target/riscv: rvv-1.0: slide instructions
[qemu/ar7.git] / target / riscv / vector_helper.c
blobd79f59e443e5350782541e71ca568e199a7e243c
1 /*
2 * RISC-V Vector Extension Helpers for QEMU.
4 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/host-utils.h"
21 #include "cpu.h"
22 #include "exec/memop.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "fpu/softfloat.h"
26 #include "tcg/tcg-gvec-desc.h"
27 #include "internals.h"
28 #include <math.h>
30 target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
31 target_ulong s2)
33 int vlmax, vl;
34 RISCVCPU *cpu = env_archcpu(env);
35 uint64_t lmul = FIELD_EX64(s2, VTYPE, VLMUL);
36 uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW);
37 uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV);
38 bool vill = FIELD_EX64(s2, VTYPE, VILL);
39 target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED);
41 if (lmul & 4) {
42 /* Fractional LMUL. */
43 if (lmul == 4 ||
44 cpu->cfg.elen >> (8 - lmul) < sew) {
45 vill = true;
49 if ((sew > cpu->cfg.elen)
50 || vill
51 || (ediv != 0)
52 || (reserved != 0)) {
53 /* only set vill bit. */
54 env->vtype = FIELD_DP64(0, VTYPE, VILL, 1);
55 env->vl = 0;
56 env->vstart = 0;
57 return 0;
60 vlmax = vext_get_vlmax(cpu, s2);
61 if (s1 <= vlmax) {
62 vl = s1;
63 } else {
64 vl = vlmax;
66 env->vl = vl;
67 env->vtype = s2;
68 env->vstart = 0;
69 return vl;
73 * Note that vector data is stored in host-endian 64-bit chunks,
74 * so addressing units smaller than that needs a host-endian fixup.
76 #ifdef HOST_WORDS_BIGENDIAN
77 #define H1(x) ((x) ^ 7)
78 #define H1_2(x) ((x) ^ 6)
79 #define H1_4(x) ((x) ^ 4)
80 #define H2(x) ((x) ^ 3)
81 #define H4(x) ((x) ^ 1)
82 #define H8(x) ((x))
83 #else
84 #define H1(x) (x)
85 #define H1_2(x) (x)
86 #define H1_4(x) (x)
87 #define H2(x) (x)
88 #define H4(x) (x)
89 #define H8(x) (x)
90 #endif
92 static inline uint32_t vext_nf(uint32_t desc)
94 return FIELD_EX32(simd_data(desc), VDATA, NF);
97 static inline uint32_t vext_vm(uint32_t desc)
99 return FIELD_EX32(simd_data(desc), VDATA, VM);
103 * Encode LMUL to lmul as following:
104 * LMUL vlmul lmul
105 * 1 000 0
106 * 2 001 1
107 * 4 010 2
108 * 8 011 3
109 * - 100 -
110 * 1/8 101 -3
111 * 1/4 110 -2
112 * 1/2 111 -1
114 static inline int32_t vext_lmul(uint32_t desc)
116 return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
120 * Get the maximum number of elements can be operated.
122 * esz: log2 of element size in bytes.
124 static inline uint32_t vext_max_elems(uint32_t desc, uint32_t esz)
127 * As simd_desc support at most 256 bytes, the max vlen is 256 bits.
128 * so vlen in bytes (vlenb) is encoded as maxsz.
130 uint32_t vlenb = simd_maxsz(desc);
132 /* Return VLMAX */
133 int scale = vext_lmul(desc) - esz;
134 return scale < 0 ? vlenb >> -scale : vlenb << scale;
138 * This function checks watchpoint before real load operation.
140 * In softmmu mode, the TLB API probe_access is enough for watchpoint check.
141 * In user mode, there is no watchpoint support now.
143 * It will trigger an exception if there is no mapping in TLB
144 * and page table walk can't fill the TLB entry. Then the guest
145 * software can return here after process the exception or never return.
147 static void probe_pages(CPURISCVState *env, target_ulong addr,
148 target_ulong len, uintptr_t ra,
149 MMUAccessType access_type)
151 target_ulong pagelen = -(addr | TARGET_PAGE_MASK);
152 target_ulong curlen = MIN(pagelen, len);
154 probe_access(env, addr, curlen, access_type,
155 cpu_mmu_index(env, false), ra);
156 if (len > curlen) {
157 addr += curlen;
158 curlen = len - curlen;
159 probe_access(env, addr, curlen, access_type,
160 cpu_mmu_index(env, false), ra);
164 static inline void vext_set_elem_mask(void *v0, int index,
165 uint8_t value)
167 int idx = index / 64;
168 int pos = index % 64;
169 uint64_t old = ((uint64_t *)v0)[idx];
170 ((uint64_t *)v0)[idx] = deposit64(old, pos, 1, value);
174 * Earlier designs (pre-0.9) had a varying number of bits
175 * per mask value (MLEN). In the 0.9 design, MLEN=1.
176 * (Section 4.5)
178 static inline int vext_elem_mask(void *v0, int index)
180 int idx = index / 64;
181 int pos = index % 64;
182 return (((uint64_t *)v0)[idx] >> pos) & 1;
185 /* elements operations for load and store */
186 typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
187 uint32_t idx, void *vd, uintptr_t retaddr);
189 #define GEN_VEXT_LD_ELEM(NAME, ETYPE, H, LDSUF) \
190 static void NAME(CPURISCVState *env, abi_ptr addr, \
191 uint32_t idx, void *vd, uintptr_t retaddr)\
193 ETYPE *cur = ((ETYPE *)vd + H(idx)); \
194 *cur = cpu_##LDSUF##_data_ra(env, addr, retaddr); \
197 GEN_VEXT_LD_ELEM(lde_b, int8_t, H1, ldsb)
198 GEN_VEXT_LD_ELEM(lde_h, int16_t, H2, ldsw)
199 GEN_VEXT_LD_ELEM(lde_w, int32_t, H4, ldl)
200 GEN_VEXT_LD_ELEM(lde_d, int64_t, H8, ldq)
202 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \
203 static void NAME(CPURISCVState *env, abi_ptr addr, \
204 uint32_t idx, void *vd, uintptr_t retaddr)\
206 ETYPE data = *((ETYPE *)vd + H(idx)); \
207 cpu_##STSUF##_data_ra(env, addr, data, retaddr); \
210 GEN_VEXT_ST_ELEM(ste_b, int8_t, H1, stb)
211 GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw)
212 GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl)
213 GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq)
216 *** stride: access vector element from strided memory
218 static void
219 vext_ldst_stride(void *vd, void *v0, target_ulong base,
220 target_ulong stride, CPURISCVState *env,
221 uint32_t desc, uint32_t vm,
222 vext_ldst_elem_fn *ldst_elem,
223 uint32_t esz, uintptr_t ra, MMUAccessType access_type)
225 uint32_t i, k;
226 uint32_t nf = vext_nf(desc);
227 uint32_t max_elems = vext_max_elems(desc, esz);
229 /* probe every access*/
230 for (i = 0; i < env->vl; i++) {
231 if (!vm && !vext_elem_mask(v0, i)) {
232 continue;
234 probe_pages(env, base + stride * i, nf << esz, ra, access_type);
236 /* do real access */
237 for (i = 0; i < env->vl; i++) {
238 k = 0;
239 if (!vm && !vext_elem_mask(v0, i)) {
240 continue;
242 while (k < nf) {
243 target_ulong addr = base + stride * i + (k << esz);
244 ldst_elem(env, addr, i + k * max_elems, vd, ra);
245 k++;
250 #define GEN_VEXT_LD_STRIDE(NAME, ETYPE, LOAD_FN) \
251 void HELPER(NAME)(void *vd, void * v0, target_ulong base, \
252 target_ulong stride, CPURISCVState *env, \
253 uint32_t desc) \
255 uint32_t vm = vext_vm(desc); \
256 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \
257 ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
260 GEN_VEXT_LD_STRIDE(vlse8_v, int8_t, lde_b)
261 GEN_VEXT_LD_STRIDE(vlse16_v, int16_t, lde_h)
262 GEN_VEXT_LD_STRIDE(vlse32_v, int32_t, lde_w)
263 GEN_VEXT_LD_STRIDE(vlse64_v, int64_t, lde_d)
265 #define GEN_VEXT_ST_STRIDE(NAME, ETYPE, STORE_FN) \
266 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
267 target_ulong stride, CPURISCVState *env, \
268 uint32_t desc) \
270 uint32_t vm = vext_vm(desc); \
271 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \
272 ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE); \
275 GEN_VEXT_ST_STRIDE(vsse8_v, int8_t, ste_b)
276 GEN_VEXT_ST_STRIDE(vsse16_v, int16_t, ste_h)
277 GEN_VEXT_ST_STRIDE(vsse32_v, int32_t, ste_w)
278 GEN_VEXT_ST_STRIDE(vsse64_v, int64_t, ste_d)
281 *** unit-stride: access elements stored contiguously in memory
284 /* unmasked unit-stride load and store operation*/
285 static void
286 vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
287 vext_ldst_elem_fn *ldst_elem,
288 uint32_t esz, uintptr_t ra, MMUAccessType access_type)
290 uint32_t i, k;
291 uint32_t nf = vext_nf(desc);
292 uint32_t max_elems = vext_max_elems(desc, esz);
294 /* probe every access */
295 probe_pages(env, base, env->vl * (nf << esz), ra, access_type);
296 /* load bytes from guest memory */
297 for (i = 0; i < env->vl; i++) {
298 k = 0;
299 while (k < nf) {
300 target_ulong addr = base + ((i * nf + k) << esz);
301 ldst_elem(env, addr, i + k * max_elems, vd, ra);
302 k++;
308 * masked unit-stride load and store operation will be a special case of stride,
309 * stride = NF * sizeof (MTYPE)
312 #define GEN_VEXT_LD_US(NAME, ETYPE, LOAD_FN) \
313 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
314 CPURISCVState *env, uint32_t desc) \
316 uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE)); \
317 vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \
318 ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
321 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
322 CPURISCVState *env, uint32_t desc) \
324 vext_ldst_us(vd, base, env, desc, LOAD_FN, \
325 ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
328 GEN_VEXT_LD_US(vle8_v, int8_t, lde_b)
329 GEN_VEXT_LD_US(vle16_v, int16_t, lde_h)
330 GEN_VEXT_LD_US(vle32_v, int32_t, lde_w)
331 GEN_VEXT_LD_US(vle64_v, int64_t, lde_d)
333 #define GEN_VEXT_ST_US(NAME, ETYPE, STORE_FN) \
334 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
335 CPURISCVState *env, uint32_t desc) \
337 uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE)); \
338 vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \
339 ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE); \
342 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
343 CPURISCVState *env, uint32_t desc) \
345 vext_ldst_us(vd, base, env, desc, STORE_FN, \
346 ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE); \
349 GEN_VEXT_ST_US(vse8_v, int8_t, ste_b)
350 GEN_VEXT_ST_US(vse16_v, int16_t, ste_h)
351 GEN_VEXT_ST_US(vse32_v, int32_t, ste_w)
352 GEN_VEXT_ST_US(vse64_v, int64_t, ste_d)
355 *** index: access vector element from indexed memory
357 typedef target_ulong vext_get_index_addr(target_ulong base,
358 uint32_t idx, void *vs2);
360 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \
361 static target_ulong NAME(target_ulong base, \
362 uint32_t idx, void *vs2) \
364 return (base + *((ETYPE *)vs2 + H(idx))); \
367 GEN_VEXT_GET_INDEX_ADDR(idx_b, uint8_t, H1)
368 GEN_VEXT_GET_INDEX_ADDR(idx_h, uint16_t, H2)
369 GEN_VEXT_GET_INDEX_ADDR(idx_w, uint32_t, H4)
370 GEN_VEXT_GET_INDEX_ADDR(idx_d, uint64_t, H8)
372 static inline void
373 vext_ldst_index(void *vd, void *v0, target_ulong base,
374 void *vs2, CPURISCVState *env, uint32_t desc,
375 vext_get_index_addr get_index_addr,
376 vext_ldst_elem_fn *ldst_elem,
377 uint32_t esz, uintptr_t ra, MMUAccessType access_type)
379 uint32_t i, k;
380 uint32_t nf = vext_nf(desc);
381 uint32_t vm = vext_vm(desc);
382 uint32_t max_elems = vext_max_elems(desc, esz);
384 /* probe every access*/
385 for (i = 0; i < env->vl; i++) {
386 if (!vm && !vext_elem_mask(v0, i)) {
387 continue;
389 probe_pages(env, get_index_addr(base, i, vs2), nf << esz, ra,
390 access_type);
392 /* load bytes from guest memory */
393 for (i = 0; i < env->vl; i++) {
394 k = 0;
395 if (!vm && !vext_elem_mask(v0, i)) {
396 continue;
398 while (k < nf) {
399 abi_ptr addr = get_index_addr(base, i, vs2) + (k << esz);
400 ldst_elem(env, addr, i + k * max_elems, vd, ra);
401 k++;
406 #define GEN_VEXT_LD_INDEX(NAME, ETYPE, INDEX_FN, LOAD_FN) \
407 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
408 void *vs2, CPURISCVState *env, uint32_t desc) \
410 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
411 LOAD_FN, ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
414 GEN_VEXT_LD_INDEX(vlxei8_8_v, int8_t, idx_b, lde_b)
415 GEN_VEXT_LD_INDEX(vlxei8_16_v, int16_t, idx_b, lde_h)
416 GEN_VEXT_LD_INDEX(vlxei8_32_v, int32_t, idx_b, lde_w)
417 GEN_VEXT_LD_INDEX(vlxei8_64_v, int64_t, idx_b, lde_d)
418 GEN_VEXT_LD_INDEX(vlxei16_8_v, int8_t, idx_h, lde_b)
419 GEN_VEXT_LD_INDEX(vlxei16_16_v, int16_t, idx_h, lde_h)
420 GEN_VEXT_LD_INDEX(vlxei16_32_v, int32_t, idx_h, lde_w)
421 GEN_VEXT_LD_INDEX(vlxei16_64_v, int64_t, idx_h, lde_d)
422 GEN_VEXT_LD_INDEX(vlxei32_8_v, int8_t, idx_w, lde_b)
423 GEN_VEXT_LD_INDEX(vlxei32_16_v, int16_t, idx_w, lde_h)
424 GEN_VEXT_LD_INDEX(vlxei32_32_v, int32_t, idx_w, lde_w)
425 GEN_VEXT_LD_INDEX(vlxei32_64_v, int64_t, idx_w, lde_d)
426 GEN_VEXT_LD_INDEX(vlxei64_8_v, int8_t, idx_d, lde_b)
427 GEN_VEXT_LD_INDEX(vlxei64_16_v, int16_t, idx_d, lde_h)
428 GEN_VEXT_LD_INDEX(vlxei64_32_v, int32_t, idx_d, lde_w)
429 GEN_VEXT_LD_INDEX(vlxei64_64_v, int64_t, idx_d, lde_d)
431 #define GEN_VEXT_ST_INDEX(NAME, ETYPE, INDEX_FN, STORE_FN) \
432 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
433 void *vs2, CPURISCVState *env, uint32_t desc) \
435 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
436 STORE_FN, ctzl(sizeof(ETYPE)), \
437 GETPC(), MMU_DATA_STORE); \
440 GEN_VEXT_ST_INDEX(vsxei8_8_v, int8_t, idx_b, ste_b)
441 GEN_VEXT_ST_INDEX(vsxei8_16_v, int16_t, idx_b, ste_h)
442 GEN_VEXT_ST_INDEX(vsxei8_32_v, int32_t, idx_b, ste_w)
443 GEN_VEXT_ST_INDEX(vsxei8_64_v, int64_t, idx_b, ste_d)
444 GEN_VEXT_ST_INDEX(vsxei16_8_v, int8_t, idx_h, ste_b)
445 GEN_VEXT_ST_INDEX(vsxei16_16_v, int16_t, idx_h, ste_h)
446 GEN_VEXT_ST_INDEX(vsxei16_32_v, int32_t, idx_h, ste_w)
447 GEN_VEXT_ST_INDEX(vsxei16_64_v, int64_t, idx_h, ste_d)
448 GEN_VEXT_ST_INDEX(vsxei32_8_v, int8_t, idx_w, ste_b)
449 GEN_VEXT_ST_INDEX(vsxei32_16_v, int16_t, idx_w, ste_h)
450 GEN_VEXT_ST_INDEX(vsxei32_32_v, int32_t, idx_w, ste_w)
451 GEN_VEXT_ST_INDEX(vsxei32_64_v, int64_t, idx_w, ste_d)
452 GEN_VEXT_ST_INDEX(vsxei64_8_v, int8_t, idx_d, ste_b)
453 GEN_VEXT_ST_INDEX(vsxei64_16_v, int16_t, idx_d, ste_h)
454 GEN_VEXT_ST_INDEX(vsxei64_32_v, int32_t, idx_d, ste_w)
455 GEN_VEXT_ST_INDEX(vsxei64_64_v, int64_t, idx_d, ste_d)
458 *** unit-stride fault-only-fisrt load instructions
460 static inline void
461 vext_ldff(void *vd, void *v0, target_ulong base,
462 CPURISCVState *env, uint32_t desc,
463 vext_ldst_elem_fn *ldst_elem,
464 uint32_t esz, uintptr_t ra)
466 void *host;
467 uint32_t i, k, vl = 0;
468 uint32_t nf = vext_nf(desc);
469 uint32_t vm = vext_vm(desc);
470 uint32_t max_elems = vext_max_elems(desc, esz);
471 target_ulong addr, offset, remain;
473 /* probe every access*/
474 for (i = 0; i < env->vl; i++) {
475 if (!vm && !vext_elem_mask(v0, i)) {
476 continue;
478 addr = base + i * (nf << esz);
479 if (i == 0) {
480 probe_pages(env, addr, nf << esz, ra, MMU_DATA_LOAD);
481 } else {
482 /* if it triggers an exception, no need to check watchpoint */
483 remain = nf << esz;
484 while (remain > 0) {
485 offset = -(addr | TARGET_PAGE_MASK);
486 host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD,
487 cpu_mmu_index(env, false));
488 if (host) {
489 #ifdef CONFIG_USER_ONLY
490 if (page_check_range(addr, nf << esz, PAGE_READ) < 0) {
491 vl = i;
492 goto ProbeSuccess;
494 #else
495 probe_pages(env, addr, nf << esz, ra, MMU_DATA_LOAD);
496 #endif
497 } else {
498 vl = i;
499 goto ProbeSuccess;
501 if (remain <= offset) {
502 break;
504 remain -= offset;
505 addr += offset;
509 ProbeSuccess:
510 /* load bytes from guest memory */
511 if (vl != 0) {
512 env->vl = vl;
514 for (i = 0; i < env->vl; i++) {
515 k = 0;
516 if (!vm && !vext_elem_mask(v0, i)) {
517 continue;
519 while (k < nf) {
520 target_ulong addr = base + ((i * nf + k) << esz);
521 ldst_elem(env, addr, i + k * max_elems, vd, ra);
522 k++;
527 #define GEN_VEXT_LDFF(NAME, ETYPE, LOAD_FN) \
528 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
529 CPURISCVState *env, uint32_t desc) \
531 vext_ldff(vd, v0, base, env, desc, LOAD_FN, \
532 ctzl(sizeof(ETYPE)), GETPC()); \
535 GEN_VEXT_LDFF(vle8ff_v, int8_t, lde_b)
536 GEN_VEXT_LDFF(vle16ff_v, int16_t, lde_h)
537 GEN_VEXT_LDFF(vle32ff_v, int32_t, lde_w)
538 GEN_VEXT_LDFF(vle64ff_v, int64_t, lde_d)
540 #define DO_SWAP(N, M) (M)
541 #define DO_AND(N, M) (N & M)
542 #define DO_XOR(N, M) (N ^ M)
543 #define DO_OR(N, M) (N | M)
544 #define DO_ADD(N, M) (N + M)
546 /* Signed min/max */
547 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
548 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
550 /* Unsigned min/max */
551 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
552 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
555 *** load and store whole register instructions
557 static void
558 vext_ldst_whole(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
559 vext_ldst_elem_fn *ldst_elem, uint32_t esz, uintptr_t ra,
560 MMUAccessType access_type)
562 uint32_t i, k;
563 uint32_t nf = vext_nf(desc);
564 uint32_t vlenb = env_archcpu(env)->cfg.vlen >> 3;
565 uint32_t max_elems = vlenb >> esz;
567 /* probe every access */
568 probe_pages(env, base, vlenb * nf, ra, access_type);
570 /* load bytes from guest memory */
571 for (k = 0; k < nf; k++) {
572 for (i = 0; i < max_elems; i++) {
573 target_ulong addr = base + ((i + k * max_elems) << esz);
574 ldst_elem(env, addr, i + k * max_elems, vd, ra);
579 #define GEN_VEXT_LD_WHOLE(NAME, ETYPE, LOAD_FN) \
580 void HELPER(NAME)(void *vd, target_ulong base, \
581 CPURISCVState *env, uint32_t desc) \
583 vext_ldst_whole(vd, base, env, desc, LOAD_FN, \
584 ctzl(sizeof(ETYPE)), GETPC(), \
585 MMU_DATA_LOAD); \
588 GEN_VEXT_LD_WHOLE(vl1re8_v, int8_t, lde_b)
589 GEN_VEXT_LD_WHOLE(vl1re16_v, int16_t, lde_h)
590 GEN_VEXT_LD_WHOLE(vl1re32_v, int32_t, lde_w)
591 GEN_VEXT_LD_WHOLE(vl1re64_v, int64_t, lde_d)
592 GEN_VEXT_LD_WHOLE(vl2re8_v, int8_t, lde_b)
593 GEN_VEXT_LD_WHOLE(vl2re16_v, int16_t, lde_h)
594 GEN_VEXT_LD_WHOLE(vl2re32_v, int32_t, lde_w)
595 GEN_VEXT_LD_WHOLE(vl2re64_v, int64_t, lde_d)
596 GEN_VEXT_LD_WHOLE(vl4re8_v, int8_t, lde_b)
597 GEN_VEXT_LD_WHOLE(vl4re16_v, int16_t, lde_h)
598 GEN_VEXT_LD_WHOLE(vl4re32_v, int32_t, lde_w)
599 GEN_VEXT_LD_WHOLE(vl4re64_v, int64_t, lde_d)
600 GEN_VEXT_LD_WHOLE(vl8re8_v, int8_t, lde_b)
601 GEN_VEXT_LD_WHOLE(vl8re16_v, int16_t, lde_h)
602 GEN_VEXT_LD_WHOLE(vl8re32_v, int32_t, lde_w)
603 GEN_VEXT_LD_WHOLE(vl8re64_v, int64_t, lde_d)
605 #define GEN_VEXT_ST_WHOLE(NAME, ETYPE, STORE_FN) \
606 void HELPER(NAME)(void *vd, target_ulong base, \
607 CPURISCVState *env, uint32_t desc) \
609 vext_ldst_whole(vd, base, env, desc, STORE_FN, \
610 ctzl(sizeof(ETYPE)), GETPC(), \
611 MMU_DATA_STORE); \
614 GEN_VEXT_ST_WHOLE(vs1r_v, int8_t, ste_b)
615 GEN_VEXT_ST_WHOLE(vs2r_v, int8_t, ste_b)
616 GEN_VEXT_ST_WHOLE(vs4r_v, int8_t, ste_b)
617 GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b)
620 *** Vector Integer Arithmetic Instructions
623 /* expand macro args before macro */
624 #define RVVCALL(macro, ...) macro(__VA_ARGS__)
626 /* (TD, T1, T2, TX1, TX2) */
627 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
628 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
629 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
630 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
631 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
632 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
633 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
634 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
635 #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
636 #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
637 #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
638 #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t
639 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
640 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
641 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
642 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
643 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
644 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
645 #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t
646 #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t
647 #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t
648 #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t
649 #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t
650 #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t
651 #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t
652 #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t
653 #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t
654 #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t
655 #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
656 #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
658 /* operation of two vector elements */
659 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
661 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
662 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
664 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
665 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
666 *((TD *)vd + HD(i)) = OP(s2, s1); \
668 #define DO_SUB(N, M) (N - M)
669 #define DO_RSUB(N, M) (M - N)
671 RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD)
672 RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD)
673 RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD)
674 RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD)
675 RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB)
676 RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
677 RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
678 RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
680 static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
681 CPURISCVState *env, uint32_t desc,
682 uint32_t esz, uint32_t dsz,
683 opivv2_fn *fn)
685 uint32_t vm = vext_vm(desc);
686 uint32_t vl = env->vl;
687 uint32_t i;
689 for (i = 0; i < vl; i++) {
690 if (!vm && !vext_elem_mask(v0, i)) {
691 continue;
693 fn(vd, vs1, vs2, i);
697 /* generate the helpers for OPIVV */
698 #define GEN_VEXT_VV(NAME, ESZ, DSZ) \
699 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
700 void *vs2, CPURISCVState *env, \
701 uint32_t desc) \
703 do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
704 do_##NAME); \
707 GEN_VEXT_VV(vadd_vv_b, 1, 1)
708 GEN_VEXT_VV(vadd_vv_h, 2, 2)
709 GEN_VEXT_VV(vadd_vv_w, 4, 4)
710 GEN_VEXT_VV(vadd_vv_d, 8, 8)
711 GEN_VEXT_VV(vsub_vv_b, 1, 1)
712 GEN_VEXT_VV(vsub_vv_h, 2, 2)
713 GEN_VEXT_VV(vsub_vv_w, 4, 4)
714 GEN_VEXT_VV(vsub_vv_d, 8, 8)
716 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
719 * (T1)s1 gives the real operator type.
