where it is live state but not accessible to the AArch32 code.
866 #define CPSR_RESERVED (0x7U << 21)
867 #define CPSR_J (1U << 24)
868 #define CPSR_IT_0_1 (3U << 25)
869 #define CPSR_Q (1U << 27)
870 #define CPSR_V (1U << 28)
871 #define CPSR_C (1U << 29)
872 #define CPSR_Z (1U << 30)
873 #define CPSR_N (1U << 31)
874 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
875 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
877 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
878 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
879 | CPSR_NZCV)
880 /* Bits writable in user mode. */
881 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
882 /* Execution state bits. MRS read as zero, MSR writes ignored. */
883 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
884 /* Mask of bits which may be set by exception return copying them from SPSR */
885 #define CPSR_ERET_MASK (~CPSR_RESERVED)
887 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
888 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
889 #define TTBCR_PD0 (1U << 4)
890 #define TTBCR_PD1 (1U << 5)
891 #define TTBCR_EPD0 (1U << 7)
892 #define TTBCR_IRGN0 (3U << 8)
893 #define TTBCR_ORGN0 (3U << 10)
894 #define TTBCR_SH0 (3U << 12)
895 #define TTBCR_T1SZ (3U << 16)
896 #define TTBCR_A1 (1U << 22)
897 #define TTBCR_EPD1 (1U << 23)
898 #define TTBCR_IRGN1 (3U << 24)
899 #define TTBCR_ORGN1 (3U << 26)
900 #define TTBCR_SH1 (1U << 28)
901 #define TTBCR_EAE (1U << 31)
903 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
904 * Only these are valid when in AArch64 mode; in
905 * AArch32 mode SPSRs are basically CPSR-format.
907 #define PSTATE_SP (1U)
908 #define PSTATE_M (0xFU)
909 #define PSTATE_nRW (1U << 4)
910 #define PSTATE_F (1U << 6)
911 #define PSTATE_I (1U << 7)
912 #define PSTATE_A (1U << 8)
913 #define PSTATE_D (1U << 9)
914 #define PSTATE_IL (1U << 20)
915 #define PSTATE_SS (1U << 21)
916 #define PSTATE_V (1U << 28)
917 #define PSTATE_C (1U << 29)
918 #define PSTATE_Z (1U << 30)
919 #define PSTATE_N (1U << 31)
920 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
921 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
922 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
923 /* Mode values for AArch64 */
924 #define PSTATE_MODE_EL3h 13
925 #define PSTATE_MODE_EL3t 12
926 #define PSTATE_MODE_EL2h 9
927 #define PSTATE_MODE_EL2t 8
928 #define PSTATE_MODE_EL1h 5
929 #define PSTATE_MODE_EL1t 4
930 #define PSTATE_MODE_EL0t 0
932 /* Map EL and handler into a PSTATE_MODE. */
933 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
935 return (el << 2) | handler;
938 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
939 * interprocessing, so we don't attempt to sync with the cpsr state used by
940 * the 32 bit decoder.
942 static inline uint32_t pstate_read(CPUARMState *env)
944 int ZF;
946 ZF = (env->ZF == 0);
947 return (env->NF & 0x80000000) | (ZF << 30)
948 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
949 | env->pstate | env->daif;
952 static inline void pstate_write(CPUARMState *env, uint32_t val)
954 env->ZF = (~val) & PSTATE_Z;
955 env->NF = val;
956 env->CF = (val >> 29) & 1;
957 env->VF = (val << 3) & 0x80000000;
958 env->daif = val & PSTATE_DAIF;
959 env->pstate = val & ~CACHED_PSTATE_BITS;
962 /* Return the current CPSR value. */
963 uint32_t cpsr_read(CPUARMState *env);
965 typedef enum CPSRWriteType {
966 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
967 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
968 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
969 CPSRWriteByGDBStub = 3, /* from the GDB stub */
970 } CPSRWriteType;
972 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
973 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
974 CPSRWriteType write_type);
976 /* Return the current xPSR value. */
977 static inline uint32_t xpsr_read(CPUARMState *env)
979 int ZF;
980 ZF = (env->ZF == 0);
981 return (env->NF & 0x80000000) | (ZF << 30)
982 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
983 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
984 | ((env->condexec_bits & 0xfc) << 8)
985 | env->v7m.exception;
988 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
989 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
991 if (mask & CPSR_NZCV) {
992 env->ZF = (~val) & CPSR_Z;
993 env->NF = val;
994 env->CF = (val >> 29) & 1;
995 env->VF = (val << 3) & 0x80000000;
997 if (mask & CPSR_Q)
998 env->QF = ((val & CPSR_Q) != 0);
999 if (mask & (1 << 24))
1000 env->thumb = ((val & (1 << 24)) != 0);
1001 if (mask & CPSR_IT_0_1) {
1002 env->condexec_bits &= ~3;
1003 env->condexec_bits |= (val >> 25) & 3;
1005 if (mask & CPSR_IT_2_7) {
1006 env->condexec_bits &= 3;
1007 env->condexec_bits |= (val >> 8) & 0xfc;
1009 if (mask & 0x1ff) {
1010 env->v7m.exception = val & 0x1ff;
1014 #define HCR_VM (1ULL << 0)
1015 #define HCR_SWIO (1ULL << 1)
1016 #define HCR_PTW (1ULL << 2)
1017 #define HCR_FMO (1ULL << 3)
1018 #define HCR_IMO (1ULL << 4)
1019 #define HCR_AMO (1ULL << 5)
1020 #define HCR_VF (1ULL << 6)
1021 #define HCR_VI (1ULL << 7)
1022 #define HCR_VSE (1ULL << 8)
1023 #define HCR_FB (1ULL << 9)
1024 #define HCR_BSU_MASK (3ULL << 10)
1025 #define HCR_DC (1ULL << 12)
1026 #define HCR_TWI (1ULL << 13)
1027 #define HCR_TWE (1ULL << 14)
1028 #define HCR_TID0 (1ULL << 15)
1029 #define HCR_TID1 (1ULL << 16)
1030 #define HCR_TID2 (1ULL << 17)
1031 #define HCR_TID3 (1ULL << 18)
1032 #define HCR_TSC (1ULL << 19)
1033 #define HCR_TIDCP (1ULL << 20)
1034 #define HCR_TACR (1ULL << 21)
1035 #define HCR_TSW (1ULL << 22)
1036 #define HCR_TPC (1ULL << 23)
1037 #define HCR_TPU (1ULL << 24)
1038 #define HCR_TTLB (1ULL << 25)
1039 #define HCR_TVM (1ULL << 26)
1040 #define HCR_TGE (1ULL << 27)
1041 #define HCR_TDZ (1ULL << 28)
1042 #define HCR_HCD (1ULL << 29)
1043 #define HCR_TRVM (1ULL << 30)
1044 #define HCR_RW (1ULL << 31)
1045 #define HCR_CD (1ULL << 32)
1046 #define HCR_ID (1ULL << 33)
1047 #define HCR_MASK ((1ULL << 34) - 1)
1049 #define SCR_NS (1U << 0)
1050 #define SCR_IRQ (1U << 1)
1051 #define SCR_FIQ (1U << 2)
1052 #define SCR_EA (1U << 3)
1053 #define SCR_FW (1U << 4)
1054 #define SCR_AW (1U << 5)
1055 #define SCR_NET (1U << 6)
1056 #define SCR_SMD (1U << 7)
1057 #define SCR_HCE (1U << 8)
1058 #define SCR_SIF (1U << 9)
1059 #define SCR_RW (1U << 10)
1060 #define SCR_ST (1U << 11)
1061 #define SCR_TWI (1U << 12)
1062 #define SCR_TWE (1U << 13)
1063 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1064 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1066 /* Return the current FPSCR value. */
1067 uint32_t vfp_get_fpscr(CPUARMState *env);
1068 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1070 /* For A64 the FPSCR is split into two logically distinct registers,
1071 * FPCR and FPSR. However since they still use non-overlapping bits
1072 * we store the underlying state in fpscr and just mask on read/write.
