target/xtensa: Make xtensa_cpu_tlb_fill sysemu only
[qemu/ar7.git] / hw / ssi / xilinx_spips.c
blob1e9dba203925603203b5d2011adf0815cffb387c
1 /*
2 * QEMU model of the Xilinx Zynq SPI controller
4 * Copyright (c) 2012 Peter A. G. Crosthwaite
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "hw/irq.h"
28 #include "hw/ptimer.h"
29 #include "hw/qdev-properties.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "qemu/bitops.h"
33 #include "hw/ssi/xilinx_spips.h"
34 #include "qapi/error.h"
35 #include "hw/register.h"
36 #include "sysemu/dma.h"
37 #include "migration/blocker.h"
38 #include "migration/vmstate.h"
40 #ifndef XILINX_SPIPS_ERR_DEBUG
41 #define XILINX_SPIPS_ERR_DEBUG 0
42 #endif
44 #define DB_PRINT_L(level, ...) do { \
45 if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
46 fprintf(stderr, ": %s: ", __func__); \
47 fprintf(stderr, ## __VA_ARGS__); \
48 } \
49 } while (0)
51 /* config register */
52 #define R_CONFIG (0x00 / 4)
53 #define IFMODE (1U << 31)
54 #define R_CONFIG_ENDIAN (1 << 26)
55 #define MODEFAIL_GEN_EN (1 << 17)
56 #define MAN_START_COM (1 << 16)
57 #define MAN_START_EN (1 << 15)
58 #define MANUAL_CS (1 << 14)
59 #define CS (0xF << 10)
60 #define CS_SHIFT (10)
61 #define PERI_SEL (1 << 9)
62 #define REF_CLK (1 << 8)
63 #define FIFO_WIDTH (3 << 6)
64 #define BAUD_RATE_DIV (7 << 3)
65 #define CLK_PH (1 << 2)
66 #define CLK_POL (1 << 1)
67 #define MODE_SEL (1 << 0)
68 #define R_CONFIG_RSVD (0x7bf40000)
70 /* interrupt mechanism */
71 #define R_INTR_STATUS (0x04 / 4)
72 #define R_INTR_STATUS_RESET (0x104)
73 #define R_INTR_EN (0x08 / 4)
74 #define R_INTR_DIS (0x0C / 4)
75 #define R_INTR_MASK (0x10 / 4)
76 #define IXR_TX_FIFO_UNDERFLOW (1 << 6)
77 /* Poll timeout not implemented */
78 #define IXR_RX_FIFO_EMPTY (1 << 11)
79 #define IXR_GENERIC_FIFO_FULL (1 << 10)
80 #define IXR_GENERIC_FIFO_NOT_FULL (1 << 9)
81 #define IXR_TX_FIFO_EMPTY (1 << 8)
82 #define IXR_GENERIC_FIFO_EMPTY (1 << 7)
83 #define IXR_RX_FIFO_FULL (1 << 5)
84 #define IXR_RX_FIFO_NOT_EMPTY (1 << 4)
85 #define IXR_TX_FIFO_FULL (1 << 3)
86 #define IXR_TX_FIFO_NOT_FULL (1 << 2)
87 #define IXR_TX_FIFO_MODE_FAIL (1 << 1)
88 #define IXR_RX_FIFO_OVERFLOW (1 << 0)
89 #define IXR_ALL ((1 << 13) - 1)
90 #define GQSPI_IXR_MASK 0xFBE
91 #define IXR_SELF_CLEAR \
92 (IXR_GENERIC_FIFO_EMPTY \
93 | IXR_GENERIC_FIFO_FULL \
94 | IXR_GENERIC_FIFO_NOT_FULL \
95 | IXR_TX_FIFO_EMPTY \
96 | IXR_TX_FIFO_FULL \
97 | IXR_TX_FIFO_NOT_FULL \
98 | IXR_RX_FIFO_EMPTY \
99 | IXR_RX_FIFO_FULL \
100 | IXR_RX_FIFO_NOT_EMPTY)
102 #define R_EN (0x14 / 4)
103 #define R_DELAY (0x18 / 4)
104 #define R_TX_DATA (0x1C / 4)
105 #define R_RX_DATA (0x20 / 4)
106 #define R_SLAVE_IDLE_COUNT (0x24 / 4)
107 #define R_TX_THRES (0x28 / 4)
108 #define R_RX_THRES (0x2C / 4)
109 #define R_GPIO (0x30 / 4)
110 #define R_LPBK_DLY_ADJ (0x38 / 4)
111 #define R_LPBK_DLY_ADJ_RESET (0x33)
112 #define R_IOU_TAPDLY_BYPASS (0x3C / 4)
113 #define R_TXD1 (0x80 / 4)
114 #define R_TXD2 (0x84 / 4)
115 #define R_TXD3 (0x88 / 4)
117 #define R_LQSPI_CFG (0xa0 / 4)
118 #define R_LQSPI_CFG_RESET 0x03A002EB
119 #define LQSPI_CFG_LQ_MODE (1U << 31)
120 #define LQSPI_CFG_TWO_MEM (1 << 30)
121 #define LQSPI_CFG_SEP_BUS (1 << 29)
122 #define LQSPI_CFG_U_PAGE (1 << 28)
123 #define LQSPI_CFG_ADDR4 (1 << 27)
124 #define LQSPI_CFG_MODE_EN (1 << 25)
125 #define LQSPI_CFG_MODE_WIDTH 8
126 #define LQSPI_CFG_MODE_SHIFT 16
127 #define LQSPI_CFG_DUMMY_WIDTH 3
128 #define LQSPI_CFG_DUMMY_SHIFT 8
129 #define LQSPI_CFG_INST_CODE 0xFF
131 #define R_CMND (0xc0 / 4)
132 #define R_CMND_RXFIFO_DRAIN (1 << 19)
133 FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3)