720 * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
722 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
723 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
725 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
726 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
729 RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
730 RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
731 RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD)
732 RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD)
733 RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB)
734 RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB)
735 RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB)
736 RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB)
737 RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB)
738 RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
739 RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
740 RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
742 static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
743 CPURISCVState *env, uint32_t desc,
744 uint32_t esz, uint32_t dsz,
745 opivx2_fn fn)
747 uint32_t vm = vext_vm(desc);
748 uint32_t vl = env->vl;
749 uint32_t i;
751 for (i = 0; i < vl; i++) {
752 if (!vm && !vext_elem_mask(v0, i)) {
753 continue;
755 fn(vd, s1, vs2, i);
759 /* generate the helpers for OPIVX */
760 #define GEN_VEXT_VX(NAME, ESZ, DSZ) \
761 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
762 void *vs2, CPURISCVState *env, \
763 uint32_t desc) \
765 do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
766 do_##NAME); \
769 GEN_VEXT_VX(vadd_vx_b, 1, 1)
770 GEN_VEXT_VX(vadd_vx_h, 2, 2)
771 GEN_VEXT_VX(vadd_vx_w, 4, 4)
772 GEN_VEXT_VX(vadd_vx_d, 8, 8)
773 GEN_VEXT_VX(vsub_vx_b, 1, 1)
774 GEN_VEXT_VX(vsub_vx_h, 2, 2)
775 GEN_VEXT_VX(vsub_vx_w, 4, 4)
776 GEN_VEXT_VX(vsub_vx_d, 8, 8)
777 GEN_VEXT_VX(vrsub_vx_b, 1, 1)
778 GEN_VEXT_VX(vrsub_vx_h, 2, 2)
779 GEN_VEXT_VX(vrsub_vx_w, 4, 4)
780 GEN_VEXT_VX(vrsub_vx_d, 8, 8)
782 void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc)
784 intptr_t oprsz = simd_oprsz(desc);
785 intptr_t i;
787 for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
788 *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i);
792 void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc)
794 intptr_t oprsz = simd_oprsz(desc);
795 intptr_t i;
797 for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
798 *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i);
802 void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc)
804 intptr_t oprsz = simd_oprsz(desc);
805 intptr_t i;
807 for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
808 *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i);
812 void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc)
814 intptr_t oprsz = simd_oprsz(desc);
815 intptr_t i;
817 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
818 *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i);
822 /* Vector Widening Integer Add/Subtract */
823 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
824 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
825 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
826 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
827 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
828 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
829 #define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
830 #define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
831 #define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
832 #define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t
833 #define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t
834 #define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t
835 RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD)
836 RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD)
837 RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD)
838 RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB)
839 RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB)
840 RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB)
841 RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD)
842 RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD)
843 RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD)
844 RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB)
845 RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB)
846 RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB)
847 RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD)
848 RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD)
849 RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD)
850 RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB)
851 RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB)
852 RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB)
853 RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD)
854 RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD)
855 RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD)
856 RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB)
857 RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB)
858 RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB)
859 GEN_VEXT_VV(vwaddu_vv_b, 1, 2)
860 GEN_VEXT_VV(vwaddu_vv_h, 2, 4)
861 GEN_VEXT_VV(vwaddu_vv_w, 4, 8)
862 GEN_VEXT_VV(vwsubu_vv_b, 1, 2)
863 GEN_VEXT_VV(vwsubu_vv_h, 2, 4)
864 GEN_VEXT_VV(vwsubu_vv_w, 4, 8)
865 GEN_VEXT_VV(vwadd_vv_b, 1, 2)
866 GEN_VEXT_VV(vwadd_vv_h, 2, 4)
867 GEN_VEXT_VV(vwadd_vv_w, 4, 8)
868 GEN_VEXT_VV(vwsub_vv_b, 1, 2)
869 GEN_VEXT_VV(vwsub_vv_h, 2, 4)
870 GEN_VEXT_VV(vwsub_vv_w, 4, 8)
871 GEN_VEXT_VV(vwaddu_wv_b, 1, 2)
872 GEN_VEXT_VV(vwaddu_wv_h, 2, 4)
873 GEN_VEXT_VV(vwaddu_wv_w, 4, 8)
874 GEN_VEXT_VV(vwsubu_wv_b, 1, 2)
875 GEN_VEXT_VV(vwsubu_wv_h, 2, 4)
876 GEN_VEXT_VV(vwsubu_wv_w, 4, 8)
877 GEN_VEXT_VV(vwadd_wv_b, 1, 2)
878 GEN_VEXT_VV(vwadd_wv_h, 2, 4)
879 GEN_VEXT_VV(vwadd_wv_w, 4, 8)
880 GEN_VEXT_VV(vwsub_wv_b, 1, 2)
881 GEN_VEXT_VV(vwsub_wv_h, 2, 4)
882 GEN_VEXT_VV(vwsub_wv_w, 4, 8)
884 RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD)
885 RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD)
886 RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD)
887 RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB)
888 RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB)
889 RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB)
890 RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD)
891 RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD)
892 RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD)
893 RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB)
894 RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB)
895 RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB)
896 RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD)
897 RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD)
898 RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD)
899 RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB)
900 RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB)
901 RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB)
902 RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD)
903 RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD)
904 RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD)
905 RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB)
906 RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB)
907 RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB)
908 GEN_VEXT_VX(vwaddu_vx_b, 1, 2)
909 GEN_VEXT_VX(vwaddu_vx_h, 2, 4)
910 GEN_VEXT_VX(vwaddu_vx_w, 4, 8)
911 GEN_VEXT_VX(vwsubu_vx_b, 1, 2)
912 GEN_VEXT_VX(vwsubu_vx_h, 2, 4)
913 GEN_VEXT_VX(vwsubu_vx_w, 4, 8)
914 GEN_VEXT_VX(vwadd_vx_b, 1, 2)
915 GEN_VEXT_VX(vwadd_vx_h, 2, 4)
916 GEN_VEXT_VX(vwadd_vx_w, 4, 8)
917 GEN_VEXT_VX(vwsub_vx_b, 1, 2)
918 GEN_VEXT_VX(vwsub_vx_h, 2, 4)
919 GEN_VEXT_VX(vwsub_vx_w, 4, 8)
920 GEN_VEXT_VX(vwaddu_wx_b, 1, 2)
921 GEN_VEXT_VX(vwaddu_wx_h, 2, 4)
922 GEN_VEXT_VX(vwaddu_wx_w, 4, 8)
923 GEN_VEXT_VX(vwsubu_wx_b, 1, 2)
924 GEN_VEXT_VX(vwsubu_wx_h, 2, 4)
925 GEN_VEXT_VX(vwsubu_wx_w, 4, 8)
926 GEN_VEXT_VX(vwadd_wx_b, 1, 2)
927 GEN_VEXT_VX(vwadd_wx_h, 2, 4)
928 GEN_VEXT_VX(vwadd_wx_w, 4, 8)
929 GEN_VEXT_VX(vwsub_wx_b, 1, 2)
930 GEN_VEXT_VX(vwsub_wx_h, 2, 4)
931 GEN_VEXT_VX(vwsub_wx_w, 4, 8)
933 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
934 #define DO_VADC(N, M, C) (N + M + C)
935 #define DO_VSBC(N, M, C) (N - M - C)
937 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP) \
938 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
939 CPURISCVState *env, uint32_t desc) \
941 uint32_t vl = env->vl; \
942 uint32_t i; \
944 for (i = 0; i < vl; i++) { \
945 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
946 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
947 ETYPE carry = vext_elem_mask(v0, i); \
949 *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \
953 GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t, H1, DO_VADC)
954 GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC)
955 GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC)
956 GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC)
958 GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t, H1, DO_VSBC)
959 GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC)
960 GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC)
961 GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC)
963 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP) \
964 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
965 CPURISCVState *env, uint32_t desc) \
967 uint32_t vl = env->vl; \
968 uint32_t i; \
970 for (i = 0; i < vl; i++) { \
971 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
972 ETYPE carry = vext_elem_mask(v0, i); \
974 *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
978 GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t, H1, DO_VADC)
979 GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC)
980 GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC)
981 GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC)
983 GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t, H1, DO_VSBC)
984 GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC)
985 GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC)
986 GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC)
988 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \
989 (__typeof(N))(N + M) < N)
990 #define DO_MSBC(N, M, C) (C ? N <= M : N < M)
992 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \
993 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
994 CPURISCVState *env, uint32_t desc) \
996 uint32_t vl = env->vl; \
997 uint32_t vm = vext_vm(desc); \
998 uint32_t i; \
1000 for (i = 0; i < vl; i++) { \
1001 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1002 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1003 ETYPE carry = !vm && vext_elem_mask(v0, i); \
1004 vext_set_elem_mask(vd, i, DO_OP(s2, s1, carry)); \
1008 GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t, H1, DO_MADC)
1009 GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC)
1010 GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC)
1011 GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC)
1013 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t, H1, DO_MSBC)
1014 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC)
1015 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC)
1016 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC)
1018 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \
1019 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1020 void *vs2, CPURISCVState *env, uint32_t desc) \
1022 uint32_t vl = env->vl; \
1023 uint32_t vm = vext_vm(desc); \
1024 uint32_t i; \
1026 for (i = 0; i < vl; i++) { \
1027 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1028 ETYPE carry = !vm && vext_elem_mask(v0, i); \
1029 vext_set_elem_mask(vd, i, \
1030 DO_OP(s2, (ETYPE)(target_long)s1, carry)); \
1034 GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t, H1, DO_MADC)
1035 GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC)
1036 GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC)
1037 GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC)
1039 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t, H1, DO_MSBC)
1040 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC)
1041 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC)
1042 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC)
1044 /* Vector Bitwise Logical Instructions */
1045 RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND)
1046 RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND)
1047 RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND)
1048 RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND)
1049 RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR)
1050 RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR)
1051 RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR)
1052 RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR)
1053 RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR)
1054 RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR)
1055 RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR)
1056 RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR)
1057 GEN_VEXT_VV(vand_vv_b, 1, 1)
1058 GEN_VEXT_VV(vand_vv_h, 2, 2)
1059 GEN_VEXT_VV(vand_vv_w, 4, 4)
1060 GEN_VEXT_VV(vand_vv_d, 8, 8)
1061 GEN_VEXT_VV(vor_vv_b, 1, 1)
1062 GEN_VEXT_VV(vor_vv_h, 2, 2)
1063 GEN_VEXT_VV(vor_vv_w, 4, 4)
1064 GEN_VEXT_VV(vor_vv_d, 8, 8)
1065 GEN_VEXT_VV(vxor_vv_b, 1, 1)
1066 GEN_VEXT_VV(vxor_vv_h, 2, 2)
1067 GEN_VEXT_VV(vxor_vv_w, 4, 4)
1068 GEN_VEXT_VV(vxor_vv_d, 8, 8)
1070 RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND)
1071 RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND)
1072 RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND)
1073 RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND)
1074 RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR)
1075 RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR)
1076 RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR)
1077 RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR)
1078 RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR)
1079 RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR)
1080 RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR)
1081 RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR)
1082 GEN_VEXT_VX(vand_vx_b, 1, 1)
1083 GEN_VEXT_VX(vand_vx_h, 2, 2)
1084 GEN_VEXT_VX(vand_vx_w, 4, 4)
1085 GEN_VEXT_VX(vand_vx_d, 8, 8)
1086 GEN_VEXT_VX(vor_vx_b, 1, 1)
1087 GEN_VEXT_VX(vor_vx_h, 2, 2)
1088 GEN_VEXT_VX(vor_vx_w, 4, 4)
1089 GEN_VEXT_VX(vor_vx_d, 8, 8)
1090 GEN_VEXT_VX(vxor_vx_b, 1, 1)
1091 GEN_VEXT_VX(vxor_vx_h, 2, 2)
1092 GEN_VEXT_VX(vxor_vx_w, 4, 4)
1093 GEN_VEXT_VX(vxor_vx_d, 8, 8)
1095 /* Vector Single-Width Bit Shift Instructions */
1096 #define DO_SLL(N, M) (N << (M))
1097 #define DO_SRL(N, M) (N >> (M))
1099 /* generate the helpers for shift instructions with two vector operators */
1100 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK) \
1101 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
1102 void *vs2, CPURISCVState *env, uint32_t desc) \
1104 uint32_t vm = vext_vm(desc); \
1105 uint32_t vl = env->vl; \
1106 uint32_t i; \
1108 for (i = 0; i < vl; i++) { \
1109 if (!vm && !vext_elem_mask(v0, i)) { \
1110 continue; \
1112 TS1 s1 = *((TS1 *)vs1 + HS1(i)); \
1113 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1114 *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \
1118 GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t, uint8_t, H1, H1, DO_SLL, 0x7)
1119 GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf)
1120 GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f)
1121 GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f)
1123 GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7)
1124 GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf)
1125 GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f)
1126 GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f)
1128 GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t, int8_t, H1, H1, DO_SRL, 0x7)
1129 GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf)
1130 GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f)
1131 GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f)
1133 /* generate the helpers for shift instructions with one vector and one scalar */
1134 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK) \
1135 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1136 void *vs2, CPURISCVState *env, uint32_t desc) \
1138 uint32_t vm = vext_vm(desc); \
1139 uint32_t vl = env->vl; \
1140 uint32_t i; \
1142 for (i = 0; i < vl; i++) { \
1143 if (!vm && !vext_elem_mask(v0, i)) { \
1144 continue; \
1146 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1147 *((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \
1151 GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7)
1152 GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf)
1153 GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f)
1154 GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f)
1156 GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7)
1157 GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf)
1158 GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f)
1159 GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f)
1161 GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7)
1162 GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf)
1163 GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f)
1164 GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f)
1166 /* Vector Narrowing Integer Right Shift Instructions */
1167 GEN_VEXT_SHIFT_VV(vnsrl_wv_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf)
1168 GEN_VEXT_SHIFT_VV(vnsrl_wv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f)
1169 GEN_VEXT_SHIFT_VV(vnsrl_wv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f)
1170 GEN_VEXT_SHIFT_VV(vnsra_wv_b, uint8_t, int16_t, H1, H2, DO_SRL, 0xf)
1171 GEN_VEXT_SHIFT_VV(vnsra_wv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f)
1172 GEN_VEXT_SHIFT_VV(vnsra_wv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f)
1173 GEN_VEXT_SHIFT_VX(vnsrl_wx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf)
1174 GEN_VEXT_SHIFT_VX(vnsrl_wx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f)
1175 GEN_VEXT_SHIFT_VX(vnsrl_wx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f)
1176 GEN_VEXT_SHIFT_VX(vnsra_wx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf)
1177 GEN_VEXT_SHIFT_VX(vnsra_wx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f)
1178 GEN_VEXT_SHIFT_VX(vnsra_wx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f)
1180 /* Vector Integer Comparison Instructions */
1181 #define DO_MSEQ(N, M) (N == M)
1182 #define DO_MSNE(N, M) (N != M)
1183 #define DO_MSLT(N, M) (N < M)
1184 #define DO_MSLE(N, M) (N <= M)
1185 #define DO_MSGT(N, M) (N > M)
1187 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \
1188 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1189 CPURISCVState *env, uint32_t desc) \
1191 uint32_t vm = vext_vm(desc); \
1192 uint32_t vl = env->vl; \
1193 uint32_t i; \
1195 for (i = 0; i < vl; i++) { \
1196 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1197 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1198 if (!vm && !vext_elem_mask(v0, i)) { \
1199 continue; \
1201 vext_set_elem_mask(vd, i, DO_OP(s2, s1)); \
1205 GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t, H1, DO_MSEQ)
1206 GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ)
1207 GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ)
1208 GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ)
1210 GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t, H1, DO_MSNE)
1211 GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE)
1212 GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE)
1213 GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE)
1215 GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t, H1, DO_MSLT)
1216 GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT)
1217 GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT)
1218 GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT)
1220 GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t, H1, DO_MSLT)
1221 GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT)
1222 GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT)
1223 GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT)
1225 GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t, H1, DO_MSLE)
1226 GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE)
1227 GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE)
1228 GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE)
1230 GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t, H1, DO_MSLE)
1231 GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE)
1232 GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE)
1233 GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE)
1235 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \
1236 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1237 CPURISCVState *env, uint32_t desc) \
1239 uint32_t vm = vext_vm(desc); \
1240 uint32_t vl = env->vl; \
1241 uint32_t i; \
1243 for (i = 0; i < vl; i++) { \
1244 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1245 if (!vm && !vext_elem_mask(v0, i)) { \
1246 continue; \
1248 vext_set_elem_mask(vd, i, \
1249 DO_OP(s2, (ETYPE)(target_long)s1)); \
1253 GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t, H1, DO_MSEQ)
1254 GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ)
1255 GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ)
1256 GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ)
1258 GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t, H1, DO_MSNE)
1259 GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE)
1260 GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE)
1261 GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE)
1263 GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t, H1, DO_MSLT)
1264 GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT)
1265 GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT)
1266 GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT)
1268 GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t, H1, DO_MSLT)
1269 GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT)
1270 GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT)
1271 GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT)
1273 GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t, H1, DO_MSLE)
1274 GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE)
1275 GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE)
1276 GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE)
1278 GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t, H1, DO_MSLE)
1279 GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE)