1074 #define FPSR_MASK 0xf800009f
1075 #define FPCR_MASK 0x07f79f00
1076 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1078 return vfp_get_fpscr(env) & FPSR_MASK;
1081 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1083 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1084 vfp_set_fpscr(env, new_fpscr);
1087 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1089 return vfp_get_fpscr(env) & FPCR_MASK;
1092 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1094 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1095 vfp_set_fpscr(env, new_fpscr);
1098 enum arm_cpu_mode {
1099 ARM_CPU_MODE_USR = 0x10,
1100 ARM_CPU_MODE_FIQ = 0x11,
1101 ARM_CPU_MODE_IRQ = 0x12,
1102 ARM_CPU_MODE_SVC = 0x13,
1103 ARM_CPU_MODE_MON = 0x16,
1104 ARM_CPU_MODE_ABT = 0x17,
1105 ARM_CPU_MODE_HYP = 0x1a,
1106 ARM_CPU_MODE_UND = 0x1b,
1107 ARM_CPU_MODE_SYS = 0x1f
1110 /* VFP system registers. */
1111 #define ARM_VFP_FPSID 0
1112 #define ARM_VFP_FPSCR 1
1113 #define ARM_VFP_MVFR2 5
1114 #define ARM_VFP_MVFR1 6
1115 #define ARM_VFP_MVFR0 7
1116 #define ARM_VFP_FPEXC 8
1117 #define ARM_VFP_FPINST 9
1118 #define ARM_VFP_FPINST2 10
1120 /* iwMMXt coprocessor control registers. */
1121 #define ARM_IWMMXT_wCID 0
1122 #define ARM_IWMMXT_wCon 1
1123 #define ARM_IWMMXT_wCSSF 2
1124 #define ARM_IWMMXT_wCASF 3
1125 #define ARM_IWMMXT_wCGR0 8
1126 #define ARM_IWMMXT_wCGR1 9
1127 #define ARM_IWMMXT_wCGR2 10
1128 #define ARM_IWMMXT_wCGR3 11
1130 /* V7M CCR bits */
1131 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1132 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1133 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1134 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1135 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1136 FIELD(V7M_CCR, STKALIGN, 9, 1)
1137 FIELD(V7M_CCR, DC, 16, 1)
1138 FIELD(V7M_CCR, IC, 17, 1)
1140 /* V7M CFSR bits for MMFSR */
1141 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1142 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1143 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1144 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1145 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1146 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1148 /* V7M CFSR bits for BFSR */
1149 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1150 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1151 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1152 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1153 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1154 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1155 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1157 /* V7M CFSR bits for UFSR */
1158 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1159 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1160 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1161 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1162 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1163 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1165 /* V7M HFSR bits */
1166 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1167 FIELD(V7M_HFSR, FORCED, 30, 1)
1168 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1170 /* V7M DFSR bits */
1171 FIELD(V7M_DFSR, HALTED, 0, 1)
1172 FIELD(V7M_DFSR, BKPT, 1, 1)
1173 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1174 FIELD(V7M_DFSR, VCATCH, 3, 1)
1175 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1177 /* v7M MPU_CTRL bits */
1178 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1179 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1180 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1182 /* If adding a feature bit which corresponds to a Linux ELF
1183 * HWCAP bit, remember to update the feature-bit-to-hwcap
1184 * mapping in linux-user/elfload.c:get_elf_hwcap().
1186 enum arm_features {
1187 ARM_FEATURE_VFP, /* Vector Floating-point. */
1188 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1189 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1190 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1191 ARM_FEATURE_V6,
1192 ARM_FEATURE_V6K,
1193 ARM_FEATURE_V7,
1194 //~ See http://lists.nongnu.org/archive/html/qemu-devel/2009-05/msg01570.html
1195 //~ ARM_FEATURE_THUMB, /* TODO: still unused. */
1196 //~ ARM_FEATURE_THUMB1 = ARM_FEATURE_THUMB, /* TODO: still unused. */
1197 ARM_FEATURE_THUMB2,
1198 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1199 ARM_FEATURE_VFP3,
1200 ARM_FEATURE_VFP_FP16,
1201 ARM_FEATURE_NEON,
1202 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1203 ARM_FEATURE_M, /* Microcontroller profile. */
1204 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1205 // TODO: long multiply instructions (M variant), standard for v4 and v5.
1206 // TODO: enhanced dsp instructions (E variant).
1207 // TODO: ARMv5TExP.
1208 ARM_FEATURE_THUMB2EE,
1209 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1210 ARM_FEATURE_V4T,
1211 ARM_FEATURE_V5,
1212 ARM_FEATURE_STRONGARM,
1213 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1214 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1215 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1216 ARM_FEATURE_GENERIC_TIMER,
1217 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1218 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1219 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1220 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1221 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1222 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1223 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1224 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1225 ARM_FEATURE_V8,
1226 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1227 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1228 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1229 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1230 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1231 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1232 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1233 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1234 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1235 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1236 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1237 ARM_FEATURE_PMU, /* has PMU support */
1238 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1241 static inline int arm_feature(CPUARMState *env, int feature)
1243 return (env->features & (1ULL << feature)) != 0;
1246 #if !defined(CONFIG_USER_ONLY)
1247 /* Return true if exception levels below EL3 are in secure state,
1248 * or would be following an exception return to that level.
1249 * Unlike arm_is_secure() (which is always a question about the
1250 * _current_ state of the CPU) this doesn't care about the current
1251 * EL or mode.
1253 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1255 if (arm_feature(env, ARM_FEATURE_EL3)) {
1256 return !(env->cp15.scr_el3 & SCR_NS);
1257 } else {
1258 /* If EL3 is not supported then the secure state is implementation
1259 * defined, in which case QEMU defaults to non-secure.