134 #define R_CMND_EXT_ADD (1 << 15)
135 FIELD(CMND, RX_DISCARD, 8, 7)
136 FIELD(CMND, DUMMY_CYCLES, 2, 6)
137 #define R_CMND_DMA_EN (1 << 1)
138 #define R_CMND_PUSH_WAIT (1 << 0)
139 #define R_TRANSFER_SIZE (0xc4 / 4)
140 #define R_LQSPI_STS (0xA4 / 4)
141 #define LQSPI_STS_WR_RECVD (1 << 1)
143 #define R_DUMMY_CYCLE_EN (0xC8 / 4)
144 #define R_ECO (0xF8 / 4)
145 #define R_MOD_ID (0xFC / 4)
147 #define R_GQSPI_SELECT (0x144 / 4)
148 FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1)
149 #define R_GQSPI_ISR (0x104 / 4)
150 #define R_GQSPI_IER (0x108 / 4)
151 #define R_GQSPI_IDR (0x10c / 4)
152 #define R_GQSPI_IMR (0x110 / 4)
153 #define R_GQSPI_IMR_RESET (0xfbe)
154 #define R_GQSPI_TX_THRESH (0x128 / 4)
155 #define R_GQSPI_RX_THRESH (0x12c / 4)
156 #define R_GQSPI_GPIO (0x130 / 4)
157 #define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4)
158 #define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33)
159 #define R_GQSPI_CNFG (0x100 / 4)
160 FIELD(GQSPI_CNFG, MODE_EN, 30, 2)
161 FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1)
162 FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1)
163 FIELD(GQSPI_CNFG, ENDIAN, 26, 1)
164 /* Poll timeout not implemented */
165 FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1)
166 /* QEMU doesnt care about any of these last three */
167 FIELD(GQSPI_CNFG, BR, 3, 3)
168 FIELD(GQSPI_CNFG, CPH, 2, 1)
169 FIELD(GQSPI_CNFG, CPL, 1, 1)
170 #define R_GQSPI_GEN_FIFO (0x140 / 4)
171 #define R_GQSPI_TXD (0x11c / 4)
172 #define R_GQSPI_RXD (0x120 / 4)
173 #define R_GQSPI_FIFO_CTRL (0x14c / 4)
174 FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1)
175 FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1)
176 FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1)
177 #define R_GQSPI_GFIFO_THRESH (0x150 / 4)
178 #define R_GQSPI_DATA_STS (0x15c / 4)
180 * We use the snapshot register to hold the core state for the currently
181 * or most recently executed command. So the generic fifo format is defined
182 * for the snapshot register
184 #define R_GQSPI_GF_SNAPSHOT (0x160 / 4)
185 FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1)
186 FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1)
187 FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1)
188 FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1)
189 FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2)
190 FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2)
191 FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2)
192 FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1)
193 FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1)
194 FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8)
195 #define R_GQSPI_MOD_ID (0x1fc / 4)
196 #define R_GQSPI_MOD_ID_RESET (0x10a0000)
198 /* size of TXRX FIFOs */
199 #define RXFF_A (128)
200 #define TXFF_A (128)
202 #define RXFF_A_Q (64 * 4)
203 #define TXFF_A_Q (64 * 4)
205 /* 16MB per linear region */
206 #define LQSPI_ADDRESS_BITS 24
208 #define SNOOP_CHECKING 0xFF
209 #define SNOOP_ADDR 0xF0
210 #define SNOOP_NONE 0xEE
211 #define SNOOP_STRIPING 0
213 #define MIN_NUM_BUSSES 1
214 #define MAX_NUM_BUSSES 2
216 static inline int num_effective_busses(XilinxSPIPS *s)
218 return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
219 s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
222 static void xilinx_spips_update_cs(XilinxSPIPS *s, int field)
224 int i;
226 for (i = 0; i < s->num_cs * s->num_busses; i++) {
227 bool old_state = s->cs_lines_state[i];
228 bool new_state = field & (1 << i);
230 if (old_state != new_state) {