1280 GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE)
1281 GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE)
1283 GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t, H1, DO_MSGT)
1284 GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT)
1285 GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT)
1286 GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT)
1288 GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t, H1, DO_MSGT)
1289 GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT)
1290 GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT)
1291 GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT)
1293 /* Vector Integer Min/Max Instructions */
1294 RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN)
1295 RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN)
1296 RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN)
1297 RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN)
1298 RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN)
1299 RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN)
1300 RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN)
1301 RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN)
1302 RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX)
1303 RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX)
1304 RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX)
1305 RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX)
1306 RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX)
1307 RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX)
1308 RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX)
1309 RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX)
1310 GEN_VEXT_VV(vminu_vv_b, 1, 1)
1311 GEN_VEXT_VV(vminu_vv_h, 2, 2)
1312 GEN_VEXT_VV(vminu_vv_w, 4, 4)
1313 GEN_VEXT_VV(vminu_vv_d, 8, 8)
1314 GEN_VEXT_VV(vmin_vv_b, 1, 1)
1315 GEN_VEXT_VV(vmin_vv_h, 2, 2)
1316 GEN_VEXT_VV(vmin_vv_w, 4, 4)
1317 GEN_VEXT_VV(vmin_vv_d, 8, 8)
1318 GEN_VEXT_VV(vmaxu_vv_b, 1, 1)
1319 GEN_VEXT_VV(vmaxu_vv_h, 2, 2)
1320 GEN_VEXT_VV(vmaxu_vv_w, 4, 4)
1321 GEN_VEXT_VV(vmaxu_vv_d, 8, 8)
1322 GEN_VEXT_VV(vmax_vv_b, 1, 1)
1323 GEN_VEXT_VV(vmax_vv_h, 2, 2)
1324 GEN_VEXT_VV(vmax_vv_w, 4, 4)
1325 GEN_VEXT_VV(vmax_vv_d, 8, 8)
1327 RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN)
1328 RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN)
1329 RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN)
1330 RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN)
1331 RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN)
1332 RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN)
1333 RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN)
1334 RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN)
1335 RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX)
1336 RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX)
1337 RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX)
1338 RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX)
1339 RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX)
1340 RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX)
1341 RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX)
1342 RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX)
1343 GEN_VEXT_VX(vminu_vx_b, 1, 1)
1344 GEN_VEXT_VX(vminu_vx_h, 2, 2)
1345 GEN_VEXT_VX(vminu_vx_w, 4, 4)
1346 GEN_VEXT_VX(vminu_vx_d, 8, 8)
1347 GEN_VEXT_VX(vmin_vx_b, 1, 1)
1348 GEN_VEXT_VX(vmin_vx_h, 2, 2)
1349 GEN_VEXT_VX(vmin_vx_w, 4, 4)
1350 GEN_VEXT_VX(vmin_vx_d, 8, 8)
1351 GEN_VEXT_VX(vmaxu_vx_b, 1, 1)
1352 GEN_VEXT_VX(vmaxu_vx_h, 2, 2)
1353 GEN_VEXT_VX(vmaxu_vx_w, 4, 4)
1354 GEN_VEXT_VX(vmaxu_vx_d, 8, 8)
1355 GEN_VEXT_VX(vmax_vx_b, 1, 1)
1356 GEN_VEXT_VX(vmax_vx_h, 2, 2)
1357 GEN_VEXT_VX(vmax_vx_w, 4, 4)
1358 GEN_VEXT_VX(vmax_vx_d, 8, 8)
1360 /* Vector Single-Width Integer Multiply Instructions */
1361 #define DO_MUL(N, M) (N * M)
1362 RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL)
1363 RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL)
1364 RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL)
1365 RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL)
1366 GEN_VEXT_VV(vmul_vv_b, 1, 1)
1367 GEN_VEXT_VV(vmul_vv_h, 2, 2)
1368 GEN_VEXT_VV(vmul_vv_w, 4, 4)
1369 GEN_VEXT_VV(vmul_vv_d, 8, 8)
1371 static int8_t do_mulh_b(int8_t s2, int8_t s1)
1373 return (int16_t)s2 * (int16_t)s1 >> 8;
1376 static int16_t do_mulh_h(int16_t s2, int16_t s1)
1378 return (int32_t)s2 * (int32_t)s1 >> 16;
1381 static int32_t do_mulh_w(int32_t s2, int32_t s1)
1383 return (int64_t)s2 * (int64_t)s1 >> 32;
1386 static int64_t do_mulh_d(int64_t s2, int64_t s1)
1388 uint64_t hi_64, lo_64;
1390 muls64(&lo_64, &hi_64, s1, s2);
1391 return hi_64;
1394 static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1)
1396 return (uint16_t)s2 * (uint16_t)s1 >> 8;
1399 static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1)
1401 return (uint32_t)s2 * (uint32_t)s1 >> 16;
1404 static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1)
1406 return (uint64_t)s2 * (uint64_t)s1 >> 32;
1409 static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1)
1411 uint64_t hi_64, lo_64;
1413 mulu64(&lo_64, &hi_64, s2, s1);
1414 return hi_64;
1417 static int8_t do_mulhsu_b(int8_t s2, uint8_t s1)
1419 return (int16_t)s2 * (uint16_t)s1 >> 8;
1422 static int16_t do_mulhsu_h(int16_t s2, uint16_t s1)
1424 return (int32_t)s2 * (uint32_t)s1 >> 16;
1427 static int32_t do_mulhsu_w(int32_t s2, uint32_t s1)
1429 return (int64_t)s2 * (uint64_t)s1 >> 32;
1433 * Let A = signed operand,
1434 * B = unsigned operand
1435 * P = mulu64(A, B), unsigned product
1437 * LET X = 2 ** 64 - A, 2's complement of A
1438 * SP = signed product
1439 * THEN
1440 * IF A < 0
1441 * SP = -X * B
1442 * = -(2 ** 64 - A) * B
1443 * = A * B - 2 ** 64 * B
1444 * = P - 2 ** 64 * B
1445 * ELSE
1446 * SP = P
1447 * THEN
1448 * HI_P -= (A < 0 ? B : 0)
1451 static int64_t do_mulhsu_d(int64_t s2, uint64_t s1)
1453 uint64_t hi_64, lo_64;
1455 mulu64(&lo_64, &hi_64, s2, s1);
1457 hi_64 -= s2 < 0 ? s1 : 0;
1458 return hi_64;
1461 RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b)
1462 RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h)
1463 RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w)
1464 RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d)
1465 RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b)
1466 RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h)
1467 RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w)
1468 RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d)
1469 RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b)
1470 RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h)
1471 RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w)
1472 RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d)
1473 GEN_VEXT_VV(vmulh_vv_b, 1, 1)
1474 GEN_VEXT_VV(vmulh_vv_h, 2, 2)
1475 GEN_VEXT_VV(vmulh_vv_w, 4, 4)
1476 GEN_VEXT_VV(vmulh_vv_d, 8, 8)
1477 GEN_VEXT_VV(vmulhu_vv_b, 1, 1)
1478 GEN_VEXT_VV(vmulhu_vv_h, 2, 2)
1479 GEN_VEXT_VV(vmulhu_vv_w, 4, 4)
1480 GEN_VEXT_VV(vmulhu_vv_d, 8, 8)
1481 GEN_VEXT_VV(vmulhsu_vv_b, 1, 1)
1482 GEN_VEXT_VV(vmulhsu_vv_h, 2, 2)
1483 GEN_VEXT_VV(vmulhsu_vv_w, 4, 4)
1484 GEN_VEXT_VV(vmulhsu_vv_d, 8, 8)
1486 RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL)
1487 RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL)
1488 RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL)
1489 RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL)
1490 RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b)
1491 RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h)
1492 RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w)
1493 RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d)
1494 RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b)
1495 RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h)
1496 RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w)
1497 RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d)
1498 RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b)
1499 RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h)
1500 RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w)
1501 RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d)
1502 GEN_VEXT_VX(vmul_vx_b, 1, 1)
1503 GEN_VEXT_VX(vmul_vx_h, 2, 2)
1504 GEN_VEXT_VX(vmul_vx_w, 4, 4)
1505 GEN_VEXT_VX(vmul_vx_d, 8, 8)
1506 GEN_VEXT_VX(vmulh_vx_b, 1, 1)
1507 GEN_VEXT_VX(vmulh_vx_h, 2, 2)
1508 GEN_VEXT_VX(vmulh_vx_w, 4, 4)
1509 GEN_VEXT_VX(vmulh_vx_d, 8, 8)
1510 GEN_VEXT_VX(vmulhu_vx_b, 1, 1)
1511 GEN_VEXT_VX(vmulhu_vx_h, 2, 2)
1512 GEN_VEXT_VX(vmulhu_vx_w, 4, 4)
1513 GEN_VEXT_VX(vmulhu_vx_d, 8, 8)
1514 GEN_VEXT_VX(vmulhsu_vx_b, 1, 1)
1515 GEN_VEXT_VX(vmulhsu_vx_h, 2, 2)
1516 GEN_VEXT_VX(vmulhsu_vx_w, 4, 4)
1517 GEN_VEXT_VX(vmulhsu_vx_d, 8, 8)
1519 /* Vector Integer Divide Instructions */
1520 #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M)
1521 #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M)
1522 #define DO_DIV(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) :\
1523 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M)
1524 #define DO_REM(N, M) (unlikely(M == 0) ? N :\
1525 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M)
1527 RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU)
1528 RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU)
1529 RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU)
1530 RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU)
1531 RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV)
1532 RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV)
1533 RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV)
1534 RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV)
1535 RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU)
1536 RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU)
1537 RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU)
1538 RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU)
1539 RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM)
1540 RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM)
1541 RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM)
1542 RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM)
1543 GEN_VEXT_VV(vdivu_vv_b, 1, 1)
1544 GEN_VEXT_VV(vdivu_vv_h, 2, 2)
1545 GEN_VEXT_VV(vdivu_vv_w, 4, 4)
1546 GEN_VEXT_VV(vdivu_vv_d, 8, 8)
1547 GEN_VEXT_VV(vdiv_vv_b, 1, 1)
1548 GEN_VEXT_VV(vdiv_vv_h, 2, 2)
1549 GEN_VEXT_VV(vdiv_vv_w, 4, 4)
1550 GEN_VEXT_VV(vdiv_vv_d, 8, 8)
1551 GEN_VEXT_VV(vremu_vv_b, 1, 1)
1552 GEN_VEXT_VV(vremu_vv_h, 2, 2)
1553 GEN_VEXT_VV(vremu_vv_w, 4, 4)
1554 GEN_VEXT_VV(vremu_vv_d, 8, 8)
1555 GEN_VEXT_VV(vrem_vv_b, 1, 1)
1556 GEN_VEXT_VV(vrem_vv_h, 2, 2)
1557 GEN_VEXT_VV(vrem_vv_w, 4, 4)
1558 GEN_VEXT_VV(vrem_vv_d, 8, 8)
1560 RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU)
1561 RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU)
1562 RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU)
1563 RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU)
1564 RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV)
1565 RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV)
1566 RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV)
1567 RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV)
1568 RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU)
1569 RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU)
1570 RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU)
1571 RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU)
1572 RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM)
1573 RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM)
1574 RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM)
1575 RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM)
1576 GEN_VEXT_VX(vdivu_vx_b, 1, 1)
1577 GEN_VEXT_VX(vdivu_vx_h, 2, 2)
1578 GEN_VEXT_VX(vdivu_vx_w, 4, 4)
1579 GEN_VEXT_VX(vdivu_vx_d, 8, 8)
1580 GEN_VEXT_VX(vdiv_vx_b, 1, 1)
1581 GEN_VEXT_VX(vdiv_vx_h, 2, 2)
1582 GEN_VEXT_VX(vdiv_vx_w, 4, 4)
1583 GEN_VEXT_VX(vdiv_vx_d, 8, 8)
1584 GEN_VEXT_VX(vremu_vx_b, 1, 1)
1585 GEN_VEXT_VX(vremu_vx_h, 2, 2)
1586 GEN_VEXT_VX(vremu_vx_w, 4, 4)
1587 GEN_VEXT_VX(vremu_vx_d, 8, 8)
1588 GEN_VEXT_VX(vrem_vx_b, 1, 1)
1589 GEN_VEXT_VX(vrem_vx_h, 2, 2)
1590 GEN_VEXT_VX(vrem_vx_w, 4, 4)
1591 GEN_VEXT_VX(vrem_vx_d, 8, 8)
1593 /* Vector Widening Integer Multiply Instructions */
1594 RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL)
1595 RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL)
1596 RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL)
1597 RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL)
1598 RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL)
1599 RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL)
1600 RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL)
1601 RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL)
1602 RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL)
1603 GEN_VEXT_VV(vwmul_vv_b, 1, 2)
1604 GEN_VEXT_VV(vwmul_vv_h, 2, 4)
1605 GEN_VEXT_VV(vwmul_vv_w, 4, 8)
1606 GEN_VEXT_VV(vwmulu_vv_b, 1, 2)
1607 GEN_VEXT_VV(vwmulu_vv_h, 2, 4)
1608 GEN_VEXT_VV(vwmulu_vv_w, 4, 8)
1609 GEN_VEXT_VV(vwmulsu_vv_b, 1, 2)
1610 GEN_VEXT_VV(vwmulsu_vv_h, 2, 4)
1611 GEN_VEXT_VV(vwmulsu_vv_w, 4, 8)
1613 RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL)
1614 RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL)
1615 RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL)
1616 RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL)
1617 RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL)
1618 RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL)
1619 RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL)
1620 RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL)
1621 RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL)
1622 GEN_VEXT_VX(vwmul_vx_b, 1, 2)
1623 GEN_VEXT_VX(vwmul_vx_h, 2, 4)
1624 GEN_VEXT_VX(vwmul_vx_w, 4, 8)
1625 GEN_VEXT_VX(vwmulu_vx_b, 1, 2)
1626 GEN_VEXT_VX(vwmulu_vx_h, 2, 4)
1627 GEN_VEXT_VX(vwmulu_vx_w, 4, 8)
1628 GEN_VEXT_VX(vwmulsu_vx_b, 1, 2)
1629 GEN_VEXT_VX(vwmulsu_vx_h, 2, 4)
1630 GEN_VEXT_VX(vwmulsu_vx_w, 4, 8)
1632 /* Vector Single-Width Integer Multiply-Add Instructions */
1633 #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
1634 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
1636 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
1637 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1638 TD d = *((TD *)vd + HD(i)); \
1639 *((TD *)vd + HD(i)) = OP(s2, s1, d); \
1642 #define DO_MACC(N, M, D) (M * N + D)
1643 #define DO_NMSAC(N, M, D) (-(M * N) + D)
1644 #define DO_MADD(N, M, D) (M * D + N)
1645 #define DO_NMSUB(N, M, D) (-(M * D) + N)
1646 RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC)
1647 RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC)
1648 RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC)
1649 RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC)
1650 RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC)
1651 RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC)
1652 RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC)
1653 RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC)
1654 RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD)
1655 RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD)
1656 RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD)
1657 RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD)
1658 RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB)
1659 RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB)
1660 RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB)
1661 RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB)
1662 GEN_VEXT_VV(vmacc_vv_b, 1, 1)
1663 GEN_VEXT_VV(vmacc_vv_h, 2, 2)
1664 GEN_VEXT_VV(vmacc_vv_w, 4, 4)
1665 GEN_VEXT_VV(vmacc_vv_d, 8, 8)
1666 GEN_VEXT_VV(vnmsac_vv_b, 1, 1)
1667 GEN_VEXT_VV(vnmsac_vv_h, 2, 2)
1668 GEN_VEXT_VV(vnmsac_vv_w, 4, 4)
1669 GEN_VEXT_VV(vnmsac_vv_d, 8, 8)
1670 GEN_VEXT_VV(vmadd_vv_b, 1, 1)
1671 GEN_VEXT_VV(vmadd_vv_h, 2, 2)
1672 GEN_VEXT_VV(vmadd_vv_w, 4, 4)
1673 GEN_VEXT_VV(vmadd_vv_d, 8, 8)
1674 GEN_VEXT_VV(vnmsub_vv_b, 1, 1)
1675 GEN_VEXT_VV(vnmsub_vv_h, 2, 2)
1676 GEN_VEXT_VV(vnmsub_vv_w, 4, 4)
1677 GEN_VEXT_VV(vnmsub_vv_d, 8, 8)
1679 #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
1680 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
1682 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1683 TD d = *((TD *)vd + HD(i)); \
1684 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d); \
1687 RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC)
1688 RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC)
1689 RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC)
1690 RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC)
1691 RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC)
1692 RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC)
1693 RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC)
1694 RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC)
1695 RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD)
1696 RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD)
1697 RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD)
1698 RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD)
1699 RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB)
1700 RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB)
1701 RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB)
1702 RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB)
1703 GEN_VEXT_VX(vmacc_vx_b, 1, 1)
1704 GEN_VEXT_VX(vmacc_vx_h, 2, 2)
1705 GEN_VEXT_VX(vmacc_vx_w, 4, 4)
1706 GEN_VEXT_VX(vmacc_vx_d, 8, 8)
1707 GEN_VEXT_VX(vnmsac_vx_b, 1, 1)
1708 GEN_VEXT_VX(vnmsac_vx_h, 2, 2)
1709 GEN_VEXT_VX(vnmsac_vx_w, 4, 4)
1710 GEN_VEXT_VX(vnmsac_vx_d, 8, 8)
1711 GEN_VEXT_VX(vmadd_vx_b, 1, 1)
1712 GEN_VEXT_VX(vmadd_vx_h, 2, 2)
1713 GEN_VEXT_VX(vmadd_vx_w, 4, 4)
1714 GEN_VEXT_VX(vmadd_vx_d, 8, 8)
1715 GEN_VEXT_VX(vnmsub_vx_b, 1, 1)
1716 GEN_VEXT_VX(vnmsub_vx_h, 2, 2)
1717 GEN_VEXT_VX(vnmsub_vx_w, 4, 4)
1718 GEN_VEXT_VX(vnmsub_vx_d, 8, 8)
1720 /* Vector Widening Integer Multiply-Add Instructions */
1721 RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC)
1722 RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC)
1723 RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC)
1724 RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC)
1725 RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC)
1726 RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC)
1727 RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC)
1728 RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC)
1729 RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC)
1730 GEN_VEXT_VV(vwmaccu_vv_b, 1, 2)
1731 GEN_VEXT_VV(vwmaccu_vv_h, 2, 4)
1732 GEN_VEXT_VV(vwmaccu_vv_w, 4, 8)
1733 GEN_VEXT_VV(vwmacc_vv_b, 1, 2)
1734 GEN_VEXT_VV(vwmacc_vv_h, 2, 4)
1735 GEN_VEXT_VV(vwmacc_vv_w, 4, 8)
1736 GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2)
1737 GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4)
1738 GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8)
1740 RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC)
1741 RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC)
1742 RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC)
1743 RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC)
1744 RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC)
1745 RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC)
1746 RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC)
1747 RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC)
1748 RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC)
1749 RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC)
1750 RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC)
1751 RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC)
1752 GEN_VEXT_VX(vwmaccu_vx_b, 1, 2)
1753 GEN_VEXT_VX(vwmaccu_vx_h, 2, 4)
1754 GEN_VEXT_VX(vwmaccu_vx_w, 4, 8)
1755 GEN_VEXT_VX(vwmacc_vx_b, 1, 2)
1756 GEN_VEXT_VX(vwmacc_vx_h, 2, 4)
1757 GEN_VEXT_VX(vwmacc_vx_w, 4, 8)
1758 GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2)
1759 GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4)
1760 GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8)
1761 GEN_VEXT_VX(vwmaccus_vx_b, 1, 2)
1762 GEN_VEXT_VX(vwmaccus_vx_h, 2, 4)
1763 GEN_VEXT_VX(vwmaccus_vx_w, 4, 8)
1765 /* Vector Integer Merge and Move Instructions */
1766 #define GEN_VEXT_VMV_VV(NAME, ETYPE, H) \
1767 void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env, \
1768 uint32_t desc) \
1770 uint32_t vl = env->vl; \
1771 uint32_t i; \
1773 for (i = 0; i < vl; i++) { \
1774 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1775 *((ETYPE *)vd + H(i)) = s1; \
1779 GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t, H1)
1780 GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2)
1781 GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4)
1782 GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8)
1784 #define GEN_VEXT_VMV_VX(NAME, ETYPE, H) \
1785 void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env, \
1786 uint32_t desc) \
1788 uint32_t vl = env->vl; \
1789 uint32_t i; \
1791 for (i = 0; i < vl; i++) { \
1792 *((ETYPE *)vd + H(i)) = (ETYPE)s1; \
1796 GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t, H1)
1797 GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2)
1798 GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4)
1799 GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8)
1801 #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H) \
1802 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1803 CPURISCVState *env, uint32_t desc) \
1805 uint32_t vl = env->vl; \
1806 uint32_t i; \
1808 for (i = 0; i < vl; i++) { \
1809 ETYPE *vt = (!vext_elem_mask(v0, i) ? vs2 : vs1); \
1810 *((ETYPE *)vd + H(i)) = *(vt + H(i)); \
1814 GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t, H1)
1815 GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2)
1816 GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4)
1817 GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8)
1819 #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H) \
1820 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1821 void *vs2, CPURISCVState *env, uint32_t desc) \
1823 uint32_t vl = env->vl; \
1824 uint32_t i; \
1826 for (i = 0; i < vl; i++) { \
1827 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1828 ETYPE d = (!vext_elem_mask(v0, i) ? s2 : \
1829 (ETYPE)(target_long)s1); \
1830 *((ETYPE *)vd + H(i)) = d; \
1834 GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t, H1)
1835 GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2)
1836 GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4)
1837 GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8)
1840 *** Vector Fixed-Point Arithmetic Instructions
1843 /* Vector Single-Width Saturating Add and Subtract */
1846 * As fixed point instructions probably have round mode and saturation,
1847 * define common macros for fixed point here.