1261 return false;
1265 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1266 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1268 if (arm_feature(env, ARM_FEATURE_EL3)) {
1269 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1270 /* CPU currently in AArch64 state and EL3 */
1271 return true;
1272 } else if (!is_a64(env) &&
1273 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1274 /* CPU currently in AArch32 state and monitor mode */
1275 return true;
1278 return false;
1281 /* Return true if the processor is in secure state */
1282 static inline bool arm_is_secure(CPUARMState *env)
1284 if (arm_is_el3_or_mon(env)) {
1285 return true;
1287 return arm_is_secure_below_el3(env);
1290 #else
1291 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1293 return false;
1296 static inline bool arm_is_secure(CPUARMState *env)
1298 return false;
1300 #endif
1302 /* Return true if the specified exception level is running in AArch64 state. */
1303 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1305 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1306 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1308 assert(el >= 1 && el <= 3);
1309 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1311 /* The highest exception level is always at the maximum supported
1312 * register width, and then lower levels have a register width controlled
1313 * by bits in the SCR or HCR registers.
1315 if (el == 3) {
1316 return aa64;
1319 if (arm_feature(env, ARM_FEATURE_EL3)) {
1320 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1323 if (el == 2) {
1324 return aa64;
1327 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1328 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1331 return aa64;
1334 /* Function for determing whether guest cp register reads and writes should
1335 * access the secure or non-secure bank of a cp register. When EL3 is
1336 * operating in AArch32 state, the NS-bit determines whether the secure
1337 * instance of a cp register should be used. When EL3 is AArch64 (or if
1338 * it doesn't exist at all) then there is no register banking, and all
1339 * accesses are to the non-secure version.
1341 static inline bool access_secure_reg(CPUARMState *env)
1343 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1344 !arm_el_is_aa64(env, 3) &&
1345 !(env->cp15.scr_el3 & SCR_NS));
1347 return ret;
1350 /* Macros for accessing a specified CP register bank */
1351 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1352 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1354 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1355 do { \
1356 if (_secure) { \
1357 (_env)->cp15._regname##_s = (_val); \
1358 } else { \
1359 (_env)->cp15._regname##_ns = (_val); \
1361 } while (0)
1363 /* Macros for automatically accessing a specific CP register bank depending on
1364 * the current secure state of the system. These macros are not intended for
1365 * supporting instruction translation reads/writes as these are dependent
1366 * solely on the SCR.NS bit and not the mode.
1368 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1369 A32_BANKED_REG_GET((_env), _regname, \
1370 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1372 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1373 A32_BANKED_REG_SET((_env), _regname, \
1374 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1375 (_val))
1377 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1378 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1379 uint32_t cur_el, bool secure);
1381 /* Interface between CPU and Interrupt controller. */
1382 #ifndef CONFIG_USER_ONLY
1383 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1384 #else
1385 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1387 return true;
1389 #endif
1390 void armv7m_nvic_set_pending(void *opaque, int irq);
1391 void armv7m_nvic_acknowledge_irq(void *opaque);
1393 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1394 * @opaque: the NVIC
1395 * @irq: the exception number to complete
1397 * Returns: -1 if the irq was not active
1398 * 1 if completing this irq brought us back to base (no active irqs)
1399 * 0 if there is still an irq active after this one was completed
1400 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1402 int armv7m_nvic_complete_irq(void *opaque, int irq);
1404 /* Interface for defining coprocessor registers.
1405 * Registers are defined in tables of arm_cp_reginfo structs
1406 * which are passed to define_arm_cp_regs().
1409 /* When looking up a coprocessor register we look for it
1410 * via an integer which encodes all of:
1411 * coprocessor number
1412 * Crn, Crm, opc1, opc2 fields
1413 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1414 * or via MRRC/MCRR?)
1415 * non-secure/secure bank (AArch32 only)
1416 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1417 * (In this case crn and opc2 should be zero.)
1418 * For AArch64, there is no 32/64 bit size distinction;
1419 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1420 * and 4 bit CRn and CRm. The encoding patterns are chosen
1421 * to be easy to convert to and from the KVM encodings, and also
1422 * so that the hashtable can contain both AArch32 and AArch64
1423 * registers (to allow for interprocessing where we might run
1424 * 32 bit code on a 64 bit core).
1426 /* This bit is private to our hashtable cpreg; in KVM register
1427 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1428 * in the upper bits of the 64 bit ID.
1430 #define CP_REG_AA64_SHIFT 28
1431 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1433 /* To enable banking of coprocessor registers depending on ns-bit we
1434 * add a bit to distinguish between secure and non-secure cpregs in the
1435 * hashtable.
1437 #define CP_REG_NS_SHIFT 29
1438 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1440 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1441 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1442 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1444 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1445 (CP_REG_AA64_MASK | \
1446 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1447 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1448 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1449 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1450 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1451 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1453 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1454 * version used as a key for the coprocessor register hashtable
1456 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1458 uint32_t cpregid = kvmid;
1459 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1460 cpregid |= CP_REG_AA64_MASK;
1461 } else {
1462 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1463 cpregid |= (1 << 15);
1466 /* KVM is always non-secure so add the NS flag on AArch32 register
1467 * entries.
1469 cpregid |= 1 << CP_REG_NS_SHIFT;
1471 return cpregid;
1474 /* Convert a truncated 32 bit hashtable key into the full
1475 * 64 bit KVM register ID.
1477 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1479 uint64_t kvmid;
1481 if (cpregid & CP_REG_AA64_MASK) {
1482 kvmid = cpregid & ~CP_REG_AA64_MASK;
1483 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1484 } else {
1485 kvmid = cpregid & ~(1 << 15);
1486 if (cpregid & (1 << 15)) {
1487 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1488 } else {
1489 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1492 return kvmid;
1495 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1496 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1497 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1498 * TCG can assume the value to be constant (ie load at translate time)
1499 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1500 * indicates that the TB should not be ended after a write to this register
1501 * (the default is that the TB ends after cp writes). OVERRIDE permits
1502 * a register definition to override a previous definition for the
1503 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1504 * old must have the OVERRIDE bit set.
1505 * ALIAS indicates that this register is an alias view of some underlying
1506 * state which is also visible via another register, and that the other
1507 * register is handling migration and reset; registers marked ALIAS will not be
1508 * migrated but may have their state set by syncing of register state from KVM.
1509 * NO_RAW indicates that this register has no underlying state and does not
1510 * support raw access for state saving/loading; it will not be used for either
1511 * migration or KVM state synchronization. (Typically this is for "registers"
1512 * which are actually used as instructions for cache maintenance and so on.)
1513 * IO indicates that this register does I/O and therefore its accesses
1514 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1515 * registers which implement clocks or timers require this.