231 s->cs_lines_state[i] = new_state;
232 s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD);
233 DB_PRINT_L(1, "%sselecting peripheral %d\n",
234 new_state ? "" : "de", i);
236 qemu_set_irq(s->cs_lines[i], !new_state);
238 if (!(field & ((1 << (s->num_cs * s->num_busses)) - 1))) {
239 s->snoop_state = SNOOP_CHECKING;
240 s->cmd_dummies = 0;
241 s->link_state = 1;
242 s->link_state_next = 1;
243 s->link_state_next_when = 0;
244 DB_PRINT_L(1, "moving to snoop check state\n");
248 static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s)
250 if (s->regs[R_GQSPI_GF_SNAPSHOT]) {
251 int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT);
252 bool upper_cs_sel = field & (1 << 1);
253 bool lower_cs_sel = field & 1;
254 bool bus0_enabled;
255 bool bus1_enabled;
256 uint8_t buses;
257 int cs = 0;
259 buses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT);
260 bus0_enabled = buses & 1;
261 bus1_enabled = buses & (1 << 1);
263 if (bus0_enabled && bus1_enabled) {
264 if (lower_cs_sel) {
265 cs |= 1;
267 if (upper_cs_sel) {
268 cs |= 1 << 3;
270 } else if (bus0_enabled) {
271 if (lower_cs_sel) {
272 cs |= 1;
274 if (upper_cs_sel) {
275 cs |= 1 << 1;
277 } else if (bus1_enabled) {
278 if (lower_cs_sel) {
279 cs |= 1 << 2;
281 if (upper_cs_sel) {
282 cs |= 1 << 3;
285 xilinx_spips_update_cs(XILINX_SPIPS(s), cs);
289 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
291 int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT);
293 /* In dual parallel, mirror low CS to both */
294 if (num_effective_busses(s) == 2) {
295 /* Single bit chip-select for qspi */
296 field &= 0x1;
297 field |= field << 3;
298 /* Dual stack U-Page */
299 } else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM &&
300 s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) {
301 /* Single bit chip-select for qspi */
302 field &= 0x1;
303 /* change from CS0 to CS1 */
304 field <<= 1;
306 /* Auto CS */
307 if (!(s->regs[R_CONFIG] & MANUAL_CS) &&
308 fifo8_is_empty(&s->tx_fifo)) {
309 field = 0;
311 xilinx_spips_update_cs(s, field);
314 static void xilinx_spips_update_ixr(XilinxSPIPS *s)
316 if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
317 s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR;
318 s->regs[R_INTR_STATUS] |=
319 (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
320 (s->rx_fifo.num >= s->regs[R_RX_THRES] ?
321 IXR_RX_FIFO_NOT_EMPTY : 0) |
322 (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
323 (fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) |
324 (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
326 int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
327 IXR_ALL);
328 if (new_irqline != s->irqline) {
329 s->irqline = new_irqline;
330 qemu_set_irq(s->irq, s->irqline);
334 static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s)
336 uint32_t gqspi_int;
337 int new_irqline;
339 s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR;
340 s->regs[R_GQSPI_ISR] |=
341 (fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) |
342 (fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) |
343 (s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ?
344 IXR_GENERIC_FIFO_NOT_FULL : 0) |
345 (fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) |
346 (fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) |
347 (s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ?
348 IXR_RX_FIFO_NOT_EMPTY : 0) |
349 (fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) |
350 (fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) |
351 (s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ?