1849 typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i,
1850 CPURISCVState *env, int vxrm);
1852 #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
1853 static inline void \
1854 do_##NAME(void *vd, void *vs1, void *vs2, int i, \
1855 CPURISCVState *env, int vxrm) \
1857 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
1858 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1859 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1); \
1862 static inline void
1863 vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2,
1864 CPURISCVState *env,
1865 uint32_t vl, uint32_t vm, int vxrm,
1866 opivv2_rm_fn *fn)
1868 for (uint32_t i = 0; i < vl; i++) {
1869 if (!vm && !vext_elem_mask(v0, i)) {
1870 continue;
1872 fn(vd, vs1, vs2, i, env, vxrm);
1876 static inline void
1877 vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2,
1878 CPURISCVState *env,
1879 uint32_t desc, uint32_t esz, uint32_t dsz,
1880 opivv2_rm_fn *fn)
1882 uint32_t vm = vext_vm(desc);
1883 uint32_t vl = env->vl;
1885 switch (env->vxrm) {
1886 case 0: /* rnu */
1887 vext_vv_rm_1(vd, v0, vs1, vs2,
1888 env, vl, vm, 0, fn);
1889 break;
1890 case 1: /* rne */
1891 vext_vv_rm_1(vd, v0, vs1, vs2,
1892 env, vl, vm, 1, fn);
1893 break;
1894 case 2: /* rdn */
1895 vext_vv_rm_1(vd, v0, vs1, vs2,
1896 env, vl, vm, 2, fn);
1897 break;
1898 default: /* rod */
1899 vext_vv_rm_1(vd, v0, vs1, vs2,
1900 env, vl, vm, 3, fn);
1901 break;
1905 /* generate helpers for fixed point instructions with OPIVV format */
1906 #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ) \
1907 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1908 CPURISCVState *env, uint32_t desc) \
1910 vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
1911 do_##NAME); \
1914 static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
1916 uint8_t res = a + b;
1917 if (res < a) {
1918 res = UINT8_MAX;
1919 env->vxsat = 0x1;
1921 return res;
1924 static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a,
1925 uint16_t b)
1927 uint16_t res = a + b;
1928 if (res < a) {
1929 res = UINT16_MAX;
1930 env->vxsat = 0x1;
1932 return res;
1935 static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a,
1936 uint32_t b)
1938 uint32_t res = a + b;
1939 if (res < a) {
1940 res = UINT32_MAX;
1941 env->vxsat = 0x1;
1943 return res;
1946 static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a,
1947 uint64_t b)
1949 uint64_t res = a + b;
1950 if (res < a) {
1951 res = UINT64_MAX;
1952 env->vxsat = 0x1;
1954 return res;
1957 RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8)
1958 RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16)
1959 RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32)
1960 RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64)
1961 GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1)
1962 GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2)
1963 GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4)
1964 GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8)
1966 typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i,
1967 CPURISCVState *env, int vxrm);
1969 #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
1970 static inline void \
1971 do_##NAME(void *vd, target_long s1, void *vs2, int i, \
1972 CPURISCVState *env, int vxrm) \
1974 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1975 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1); \
1978 static inline void
1979 vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2,
1980 CPURISCVState *env,
1981 uint32_t vl, uint32_t vm, int vxrm,
1982 opivx2_rm_fn *fn)
1984 for (uint32_t i = 0; i < vl; i++) {
1985 if (!vm && !vext_elem_mask(v0, i)) {
1986 continue;
1988 fn(vd, s1, vs2, i, env, vxrm);
1992 static inline void
1993 vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2,
1994 CPURISCVState *env,
1995 uint32_t desc, uint32_t esz, uint32_t dsz,
1996 opivx2_rm_fn *fn)
1998 uint32_t vm = vext_vm(desc);
1999 uint32_t vl = env->vl;
2001 switch (env->vxrm) {
2002 case 0: /* rnu */
2003 vext_vx_rm_1(vd, v0, s1, vs2,
2004 env, vl, vm, 0, fn);
2005 break;
2006 case 1: /* rne */
2007 vext_vx_rm_1(vd, v0, s1, vs2,
2008 env, vl, vm, 1, fn);
2009 break;
2010 case 2: /* rdn */
2011 vext_vx_rm_1(vd, v0, s1, vs2,
2012 env, vl, vm, 2, fn);
2013 break;
2014 default: /* rod */
2015 vext_vx_rm_1(vd, v0, s1, vs2,
2016 env, vl, vm, 3, fn);
2017 break;
2021 /* generate helpers for fixed point instructions with OPIVX format */
2022 #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ) \
2023 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
2024 void *vs2, CPURISCVState *env, uint32_t desc) \
2026 vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
2027 do_##NAME); \
2030 RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8)
2031 RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16)
2032 RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32)
2033 RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64)
2034 GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1)
2035 GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2)
2036 GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4)
2037 GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8)
2039 static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2041 int8_t res = a + b;
2042 if ((res ^ a) & (res ^ b) & INT8_MIN) {
2043 res = a > 0 ? INT8_MAX : INT8_MIN;
2044 env->vxsat = 0x1;
2046 return res;
2049 static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2051 int16_t res = a + b;
2052 if ((res ^ a) & (res ^ b) & INT16_MIN) {
2053 res = a > 0 ? INT16_MAX : INT16_MIN;
2054 env->vxsat = 0x1;
2056 return res;
2059 static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2061 int32_t res = a + b;
2062 if ((res ^ a) & (res ^ b) & INT32_MIN) {
2063 res = a > 0 ? INT32_MAX : INT32_MIN;
2064 env->vxsat = 0x1;
2066 return res;
2069 static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2071 int64_t res = a + b;
2072 if ((res ^ a) & (res ^ b) & INT64_MIN) {
2073 res = a > 0 ? INT64_MAX : INT64_MIN;
2074 env->vxsat = 0x1;
2076 return res;
2079 RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8)
2080 RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16)
2081 RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32)
2082 RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64)
2083 GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1)
2084 GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2)
2085 GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4)
2086 GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8)
2088 RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8)
2089 RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16)
2090 RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32)
2091 RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64)
2092 GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1)
2093 GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2)
2094 GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4)
2095 GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8)
2097 static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2099 uint8_t res = a - b;
2100 if (res > a) {
2101 res = 0;
2102 env->vxsat = 0x1;
2104 return res;
2107 static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a,
2108 uint16_t b)
2110 uint16_t res = a - b;
2111 if (res > a) {
2112 res = 0;
2113 env->vxsat = 0x1;
2115 return res;
2118 static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a,
2119 uint32_t b)
2121 uint32_t res = a - b;
2122 if (res > a) {
2123 res = 0;
2124 env->vxsat = 0x1;
2126 return res;
2129 static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a,
2130 uint64_t b)
2132 uint64_t res = a - b;
2133 if (res > a) {
2134 res = 0;
2135 env->vxsat = 0x1;
2137 return res;
2140 RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8)
2141 RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16)
2142 RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32)
2143 RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64)
2144 GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1)
2145 GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2)
2146 GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4)
2147 GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8)
2149 RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8)
2150 RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16)
2151 RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32)
2152 RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64)
2153 GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1)
2154 GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2)
2155 GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4)
2156 GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8)
2158 static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2160 int8_t res = a - b;
2161 if ((res ^ a) & (a ^ b) & INT8_MIN) {
2162 res = a >= 0 ? INT8_MAX : INT8_MIN;
2163 env->vxsat = 0x1;
2165 return res;
2168 static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2170 int16_t res = a - b;
2171 if ((res ^ a) & (a ^ b) & INT16_MIN) {
2172 res = a >= 0 ? INT16_MAX : INT16_MIN;
2173 env->vxsat = 0x1;
2175 return res;
2178 static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2180 int32_t res = a - b;
2181 if ((res ^ a) & (a ^ b) & INT32_MIN) {
2182 res = a >= 0 ? INT32_MAX : INT32_MIN;
2183 env->vxsat = 0x1;
2185 return res;
2188 static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2190 int64_t res = a - b;
2191 if ((res ^ a) & (a ^ b) & INT64_MIN) {
2192 res = a >= 0 ? INT64_MAX : INT64_MIN;
2193 env->vxsat = 0x1;
2195 return res;
2198 RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8)
2199 RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16)
2200 RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32)
2201 RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64)
2202 GEN_VEXT_VV_RM(vssub_vv_b, 1, 1)
2203 GEN_VEXT_VV_RM(vssub_vv_h, 2, 2)
2204 GEN_VEXT_VV_RM(vssub_vv_w, 4, 4)
2205 GEN_VEXT_VV_RM(vssub_vv_d, 8, 8)
2207 RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8)
2208 RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16)
2209 RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32)
2210 RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64)
2211 GEN_VEXT_VX_RM(vssub_vx_b, 1, 1)
2212 GEN_VEXT_VX_RM(vssub_vx_h, 2, 2)
2213 GEN_VEXT_VX_RM(vssub_vx_w, 4, 4)
2214 GEN_VEXT_VX_RM(vssub_vx_d, 8, 8)
2216 /* Vector Single-Width Averaging Add and Subtract */
2217 static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift)
2219 uint8_t d = extract64(v, shift, 1);
2220 uint8_t d1;
2221 uint64_t D1, D2;
2223 if (shift == 0 || shift > 64) {
2224 return 0;
2227 d1 = extract64(v, shift - 1, 1);
2228 D1 = extract64(v, 0, shift);
2229 if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */
2230 return d1;
2231 } else if (vxrm == 1) { /* round-to-nearest-even */
2232 if (shift > 1) {
2233 D2 = extract64(v, 0, shift - 1);
2234 return d1 & ((D2 != 0) | d);
2235 } else {
2236 return d1 & d;
2238 } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */
2239 return !d & (D1 != 0);
2241 return 0; /* round-down (truncate) */
2244 static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2246 int64_t res = (int64_t)a + b;
2247 uint8_t round = get_round(vxrm, res, 1);
2249 return (res >> 1) + round;
2252 static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2254 int64_t res = a + b;
2255 uint8_t round = get_round(vxrm, res, 1);
2256 int64_t over = (res ^ a) & (res ^ b) & INT64_MIN;
2258 /* With signed overflow, bit 64 is inverse of bit 63. */
2259 return ((res >> 1) ^ over) + round;
2262 RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32)
2263 RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32)
2264 RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32)
2265 RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64)
2266 GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1)
2267 GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2)
2268 GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4)
2269 GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8)
2271 RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32)
2272 RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32)
2273 RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32)
2274 RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64)
2275 GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1)
2276 GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2)
2277 GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4)
2278 GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8)
2280 static inline uint32_t aaddu32(CPURISCVState *env, int vxrm,
2281 uint32_t a, uint32_t b)
2283 uint64_t res = (uint64_t)a + b;
2284 uint8_t round = get_round(vxrm, res, 1);
2286 return (res >> 1) + round;
2289 static inline uint64_t aaddu64(CPURISCVState *env, int vxrm,
2290 uint64_t a, uint64_t b)
2292 uint64_t res = a + b;
2293 uint8_t round = get_round(vxrm, res, 1);
2294 uint64_t over = (uint64_t)(res < a) << 63;
2296 return ((res >> 1) | over) + round;
2299 RVVCALL(OPIVV2_RM, vaaddu_vv_b, OP_UUU_B, H1, H1, H1, aaddu32)
2300 RVVCALL(OPIVV2_RM, vaaddu_vv_h, OP_UUU_H, H2, H2, H2, aaddu32)
2301 RVVCALL(OPIVV2_RM, vaaddu_vv_w, OP_UUU_W, H4, H4, H4, aaddu32)
2302 RVVCALL(OPIVV2_RM, vaaddu_vv_d, OP_UUU_D, H8, H8, H8, aaddu64)
2303 GEN_VEXT_VV_RM(vaaddu_vv_b, 1, 1)
2304 GEN_VEXT_VV_RM(vaaddu_vv_h, 2, 2)
2305 GEN_VEXT_VV_RM(vaaddu_vv_w, 4, 4)
2306 GEN_VEXT_VV_RM(vaaddu_vv_d, 8, 8)
2308 RVVCALL(OPIVX2_RM, vaaddu_vx_b, OP_UUU_B, H1, H1, aaddu32)
2309 RVVCALL(OPIVX2_RM, vaaddu_vx_h, OP_UUU_H, H2, H2, aaddu32)
2310 RVVCALL(OPIVX2_RM, vaaddu_vx_w, OP_UUU_W, H4, H4, aaddu32)
2311 RVVCALL(OPIVX2_RM, vaaddu_vx_d, OP_UUU_D, H8, H8, aaddu64)
2312 GEN_VEXT_VX_RM(vaaddu_vx_b, 1, 1)
2313 GEN_VEXT_VX_RM(vaaddu_vx_h, 2, 2)
2314 GEN_VEXT_VX_RM(vaaddu_vx_w, 4, 4)
2315 GEN_VEXT_VX_RM(vaaddu_vx_d, 8, 8)
2317 static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2319 int64_t res = (int64_t)a - b;
2320 uint8_t round = get_round(vxrm, res, 1);
2322 return (res >> 1) + round;
2325 static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2327 int64_t res = (int64_t)a - b;
2328 uint8_t round = get_round(vxrm, res, 1);
2329 int64_t over = (res ^ a) & (a ^ b) & INT64_MIN;
2331 /* With signed overflow, bit 64 is inverse of bit 63. */
2332 return ((res >> 1) ^ over) + round;
2335 RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32)
2336 RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32)
2337 RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32)
2338 RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64)
2339 GEN_VEXT_VV_RM(vasub_vv_b, 1, 1)
2340 GEN_VEXT_VV_RM(vasub_vv_h, 2, 2)
2341 GEN_VEXT_VV_RM(vasub_vv_w, 4, 4)
2342 GEN_VEXT_VV_RM(vasub_vv_d, 8, 8)
2344 RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32)
2345 RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32)
2346 RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32)
2347 RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64)
2348 GEN_VEXT_VX_RM(vasub_vx_b, 1, 1)
2349 GEN_VEXT_VX_RM(vasub_vx_h, 2, 2)
2350 GEN_VEXT_VX_RM(vasub_vx_w, 4, 4)
2351 GEN_VEXT_VX_RM(vasub_vx_d, 8, 8)
2353 static inline uint32_t asubu32(CPURISCVState *env, int vxrm,
2354 uint32_t a, uint32_t b)
2356 int64_t res = (int64_t)a - b;
2357 uint8_t round = get_round(vxrm, res, 1);
2359 return (res >> 1) + round;
2362 static inline uint64_t asubu64(CPURISCVState *env, int vxrm,
2363 uint64_t a, uint64_t b)
2365 uint64_t res = (uint64_t)a - b;
2366 uint8_t round = get_round(vxrm, res, 1);
2367 uint64_t over = (uint64_t)(res > a) << 63;
2369 return ((res >> 1) | over) + round;
2372 RVVCALL(OPIVV2_RM, vasubu_vv_b, OP_UUU_B, H1, H1, H1, asubu32)
2373 RVVCALL(OPIVV2_RM, vasubu_vv_h, OP_UUU_H, H2, H2, H2, asubu32)
2374 RVVCALL(OPIVV2_RM, vasubu_vv_w, OP_UUU_W, H4, H4, H4, asubu32)
2375 RVVCALL(OPIVV2_RM, vasubu_vv_d, OP_UUU_D, H8, H8, H8, asubu64)
2376 GEN_VEXT_VV_RM(vasubu_vv_b, 1, 1)
2377 GEN_VEXT_VV_RM(vasubu_vv_h, 2, 2)
2378 GEN_VEXT_VV_RM(vasubu_vv_w, 4, 4)
2379 GEN_VEXT_VV_RM(vasubu_vv_d, 8, 8)
2381 RVVCALL(OPIVX2_RM, vasubu_vx_b, OP_UUU_B, H1, H1, asubu32)
2382 RVVCALL(OPIVX2_RM, vasubu_vx_h, OP_UUU_H, H2, H2, asubu32)
2383 RVVCALL(OPIVX2_RM, vasubu_vx_w, OP_UUU_W, H4, H4, asubu32)
2384 RVVCALL(OPIVX2_RM, vasubu_vx_d, OP_UUU_D, H8, H8, asubu64)
2385 GEN_VEXT_VX_RM(vasubu_vx_b, 1, 1)
2386 GEN_VEXT_VX_RM(vasubu_vx_h, 2, 2)
2387 GEN_VEXT_VX_RM(vasubu_vx_w, 4, 4)
2388 GEN_VEXT_VX_RM(vasubu_vx_d, 8, 8)
2390 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */
2391 static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2393 uint8_t round;
2394 int16_t res;
2396 res = (int16_t)a * (int16_t)b;
2397 round = get_round(vxrm, res, 7);
2398 res = (res >> 7) + round;
2400 if (res > INT8_MAX) {
2401 env->vxsat = 0x1;
2402 return INT8_MAX;
2403 } else if (res < INT8_MIN) {
2404 env->vxsat = 0x1;
2405 return INT8_MIN;
2406 } else {
2407 return res;
2411 static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2413 uint8_t round;
2414 int32_t res;
2416 res = (int32_t)a * (int32_t)b;
2417 round = get_round(vxrm, res, 15);
2418 res = (res >> 15) + round;
2420 if (res > INT16_MAX) {
2421 env->vxsat = 0x1;
2422 return INT16_MAX;
2423 } else if (res < INT16_MIN) {
2424 env->vxsat = 0x1;
2425 return INT16_MIN;
2426 } else {
2427 return res;
2431 static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2433 uint8_t round;
2434 int64_t res;
2436 res = (int64_t)a * (int64_t)b;
2437 round = get_round(vxrm, res, 31);
2438 res = (res >> 31) + round;
2440 if (res > INT32_MAX) {
2441 env->vxsat = 0x1;
2442 return INT32_MAX;
2443 } else if (res < INT32_MIN) {
2444 env->vxsat = 0x1;
2445 return INT32_MIN;
2446 } else {
2447 return res;
2451 static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2453 uint8_t round;
2454 uint64_t hi_64, lo_64;
2455 int64_t res;
2457 if (a == INT64_MIN && b == INT64_MIN) {
2458 env->vxsat = 1;
2459 return INT64_MAX;
2462 muls64(&lo_64, &hi_64, a, b);
2463 round = get_round(vxrm, lo_64, 63);
2465 * Cannot overflow, as there are always
2466 * 2 sign bits after multiply.