1517 #define ARM_CP_SPECIAL 1
1518 #define ARM_CP_CONST 2
1519 #define ARM_CP_64BIT 4
1520 #define ARM_CP_SUPPRESS_TB_END 8
1521 #define ARM_CP_OVERRIDE 16
1522 #define ARM_CP_ALIAS 32
1523 #define ARM_CP_IO 64
1524 #define ARM_CP_NO_RAW 128
1525 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1526 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1527 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1528 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1529 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1530 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1531 /* Used only as a terminator for ARMCPRegInfo lists */
1532 #define ARM_CP_SENTINEL 0xffff
1533 /* Mask of only the flag bits in a type field */
1534 #define ARM_CP_FLAG_MASK 0xff
1536 /* Valid values for ARMCPRegInfo state field, indicating which of
1537 * the AArch32 and AArch64 execution states this register is visible in.
1538 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1539 * If the reginfo is declared to be visible in both states then a second
1540 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1541 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1542 * Note that we rely on the values of these enums as we iterate through
1543 * the various states in some places.
1545 enum {
1546 ARM_CP_STATE_AA32 = 0,
1547 ARM_CP_STATE_AA64 = 1,
1548 ARM_CP_STATE_BOTH = 2,
1551 /* ARM CP register secure state flags. These flags identify security state
1552 * attributes for a given CP register entry.
1553 * The existence of both or neither secure and non-secure flags indicates that
1554 * the register has both a secure and non-secure hash entry. A single one of
1555 * these flags causes the register to only be hashed for the specified
1556 * security state.
1557 * Although definitions may have any combination of the S/NS bits, each
1558 * registered entry will only have one to identify whether the entry is secure
1559 * or non-secure.
1561 enum {
1562 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1563 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1566 /* Return true if cptype is a valid type field. This is used to try to
1567 * catch errors where the sentinel has been accidentally left off the end
1568 * of a list of registers.
1570 static inline bool cptype_valid(int cptype)
1572 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1573 || ((cptype & ARM_CP_SPECIAL) &&
1574 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1577 /* Access rights:
1578 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1579 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1580 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1581 * (ie any of the privileged modes in Secure state, or Monitor mode).
1582 * If a register is accessible in one privilege level it's always accessible
1583 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1584 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1585 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1586 * terminology a little and call this PL3.
1587 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1588 * with the ELx exception levels.
1590 * If access permissions for a register are more complex than can be
1591 * described with these bits, then use a laxer set of restrictions, and
1592 * do the more restrictive/complex check inside a helper function.
1594 #define PL3_R 0x80
1595 #define PL3_W 0x40
1596 #define PL2_R (0x20 | PL3_R)
1597 #define PL2_W (0x10 | PL3_W)
1598 #define PL1_R (0x08 | PL2_R)
1599 #define PL1_W (0x04 | PL2_W)
1600 #define PL0_R (0x02 | PL1_R)
1601 #define PL0_W (0x01 | PL1_W)
1603 #define PL3_RW (PL3_R | PL3_W)
1604 #define PL2_RW (PL2_R | PL2_W)
1605 #define PL1_RW (PL1_R | PL1_W)
1606 #define PL0_RW (PL0_R | PL0_W)
1608 /* Return the highest implemented Exception Level */
1609 static inline int arm_highest_el(CPUARMState *env)
1611 if (arm_feature(env, ARM_FEATURE_EL3)) {
1612 return 3;
1614 if (arm_feature(env, ARM_FEATURE_EL2)) {
1615 return 2;
1617 return 1;
1620 /* Return the current Exception Level (as per ARMv8; note that this differs
1621 * from the ARMv7 Privilege Level).
1623 static inline int arm_current_el(CPUARMState *env)
1625 if (arm_feature(env, ARM_FEATURE_M)) {
1626 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1629 if (is_a64(env)) {
1630 return extract32(env->pstate, 2, 2);
1633 switch (env->uncached_cpsr & 0x1f) {
1634 case ARM_CPU_MODE_USR:
1635 return 0;
1636 case ARM_CPU_MODE_HYP:
1637 return 2;
1638 case ARM_CPU_MODE_MON:
1639 return 3;
1640 default:
1641 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1642 /* If EL3 is 32-bit then all secure privileged modes run in
1643 * EL3
1645 return 3;
1648 return 1;
1652 typedef struct ARMCPRegInfo ARMCPRegInfo;
1654 typedef enum CPAccessResult {
1655 /* Access is permitted */
1656 CP_ACCESS_OK = 0,
1657 /* Access fails due to a configurable trap or enable which would
1658 * result in a categorized exception syndrome giving information about
1659 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1660 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1661 * PL1 if in EL0, otherwise to the current EL).
1663 CP_ACCESS_TRAP = 1,
1664 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1665 * Note that this is not a catch-all case -- the set of cases which may
1666 * result in this failure is specifically defined by the architecture.
1668 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1669 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1670 CP_ACCESS_TRAP_EL2 = 3,
1671 CP_ACCESS_TRAP_EL3 = 4,
1672 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1673 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1674 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1675 /* Access fails and results in an exception syndrome for an FP access,
1676 * trapped directly to EL2 or EL3
1678 CP_ACCESS_TRAP_FP_EL2 = 7,
1679 CP_ACCESS_TRAP_FP_EL3 = 8,
1680 } CPAccessResult;
1682 /* Access functions for coprocessor registers. These cannot fail and
1683 * may not raise exceptions.
1685 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1686 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1687 uint64_t value);
1688 /* Access permission check functions for coprocessor registers. */
1689 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1690 const ARMCPRegInfo *opaque,
1691 bool isread);
1692 /* Hook function for register reset */
1693 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1695 #define CP_ANY 0xff
1697 /* Definition of an ARM coprocessor register */
1698 struct ARMCPRegInfo {
1699 /* Name of register (useful mainly for debugging, need not be unique) */
1700 const char *name;
1701 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1702 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1703 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1704 * will be decoded to this register. The register read and write
1705 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1706 * used by the program, so it is possible to register a wildcard and
1707 * then behave differently on read/write if necessary.
1708 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1709 * must both be zero.
1710 * For AArch64-visible registers, opc0 is also used.
1711 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1712 * way to distinguish (for KVM's benefit) guest-visible system registers
1713 * from demuxed ones provided to preserve the "no side effects on
1714 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1715 * visible (to match KVM's encoding); cp==0 will be converted to
1716 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1718 uint8_t cp;
1719 uint8_t crn;
1720 uint8_t crm;
1721 uint8_t opc0;
1722 uint8_t opc1;
1723 uint8_t opc2;
1724 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1725 int state;
1726 /* Register type: ARM_CP_* bits/values */
1727 int type;
1728 /* Access rights: PL*_[RW] */
1729 int access;
1730 /* Security state: ARM_CP_SECSTATE_* bits/values */
1731 int secure;
1732 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1733 * this register was defined: can be used to hand data through to the
1734 * register read/write functions, since they are passed the ARMCPRegInfo*.