352 IXR_TX_FIFO_NOT_FULL : 0);
354 /* GQSPI Interrupt Trigger Status */
355 gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK;
356 new_irqline = !!(gqspi_int & IXR_ALL);
358 /* drive external interrupt pin */
359 if (new_irqline != s->gqspi_irqline) {
360 s->gqspi_irqline = new_irqline;
361 qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline);
365 static void xilinx_spips_reset(DeviceState *d)
367 XilinxSPIPS *s = XILINX_SPIPS(d);
369 memset(s->regs, 0, sizeof(s->regs));
371 fifo8_reset(&s->rx_fifo);
372 fifo8_reset(&s->rx_fifo);
373 /* non zero resets */
374 s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
375 s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
376 s->regs[R_TX_THRES] = 1;
377 s->regs[R_RX_THRES] = 1;
378 /* FIXME: move magic number definition somewhere sensible */
379 s->regs[R_MOD_ID] = 0x01090106;
380 s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
381 s->link_state = 1;
382 s->link_state_next = 1;
383 s->link_state_next_when = 0;
384 s->snoop_state = SNOOP_CHECKING;
385 s->cmd_dummies = 0;
386 s->man_start_com = false;
387 xilinx_spips_update_ixr(s);
388 xilinx_spips_update_cs_lines(s);
391 static void xlnx_zynqmp_qspips_reset(DeviceState *d)
393 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d);
395 xilinx_spips_reset(d);
397 memset(s->regs, 0, sizeof(s->regs));
399 fifo8_reset(&s->rx_fifo_g);
400 fifo8_reset(&s->rx_fifo_g);
401 fifo32_reset(&s->fifo_g);
402 s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET;
403 s->regs[R_GPIO] = 1;
404 s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET;
405 s->regs[R_GQSPI_GFIFO_THRESH] = 0x10;
406 s->regs[R_MOD_ID] = 0x01090101;
407 s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET;
408 s->regs[R_GQSPI_TX_THRESH] = 1;
409 s->regs[R_GQSPI_RX_THRESH] = 1;
410 s->regs[R_GQSPI_GPIO] = 1;
411 s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET;
412 s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET;
413 s->man_start_com_g = false;
414 s->gqspi_irqline = 0;
415 xlnx_zynqmp_qspips_update_ixr(s);
419 * N way (num) in place bit striper. Lay out row wise bits (MSB to LSB)
420 * column wise (from element 0 to N-1). num is the length of x, and dir
421 * reverses the direction of the transform. Best illustrated by example:
422 * Each digit in the below array is a single bit (num == 3):
424 * {{ 76543210, } ----- stripe (dir == false) -----> {{ 741gdaFC, }
425 * { hgfedcba, } { 630fcHEB, }
426 * { HGFEDCBA, }} <---- upstripe (dir == true) ----- { 52hebGDA, }}
429 static inline void stripe8(uint8_t *x, int num, bool dir)
431 uint8_t r[MAX_NUM_BUSSES];
432 int idx[2] = {0, 0};
433 int bit[2] = {0, 7};
434 int d = dir;
436 assert(num <= MAX_NUM_BUSSES);
437 memset(r, 0, sizeof(uint8_t) * num);
439 for (idx[0] = 0; idx[0] < num; ++idx[0]) {
440 for (bit[0] = 7; bit[0] >= 0; bit[0]--) {
441 r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0;
442 idx[1] = (idx[1] + 1) % num;
443 if (!idx[1]) {
444 bit[1]--;
448 memcpy(x, r, sizeof(uint8_t) * num);
451 static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s)
453 while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) {
454 uint8_t tx_rx[2] = { 0 };
455 int num_stripes = 1;
456 uint8_t busses;
457 int i;
459 if (!s->regs[R_GQSPI_DATA_STS]) {
460 uint8_t imm;
462 s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g);
463 DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]);
464 if (!s->regs[R_GQSPI_GF_SNAPSHOT]) {
465 DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing");
466 continue;
468 xlnx_zynqmp_qspips_update_cs_lines(s);
470 imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA);
471 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) {
472 /* immedate transfer */
473 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) ||
474 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) {
475 s->regs[R_GQSPI_DATA_STS] = 1;
476 /* CS setup/hold - do nothing */
477 } else {
478 s->regs[R_GQSPI_DATA_STS] = 0;
480 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) {