2468 res = (hi_64 << 1) | (lo_64 >> 63);
2469 if (round) {
2470 if (res == INT64_MAX) {
2471 env->vxsat = 1;
2472 } else {
2473 res += 1;
2476 return res;
2479 RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8)
2480 RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16)
2481 RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32)
2482 RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64)
2483 GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1)
2484 GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2)
2485 GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4)
2486 GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8)
2488 RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8)
2489 RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16)
2490 RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32)
2491 RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64)
2492 GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1)
2493 GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2)
2494 GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4)
2495 GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8)
2497 /* Vector Widening Saturating Scaled Multiply-Add */
2498 static inline uint16_t
2499 vwsmaccu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b,
2500 uint16_t c)
2502 uint8_t round;
2503 uint16_t res = (uint16_t)a * b;
2505 round = get_round(vxrm, res, 4);
2506 res = (res >> 4) + round;
2507 return saddu16(env, vxrm, c, res);
2510 static inline uint32_t
2511 vwsmaccu16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b,
2512 uint32_t c)
2514 uint8_t round;
2515 uint32_t res = (uint32_t)a * b;
2517 round = get_round(vxrm, res, 8);
2518 res = (res >> 8) + round;
2519 return saddu32(env, vxrm, c, res);
2522 static inline uint64_t
2523 vwsmaccu32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b,
2524 uint64_t c)
2526 uint8_t round;
2527 uint64_t res = (uint64_t)a * b;
2529 round = get_round(vxrm, res, 16);
2530 res = (res >> 16) + round;
2531 return saddu64(env, vxrm, c, res);
2534 #define OPIVV3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
2535 static inline void \
2536 do_##NAME(void *vd, void *vs1, void *vs2, int i, \
2537 CPURISCVState *env, int vxrm) \
2539 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
2540 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2541 TD d = *((TD *)vd + HD(i)); \
2542 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1, d); \
2545 RVVCALL(OPIVV3_RM, vwsmaccu_vv_b, WOP_UUU_B, H2, H1, H1, vwsmaccu8)
2546 RVVCALL(OPIVV3_RM, vwsmaccu_vv_h, WOP_UUU_H, H4, H2, H2, vwsmaccu16)
2547 RVVCALL(OPIVV3_RM, vwsmaccu_vv_w, WOP_UUU_W, H8, H4, H4, vwsmaccu32)
2548 GEN_VEXT_VV_RM(vwsmaccu_vv_b, 1, 2)
2549 GEN_VEXT_VV_RM(vwsmaccu_vv_h, 2, 4)
2550 GEN_VEXT_VV_RM(vwsmaccu_vv_w, 4, 8)
2552 #define OPIVX3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
2553 static inline void \
2554 do_##NAME(void *vd, target_long s1, void *vs2, int i, \
2555 CPURISCVState *env, int vxrm) \
2557 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2558 TD d = *((TD *)vd + HD(i)); \
2559 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1, d); \
2562 RVVCALL(OPIVX3_RM, vwsmaccu_vx_b, WOP_UUU_B, H2, H1, vwsmaccu8)
2563 RVVCALL(OPIVX3_RM, vwsmaccu_vx_h, WOP_UUU_H, H4, H2, vwsmaccu16)
2564 RVVCALL(OPIVX3_RM, vwsmaccu_vx_w, WOP_UUU_W, H8, H4, vwsmaccu32)
2565 GEN_VEXT_VX_RM(vwsmaccu_vx_b, 1, 2)
2566 GEN_VEXT_VX_RM(vwsmaccu_vx_h, 2, 4)
2567 GEN_VEXT_VX_RM(vwsmaccu_vx_w, 4, 8)
2569 static inline int16_t
2570 vwsmacc8(CPURISCVState *env, int vxrm, int8_t a, int8_t b, int16_t c)
2572 uint8_t round;
2573 int16_t res = (int16_t)a * b;
2575 round = get_round(vxrm, res, 4);
2576 res = (res >> 4) + round;
2577 return sadd16(env, vxrm, c, res);
2580 static inline int32_t
2581 vwsmacc16(CPURISCVState *env, int vxrm, int16_t a, int16_t b, int32_t c)
2583 uint8_t round;
2584 int32_t res = (int32_t)a * b;
2586 round = get_round(vxrm, res, 8);
2587 res = (res >> 8) + round;
2588 return sadd32(env, vxrm, c, res);
2592 static inline int64_t
2593 vwsmacc32(CPURISCVState *env, int vxrm, int32_t a, int32_t b, int64_t c)
2595 uint8_t round;
2596 int64_t res = (int64_t)a * b;
2598 round = get_round(vxrm, res, 16);
2599 res = (res >> 16) + round;
2600 return sadd64(env, vxrm, c, res);
2603 RVVCALL(OPIVV3_RM, vwsmacc_vv_b, WOP_SSS_B, H2, H1, H1, vwsmacc8)
2604 RVVCALL(OPIVV3_RM, vwsmacc_vv_h, WOP_SSS_H, H4, H2, H2, vwsmacc16)
2605 RVVCALL(OPIVV3_RM, vwsmacc_vv_w, WOP_SSS_W, H8, H4, H4, vwsmacc32)
2606 GEN_VEXT_VV_RM(vwsmacc_vv_b, 1, 2)
2607 GEN_VEXT_VV_RM(vwsmacc_vv_h, 2, 4)
2608 GEN_VEXT_VV_RM(vwsmacc_vv_w, 4, 8)
2609 RVVCALL(OPIVX3_RM, vwsmacc_vx_b, WOP_SSS_B, H2, H1, vwsmacc8)
2610 RVVCALL(OPIVX3_RM, vwsmacc_vx_h, WOP_SSS_H, H4, H2, vwsmacc16)
2611 RVVCALL(OPIVX3_RM, vwsmacc_vx_w, WOP_SSS_W, H8, H4, vwsmacc32)
2612 GEN_VEXT_VX_RM(vwsmacc_vx_b, 1, 2)
2613 GEN_VEXT_VX_RM(vwsmacc_vx_h, 2, 4)
2614 GEN_VEXT_VX_RM(vwsmacc_vx_w, 4, 8)
2616 static inline int16_t
2617 vwsmaccsu8(CPURISCVState *env, int vxrm, uint8_t a, int8_t b, int16_t c)
2619 uint8_t round;
2620 int16_t res = a * (int16_t)b;
2622 round = get_round(vxrm, res, 4);
2623 res = (res >> 4) + round;
2624 return ssub16(env, vxrm, c, res);
2627 static inline int32_t
2628 vwsmaccsu16(CPURISCVState *env, int vxrm, uint16_t a, int16_t b, uint32_t c)
2630 uint8_t round;
2631 int32_t res = a * (int32_t)b;
2633 round = get_round(vxrm, res, 8);
2634 res = (res >> 8) + round;
2635 return ssub32(env, vxrm, c, res);
2638 static inline int64_t
2639 vwsmaccsu32(CPURISCVState *env, int vxrm, uint32_t a, int32_t b, int64_t c)
2641 uint8_t round;
2642 int64_t res = a * (int64_t)b;
2644 round = get_round(vxrm, res, 16);
2645 res = (res >> 16) + round;
2646 return ssub64(env, vxrm, c, res);
2649 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, vwsmaccsu8)
2650 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, vwsmaccsu16)
2651 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, vwsmaccsu32)
2652 GEN_VEXT_VV_RM(vwsmaccsu_vv_b, 1, 2)
2653 GEN_VEXT_VV_RM(vwsmaccsu_vv_h, 2, 4)
2654 GEN_VEXT_VV_RM(vwsmaccsu_vv_w, 4, 8)
2655 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_b, WOP_SSU_B, H2, H1, vwsmaccsu8)
2656 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_h, WOP_SSU_H, H4, H2, vwsmaccsu16)
2657 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_w, WOP_SSU_W, H8, H4, vwsmaccsu32)
2658 GEN_VEXT_VX_RM(vwsmaccsu_vx_b, 1, 2)
2659 GEN_VEXT_VX_RM(vwsmaccsu_vx_h, 2, 4)
2660 GEN_VEXT_VX_RM(vwsmaccsu_vx_w, 4, 8)
2662 static inline int16_t
2663 vwsmaccus8(CPURISCVState *env, int vxrm, int8_t a, uint8_t b, int16_t c)
2665 uint8_t round;
2666 int16_t res = (int16_t)a * b;
2668 round = get_round(vxrm, res, 4);
2669 res = (res >> 4) + round;
2670 return ssub16(env, vxrm, c, res);
2673 static inline int32_t
2674 vwsmaccus16(CPURISCVState *env, int vxrm, int16_t a, uint16_t b, int32_t c)
2676 uint8_t round;
2677 int32_t res = (int32_t)a * b;
2679 round = get_round(vxrm, res, 8);
2680 res = (res >> 8) + round;
2681 return ssub32(env, vxrm, c, res);
2684 static inline int64_t
2685 vwsmaccus32(CPURISCVState *env, int vxrm, int32_t a, uint32_t b, int64_t c)
2687 uint8_t round;
2688 int64_t res = (int64_t)a * b;
2690 round = get_round(vxrm, res, 16);
2691 res = (res >> 16) + round;
2692 return ssub64(env, vxrm, c, res);
2695 RVVCALL(OPIVX3_RM, vwsmaccus_vx_b, WOP_SUS_B, H2, H1, vwsmaccus8)
2696 RVVCALL(OPIVX3_RM, vwsmaccus_vx_h, WOP_SUS_H, H4, H2, vwsmaccus16)
2697 RVVCALL(OPIVX3_RM, vwsmaccus_vx_w, WOP_SUS_W, H8, H4, vwsmaccus32)
2698 GEN_VEXT_VX_RM(vwsmaccus_vx_b, 1, 2)
2699 GEN_VEXT_VX_RM(vwsmaccus_vx_h, 2, 4)
2700 GEN_VEXT_VX_RM(vwsmaccus_vx_w, 4, 8)
2702 /* Vector Single-Width Scaling Shift Instructions */
2703 static inline uint8_t
2704 vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2706 uint8_t round, shift = b & 0x7;
2707 uint8_t res;
2709 round = get_round(vxrm, a, shift);
2710 res = (a >> shift) + round;
2711 return res;
2713 static inline uint16_t
2714 vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b)
2716 uint8_t round, shift = b & 0xf;
2717 uint16_t res;
2719 round = get_round(vxrm, a, shift);
2720 res = (a >> shift) + round;
2721 return res;
2723 static inline uint32_t
2724 vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b)
2726 uint8_t round, shift = b & 0x1f;
2727 uint32_t res;
2729 round = get_round(vxrm, a, shift);
2730 res = (a >> shift) + round;
2731 return res;
2733 static inline uint64_t
2734 vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b)
2736 uint8_t round, shift = b & 0x3f;
2737 uint64_t res;
2739 round = get_round(vxrm, a, shift);
2740 res = (a >> shift) + round;
2741 return res;
2743 RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8)
2744 RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16)
2745 RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32)
2746 RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64)
2747 GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1)
2748 GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2)
2749 GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4)
2750 GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8)
2752 RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8)
2753 RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16)
2754 RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32)
2755 RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64)
2756 GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1)
2757 GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2)
2758 GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4)
2759 GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8)
2761 static inline int8_t
2762 vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2764 uint8_t round, shift = b & 0x7;
2765 int8_t res;
2767 round = get_round(vxrm, a, shift);
2768 res = (a >> shift) + round;
2769 return res;
2771 static inline int16_t
2772 vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2774 uint8_t round, shift = b & 0xf;
2775 int16_t res;
2777 round = get_round(vxrm, a, shift);
2778 res = (a >> shift) + round;
2779 return res;
2781 static inline int32_t
2782 vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2784 uint8_t round, shift = b & 0x1f;
2785 int32_t res;
2787 round = get_round(vxrm, a, shift);
2788 res = (a >> shift) + round;
2789 return res;
2791 static inline int64_t
2792 vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2794 uint8_t round, shift = b & 0x3f;
2795 int64_t res;
2797 round = get_round(vxrm, a, shift);
2798 res = (a >> shift) + round;
2799 return res;
2802 RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8)
2803 RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16)
2804 RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32)
2805 RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64)
2806 GEN_VEXT_VV_RM(vssra_vv_b, 1, 1)
2807 GEN_VEXT_VV_RM(vssra_vv_h, 2, 2)
2808 GEN_VEXT_VV_RM(vssra_vv_w, 4, 4)
2809 GEN_VEXT_VV_RM(vssra_vv_d, 8, 8)
2811 RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8)
2812 RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16)
2813 RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32)
2814 RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64)
2815 GEN_VEXT_VX_RM(vssra_vx_b, 1, 1)
2816 GEN_VEXT_VX_RM(vssra_vx_h, 2, 2)
2817 GEN_VEXT_VX_RM(vssra_vx_w, 4, 4)
2818 GEN_VEXT_VX_RM(vssra_vx_d, 8, 8)
2820 /* Vector Narrowing Fixed-Point Clip Instructions */
2821 static inline int8_t
2822 vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b)
2824 uint8_t round, shift = b & 0xf;
2825 int16_t res;
2827 round = get_round(vxrm, a, shift);
2828 res = (a >> shift) + round;
2829 if (res > INT8_MAX) {
2830 env->vxsat = 0x1;
2831 return INT8_MAX;
2832 } else if (res < INT8_MIN) {
2833 env->vxsat = 0x1;
2834 return INT8_MIN;
2835 } else {
2836 return res;
2840 static inline int16_t
2841 vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b)
2843 uint8_t round, shift = b & 0x1f;
2844 int32_t res;
2846 round = get_round(vxrm, a, shift);
2847 res = (a >> shift) + round;
2848 if (res > INT16_MAX) {
2849 env->vxsat = 0x1;
2850 return INT16_MAX;
2851 } else if (res < INT16_MIN) {
2852 env->vxsat = 0x1;
2853 return INT16_MIN;
2854 } else {
2855 return res;
2859 static inline int32_t
2860 vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b)
2862 uint8_t round, shift = b & 0x3f;
2863 int64_t res;
2865 round = get_round(vxrm, a, shift);
2866 res = (a >> shift) + round;
2867 if (res > INT32_MAX) {
2868 env->vxsat = 0x1;
2869 return INT32_MAX;
2870 } else if (res < INT32_MIN) {
2871 env->vxsat = 0x1;
2872 return INT32_MIN;
2873 } else {
2874 return res;
2878 RVVCALL(OPIVV2_RM, vnclip_vv_b, NOP_SSS_B, H1, H2, H1, vnclip8)
2879 RVVCALL(OPIVV2_RM, vnclip_vv_h, NOP_SSS_H, H2, H4, H2, vnclip16)
2880 RVVCALL(OPIVV2_RM, vnclip_vv_w, NOP_SSS_W, H4, H8, H4, vnclip32)
2881 GEN_VEXT_VV_RM(vnclip_vv_b, 1, 1)
2882 GEN_VEXT_VV_RM(vnclip_vv_h, 2, 2)
2883 GEN_VEXT_VV_RM(vnclip_vv_w, 4, 4)
2885 RVVCALL(OPIVX2_RM, vnclip_vx_b, NOP_SSS_B, H1, H2, vnclip8)
2886 RVVCALL(OPIVX2_RM, vnclip_vx_h, NOP_SSS_H, H2, H4, vnclip16)
2887 RVVCALL(OPIVX2_RM, vnclip_vx_w, NOP_SSS_W, H4, H8, vnclip32)
2888 GEN_VEXT_VX_RM(vnclip_vx_b, 1, 1)
2889 GEN_VEXT_VX_RM(vnclip_vx_h, 2, 2)
2890 GEN_VEXT_VX_RM(vnclip_vx_w, 4, 4)
2892 static inline uint8_t
2893 vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b)
2895 uint8_t round, shift = b & 0xf;
2896 uint16_t res;
2898 round = get_round(vxrm, a, shift);
2899 res = (a >> shift) + round;
2900 if (res > UINT8_MAX) {
2901 env->vxsat = 0x1;
2902 return UINT8_MAX;
2903 } else {
2904 return res;
2908 static inline uint16_t
2909 vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b)
2911 uint8_t round, shift = b & 0x1f;
2912 uint32_t res;
2914 round = get_round(vxrm, a, shift);
2915 res = (a >> shift) + round;
2916 if (res > UINT16_MAX) {
2917 env->vxsat = 0x1;
2918 return UINT16_MAX;
2919 } else {
2920 return res;
2924 static inline uint32_t
2925 vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b)
2927 uint8_t round, shift = b & 0x3f;
2928 int64_t res;
2930 round = get_round(vxrm, a, shift);
2931 res = (a >> shift) + round;
2932 if (res > UINT32_MAX) {
2933 env->vxsat = 0x1;
2934 return UINT32_MAX;
2935 } else {
2936 return res;
2940 RVVCALL(OPIVV2_RM, vnclipu_vv_b, NOP_UUU_B, H1, H2, H1, vnclipu8)
2941 RVVCALL(OPIVV2_RM, vnclipu_vv_h, NOP_UUU_H, H2, H4, H2, vnclipu16)
2942 RVVCALL(OPIVV2_RM, vnclipu_vv_w, NOP_UUU_W, H4, H8, H4, vnclipu32)
2943 GEN_VEXT_VV_RM(vnclipu_vv_b, 1, 1)
2944 GEN_VEXT_VV_RM(vnclipu_vv_h, 2, 2)
2945 GEN_VEXT_VV_RM(vnclipu_vv_w, 4, 4)
2947 RVVCALL(OPIVX2_RM, vnclipu_vx_b, NOP_UUU_B, H1, H2, vnclipu8)
2948 RVVCALL(OPIVX2_RM, vnclipu_vx_h, NOP_UUU_H, H2, H4, vnclipu16)
2949 RVVCALL(OPIVX2_RM, vnclipu_vx_w, NOP_UUU_W, H4, H8, vnclipu32)
2950 GEN_VEXT_VX_RM(vnclipu_vx_b, 1, 1)
2951 GEN_VEXT_VX_RM(vnclipu_vx_h, 2, 2)
2952 GEN_VEXT_VX_RM(vnclipu_vx_w, 4, 4)
2955 *** Vector Float Point Arithmetic Instructions
2957 /* Vector Single-Width Floating-Point Add/Subtract Instructions */
2958 #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
2959 static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
2960 CPURISCVState *env) \
2962 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
2963 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2964 *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status); \
2967 #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ) \
2968 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
2969 void *vs2, CPURISCVState *env, \
2970 uint32_t desc) \
2972 uint32_t vm = vext_vm(desc); \
2973 uint32_t vl = env->vl; \
2974 uint32_t i; \
2976 for (i = 0; i < vl; i++) { \
2977 if (!vm && !vext_elem_mask(v0, i)) { \
2978 continue; \
2980 do_##NAME(vd, vs1, vs2, i, env); \
2984 RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add)
2985 RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add)
2986 RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add)
2987 GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2)
2988 GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4)
2989 GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8)
2991 #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
2992 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
2993 CPURISCVState *env) \
2995 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2996 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\
2999 #define GEN_VEXT_VF(NAME, ESZ, DSZ) \
3000 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, \
3001 void *vs2, CPURISCVState *env, \
3002 uint32_t desc) \
3004 uint32_t vm = vext_vm(desc); \
3005 uint32_t vl = env->vl; \
3006 uint32_t i; \
3008 for (i = 0; i < vl; i++) { \
3009 if (!vm && !vext_elem_mask(v0, i)) { \
3010 continue; \
3012 do_##NAME(vd, s1, vs2, i, env); \
3016 RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add)
3017 RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add)
3018 RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add)
3019 GEN_VEXT_VF(vfadd_vf_h, 2, 2)
3020 GEN_VEXT_VF(vfadd_vf_w, 4, 4)
3021 GEN_VEXT_VF(vfadd_vf_d, 8, 8)
3023 RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub)
3024 RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub)
3025 RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub)
3026 GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2)
3027 GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4)
3028 GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8)
3029 RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub)
3030 RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub)
3031 RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub)
3032 GEN_VEXT_VF(vfsub_vf_h, 2, 2)
3033 GEN_VEXT_VF(vfsub_vf_w, 4, 4)
3034 GEN_VEXT_VF(vfsub_vf_d, 8, 8)
3036 static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s)
3038 return float16_sub(b, a, s);
3041 static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s)
3043 return float32_sub(b, a, s);
3046 static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s)
3048 return float64_sub(b, a, s);
3051 RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub)
3052 RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub)
3053 RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub)
3054 GEN_VEXT_VF(vfrsub_vf_h, 2, 2)
3055 GEN_VEXT_VF(vfrsub_vf_w, 4, 4)
3056 GEN_VEXT_VF(vfrsub_vf_d, 8, 8)
3058 /* Vector Widening Floating-Point Add/Subtract Instructions */
3059 static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s)
3061 return float32_add(float16_to_float32(a, true, s),
3062 float16_to_float32(b, true, s), s);