1736 void *opaque;
1737 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1738 * fieldoffset is non-zero, the reset value of the register.
1740 uint64_t resetvalue;
1741 /* Offset of the field in CPUARMState for this register.
1743 * This is not needed if either:
1744 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1745 * 2. both readfn and writefn are specified
1747 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1749 /* Offsets of the secure and non-secure fields in CPUARMState for the
1750 * register if it is banked. These fields are only used during the static
1751 * registration of a register. During hashing the bank associated
1752 * with a given security state is copied to fieldoffset which is used from
1753 * there on out.
1755 * It is expected that register definitions use either fieldoffset or
1756 * bank_fieldoffsets in the definition but not both. It is also expected
1757 * that both bank offsets are set when defining a banked register. This
1758 * use indicates that a register is banked.
1760 ptrdiff_t bank_fieldoffsets[2];
1762 /* Function for making any access checks for this register in addition to
1763 * those specified by the 'access' permissions bits. If NULL, no extra
1764 * checks required. The access check is performed at runtime, not at
1765 * translate time.
1767 CPAccessFn *accessfn;
1768 /* Function for handling reads of this register. If NULL, then reads
1769 * will be done by loading from the offset into CPUARMState specified
1770 * by fieldoffset.
1772 CPReadFn *readfn;
1773 /* Function for handling writes of this register. If NULL, then writes
1774 * will be done by writing to the offset into CPUARMState specified
1775 * by fieldoffset.
1777 CPWriteFn *writefn;
1778 /* Function for doing a "raw" read; used when we need to copy
1779 * coprocessor state to the kernel for KVM or out for
1780 * migration. This only needs to be provided if there is also a
1781 * readfn and it has side effects (for instance clear-on-read bits).
1783 CPReadFn *raw_readfn;
1784 /* Function for doing a "raw" write; used when we need to copy KVM
1785 * kernel coprocessor state into userspace, or for inbound
1786 * migration. This only needs to be provided if there is also a
1787 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1788 * or similar behaviour.
1790 CPWriteFn *raw_writefn;
1791 /* Function for resetting the register. If NULL, then reset will be done
1792 * by writing resetvalue to the field specified in fieldoffset. If
1793 * fieldoffset is 0 then no reset will be done.
1795 CPResetFn *resetfn;
1798 /* Macros which are lvalues for the field in CPUARMState for the
1799 * ARMCPRegInfo *ri.
1801 #define CPREG_FIELD32(env, ri) \
1802 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1803 #define CPREG_FIELD64(env, ri) \
1804 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1806 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1808 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1809 const ARMCPRegInfo *regs, void *opaque);
1810 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1811 const ARMCPRegInfo *regs, void *opaque);
1812 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1814 define_arm_cp_regs_with_opaque(cpu, regs, NULL);
1816 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1818 define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
1820 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1822 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1823 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1824 uint64_t value);
1825 /* CPReadFn that can be used for read-as-zero behaviour */
1826 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1828 /* CPResetFn that does nothing, for use if no reset is required even
1829 * if fieldoffset is non zero.
1831 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1833 /* Return true if this reginfo struct's field in the cpu state struct
1834 * is 64 bits wide.
1836 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1838 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1841 static inline bool cp_access_ok(int current_el,
1842 const ARMCPRegInfo *ri, int isread)
1844 return (ri->access >> ((current_el * 2) + isread)) & 1;
1847 /* Raw read of a coprocessor register (as needed for migration, etc) */
1848 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1851 * write_list_to_cpustate
1852 * @cpu: ARMCPU
1854 * For each register listed in the ARMCPU cpreg_indexes list, write
1855 * its value from the cpreg_values list into the ARMCPUState structure.
1856 * This updates TCG's working data structures from KVM data or
1857 * from incoming migration state.
1859 * Returns: true if all register values were updated correctly,
1860 * false if some register was unknown or could not be written.
1861 * Note that we do not stop early on failure -- we will attempt
1862 * writing all registers in the list.
1864 bool write_list_to_cpustate(ARMCPU *cpu);
1867 * write_cpustate_to_list:
1868 * @cpu: ARMCPU
1870 * For each register listed in the ARMCPU cpreg_indexes list, write
1871 * its value from the ARMCPUState structure into the cpreg_values list.
1872 * This is used to copy info from TCG's working data structures into
1873 * KVM or for outbound migration.
1875 * Returns: true if all register values were read correctly,
1876 * false if some register was unknown or could not be read.
1877 * Note that we do not stop early on failure -- we will attempt
1878 * reading all registers in the list.
1880 bool write_cpustate_to_list(ARMCPU *cpu);
1882 #define ARM_CPUID_TI915T 0x54029152
1883 #define ARM_CPUID_TI925T 0x54029252
1885 #if defined(CONFIG_USER_ONLY)
1886 #define TARGET_PAGE_BITS 12
1887 #else
1888 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1889 * have to support 1K tiny pages.
1891 #define TARGET_PAGE_BITS_VARY
1892 #define TARGET_PAGE_BITS_MIN 10
1893 #endif
1895 #if defined(TARGET_AARCH64)
1896 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1897 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1898 #else
1899 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1900 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1901 #endif
1903 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1904 unsigned int target_el)
1906 CPUARMState *env = cs->env_ptr;
1907 unsigned int cur_el = arm_current_el(env);
1908 bool secure = arm_is_secure(env);
1909 bool pstate_unmasked;
1910 int8_t unmasked = 0;
1912 /* Don't take exceptions if they target a lower EL.
1913 * This check should catch any exceptions that would not be taken but left
1914 * pending.
1916 if (cur_el > target_el) {
1917 return false;
1920 switch (excp_idx) {
1921 case EXCP_FIQ:
1922 pstate_unmasked = !(env->daif & PSTATE_F);
1923 break;
1925 case EXCP_IRQ:
1926 pstate_unmasked = !(env->daif & PSTATE_I);
1927 break;
1929 case EXCP_VFIQ:
1930 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1931 /* VFIQs are only taken when hypervized and non-secure. */
1932 return false;
1934 return !(env->daif & PSTATE_F);
1935 case EXCP_VIRQ:
1936 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1937 /* VIRQs are only taken when hypervized and non-secure. */
1938 return false;
1940 return !(env->daif & PSTATE_I);
1941 default:
1942 g_assert_not_reached();
1945 /* Use the target EL, current execution state and SCR/HCR settings to
1946 * determine whether the corresponding CPSR bit is used to mask the
1947 * interrupt.
1949 if ((target_el > cur_el) && (target_el != 1)) {
1950 /* Exceptions targeting a higher EL may not be maskable */
1951 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1952 /* 64-bit masking rules are simple: exceptions to EL3
1953 * can't be masked, and exceptions to EL2 can only be
1954 * masked from Secure state. The HCR and SCR settings
1955 * don't affect the masking logic, only the interrupt routing.