481 if (imm > 31) {
482 qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too"
483 " long - 2 ^ %" PRId8 " requested\n", imm);
485 s->regs[R_GQSPI_DATA_STS] = 1ul << imm;
486 } else {
487 s->regs[R_GQSPI_DATA_STS] = imm;
490 /* Zero length transfer check */
491 if (!s->regs[R_GQSPI_DATA_STS]) {
492 continue;
494 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) &&
495 fifo8_is_full(&s->rx_fifo_g)) {
496 /* No space in RX fifo for transfer - try again later */
497 return;
499 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) &&
500 (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) ||
501 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) {
502 num_stripes = 2;
504 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) {
505 tx_rx[0] = ARRAY_FIELD_EX32(s->regs,
506 GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA);
507 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) {
508 for (i = 0; i < num_stripes; ++i) {
509 if (!fifo8_is_empty(&s->tx_fifo_g)) {
510 tx_rx[i] = fifo8_pop(&s->tx_fifo_g);
511 s->tx_fifo_g_align++;
512 } else {
513 return;
517 if (num_stripes == 1) {
518 /* mirror */
519 tx_rx[1] = tx_rx[0];
521 busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT);
522 for (i = 0; i < 2; ++i) {
523 DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]);
524 tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]);
525 DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]);
527 if (s->regs[R_GQSPI_DATA_STS] > 1 &&
528 busses == 0x3 && num_stripes == 2) {
529 s->regs[R_GQSPI_DATA_STS] -= 2;
530 } else if (s->regs[R_GQSPI_DATA_STS] > 0) {
531 s->regs[R_GQSPI_DATA_STS]--;
533 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) {
534 for (i = 0; i < 2; ++i) {
535 if (busses & (1 << i)) {
536 DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]);
537 fifo8_push(&s->rx_fifo_g, tx_rx[i]);
538 s->rx_fifo_g_align++;
542 if (!s->regs[R_GQSPI_DATA_STS]) {
543 for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) {
544 fifo8_pop(&s->tx_fifo_g);
546 for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) {
547 fifo8_push(&s->rx_fifo_g, 0);
553 static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command)
555 if (!qs) {
556 /* The SPI device is not a QSPI device */
557 return -1;
560 switch (command) { /* check for dummies */
561 case READ: /* no dummy bytes/cycles */
562 case PP:
563 case DPP:
564 case QPP:
565 case READ_4:
566 case PP_4:
567 case QPP_4:
568 return 0;
569 case FAST_READ:
570 case DOR:
571 case QOR:
572 case FAST_READ_4:
573 case DOR_4:
574 case QOR_4:
575 return 1;
576 case DIOR:
577 case DIOR_4:
578 return 2;
579 case QIOR:
580 case QIOR_4:
581 return 4;
582 default:
583 return -1;
587 static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd)
589 switch (cmd) {
590 case PP_4:
591 case QPP_4:
592 case READ_4:
593 case QIOR_4:
594 case FAST_READ_4:
595 case DOR_4:
596 case QOR_4:
597 case DIOR_4:
598 return 4;
599 default:
600 return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3;
604 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
606 int debug_level = 0;
607 XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s),
608 TYPE_XILINX_QSPIPS);
610 for (;;) {
611 int i;
612 uint8_t tx = 0;
613 uint8_t tx_rx[MAX_NUM_BUSSES] = { 0 };
614 uint8_t dummy_cycles = 0;
615 uint8_t addr_length;
617 if (fifo8_is_empty(&s->tx_fifo)) {
618 xilinx_spips_update_ixr(s);
619 return;
620 } else if (s->snoop_state == SNOOP_STRIPING ||
621 s->snoop_state == SNOOP_NONE) {
622 for (i = 0; i < num_effective_busses(s); ++i) {
623 tx_rx[i] = fifo8_pop(&s->tx_fifo);
625 stripe8(tx_rx, num_effective_busses(s), false);
626 } else if (s->snoop_state >= SNOOP_ADDR) {
627 tx = fifo8_pop(&s->tx_fifo);
628 for (i = 0; i < num_effective_busses(s); ++i) {
629 tx_rx[i] = tx;
631 } else {
633 * Extract a dummy byte and generate dummy cycles according to the
634 * link state
636 tx = fifo8_pop(&s->tx_fifo);
637 dummy_cycles = 8 / s->link_state;
640 for (i = 0; i < num_effective_busses(s); ++i) {