3065 static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s)
3067 return float64_add(float32_to_float64(a, s),
3068 float32_to_float64(b, s), s);
3072 RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16)
3073 RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32)
3074 GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4)
3075 GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8)
3076 RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16)
3077 RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32)
3078 GEN_VEXT_VF(vfwadd_vf_h, 2, 4)
3079 GEN_VEXT_VF(vfwadd_vf_w, 4, 8)
3081 static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s)
3083 return float32_sub(float16_to_float32(a, true, s),
3084 float16_to_float32(b, true, s), s);
3087 static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s)
3089 return float64_sub(float32_to_float64(a, s),
3090 float32_to_float64(b, s), s);
3094 RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16)
3095 RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32)
3096 GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4)
3097 GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8)
3098 RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16)
3099 RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32)
3100 GEN_VEXT_VF(vfwsub_vf_h, 2, 4)
3101 GEN_VEXT_VF(vfwsub_vf_w, 4, 8)
3103 static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s)
3105 return float32_add(a, float16_to_float32(b, true, s), s);
3108 static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s)
3110 return float64_add(a, float32_to_float64(b, s), s);
3113 RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16)
3114 RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32)
3115 GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4)
3116 GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8)
3117 RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16)
3118 RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32)
3119 GEN_VEXT_VF(vfwadd_wf_h, 2, 4)
3120 GEN_VEXT_VF(vfwadd_wf_w, 4, 8)
3122 static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s)
3124 return float32_sub(a, float16_to_float32(b, true, s), s);
3127 static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s)
3129 return float64_sub(a, float32_to_float64(b, s), s);
3132 RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16)
3133 RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32)
3134 GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4)
3135 GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8)
3136 RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16)
3137 RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32)
3138 GEN_VEXT_VF(vfwsub_wf_h, 2, 4)
3139 GEN_VEXT_VF(vfwsub_wf_w, 4, 8)
3141 /* Vector Single-Width Floating-Point Multiply/Divide Instructions */
3142 RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul)
3143 RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul)
3144 RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul)
3145 GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2)
3146 GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4)
3147 GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8)
3148 RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul)
3149 RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul)
3150 RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul)
3151 GEN_VEXT_VF(vfmul_vf_h, 2, 2)
3152 GEN_VEXT_VF(vfmul_vf_w, 4, 4)
3153 GEN_VEXT_VF(vfmul_vf_d, 8, 8)
3155 RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div)
3156 RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div)
3157 RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div)
3158 GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2)
3159 GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4)
3160 GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8)
3161 RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div)
3162 RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div)
3163 RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div)
3164 GEN_VEXT_VF(vfdiv_vf_h, 2, 2)
3165 GEN_VEXT_VF(vfdiv_vf_w, 4, 4)
3166 GEN_VEXT_VF(vfdiv_vf_d, 8, 8)
3168 static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s)
3170 return float16_div(b, a, s);
3173 static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s)
3175 return float32_div(b, a, s);
3178 static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s)
3180 return float64_div(b, a, s);
3183 RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv)
3184 RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv)
3185 RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv)
3186 GEN_VEXT_VF(vfrdiv_vf_h, 2, 2)
3187 GEN_VEXT_VF(vfrdiv_vf_w, 4, 4)
3188 GEN_VEXT_VF(vfrdiv_vf_d, 8, 8)
3190 /* Vector Widening Floating-Point Multiply */
3191 static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s)
3193 return float32_mul(float16_to_float32(a, true, s),
3194 float16_to_float32(b, true, s), s);
3197 static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s)
3199 return float64_mul(float32_to_float64(a, s),
3200 float32_to_float64(b, s), s);
3203 RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16)
3204 RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32)
3205 GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4)
3206 GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8)
3207 RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16)
3208 RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32)
3209 GEN_VEXT_VF(vfwmul_vf_h, 2, 4)
3210 GEN_VEXT_VF(vfwmul_vf_w, 4, 8)
3212 /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
3213 #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
3214 static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
3215 CPURISCVState *env) \
3217 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
3218 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3219 TD d = *((TD *)vd + HD(i)); \
3220 *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status); \
3223 static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3225 return float16_muladd(a, b, d, 0, s);
3228 static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3230 return float32_muladd(a, b, d, 0, s);
3233 static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3235 return float64_muladd(a, b, d, 0, s);
3238 RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16)
3239 RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32)
3240 RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64)
3241 GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2)
3242 GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4)
3243 GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8)
3245 #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
3246 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
3247 CPURISCVState *env) \
3249 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3250 TD d = *((TD *)vd + HD(i)); \
3251 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\
3254 RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16)
3255 RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32)
3256 RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64)
3257 GEN_VEXT_VF(vfmacc_vf_h, 2, 2)
3258 GEN_VEXT_VF(vfmacc_vf_w, 4, 4)
3259 GEN_VEXT_VF(vfmacc_vf_d, 8, 8)
3261 static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3263 return float16_muladd(a, b, d,
3264 float_muladd_negate_c | float_muladd_negate_product, s);
3267 static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3269 return float32_muladd(a, b, d,
3270 float_muladd_negate_c | float_muladd_negate_product, s);
3273 static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3275 return float64_muladd(a, b, d,
3276 float_muladd_negate_c | float_muladd_negate_product, s);
3279 RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16)
3280 RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32)
3281 RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64)
3282 GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2)
3283 GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4)
3284 GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8)
3285 RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16)
3286 RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32)
3287 RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64)
3288 GEN_VEXT_VF(vfnmacc_vf_h, 2, 2)
3289 GEN_VEXT_VF(vfnmacc_vf_w, 4, 4)
3290 GEN_VEXT_VF(vfnmacc_vf_d, 8, 8)
3292 static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3294 return float16_muladd(a, b, d, float_muladd_negate_c, s);
3297 static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3299 return float32_muladd(a, b, d, float_muladd_negate_c, s);
3302 static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3304 return float64_muladd(a, b, d, float_muladd_negate_c, s);
3307 RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16)
3308 RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32)
3309 RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64)
3310 GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2)
3311 GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4)
3312 GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8)
3313 RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16)
3314 RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32)
3315 RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64)
3316 GEN_VEXT_VF(vfmsac_vf_h, 2, 2)
3317 GEN_VEXT_VF(vfmsac_vf_w, 4, 4)
3318 GEN_VEXT_VF(vfmsac_vf_d, 8, 8)
3320 static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3322 return float16_muladd(a, b, d, float_muladd_negate_product, s);
3325 static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3327 return float32_muladd(a, b, d, float_muladd_negate_product, s);
3330 static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3332 return float64_muladd(a, b, d, float_muladd_negate_product, s);
3335 RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16)
3336 RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32)
3337 RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64)
3338 GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2)
3339 GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4)
3340 GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8)
3341 RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16)
3342 RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32)
3343 RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64)
3344 GEN_VEXT_VF(vfnmsac_vf_h, 2, 2)
3345 GEN_VEXT_VF(vfnmsac_vf_w, 4, 4)
3346 GEN_VEXT_VF(vfnmsac_vf_d, 8, 8)
3348 static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3350 return float16_muladd(d, b, a, 0, s);
3353 static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3355 return float32_muladd(d, b, a, 0, s);
3358 static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3360 return float64_muladd(d, b, a, 0, s);
3363 RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16)
3364 RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32)
3365 RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64)
3366 GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2)
3367 GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4)
3368 GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8)
3369 RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16)
3370 RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32)
3371 RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64)
3372 GEN_VEXT_VF(vfmadd_vf_h, 2, 2)
3373 GEN_VEXT_VF(vfmadd_vf_w, 4, 4)
3374 GEN_VEXT_VF(vfmadd_vf_d, 8, 8)
3376 static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3378 return float16_muladd(d, b, a,
3379 float_muladd_negate_c | float_muladd_negate_product, s);
3382 static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3384 return float32_muladd(d, b, a,
3385 float_muladd_negate_c | float_muladd_negate_product, s);
3388 static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3390 return float64_muladd(d, b, a,
3391 float_muladd_negate_c | float_muladd_negate_product, s);
3394 RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16)
3395 RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32)
3396 RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64)
3397 GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2)
3398 GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4)
3399 GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8)
3400 RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16)
3401 RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32)
3402 RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64)
3403 GEN_VEXT_VF(vfnmadd_vf_h, 2, 2)
3404 GEN_VEXT_VF(vfnmadd_vf_w, 4, 4)
3405 GEN_VEXT_VF(vfnmadd_vf_d, 8, 8)
3407 static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3409 return float16_muladd(d, b, a, float_muladd_negate_c, s);
3412 static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3414 return float32_muladd(d, b, a, float_muladd_negate_c, s);
3417 static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3419 return float64_muladd(d, b, a, float_muladd_negate_c, s);
3422 RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16)
3423 RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32)
3424 RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64)
3425 GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2)
3426 GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4)
3427 GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8)
3428 RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16)
3429 RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32)
3430 RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64)
3431 GEN_VEXT_VF(vfmsub_vf_h, 2, 2)
3432 GEN_VEXT_VF(vfmsub_vf_w, 4, 4)
3433 GEN_VEXT_VF(vfmsub_vf_d, 8, 8)
3435 static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3437 return float16_muladd(d, b, a, float_muladd_negate_product, s);
3440 static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3442 return float32_muladd(d, b, a, float_muladd_negate_product, s);
3445 static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3447 return float64_muladd(d, b, a, float_muladd_negate_product, s);
3450 RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16)
3451 RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32)
3452 RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64)
3453 GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2)
3454 GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4)
3455 GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8)
3456 RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16)
3457 RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32)
3458 RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64)
3459 GEN_VEXT_VF(vfnmsub_vf_h, 2, 2)
3460 GEN_VEXT_VF(vfnmsub_vf_w, 4, 4)
3461 GEN_VEXT_VF(vfnmsub_vf_d, 8, 8)
3463 /* Vector Widening Floating-Point Fused Multiply-Add Instructions */
3464 static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3466 return float32_muladd(float16_to_float32(a, true, s),
3467 float16_to_float32(b, true, s), d, 0, s);
3470 static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3472 return float64_muladd(float32_to_float64(a, s),
3473 float32_to_float64(b, s), d, 0, s);
3476 RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16)
3477 RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32)
3478 GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4)
3479 GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8)
3480 RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16)
3481 RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32)
3482 GEN_VEXT_VF(vfwmacc_vf_h, 2, 4)
3483 GEN_VEXT_VF(vfwmacc_vf_w, 4, 8)
3485 static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3487 return float32_muladd(float16_to_float32(a, true, s),
3488 float16_to_float32(b, true, s), d,
3489 float_muladd_negate_c | float_muladd_negate_product, s);
3492 static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3494 return float64_muladd(float32_to_float64(a, s),
3495 float32_to_float64(b, s), d,
3496 float_muladd_negate_c | float_muladd_negate_product, s);
3499 RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16)
3500 RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32)
3501 GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4)
3502 GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8)
3503 RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16)
3504 RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32)
3505 GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4)
3506 GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8)
3508 static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3510 return float32_muladd(float16_to_float32(a, true, s),
3511 float16_to_float32(b, true, s), d,
3512 float_muladd_negate_c, s);
3515 static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3517 return float64_muladd(float32_to_float64(a, s),
3518 float32_to_float64(b, s), d,
3519 float_muladd_negate_c, s);
3522 RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16)
3523 RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32)
3524 GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4)
3525 GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8)
3526 RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16)
3527 RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32)
3528 GEN_VEXT_VF(vfwmsac_vf_h, 2, 4)
3529 GEN_VEXT_VF(vfwmsac_vf_w, 4, 8)
3531 static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3533 return float32_muladd(float16_to_float32(a, true, s),
3534 float16_to_float32(b, true, s), d,
3535 float_muladd_negate_product, s);
3538 static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3540 return float64_muladd(float32_to_float64(a, s),
3541 float32_to_float64(b, s), d,
3542 float_muladd_negate_product, s);
3545 RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16)
3546 RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32)
3547 GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4)
3548 GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8)
3549 RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16)
3550 RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32)
3551 GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4)
3552 GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8)
3554 /* Vector Floating-Point Square-Root Instruction */
3555 /* (TD, T2, TX2) */
3556 #define OP_UU_H uint16_t, uint16_t, uint16_t
3557 #define OP_UU_W uint32_t, uint32_t, uint32_t
3558 #define OP_UU_D uint64_t, uint64_t, uint64_t
3560 #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