1957 if (target_el == 3 || !secure) {
1958 unmasked = 1;
1960 } else {
1961 /* The old 32-bit-only environment has a more complicated
1962 * masking setup. HCR and SCR bits not only affect interrupt
1963 * routing but also change the behaviour of masking.
1965 bool hcr, scr;
1967 switch (excp_idx) {
1968 case EXCP_FIQ:
1969 /* If FIQs are routed to EL3 or EL2 then there are cases where
1970 * we override the CPSR.F in determining if the exception is
1971 * masked or not. If neither of these are set then we fall back
1972 * to the CPSR.F setting otherwise we further assess the state
1973 * below.
1975 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1976 scr = (env->cp15.scr_el3 & SCR_FIQ);
1978 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1979 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1980 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1981 * when non-secure but only when FIQs are only routed to EL3.
1983 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1984 break;
1985 case EXCP_IRQ:
1986 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1987 * we may override the CPSR.I masking when in non-secure state.
1988 * The SCR.IRQ setting has already been taken into consideration
1989 * when setting the target EL, so it does not have a further
1990 * affect here.
1992 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1993 scr = false;
1994 break;
1995 default:
1996 g_assert_not_reached();
1999 if ((scr || hcr) && !secure) {
2000 unmasked = 1;
2005 /* The PSTATE bits only mask the interrupt if we have not overriden the
2006 * ability above.
2008 return unmasked || pstate_unmasked;
2011 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
2013 #define cpu_signal_handler cpu_arm_signal_handler
2014 #define cpu_list arm_cpu_list
2016 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2018 * If EL3 is 64-bit:
2019 * + NonSecure EL1 & 0 stage 1
2020 * + NonSecure EL1 & 0 stage 2
2021 * + NonSecure EL2
2022 * + Secure EL1 & EL0
2023 * + Secure EL3
2024 * If EL3 is 32-bit:
2025 * + NonSecure PL1 & 0 stage 1
2026 * + NonSecure PL1 & 0 stage 2
2027 * + NonSecure PL2
2028 * + Secure PL0 & PL1
2029 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2031 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2032 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2033 * may differ in access permissions even if the VA->PA map is the same
2034 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2035 * translation, which means that we have one mmu_idx that deals with two
2036 * concatenated translation regimes [this sort of combined s1+2 TLB is
2037 * architecturally permitted]
2038 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2039 * handling via the TLB. The only way to do a stage 1 translation without
2040 * the immediate stage 2 translation is via the ATS or AT system insns,
2041 * which can be slow-pathed and always do a page table walk.
2042 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2043 * translation regimes, because they map reasonably well to each other
2044 * and they can't both be active at the same time.
2045 * This gives us the following list of mmu_idx values:
2047 * NS EL0 (aka NS PL0) stage 1+2
2048 * NS EL1 (aka NS PL1) stage 1+2
2049 * NS EL2 (aka NS PL2)
2050 * S EL3 (aka S PL1)
2051 * S EL0 (aka S PL0)
2052 * S EL1 (not used if EL3 is 32 bit)
2053 * NS EL0+1 stage 2
2055 * (The last of these is an mmu_idx because we want to be able to use the TLB
2056 * for the accesses done as part of a stage 1 page table walk, rather than
2057 * having to walk the stage 2 page table over and over.)
2059 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2060 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2061 * NS EL2 if we ever model a Cortex-R52).
2063 * M profile CPUs are rather different as they do not have a true MMU.
2064 * They have the following different MMU indexes:
2065 * User
2066 * Privileged
2067 * Execution priority negative (this is like privileged, but the
2068 * MPU HFNMIENA bit means that it may have different access permission
2069 * check results to normal privileged code, so can't share a TLB).
2071 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2072 * are not quite the same -- different CPU types (most notably M profile
2073 * vs A/R profile) would like to use MMU indexes with different semantics,
2074 * but since we don't ever need to use all of those in a single CPU we
2075 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2076 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2077 * the same for any particular CPU.
2078 * Variables of type ARMMUIdx are always full values, and the core
2079 * index values are in variables of type 'int'.
2081 * Our enumeration includes at the end some entries which are not "true"
2082 * mmu_idx values in that they don't have corresponding TLBs and are only
2083 * valid for doing slow path page table walks.
2085 * The constant names here are patterned after the general style of the names
2086 * of the AT/ATS operations.
2087 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2089 #define ARM_MMU_IDX_A 0x10 /* A profile */
2090 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2091 #define ARM_MMU_IDX_M 0x40 /* M profile */
2093 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2094 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2096 typedef enum ARMMMUIdx {
2097 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2098 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2099 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2100 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2101 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2102 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2103 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2104 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2105 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2106 ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2107 /* Indexes below here don't have TLBs and are used only for AT system
2108 * instructions or for the first stage of an S12 page table walk.
2110 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2111 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2112 } ARMMMUIdx;
2114 /* Bit macros for the core-mmu-index values for each index,
2115 * for use when calling tlb_flush_by_mmuidx() and friends.
2117 typedef enum ARMMMUIdxBit {
2118 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2119 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2120 ARMMMUIdxBit_S1E2 = 1 << 2,
2121 ARMMMUIdxBit_S1E3 = 1 << 3,
2122 ARMMMUIdxBit_S1SE0 = 1 << 4,
2123 ARMMMUIdxBit_S1SE1 = 1 << 5,
2124 ARMMMUIdxBit_S2NS = 1 << 6,
2125 ARMMMUIdxBit_MUser = 1 << 0,
2126 ARMMMUIdxBit_MPriv = 1 << 1,
2127 ARMMMUIdxBit_MNegPri = 1 << 2,
2128 } ARMMMUIdxBit;
2130 #define MMU_USER_IDX 0
2132 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2134 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2137 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2139 if (arm_feature(env, ARM_FEATURE_M)) {
2140 return mmu_idx | ARM_MMU_IDX_M;
2141 } else {
2142 return mmu_idx | ARM_MMU_IDX_A;
2146 /* Return the exception level we're running at if this is our mmu_idx */
2147 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2149 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2150 case ARM_MMU_IDX_A:
2151 return mmu_idx & 3;
2152 case ARM_MMU_IDX_M:
2153 return mmu_idx == ARMMMUIdx_MUser ? 0 : 1;
2154 default:
2155 g_assert_not_reached();
2159 /* Determine the current mmu_idx to use for normal loads/stores */
2160 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2162 int el = arm_current_el(env);
2164 if (arm_feature(env, ARM_FEATURE_M)) {
2165 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2167 /* Execution priority is negative if FAULTMASK is set or
2168 * we're in a HardFault or NMI handler.