641 int bus = num_effective_busses(s) - 1 - i;
642 if (dummy_cycles) {
643 int d;
644 for (d = 0; d < dummy_cycles; ++d) {
645 tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]);
647 } else {
648 DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
649 tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]);
650 DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
654 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
655 DB_PRINT_L(debug_level, "dircarding drained rx byte\n");
656 /* Do nothing */
657 } else if (s->rx_discard) {
658 DB_PRINT_L(debug_level, "dircarding discarded rx byte\n");
659 s->rx_discard -= 8 / s->link_state;
660 } else if (fifo8_is_full(&s->rx_fifo)) {
661 s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
662 DB_PRINT_L(0, "rx FIFO overflow");
663 } else if (s->snoop_state == SNOOP_STRIPING) {
664 stripe8(tx_rx, num_effective_busses(s), true);
665 for (i = 0; i < num_effective_busses(s); ++i) {
666 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
667 DB_PRINT_L(debug_level, "pushing striped rx byte\n");
669 } else {
670 DB_PRINT_L(debug_level, "pushing unstriped rx byte\n");
671 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
674 if (s->link_state_next_when) {
675 s->link_state_next_when--;
676 if (!s->link_state_next_when) {
677 s->link_state = s->link_state_next;
681 DB_PRINT_L(debug_level, "initial snoop state: %x\n",
682 (unsigned)s->snoop_state);
683 switch (s->snoop_state) {
684 case (SNOOP_CHECKING):
685 /* Store the count of dummy bytes in the txfifo */
686 s->cmd_dummies = xilinx_spips_num_dummies(q, tx);
687 addr_length = get_addr_length(s, tx);
688 if (s->cmd_dummies < 0) {
689 s->snoop_state = SNOOP_NONE;
690 } else {
691 s->snoop_state = SNOOP_ADDR + addr_length - 1;
693 switch (tx) {
694 case DPP:
695 case DOR:
696 case DOR_4:
697 s->link_state_next = 2;
698 s->link_state_next_when = addr_length + s->cmd_dummies;
699 break;
700 case QPP:
701 case QPP_4:
702 case QOR:
703 case QOR_4:
704 s->link_state_next = 4;
705 s->link_state_next_when = addr_length + s->cmd_dummies;
706 break;
707 case DIOR:
708 case DIOR_4:
709 s->link_state = 2;
710 break;
711 case QIOR:
712 case QIOR_4:
713 s->link_state = 4;
714 break;
716 break;
717 case (SNOOP_ADDR):
719 * Address has been transmitted, transmit dummy cycles now if needed
721 if (s->cmd_dummies < 0) {
722 s->snoop_state = SNOOP_NONE;
723 } else {
724 s->snoop_state = s->cmd_dummies;
726 break;
727 case (SNOOP_STRIPING):
728 case (SNOOP_NONE):
729 /* Once we hit the boring stuff - squelch debug noise */
730 if (!debug_level) {
731 DB_PRINT_L(0, "squelching debug info ....\n");
732 debug_level = 1;
734 break;
735 default:
736 s->snoop_state--;
738 DB_PRINT_L(debug_level, "final snoop state: %x\n",
739 (unsigned)s->snoop_state);
743 static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be)
745 int i;
746 for (i = 0; i < num && !fifo8_is_full(fifo); ++i) {
747 if (be) {
748 fifo8_push(fifo, (uint8_t)(value >> 24));
749 value <<= 8;
750 } else {
751 fifo8_push(fifo, (uint8_t)value);
752 value >>= 8;
757 static void xilinx_spips_check_zero_pump(XilinxSPIPS *s)
759 if (!s->regs[R_TRANSFER_SIZE]) {
760 return;
762 if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) {
763 return;
766 * The zero pump must never fill tx fifo such that rx overflow is
767 * possible
769 while (s->regs[R_TRANSFER_SIZE] &&
770 s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) {
771 /* endianess just doesn't matter when zero pumping */
772 tx_data_bytes(&s->tx_fifo, 0, 4, false);
773 s->regs[R_TRANSFER_SIZE] &= ~0x03ull;
774 s->regs[R_TRANSFER_SIZE] -= 4;
778 static void xilinx_spips_check_flush(XilinxSPIPS *s)
780 if (s->man_start_com ||
781 (!fifo8_is_empty(&s->tx_fifo) &&
782 !(s->regs[R_CONFIG] & MAN_START_EN))) {
783 xilinx_spips_check_zero_pump(s);
784 xilinx_spips_flush_txfifo(s);
786 if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) {
787 s->man_start_com = false;
789 xilinx_spips_update_ixr(s);
792 static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s)