3561 static void do_##NAME(void *vd, void *vs2, int i, \
3562 CPURISCVState *env) \
3564 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3565 *((TD *)vd + HD(i)) = OP(s2, &env->fp_status); \
3568 #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ) \
3569 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
3570 CPURISCVState *env, uint32_t desc) \
3572 uint32_t vm = vext_vm(desc); \
3573 uint32_t vl = env->vl; \
3574 uint32_t i; \
3576 if (vl == 0) { \
3577 return; \
3579 for (i = 0; i < vl; i++) { \
3580 if (!vm && !vext_elem_mask(v0, i)) { \
3581 continue; \
3583 do_##NAME(vd, vs2, i, env); \
3587 RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt)
3588 RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt)
3589 RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt)
3590 GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2)
3591 GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4)
3592 GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8)
3594 /* Vector Floating-Point MIN/MAX Instructions */
3595 RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minnum)
3596 RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minnum)
3597 RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minnum)
3598 GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2)
3599 GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4)
3600 GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8)
3601 RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minnum)
3602 RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minnum)
3603 RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minnum)
3604 GEN_VEXT_VF(vfmin_vf_h, 2, 2)
3605 GEN_VEXT_VF(vfmin_vf_w, 4, 4)
3606 GEN_VEXT_VF(vfmin_vf_d, 8, 8)
3608 RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maxnum)
3609 RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maxnum)
3610 RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maxnum)
3611 GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2)
3612 GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4)
3613 GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8)
3614 RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maxnum)
3615 RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maxnum)
3616 RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maxnum)
3617 GEN_VEXT_VF(vfmax_vf_h, 2, 2)
3618 GEN_VEXT_VF(vfmax_vf_w, 4, 4)
3619 GEN_VEXT_VF(vfmax_vf_d, 8, 8)
3621 /* Vector Floating-Point Sign-Injection Instructions */
3622 static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s)
3624 return deposit64(b, 0, 15, a);
3627 static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s)
3629 return deposit64(b, 0, 31, a);
3632 static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s)
3634 return deposit64(b, 0, 63, a);
3637 RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16)
3638 RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32)
3639 RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64)
3640 GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2)
3641 GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4)
3642 GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8)
3643 RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16)
3644 RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32)
3645 RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64)
3646 GEN_VEXT_VF(vfsgnj_vf_h, 2, 2)
3647 GEN_VEXT_VF(vfsgnj_vf_w, 4, 4)
3648 GEN_VEXT_VF(vfsgnj_vf_d, 8, 8)
3650 static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s)
3652 return deposit64(~b, 0, 15, a);
3655 static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s)
3657 return deposit64(~b, 0, 31, a);
3660 static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s)
3662 return deposit64(~b, 0, 63, a);
3665 RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16)
3666 RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32)
3667 RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64)
3668 GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2)
3669 GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4)
3670 GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8)
3671 RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16)
3672 RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32)
3673 RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64)
3674 GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2)
3675 GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4)
3676 GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8)
3678 static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s)
3680 return deposit64(b ^ a, 0, 15, a);
3683 static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s)
3685 return deposit64(b ^ a, 0, 31, a);
3688 static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s)
3690 return deposit64(b ^ a, 0, 63, a);
3693 RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16)
3694 RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32)
3695 RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64)
3696 GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2)
3697 GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4)
3698 GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8)
3699 RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16)
3700 RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32)
3701 RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64)
3702 GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2)
3703 GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4)
3704 GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8)
3706 /* Vector Floating-Point Compare Instructions */
3707 #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP) \
3708 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
3709 CPURISCVState *env, uint32_t desc) \
3711 uint32_t vm = vext_vm(desc); \
3712 uint32_t vl = env->vl; \
3713 uint32_t i; \
3715 for (i = 0; i < vl; i++) { \
3716 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
3717 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3718 if (!vm && !vext_elem_mask(v0, i)) { \
3719 continue; \
3721 vext_set_elem_mask(vd, i, \
3722 DO_OP(s2, s1, &env->fp_status)); \
3726 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet)
3727 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet)
3728 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet)
3730 #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP) \
3731 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
3732 CPURISCVState *env, uint32_t desc) \
3734 uint32_t vm = vext_vm(desc); \
3735 uint32_t vl = env->vl; \
3736 uint32_t i; \
3738 for (i = 0; i < vl; i++) { \
3739 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3740 if (!vm && !vext_elem_mask(v0, i)) { \
3741 continue; \
3743 vext_set_elem_mask(vd, i, \
3744 DO_OP(s2, (ETYPE)s1, &env->fp_status)); \
3748 GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet)
3749 GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet)
3750 GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet)
3752 static bool vmfne16(uint16_t a, uint16_t b, float_status *s)
3754 FloatRelation compare = float16_compare_quiet(a, b, s);
3755 return compare != float_relation_equal;
3758 static bool vmfne32(uint32_t a, uint32_t b, float_status *s)
3760 FloatRelation compare = float32_compare_quiet(a, b, s);
3761 return compare != float_relation_equal;
3764 static bool vmfne64(uint64_t a, uint64_t b, float_status *s)
3766 FloatRelation compare = float64_compare_quiet(a, b, s);
3767 return compare != float_relation_equal;
3770 GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16)
3771 GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32)
3772 GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64)
3773 GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16)
3774 GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32)
3775 GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64)
3777 GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt)
3778 GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt)
3779 GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt)
3780 GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt)
3781 GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt)
3782 GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt)
3784 GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le)
3785 GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le)
3786 GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le)
3787 GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le)
3788 GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le)
3789 GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le)
3791 static bool vmfgt16(uint16_t a, uint16_t b, float_status *s)
3793 FloatRelation compare = float16_compare(a, b, s);
3794 return compare == float_relation_greater;
3797 static bool vmfgt32(uint32_t a, uint32_t b, float_status *s)
3799 FloatRelation compare = float32_compare(a, b, s);
3800 return compare == float_relation_greater;
3803 static bool vmfgt64(uint64_t a, uint64_t b, float_status *s)
3805 FloatRelation compare = float64_compare(a, b, s);
3806 return compare == float_relation_greater;
3809 GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16)
3810 GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32)
3811 GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64)
3813 static bool vmfge16(uint16_t a, uint16_t b, float_status *s)
3815 FloatRelation compare = float16_compare(a, b, s);
3816 return compare == float_relation_greater ||
3817 compare == float_relation_equal;
3820 static bool vmfge32(uint32_t a, uint32_t b, float_status *s)
3822 FloatRelation compare = float32_compare(a, b, s);
3823 return compare == float_relation_greater ||
3824 compare == float_relation_equal;
3827 static bool vmfge64(uint64_t a, uint64_t b, float_status *s)
3829 FloatRelation compare = float64_compare(a, b, s);
3830 return compare == float_relation_greater ||
3831 compare == float_relation_equal;
3834 GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16)
3835 GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32)
3836 GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64)
3838 GEN_VEXT_CMP_VV_ENV(vmford_vv_h, uint16_t, H2, !float16_unordered_quiet)
3839 GEN_VEXT_CMP_VV_ENV(vmford_vv_w, uint32_t, H4, !float32_unordered_quiet)
3840 GEN_VEXT_CMP_VV_ENV(vmford_vv_d, uint64_t, H8, !float64_unordered_quiet)
3841 GEN_VEXT_CMP_VF(vmford_vf_h, uint16_t, H2, !float16_unordered_quiet)
3842 GEN_VEXT_CMP_VF(vmford_vf_w, uint32_t, H4, !float32_unordered_quiet)
3843 GEN_VEXT_CMP_VF(vmford_vf_d, uint64_t, H8, !float64_unordered_quiet)
3845 /* Vector Floating-Point Classify Instruction */
3846 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
3847 static void do_##NAME(void *vd, void *vs2, int i) \
3849 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3850 *((TD *)vd + HD(i)) = OP(s2); \
3853 #define GEN_VEXT_V(NAME, ESZ, DSZ) \
3854 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
3855 CPURISCVState *env, uint32_t desc) \
3857 uint32_t vm = vext_vm(desc); \
3858 uint32_t vl = env->vl; \
3859 uint32_t i; \
3861 for (i = 0; i < vl; i++) { \
3862 if (!vm && !vext_elem_mask(v0, i)) { \
3863 continue; \
3865 do_##NAME(vd, vs2, i); \
3869 target_ulong fclass_h(uint64_t frs1)
3871 float16 f = frs1;
3872 bool sign = float16_is_neg(f);
3874 if (float16_is_infinity(f)) {
3875 return sign ? 1 << 0 : 1 << 7;
3876 } else if (float16_is_zero(f)) {
3877 return sign ? 1 << 3 : 1 << 4;
3878 } else if (float16_is_zero_or_denormal(f)) {
3879 return sign ? 1 << 2 : 1 << 5;
3880 } else if (float16_is_any_nan(f)) {
3881 float_status s = { }; /* for snan_bit_is_one */
3882 return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3883 } else {
3884 return sign ? 1 << 1 : 1 << 6;
3888 target_ulong fclass_s(uint64_t frs1)
3890 float32 f = frs1;
3891 bool sign = float32_is_neg(f);
3893 if (float32_is_infinity(f)) {
3894 return sign ? 1 << 0 : 1 << 7;
3895 } else if (float32_is_zero(f)) {
3896 return sign ? 1 << 3 : 1 << 4;
3897 } else if (float32_is_zero_or_denormal(f)) {
3898 return sign ? 1 << 2 : 1 << 5;
3899 } else if (float32_is_any_nan(f)) {
3900 float_status s = { }; /* for snan_bit_is_one */
3901 return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3902 } else {
3903 return sign ? 1 << 1 : 1 << 6;
3907 target_ulong fclass_d(uint64_t frs1)
3909 float64 f = frs1;
3910 bool sign = float64_is_neg(f);
3912 if (float64_is_infinity(f)) {
3913 return sign ? 1 << 0 : 1 << 7;
3914 } else if (float64_is_zero(f)) {
3915 return sign ? 1 << 3 : 1 << 4;
3916 } else if (float64_is_zero_or_denormal(f)) {
3917 return sign ? 1 << 2 : 1 << 5;
3918 } else if (float64_is_any_nan(f)) {
3919 float_status s = { }; /* for snan_bit_is_one */
3920 return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3921 } else {
3922 return sign ? 1 << 1 : 1 << 6;
3926 RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h)
3927 RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s)
3928 RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d)
3929 GEN_VEXT_V(vfclass_v_h, 2, 2)
3930 GEN_VEXT_V(vfclass_v_w, 4, 4)
3931 GEN_VEXT_V(vfclass_v_d, 8, 8)
3933 /* Vector Floating-Point Merge Instruction */
3934 #define GEN_VFMERGE_VF(NAME, ETYPE, H) \
3935 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
3936 CPURISCVState *env, uint32_t desc) \
3938 uint32_t vm = vext_vm(desc); \
3939 uint32_t vl = env->vl; \
3940 uint32_t i; \
3942 for (i = 0; i < vl; i++) { \
3943 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3944 *((ETYPE *)vd + H(i)) \
3945 = (!vm && !vext_elem_mask(v0, i) ? s2 : s1); \
3949 GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2)
3950 GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4)
3951 GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8)
3953 /* Single-Width Floating-Point/Integer Type-Convert Instructions */
3954 /* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
3955 RVVCALL(OPFVV1, vfcvt_xu_f_v_h, OP_UU_H, H2, H2, float16_to_uint16)
3956 RVVCALL(OPFVV1, vfcvt_xu_f_v_w, OP_UU_W, H4, H4, float32_to_uint32)
3957 RVVCALL(OPFVV1, vfcvt_xu_f_v_d, OP_UU_D, H8, H8, float64_to_uint64)
3958 GEN_VEXT_V_ENV(vfcvt_xu_f_v_h, 2, 2)
3959 GEN_VEXT_V_ENV(vfcvt_xu_f_v_w, 4, 4)
3960 GEN_VEXT_V_ENV(vfcvt_xu_f_v_d, 8, 8)
3962 /* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */
3963 RVVCALL(OPFVV1, vfcvt_x_f_v_h, OP_UU_H, H2, H2, float16_to_int16)
3964 RVVCALL(OPFVV1, vfcvt_x_f_v_w, OP_UU_W, H4, H4, float32_to_int32)
3965 RVVCALL(OPFVV1, vfcvt_x_f_v_d, OP_UU_D, H8, H8, float64_to_int64)
3966 GEN_VEXT_V_ENV(vfcvt_x_f_v_h, 2, 2)
3967 GEN_VEXT_V_ENV(vfcvt_x_f_v_w, 4, 4)
3968 GEN_VEXT_V_ENV(vfcvt_x_f_v_d, 8, 8)
3970 /* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */
3971 RVVCALL(OPFVV1, vfcvt_f_xu_v_h, OP_UU_H, H2, H2, uint16_to_float16)
3972 RVVCALL(OPFVV1, vfcvt_f_xu_v_w, OP_UU_W, H4, H4, uint32_to_float32)
3973 RVVCALL(OPFVV1, vfcvt_f_xu_v_d, OP_UU_D, H8, H8, uint64_to_float64)
3974 GEN_VEXT_V_ENV(vfcvt_f_xu_v_h, 2, 2)
3975 GEN_VEXT_V_ENV(vfcvt_f_xu_v_w, 4, 4)
3976 GEN_VEXT_V_ENV(vfcvt_f_xu_v_d, 8, 8)
3978 /* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */
3979 RVVCALL(OPFVV1, vfcvt_f_x_v_h, OP_UU_H, H2, H2, int16_to_float16)
3980 RVVCALL(OPFVV1, vfcvt_f_x_v_w, OP_UU_W, H4, H4, int32_to_float32)
3981 RVVCALL(OPFVV1, vfcvt_f_x_v_d, OP_UU_D, H8, H8, int64_to_float64)
3982 GEN_VEXT_V_ENV(vfcvt_f_x_v_h, 2, 2)
3983 GEN_VEXT_V_ENV(vfcvt_f_x_v_w, 4, 4)
3984 GEN_VEXT_V_ENV(vfcvt_f_x_v_d, 8, 8)
3986 /* Widening Floating-Point/Integer Type-Convert Instructions */
3987 /* (TD, T2, TX2) */
3988 #define WOP_UU_H uint32_t, uint16_t, uint16_t
3989 #define WOP_UU_W uint64_t, uint32_t, uint32_t
3990 /* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/
3991 RVVCALL(OPFVV1, vfwcvt_xu_f_v_h, WOP_UU_H, H4, H2, float16_to_uint32)
3992 RVVCALL(OPFVV1, vfwcvt_xu_f_v_w, WOP_UU_W, H8, H4, float32_to_uint64)
3993 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h, 2, 4)
3994 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w, 4, 8)
3996 /* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */
3997 RVVCALL(OPFVV1, vfwcvt_x_f_v_h, WOP_UU_H, H4, H2, float16_to_int32)
3998 RVVCALL(OPFVV1, vfwcvt_x_f_v_w, WOP_UU_W, H8, H4, float32_to_int64)
3999 GEN_VEXT_V_ENV(vfwcvt_x_f_v_h, 2, 4)
4000 GEN_VEXT_V_ENV(vfwcvt_x_f_v_w, 4, 8)
4002 /* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */
4003 RVVCALL(OPFVV1, vfwcvt_f_xu_v_h, WOP_UU_H, H4, H2, uint16_to_float32)
4004 RVVCALL(OPFVV1, vfwcvt_f_xu_v_w, WOP_UU_W, H8, H4, uint32_to_float64)
4005 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h, 2, 4)
4006 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w, 4, 8)
4008 /* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */
4009 RVVCALL(OPFVV1, vfwcvt_f_x_v_h, WOP_UU_H, H4, H2, int16_to_float32)
4010 RVVCALL(OPFVV1, vfwcvt_f_x_v_w, WOP_UU_W, H8, H4, int32_to_float64)
4011 GEN_VEXT_V_ENV(vfwcvt_f_x_v_h, 2, 4)
4012 GEN_VEXT_V_ENV(vfwcvt_f_x_v_w, 4, 8)
4015 * vfwcvt.f.f.v vd, vs2, vm #
4016 * Convert single-width float to double-width float.
4018 static uint32_t vfwcvtffv16(uint16_t a, float_status *s)
4020 return float16_to_float32(a, true, s);
4023 RVVCALL(OPFVV1, vfwcvt_f_f_v_h, WOP_UU_H, H4, H2, vfwcvtffv16)
4024 RVVCALL(OPFVV1, vfwcvt_f_f_v_w, WOP_UU_W, H8, H4, float32_to_float64)
4025 GEN_VEXT_V_ENV(vfwcvt_f_f_v_h, 2, 4)
4026 GEN_VEXT_V_ENV(vfwcvt_f_f_v_w, 4, 8)
4028 /* Narrowing Floating-Point/Integer Type-Convert Instructions */
4029 /* (TD, T2, TX2) */
4030 #define NOP_UU_H uint16_t, uint32_t, uint32_t
4031 #define NOP_UU_W uint32_t, uint64_t, uint64_t
4032 /* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4033 RVVCALL(OPFVV1, vfncvt_xu_f_v_h, NOP_UU_H, H2, H4, float32_to_uint16)
4034 RVVCALL(OPFVV1, vfncvt_xu_f_v_w, NOP_UU_W, H4, H8, float64_to_uint32)
4035 GEN_VEXT_V_ENV(vfncvt_xu_f_v_h, 2, 2)
4036 GEN_VEXT_V_ENV(vfncvt_xu_f_v_w, 4, 4)
4038 /* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */
4039 RVVCALL(OPFVV1, vfncvt_x_f_v_h, NOP_UU_H, H2, H4, float32_to_int16)
4040 RVVCALL(OPFVV1, vfncvt_x_f_v_w, NOP_UU_W, H4, H8, float64_to_int32)
4041 GEN_VEXT_V_ENV(vfncvt_x_f_v_h, 2, 2)
4042 GEN_VEXT_V_ENV(vfncvt_x_f_v_w, 4, 4)
4044 /* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */
4045 RVVCALL(OPFVV1, vfncvt_f_xu_v_h, NOP_UU_H, H2, H4, uint32_to_float16)
4046 RVVCALL(OPFVV1, vfncvt_f_xu_v_w, NOP_UU_W, H4, H8, uint64_to_float32)
4047 GEN_VEXT_V_ENV(vfncvt_f_xu_v_h, 2, 2)
4048 GEN_VEXT_V_ENV(vfncvt_f_xu_v_w, 4, 4)
4050 /* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */
4051 RVVCALL(OPFVV1, vfncvt_f_x_v_h, NOP_UU_H, H2, H4, int32_to_float16)