2170 if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
2171 || env->daif & PSTATE_F) {
2172 return arm_to_core_mmu_idx(ARMMMUIdx_MNegPri);
2175 return arm_to_core_mmu_idx(mmu_idx);
2178 if (el < 2 && arm_is_secure_below_el3(env)) {
2179 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2181 return el;
2184 /* Indexes used when registering address spaces with cpu_address_space_init */
2185 typedef enum ARMASIdx {
2186 ARMASIdx_NS = 0,
2187 ARMASIdx_S = 1,
2188 } ARMASIdx;
2190 /* Return the Exception Level targeted by debug exceptions. */
2191 static inline int arm_debug_target_el(CPUARMState *env)
2193 bool secure = arm_is_secure(env);
2194 bool route_to_el2 = false;
2196 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2197 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2198 env->cp15.mdcr_el2 & (1 << 8);
2201 if (route_to_el2) {
2202 return 2;
2203 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2204 !arm_el_is_aa64(env, 3) && secure) {
2205 return 3;
2206 } else {
2207 return 1;
2211 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2213 if (arm_is_secure(env)) {
2214 /* MDCR_EL3.SDD disables debug events from Secure state */
2215 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2216 || arm_current_el(env) == 3) {
2217 return false;
2221 if (arm_current_el(env) == arm_debug_target_el(env)) {
2222 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2223 || (env->daif & PSTATE_D)) {
2224 return false;
2227 return true;
2230 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2232 int el = arm_current_el(env);
2234 if (el == 0 && arm_el_is_aa64(env, 1)) {
2235 return aa64_generate_debug_exceptions(env);
2238 if (arm_is_secure(env)) {
2239 int spd;
2241 if (el == 0 && (env->cp15.sder & 1)) {
2242 /* SDER.SUIDEN means debug exceptions from Secure EL0
2243 * are always enabled. Otherwise they are controlled by
2244 * SDCR.SPD like those from other Secure ELs.
2246 return true;
2249 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2250 switch (spd) {
2251 case 1:
2252 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2253 case 0:
2254 /* For 0b00 we return true if external secure invasive debug
2255 * is enabled. On real hardware this is controlled by external
2256 * signals to the core. QEMU always permits debug, and behaves
2257 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2259 return true;
2260 case 2:
2261 return false;
2262 case 3:
2263 return true;
2267 return el != 2;
2270 /* Return true if debugging exceptions are currently enabled.
2271 * This corresponds to what in ARM ARM pseudocode would be
2272 * if UsingAArch32() then
2273 * return AArch32.GenerateDebugExceptions()
2274 * else
2275 * return AArch64.GenerateDebugExceptions()
2276 * We choose to push the if() down into this function for clarity,
2277 * since the pseudocode has it at all callsites except for the one in
2278 * CheckSoftwareStep(), where it is elided because both branches would
2279 * always return the same value.
2281 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2282 * don't yet implement those exception levels or their associated trap bits.
2284 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2286 if (env->aarch64) {
2287 return aa64_generate_debug_exceptions(env);
2288 } else {
2289 return aa32_generate_debug_exceptions(env);
2293 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2294 * implicitly means this always returns false in pre-v8 CPUs.)
2296 static inline bool arm_singlestep_active(CPUARMState *env)
2298 return extract32(env->cp15.mdscr_el1, 0, 1)
2299 && arm_el_is_aa64(env, arm_debug_target_el(env))
2300 && arm_generate_debug_exceptions(env);
2303 static inline bool arm_sctlr_b(CPUARMState *env)
2305 return
2306 /* We need not implement SCTLR.ITD in user-mode emulation, so
2307 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2308 * This lets people run BE32 binaries with "-cpu any".
2310 #ifndef CONFIG_USER_ONLY
2311 !arm_feature(env, ARM_FEATURE_V7) &&
2312 #endif
2313 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2316 /* Return true if the processor is in big-endian mode. */
2317 static bool arm_cpu_data_is_big_endian(CPUARMState *env)
2319 int cur_el;
2321 /* In 32bit endianness is determined by looking at CPSR's E bit */
2322 if (!is_a64(env)) {
2323 return
2324 #ifdef CONFIG_USER_ONLY
2325 /* In system mode, BE32 is modelled in line with the
2326 * architecture (as word-invariant big-endianness), where loads
2327 * and stores are done little endian but from addresses which
2328 * are adjusted by XORing with the appropriate constant. So the
2329 * endianness to use for the raw data access is not affected by
2330 * SCTLR.B.
2331 * In user mode, however, we model BE32 as byte-invariant
2332 * big-endianness (because user-only code cannot tell the
2333 * difference), and so we need to use a data access endianness
2334 * that depends on SCTLR.B.
2336 arm_sctlr_b(env) ||
2337 #endif
2338 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2341 cur_el = arm_current_el(env);
2343 if (cur_el == 0) {
2344 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2347 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2350 #include "exec/cpu-all.h"
2352 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2353 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2354 * We put flags which are shared between 32 and 64 bit mode at the top
2355 * of the word, and flags which apply to only one mode at the bottom.
2357 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2358 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2359 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2360 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2361 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2362 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2363 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2364 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2365 /* Target EL if we take a floating-point-disabled exception */
2366 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2367 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2369 /* Bit usage when in AArch32 state: */
2370 #define ARM_TBFLAG_THUMB_SHIFT 0
2371 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2372 #define ARM_TBFLAG_VECLEN_SHIFT 1
2373 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2374 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2375 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2376 #define ARM_TBFLAG_VFPEN_SHIFT 7
2377 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2378 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2379 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2380 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2381 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2382 /* We store the bottom two bits of the CPAR as TB flags and handle
2383 * checks on the other bits at runtime
2385 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2386 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2387 /* Indicates whether cp register reads and writes by guest code should access
2388 * the secure or nonsecure bank of banked registers; note that this is not
2389 * the same thing as the current security state of the processor!
2391 #define ARM_TBFLAG_NS_SHIFT 19
2392 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2393 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2394 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2395 /* For M profile only, Handler (ie not Thread) mode */
2396 #define ARM_TBFLAG_HANDLER_SHIFT 21
2397 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2399 /* Bit usage when in AArch64 state */
2400 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2401 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2402 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2403 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2405 /* some convenience accessor macros */
2406 #define ARM_TBFLAG_AARCH64_STATE(F) \
2407 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2408 #define ARM_TBFLAG_MMUIDX(F) \
2409 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2410 #define ARM_TBFLAG_SS_ACTIVE(F) \
2411 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2412 #define ARM_TBFLAG_PSTATE_SS(F) \
2413 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2414 #define ARM_TBFLAG_FPEXC_EL(F) \
2415 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2416 #define ARM_TBFLAG_THUMB(F) \
2417 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2418 #define ARM_TBFLAG_VECLEN(F) \
2419 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2420 #define ARM_TBFLAG_VECSTRIDE(F) \
2421 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2422 #define ARM_TBFLAG_VFPEN(F) \
2423 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2424 #define ARM_TBFLAG_CONDEXEC(F) \
2425 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2426 #define ARM_TBFLAG_SCTLR_B(F) \
2427 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2428 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2429 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2430 #define ARM_TBFLAG_NS(F) \
2431 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2432 #define ARM_TBFLAG_BE_DATA(F) \
2433 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2434 #define ARM_TBFLAG_HANDLER(F) \
2435 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2436 #define ARM_TBFLAG_TBI0(F) \
2437 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2438 #define ARM_TBFLAG_TBI1(F) \
2439 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2441 static inline bool bswap_code(bool sctlr_b)
2443 #ifdef CONFIG_USER_ONLY
2444 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2445 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2446 * would also end up as a mixed-endian mode with BE code, LE data.