794 bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] ||
795 !fifo32_is_empty(&s->fifo_g);
797 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) {
798 if (s->man_start_com_g || (gqspi_has_work &&
799 !ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) {
800 xlnx_zynqmp_qspips_flush_fifo_g(s);
802 } else {
803 xilinx_spips_check_flush(XILINX_SPIPS(s));
805 if (!gqspi_has_work) {
806 s->man_start_com_g = false;
808 xlnx_zynqmp_qspips_update_ixr(s);
811 static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max)
813 int i;
815 for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) {
816 value[i] = fifo8_pop(fifo);
818 return max - i;
821 static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num)
823 void *ret;
825 if (max == 0 || max > fifo->num) {
826 abort();
828 *num = MIN(fifo->capacity - fifo->head, max);
829 ret = &fifo->data[fifo->head];
830 fifo->head += *num;
831 fifo->head %= fifo->capacity;
832 fifo->num -= *num;
833 return ret;
836 static void xlnx_zynqmp_qspips_notify(void *opaque)
838 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque);
839 XilinxSPIPS *s = XILINX_SPIPS(rq);
840 Fifo8 *recv_fifo;
842 if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) {
843 if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) {
844 return;
846 recv_fifo = &rq->rx_fifo_g;
847 } else {
848 if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) {
849 return;
851 recv_fifo = &s->rx_fifo;
853 while (recv_fifo->num >= 4
854 && stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq))
856 size_t ret;
857 uint32_t num;
858 const void *rxd;
859 int len;
861 len = recv_fifo->num >= rq->dma_burst_size ? rq->dma_burst_size :
862 recv_fifo->num;
863 rxd = pop_buf(recv_fifo, len, &num);
865 memcpy(rq->dma_buf, rxd, num);
867 ret = stream_push(rq->dma, rq->dma_buf, num, false);
868 assert(ret == num);
869 xlnx_zynqmp_qspips_check_flush(rq);
873 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
874 unsigned size)
876 XilinxSPIPS *s = opaque;
877 uint32_t mask = ~0;
878 uint32_t ret;
879 uint8_t rx_buf[4];
880 int shortfall;
882 addr >>= 2;
883 switch (addr) {
884 case R_CONFIG:
885 mask = ~(R_CONFIG_RSVD | MAN_START_COM);
886 break;
887 case R_INTR_STATUS:
888 ret = s->regs[addr] & IXR_ALL;
889 s->regs[addr] = 0;
890 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
891 xilinx_spips_update_ixr(s);
892 return ret;
893 case R_INTR_MASK:
894 mask = IXR_ALL;
895 break;
896 case R_EN:
897 mask = 0x1;
898 break;
899 case R_SLAVE_IDLE_COUNT:
900 mask = 0xFF;
901 break;
902 case R_MOD_ID:
903 mask = 0x01FFFFFF;
904 break;
905 case R_INTR_EN:
906 case R_INTR_DIS:
907 case R_TX_DATA:
908 mask = 0;
909 break;
910 case R_RX_DATA:
911 memset(rx_buf, 0, sizeof(rx_buf));
912 shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes);
913 ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ?
914 cpu_to_be32(*(uint32_t *)rx_buf) :
915 cpu_to_le32(*(uint32_t *)rx_buf);
916 if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) {
917 ret <<= 8 * shortfall;
919 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
920 xilinx_spips_check_flush(s);
921 xilinx_spips_update_ixr(s);
922 return ret;
924 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
925 s->regs[addr] & mask);
926 return s->regs[addr] & mask;
930 static uint64_t xlnx_zynqmp_qspips_read(void *opaque,
931 hwaddr addr, unsigned size)
933 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque);
934 uint32_t reg = addr / 4;
935 uint32_t ret;
936 uint8_t rx_buf[4];
937 int shortfall;
939 if (reg <= R_MOD_ID) {
940 return xilinx_spips_read(opaque, addr, size);
941 } else {
942 switch (reg) {
943 case R_GQSPI_RXD:
944 if (fifo8_is_empty(&s->rx_fifo_g)) {
945 qemu_log_mask(LOG_GUEST_ERROR,
946 "Read from empty GQSPI RX FIFO\n");
947 return 0;
949 memset(rx_buf, 0, sizeof(rx_buf));
950 shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf,
951 XILINX_SPIPS(s)->num_txrx_bytes);
952 ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ?