4052 RVVCALL(OPFVV1, vfncvt_f_x_v_w, NOP_UU_W, H4, H8, int64_to_float32)
4053 GEN_VEXT_V_ENV(vfncvt_f_x_v_h, 2, 2)
4054 GEN_VEXT_V_ENV(vfncvt_f_x_v_w, 4, 4)
4056 /* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */
4057 static uint16_t vfncvtffv16(uint32_t a, float_status *s)
4059 return float32_to_float16(a, true, s);
4062 RVVCALL(OPFVV1, vfncvt_f_f_v_h, NOP_UU_H, H2, H4, vfncvtffv16)
4063 RVVCALL(OPFVV1, vfncvt_f_f_v_w, NOP_UU_W, H4, H8, float64_to_float32)
4064 GEN_VEXT_V_ENV(vfncvt_f_f_v_h, 2, 2)
4065 GEN_VEXT_V_ENV(vfncvt_f_f_v_w, 4, 4)
4068 *** Vector Reduction Operations
4070 /* Vector Single-Width Integer Reduction Instructions */
4071 #define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP) \
4072 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4073 void *vs2, CPURISCVState *env, uint32_t desc) \
4075 uint32_t vm = vext_vm(desc); \
4076 uint32_t vl = env->vl; \
4077 uint32_t i; \
4078 TD s1 = *((TD *)vs1 + HD(0)); \
4080 for (i = 0; i < vl; i++) { \
4081 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
4082 if (!vm && !vext_elem_mask(v0, i)) { \
4083 continue; \
4085 s1 = OP(s1, (TD)s2); \
4087 *((TD *)vd + HD(0)) = s1; \
4090 /* vd[0] = sum(vs1[0], vs2[*]) */
4091 GEN_VEXT_RED(vredsum_vs_b, int8_t, int8_t, H1, H1, DO_ADD)
4092 GEN_VEXT_RED(vredsum_vs_h, int16_t, int16_t, H2, H2, DO_ADD)
4093 GEN_VEXT_RED(vredsum_vs_w, int32_t, int32_t, H4, H4, DO_ADD)
4094 GEN_VEXT_RED(vredsum_vs_d, int64_t, int64_t, H8, H8, DO_ADD)
4096 /* vd[0] = maxu(vs1[0], vs2[*]) */
4097 GEN_VEXT_RED(vredmaxu_vs_b, uint8_t, uint8_t, H1, H1, DO_MAX)
4098 GEN_VEXT_RED(vredmaxu_vs_h, uint16_t, uint16_t, H2, H2, DO_MAX)
4099 GEN_VEXT_RED(vredmaxu_vs_w, uint32_t, uint32_t, H4, H4, DO_MAX)
4100 GEN_VEXT_RED(vredmaxu_vs_d, uint64_t, uint64_t, H8, H8, DO_MAX)
4102 /* vd[0] = max(vs1[0], vs2[*]) */
4103 GEN_VEXT_RED(vredmax_vs_b, int8_t, int8_t, H1, H1, DO_MAX)
4104 GEN_VEXT_RED(vredmax_vs_h, int16_t, int16_t, H2, H2, DO_MAX)
4105 GEN_VEXT_RED(vredmax_vs_w, int32_t, int32_t, H4, H4, DO_MAX)
4106 GEN_VEXT_RED(vredmax_vs_d, int64_t, int64_t, H8, H8, DO_MAX)
4108 /* vd[0] = minu(vs1[0], vs2[*]) */
4109 GEN_VEXT_RED(vredminu_vs_b, uint8_t, uint8_t, H1, H1, DO_MIN)
4110 GEN_VEXT_RED(vredminu_vs_h, uint16_t, uint16_t, H2, H2, DO_MIN)
4111 GEN_VEXT_RED(vredminu_vs_w, uint32_t, uint32_t, H4, H4, DO_MIN)
4112 GEN_VEXT_RED(vredminu_vs_d, uint64_t, uint64_t, H8, H8, DO_MIN)
4114 /* vd[0] = min(vs1[0], vs2[*]) */
4115 GEN_VEXT_RED(vredmin_vs_b, int8_t, int8_t, H1, H1, DO_MIN)
4116 GEN_VEXT_RED(vredmin_vs_h, int16_t, int16_t, H2, H2, DO_MIN)
4117 GEN_VEXT_RED(vredmin_vs_w, int32_t, int32_t, H4, H4, DO_MIN)
4118 GEN_VEXT_RED(vredmin_vs_d, int64_t, int64_t, H8, H8, DO_MIN)
4120 /* vd[0] = and(vs1[0], vs2[*]) */
4121 GEN_VEXT_RED(vredand_vs_b, int8_t, int8_t, H1, H1, DO_AND)
4122 GEN_VEXT_RED(vredand_vs_h, int16_t, int16_t, H2, H2, DO_AND)
4123 GEN_VEXT_RED(vredand_vs_w, int32_t, int32_t, H4, H4, DO_AND)
4124 GEN_VEXT_RED(vredand_vs_d, int64_t, int64_t, H8, H8, DO_AND)
4126 /* vd[0] = or(vs1[0], vs2[*]) */
4127 GEN_VEXT_RED(vredor_vs_b, int8_t, int8_t, H1, H1, DO_OR)
4128 GEN_VEXT_RED(vredor_vs_h, int16_t, int16_t, H2, H2, DO_OR)
4129 GEN_VEXT_RED(vredor_vs_w, int32_t, int32_t, H4, H4, DO_OR)
4130 GEN_VEXT_RED(vredor_vs_d, int64_t, int64_t, H8, H8, DO_OR)
4132 /* vd[0] = xor(vs1[0], vs2[*]) */
4133 GEN_VEXT_RED(vredxor_vs_b, int8_t, int8_t, H1, H1, DO_XOR)
4134 GEN_VEXT_RED(vredxor_vs_h, int16_t, int16_t, H2, H2, DO_XOR)
4135 GEN_VEXT_RED(vredxor_vs_w, int32_t, int32_t, H4, H4, DO_XOR)
4136 GEN_VEXT_RED(vredxor_vs_d, int64_t, int64_t, H8, H8, DO_XOR)
4138 /* Vector Widening Integer Reduction Instructions */
4139 /* signed sum reduction into double-width accumulator */
4140 GEN_VEXT_RED(vwredsum_vs_b, int16_t, int8_t, H2, H1, DO_ADD)
4141 GEN_VEXT_RED(vwredsum_vs_h, int32_t, int16_t, H4, H2, DO_ADD)
4142 GEN_VEXT_RED(vwredsum_vs_w, int64_t, int32_t, H8, H4, DO_ADD)
4144 /* Unsigned sum reduction into double-width accumulator */
4145 GEN_VEXT_RED(vwredsumu_vs_b, uint16_t, uint8_t, H2, H1, DO_ADD)
4146 GEN_VEXT_RED(vwredsumu_vs_h, uint32_t, uint16_t, H4, H2, DO_ADD)
4147 GEN_VEXT_RED(vwredsumu_vs_w, uint64_t, uint32_t, H8, H4, DO_ADD)
4149 /* Vector Single-Width Floating-Point Reduction Instructions */
4150 #define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP) \
4151 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4152 void *vs2, CPURISCVState *env, \
4153 uint32_t desc) \
4155 uint32_t vm = vext_vm(desc); \
4156 uint32_t vl = env->vl; \
4157 uint32_t i; \
4158 TD s1 = *((TD *)vs1 + HD(0)); \
4160 for (i = 0; i < vl; i++) { \
4161 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
4162 if (!vm && !vext_elem_mask(v0, i)) { \
4163 continue; \
4165 s1 = OP(s1, (TD)s2, &env->fp_status); \
4167 *((TD *)vd + HD(0)) = s1; \
4170 /* Unordered sum */
4171 GEN_VEXT_FRED(vfredsum_vs_h, uint16_t, uint16_t, H2, H2, float16_add)
4172 GEN_VEXT_FRED(vfredsum_vs_w, uint32_t, uint32_t, H4, H4, float32_add)
4173 GEN_VEXT_FRED(vfredsum_vs_d, uint64_t, uint64_t, H8, H8, float64_add)
4175 /* Maximum value */
4176 GEN_VEXT_FRED(vfredmax_vs_h, uint16_t, uint16_t, H2, H2, float16_maxnum)
4177 GEN_VEXT_FRED(vfredmax_vs_w, uint32_t, uint32_t, H4, H4, float32_maxnum)
4178 GEN_VEXT_FRED(vfredmax_vs_d, uint64_t, uint64_t, H8, H8, float64_maxnum)
4180 /* Minimum value */
4181 GEN_VEXT_FRED(vfredmin_vs_h, uint16_t, uint16_t, H2, H2, float16_minnum)
4182 GEN_VEXT_FRED(vfredmin_vs_w, uint32_t, uint32_t, H4, H4, float32_minnum)
4183 GEN_VEXT_FRED(vfredmin_vs_d, uint64_t, uint64_t, H8, H8, float64_minnum)
4185 /* Vector Widening Floating-Point Reduction Instructions */
4186 /* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */
4187 void HELPER(vfwredsum_vs_h)(void *vd, void *v0, void *vs1,
4188 void *vs2, CPURISCVState *env, uint32_t desc)
4190 uint32_t vm = vext_vm(desc);
4191 uint32_t vl = env->vl;
4192 uint32_t i;
4193 uint32_t s1 = *((uint32_t *)vs1 + H4(0));
4195 for (i = 0; i < vl; i++) {
4196 uint16_t s2 = *((uint16_t *)vs2 + H2(i));
4197 if (!vm && !vext_elem_mask(v0, i)) {
4198 continue;
4200 s1 = float32_add(s1, float16_to_float32(s2, true, &env->fp_status),
4201 &env->fp_status);
4203 *((uint32_t *)vd + H4(0)) = s1;
4206 void HELPER(vfwredsum_vs_w)(void *vd, void *v0, void *vs1,
4207 void *vs2, CPURISCVState *env, uint32_t desc)
4209 uint32_t vm = vext_vm(desc);
4210 uint32_t vl = env->vl;
4211 uint32_t i;
4212 uint64_t s1 = *((uint64_t *)vs1);
4214 for (i = 0; i < vl; i++) {
4215 uint32_t s2 = *((uint32_t *)vs2 + H4(i));
4216 if (!vm && !vext_elem_mask(v0, i)) {
4217 continue;
4219 s1 = float64_add(s1, float32_to_float64(s2, &env->fp_status),
4220 &env->fp_status);
4222 *((uint64_t *)vd) = s1;
4226 *** Vector Mask Operations
4228 /* Vector Mask-Register Logical Instructions */
4229 #define GEN_VEXT_MASK_VV(NAME, OP) \
4230 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4231 void *vs2, CPURISCVState *env, \
4232 uint32_t desc) \
4234 uint32_t vl = env->vl; \
4235 uint32_t i; \
4236 int a, b; \
4238 for (i = 0; i < vl; i++) { \
4239 a = vext_elem_mask(vs1, i); \
4240 b = vext_elem_mask(vs2, i); \
4241 vext_set_elem_mask(vd, i, OP(b, a)); \
4245 #define DO_NAND(N, M) (!(N & M))
4246 #define DO_ANDNOT(N, M) (N & !M)
4247 #define DO_NOR(N, M) (!(N | M))
4248 #define DO_ORNOT(N, M) (N | !M)
4249 #define DO_XNOR(N, M) (!(N ^ M))
4251 GEN_VEXT_MASK_VV(vmand_mm, DO_AND)
4252 GEN_VEXT_MASK_VV(vmnand_mm, DO_NAND)
4253 GEN_VEXT_MASK_VV(vmandnot_mm, DO_ANDNOT)
4254 GEN_VEXT_MASK_VV(vmxor_mm, DO_XOR)
4255 GEN_VEXT_MASK_VV(vmor_mm, DO_OR)
4256 GEN_VEXT_MASK_VV(vmnor_mm, DO_NOR)
4257 GEN_VEXT_MASK_VV(vmornot_mm, DO_ORNOT)
4258 GEN_VEXT_MASK_VV(vmxnor_mm, DO_XNOR)
4260 /* Vector count population in mask vcpop */
4261 target_ulong HELPER(vcpop_m)(void *v0, void *vs2, CPURISCVState *env,
4262 uint32_t desc)
4264 target_ulong cnt = 0;
4265 uint32_t vm = vext_vm(desc);
4266 uint32_t vl = env->vl;
4267 int i;
4269 for (i = 0; i < vl; i++) {
4270 if (vm || vext_elem_mask(v0, i)) {
4271 if (vext_elem_mask(vs2, i)) {
4272 cnt++;
4276 return cnt;
4279 /* vfirst find-first-set mask bit*/
4280 target_ulong HELPER(vfirst_m)(void *v0, void *vs2, CPURISCVState *env,
4281 uint32_t desc)
4283 uint32_t vm = vext_vm(desc);
4284 uint32_t vl = env->vl;
4285 int i;
4287 for (i = 0; i < vl; i++) {
4288 if (vm || vext_elem_mask(v0, i)) {
4289 if (vext_elem_mask(vs2, i)) {
4290 return i;
4294 return -1LL;
4297 enum set_mask_type {
4298 ONLY_FIRST = 1,
4299 INCLUDE_FIRST,
4300 BEFORE_FIRST,
4303 static void vmsetm(void *vd, void *v0, void *vs2, CPURISCVState *env,
4304 uint32_t desc, enum set_mask_type type)
4306 uint32_t vm = vext_vm(desc);
4307 uint32_t vl = env->vl;
4308 int i;
4309 bool first_mask_bit = false;
4311 for (i = 0; i < vl; i++) {
4312 if (!vm && !vext_elem_mask(v0, i)) {
4313 continue;
4315 /* write a zero to all following active elements */
4316 if (first_mask_bit) {
4317 vext_set_elem_mask(vd, i, 0);
4318 continue;
4320 if (vext_elem_mask(vs2, i)) {
4321 first_mask_bit = true;
4322 if (type == BEFORE_FIRST) {
4323 vext_set_elem_mask(vd, i, 0);
4324 } else {
4325 vext_set_elem_mask(vd, i, 1);
4327 } else {
4328 if (type == ONLY_FIRST) {
4329 vext_set_elem_mask(vd, i, 0);
4330 } else {
4331 vext_set_elem_mask(vd, i, 1);
4337 void HELPER(vmsbf_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4338 uint32_t desc)
4340 vmsetm(vd, v0, vs2, env, desc, BEFORE_FIRST);
4343 void HELPER(vmsif_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4344 uint32_t desc)
4346 vmsetm(vd, v0, vs2, env, desc, INCLUDE_FIRST);
4349 void HELPER(vmsof_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4350 uint32_t desc)
4352 vmsetm(vd, v0, vs2, env, desc, ONLY_FIRST);
4355 /* Vector Iota Instruction */
4356 #define GEN_VEXT_VIOTA_M(NAME, ETYPE, H) \
4357 void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env, \
4358 uint32_t desc) \
4360 uint32_t vm = vext_vm(desc); \
4361 uint32_t vl = env->vl; \
4362 uint32_t sum = 0; \
4363 int i; \
4365 for (i = 0; i < vl; i++) { \
4366 if (!vm && !vext_elem_mask(v0, i)) { \
4367 continue; \
4369 *((ETYPE *)vd + H(i)) = sum; \
4370 if (vext_elem_mask(vs2, i)) { \
4371 sum++; \
4376 GEN_VEXT_VIOTA_M(viota_m_b, uint8_t, H1)
4377 GEN_VEXT_VIOTA_M(viota_m_h, uint16_t, H2)
4378 GEN_VEXT_VIOTA_M(viota_m_w, uint32_t, H4)
4379 GEN_VEXT_VIOTA_M(viota_m_d, uint64_t, H8)
4381 /* Vector Element Index Instruction */
4382 #define GEN_VEXT_VID_V(NAME, ETYPE, H) \
4383 void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc) \
4385 uint32_t vm = vext_vm(desc); \
4386 uint32_t vl = env->vl; \
4387 int i; \
4389 for (i = 0; i < vl; i++) { \
4390 if (!vm && !vext_elem_mask(v0, i)) { \
4391 continue; \
4393 *((ETYPE *)vd + H(i)) = i; \
4397 GEN_VEXT_VID_V(vid_v_b, uint8_t, H1)
4398 GEN_VEXT_VID_V(vid_v_h, uint16_t, H2)
4399 GEN_VEXT_VID_V(vid_v_w, uint32_t, H4)
4400 GEN_VEXT_VID_V(vid_v_d, uint64_t, H8)
4403 *** Vector Permutation Instructions
4406 /* Vector Slide Instructions */
4407 #define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H) \
4408 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4409 CPURISCVState *env, uint32_t desc) \
4411 uint32_t vm = vext_vm(desc); \
4412 uint32_t vl = env->vl; \
4413 target_ulong offset = s1, i; \
4415 for (i = offset; i < vl; i++) { \
4416 if (!vm && !vext_elem_mask(v0, i)) { \
4417 continue; \
4419 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset)); \
4423 /* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */
4424 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b, uint8_t, H1)
4425 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h, uint16_t, H2)
4426 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w, uint32_t, H4)
4427 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d, uint64_t, H8)
4429 #define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H) \
4430 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4431 CPURISCVState *env, uint32_t desc) \
4433 uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE))); \
4434 uint32_t vm = vext_vm(desc); \
4435 uint32_t vl = env->vl; \
4436 target_ulong i_max, i; \
4438 i_max = MIN(s1 < vlmax ? vlmax - s1 : 0, vl); \
4439 for (i = 0; i < i_max; ++i) { \
4440 if (vm || vext_elem_mask(v0, i)) { \
4441 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + s1)); \
4445 for (i = i_max; i < vl; ++i) { \
4446 if (vm || vext_elem_mask(v0, i)) { \
4447 *((ETYPE *)vd + H(i)) = 0; \
4452 /* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */
4453 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b, uint8_t, H1)
4454 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h, uint16_t, H2)
4455 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w, uint32_t, H4)
4456 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d, uint64_t, H8)
4458 #define GEN_VEXT_VSLIDE1UP_VX(NAME, ETYPE, H) \
4459 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4460 CPURISCVState *env, uint32_t desc) \
4462 uint32_t vm = vext_vm(desc); \
4463 uint32_t vl = env->vl; \
4464 uint32_t i; \
4466 for (i = 0; i < vl; i++) { \
4467 if (!vm && !vext_elem_mask(v0, i)) { \
4468 continue; \
4470 if (i == 0) { \
4471 *((ETYPE *)vd + H(i)) = s1; \
4472 } else { \
4473 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1)); \
4478 /* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */
4479 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b, uint8_t, H1)
4480 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h, uint16_t, H2)
4481 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w, uint32_t, H4)
4482 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d, uint64_t, H8)
4484 #define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ETYPE, H) \
4485 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4486 CPURISCVState *env, uint32_t desc) \
4488 uint32_t vm = vext_vm(desc); \
4489 uint32_t vl = env->vl; \
4490 uint32_t i; \
4492 for (i = 0; i < vl; i++) { \
4493 if (!vm && !vext_elem_mask(v0, i)) { \
4494 continue; \
4496 if (i == vl - 1) { \
4497 *((ETYPE *)vd + H(i)) = s1; \
4498 } else { \
4499 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1)); \
4504 /* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */
4505 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b, uint8_t, H1)
4506 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h, uint16_t, H2)
4507 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w, uint32_t, H4)
4508 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d, uint64_t, H8)
4510 /* Vector Register Gather Instruction */
4511 #define GEN_VEXT_VRGATHER_VV(NAME, TS1, TS2, HS1, HS2) \
4512 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
4513 CPURISCVState *env, uint32_t desc) \
4515 uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(TS1))); \
4516 uint32_t vm = vext_vm(desc); \
4517 uint32_t vl = env->vl; \
4518 uint64_t index; \
4519 uint32_t i; \
4521 for (i = 0; i < vl; i++) { \
4522 if (!vm && !vext_elem_mask(v0, i)) { \
4523 continue; \
4525 index = *((TS1 *)vs1 + HS1(i)); \
4526 if (index >= vlmax) { \
4527 *((TS2 *)vd + HS2(i)) = 0; \
4528 } else { \
4529 *((TS2 *)vd + HS2(i)) = *((TS2 *)vs2 + HS2(index)); \
4534 /* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */
4535 GEN_VEXT_VRGATHER_VV(vrgather_vv_b, uint8_t, uint8_t, H1, H1)
4536 GEN_VEXT_VRGATHER_VV(vrgather_vv_h, uint16_t, uint16_t, H2, H2)
4537 GEN_VEXT_VRGATHER_VV(vrgather_vv_w, uint32_t, uint32_t, H4, H4)
4538 GEN_VEXT_VRGATHER_VV(vrgather_vv_d, uint64_t, uint64_t, H8, H8)
4540 GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_b, uint16_t, uint8_t, H2, H1)
4541 GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_h, uint16_t, uint16_t, H2, H2)
4542 GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_w, uint16_t, uint32_t, H2, H4)
4543 GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_d, uint16_t, uint64_t, H2, H8)
4545 #define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H) \
4546 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4547 CPURISCVState *env, uint32_t desc) \
4549 uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE))); \
4550 uint32_t vm = vext_vm(desc); \
4551 uint32_t vl = env->vl; \
4552 uint64_t index = s1; \
4553 uint32_t i; \
4555 for (i = 0; i < vl; i++) { \
4556 if (!vm && !vext_elem_mask(v0, i)) { \
4557 continue; \
4559 if (index >= vlmax) { \
4560 *((ETYPE *)vd + H(i)) = 0; \
4561 } else { \
4562 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \
4567 /* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
4568 GEN_VEXT_VRGATHER_VX(vrgather_vx_b, uint8_t, H1)
4569 GEN_VEXT_VRGATHER_VX(vrgather_vx_h, uint16_t, H2)
4570 GEN_VEXT_VRGATHER_VX(vrgather_vx_w, uint32_t, H4)
4571 GEN_VEXT_VRGATHER_VX(vrgather_vx_d, uint64_t, H8)
4573 /* Vector Compress Instruction */
4574 #define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H) \
4575 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
4576 CPURISCVState *env, uint32_t desc) \
4578 uint32_t vl = env->vl; \
4579 uint32_t num = 0, i; \
4581 for (i = 0; i < vl; i++) { \
4582 if (!vext_elem_mask(vs1, i)) { \
4583 continue; \
4585 *((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i)); \
4586 num++; \
4590 /* Compress into vd elements of vs2 where vs1 is enabled */
4591 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b, uint8_t, H1)
4592 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h, uint16_t, H2)
4593 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w, uint32_t, H4)
4594 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d, uint64_t, H8)
4596 /* Vector Integer Extension */
4597 #define GEN_VEXT_INT_EXT(NAME, ETYPE, DTYPE, HD, HS1) \
4598 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
4599 CPURISCVState *env, uint32_t desc) \
4601 uint32_t vl = env->vl; \
4602 uint32_t vm = vext_vm(desc); \
4603 uint32_t i; \
4605 for (i = 0; i < vl; i++) { \
4606 if (!vm && !vext_elem_mask(v0, i)) { \
4607 continue; \
4609 *((ETYPE *)vd + HD(i)) = *((DTYPE *)vs2 + HS1(i)); \
4613 GEN_VEXT_INT_EXT(vzext_vf2_h, uint16_t, uint8_t, H2, H1)
4614 GEN_VEXT_INT_EXT(vzext_vf2_w, uint32_t, uint16_t, H4, H2)
4615 GEN_VEXT_INT_EXT(vzext_vf2_d, uint64_t, uint32_t, H8, H4)
4616 GEN_VEXT_INT_EXT(vzext_vf4_w, uint32_t, uint8_t, H4, H1)
4617 GEN_VEXT_INT_EXT(vzext_vf4_d, uint64_t, uint16_t, H8, H2)
4618 GEN_VEXT_INT_EXT(vzext_vf8_d, uint64_t, uint8_t, H8, H1)
4620 GEN_VEXT_INT_EXT(vsext_vf2_h, int16_t, int8_t, H2, H1)
4621 GEN_VEXT_INT_EXT(vsext_vf2_w, int32_t, int16_t, H4, H2)
4622 GEN_VEXT_INT_EXT(vsext_vf2_d, int64_t, int32_t, H8, H4)
4623 GEN_VEXT_INT_EXT(vsext_vf4_w, int32_t, int8_t, H4, H1)
4624 GEN_VEXT_INT_EXT(vsext_vf4_d, int64_t, int16_t, H8, H2)
4625 GEN_VEXT_INT_EXT(vsext_vf8_d, int64_t, int8_t, H8, H1)