2448 return
2449 #ifdef TARGET_WORDS_BIGENDIAN
2451 #endif
2452 sctlr_b;
2453 #else
2454 /* All code access in ARM is little endian, and there are no loaders
2455 * doing swaps that need to be reversed
2457 return 0;
2458 #endif
2461 /* Return the exception level to which FP-disabled exceptions should
2462 * be taken, or 0 if FP is enabled.
2464 static inline int fp_exception_el(CPUARMState *env)
2466 int fpen;
2467 int cur_el = arm_current_el(env);
2469 /* CPACR and the CPTR registers don't exist before v6, so FP is
2470 * always accessible
2472 if (!arm_feature(env, ARM_FEATURE_V6)) {
2473 return 0;
2476 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2477 * 0, 2 : trap EL0 and EL1/PL1 accesses
2478 * 1 : trap only EL0 accesses
2479 * 3 : trap no accesses
2481 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2482 switch (fpen) {
2483 case 0:
2484 case 2:
2485 if (cur_el == 0 || cur_el == 1) {
2486 /* Trap to PL1, which might be EL1 or EL3 */
2487 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2488 return 3;
2490 return 1;
2492 if (cur_el == 3 && !is_a64(env)) {
2493 /* Secure PL1 running at EL3 */
2494 return 3;
2496 break;
2497 case 1:
2498 if (cur_el == 0) {
2499 return 1;
2501 break;
2502 case 3:
2503 break;
2506 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2507 * check because zero bits in the registers mean "don't trap".
2510 /* CPTR_EL2 : present in v7VE or v8 */
2511 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2512 && !arm_is_secure_below_el3(env)) {
2513 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2514 return 2;
2517 /* CPTR_EL3 : present in v8 */
2518 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2519 /* Trap all FP ops to EL3 */
2520 return 3;
2523 return 0;
2526 #ifdef CONFIG_USER_ONLY
2527 /* get_user and put_user respectively return and expect data according
2528 * to TARGET_WORDS_BIGENDIAN, but ldrex/strex emulation needs to take
2529 * into account CPSR.E.
2531 * TARGET_WORDS_BIGENDIAN CPSR.E need swap?
2532 * LE/LE no 0 no
2533 * LE/BE no 1 yes
2534 * BE8/LE yes 0 yes
2535 * BE8/BE yes 1 no
2536 * BE32/BE yes 1 0 no
2537 * (BE32/LE) yes 1 1 yes
2539 * Officially, BE32 with CPSR.E=1 has "unpredictable" results. We
2540 * implement it as big-endian code, little-endian data.
2542 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2544 return
2545 #ifdef TARGET_WORDS_BIGENDIAN
2547 #endif
2548 arm_sctlr_b(env) ^
2549 arm_cpu_data_is_big_endian(env);
2551 #endif
2553 #ifndef CONFIG_USER_ONLY
2555 * arm_regime_tbi0:
2556 * @env: CPUARMState
2557 * @mmu_idx: MMU index indicating required translation regime
2559 * Extracts the TBI0 value from the appropriate TCR for the current EL
2561 * Returns: the TBI0 value.
2563 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2566 * arm_regime_tbi1:
2567 * @env: CPUARMState
2568 * @mmu_idx: MMU index indicating required translation regime
2570 * Extracts the TBI1 value from the appropriate TCR for the current EL
2572 * Returns: the TBI1 value.
2574 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2575 #else
2576 /* We can't handle tagged addresses properly in user-only mode */
2577 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2579 return 0;
2582 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2584 return 0;
2586 #endif
2588 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2589 target_ulong *cs_base, uint32_t *flags)
2591 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2592 if (is_a64(env)) {
2593 *pc = env->pc;
2594 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2595 /* Get control bits for tagged addresses */
2596 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2597 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2598 } else {
2599 *pc = env->regs[15];
2600 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2601 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2602 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2603 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2604 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2605 if (!(access_secure_reg(env))) {
2606 *flags |= ARM_TBFLAG_NS_MASK;
2608 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2609 || arm_el_is_aa64(env, 1)) {
2610 *flags |= ARM_TBFLAG_VFPEN_MASK;
2612 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2613 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2616 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2618 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2619 * states defined in the ARM ARM for software singlestep:
2620 * SS_ACTIVE PSTATE.SS State
2621 * 0 x Inactive (the TB flag for SS is always 0)
2622 * 1 0 Active-pending
2623 * 1 1 Active-not-pending
2625 if (arm_singlestep_active(env)) {
2626 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2627 if (is_a64(env)) {
2628 if (env->pstate & PSTATE_SS) {
2629 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2631 } else {
2632 if (env->uncached_cpsr & PSTATE_SS) {
2633 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2637 if (arm_cpu_data_is_big_endian(env)) {
2638 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2640 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2642 if (env->v7m.exception != 0) {
2643 *flags |= ARM_TBFLAG_HANDLER_MASK;
2646 *cs_base = 0;
2649 enum {
2650 QEMU_PSCI_CONDUIT_DISABLED = 0,
2651 QEMU_PSCI_CONDUIT_SMC = 1,
2652 QEMU_PSCI_CONDUIT_HVC = 2,
2655 #ifndef CONFIG_USER_ONLY
2656 /* Return the address space index to use for a memory access */
2657 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2659 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2662 /* Return the AddressSpace to use for a memory access
2663 * (which depends on whether the access is S or NS, and whether
2664 * the board gave us a separate AddressSpace for S accesses).
2666 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2668 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2670 #endif
2673 * arm_register_el_change_hook:
2674 * Register a hook function which will be called back whenever this
2675 * CPU changes exception level or mode. The hook function will be
2676 * passed a pointer to the ARMCPU and the opaque data pointer passed
2677 * to this function when the hook was registered.
2679 * Note that we currently only support registering a single hook function,
2680 * and will assert if this function is called twice.
2681 * This facility is intended for the use of the GICv3 emulation.
2683 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2684 void *opaque);
2687 * arm_get_el_change_hook_opaque:
2688 * Return the opaque data that will be used by the el_change_hook
2689 * for this CPU.
2691 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2693 return cpu->el_change_hook_opaque;
2696 #endif