953 cpu_to_be32(*(uint32_t *)rx_buf) :
954 cpu_to_le32(*(uint32_t *)rx_buf);
955 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) {
956 ret <<= 8 * shortfall;
958 xlnx_zynqmp_qspips_check_flush(s);
959 xlnx_zynqmp_qspips_update_ixr(s);
960 return ret;
961 default:
962 return s->regs[reg];
967 static void xilinx_spips_write(void *opaque, hwaddr addr,
968 uint64_t value, unsigned size)
970 int mask = ~0;
971 XilinxSPIPS *s = opaque;
972 bool try_flush = true;
974 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
975 addr >>= 2;
976 switch (addr) {
977 case R_CONFIG:
978 mask = ~(R_CONFIG_RSVD | MAN_START_COM);
979 if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) {
980 s->man_start_com = true;
982 break;
983 case R_INTR_STATUS:
984 mask = IXR_ALL;
985 s->regs[R_INTR_STATUS] &= ~(mask & value);
986 goto no_reg_update;
987 case R_INTR_DIS:
988 mask = IXR_ALL;
989 s->regs[R_INTR_MASK] &= ~(mask & value);
990 goto no_reg_update;
991 case R_INTR_EN:
992 mask = IXR_ALL;
993 s->regs[R_INTR_MASK] |= mask & value;
994 goto no_reg_update;
995 case R_EN:
996 mask = 0x1;
997 break;
998 case R_SLAVE_IDLE_COUNT:
999 mask = 0xFF;
1000 break;
1001 case R_RX_DATA:
1002 case R_INTR_MASK:
1003 case R_MOD_ID:
1004 mask = 0;
1005 break;
1006 case R_TX_DATA:
1007 tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes,
1008 s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1009 goto no_reg_update;
1010 case R_TXD1:
1011 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1,
1012 s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1013 goto no_reg_update;
1014 case R_TXD2:
1015 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2,
1016 s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1017 goto no_reg_update;
1018 case R_TXD3:
1019 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3,
1020 s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1021 goto no_reg_update;
1022 /* Skip SPI bus update for below registers writes */
1023 case R_GPIO:
1024 case R_LPBK_DLY_ADJ:
1025 case R_IOU_TAPDLY_BYPASS:
1026 case R_DUMMY_CYCLE_EN:
1027 case R_ECO:
1028 try_flush = false;
1029 break;
1031 s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
1032 no_reg_update:
1033 if (try_flush) {
1034 xilinx_spips_update_cs_lines(s);
1035 xilinx_spips_check_flush(s);
1036 xilinx_spips_update_cs_lines(s);
1037 xilinx_spips_update_ixr(s);
1041 static const MemoryRegionOps spips_ops = {
1042 .read = xilinx_spips_read,
1043 .write = xilinx_spips_write,
1044 .endianness = DEVICE_LITTLE_ENDIAN,
1047 static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q)
1049 q->lqspi_cached_addr = ~0ULL;
1052 static void xilinx_qspips_write(void *opaque, hwaddr addr,
1053 uint64_t value, unsigned size)
1055 XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
1056 XilinxSPIPS *s = XILINX_SPIPS(opaque);
1058 xilinx_spips_write(opaque, addr, value, size);
1059 addr >>= 2;
1061 if (addr == R_LQSPI_CFG) {
1062 xilinx_qspips_invalidate_mmio_ptr(q);
1064 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
1065 fifo8_reset(&s->rx_fifo);
1069 static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr,
1070 uint64_t value, unsigned size)
1072 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque);
1073 uint32_t reg = addr / 4;
1075 if (reg <= R_MOD_ID) {
1076 xilinx_qspips_write(opaque, addr, value, size);
1077 } else {
1078 switch (reg) {
1079 case R_GQSPI_CNFG:
1080 if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) &&
1081 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) {
1082 s->man_start_com_g = true;
1084 s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK);
1085 break;
1086 case R_GQSPI_GEN_FIFO:
1087 if (!fifo32_is_full(&s->fifo_g)) {
1088 fifo32_push(&s->fifo_g, value);
1090 break;
1091 case R_GQSPI_TXD:
1092 tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4,
1093 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN));
1094 break;
1095 case R_GQSPI_FIFO_CTRL:
1096 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) {
1097 fifo32_reset(&s->fifo_g);
1099 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) {
1100 fifo8_reset(&s->tx_fifo_g);
1102 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) {
1103 fifo8_reset(&s->rx_fifo_g);
1105 break;
1106 case R_GQSPI_IDR:
1107 s->regs[R_GQSPI_IMR] |= value;
1108 break;
1109 case R_GQSPI_IER:
1110 s->regs[R_GQSPI_IMR] &= ~value;
1111 break;
1112 case R_GQSPI_ISR:
1113 s->regs[R_GQSPI_ISR] &= ~value;
1114 break;
1115 case R_GQSPI_IMR:
1116 case R_GQSPI_RXD:
1117 case R_GQSPI_GF_SNAPSHOT:
1118 case R_GQSPI_MOD_ID:
1119 break;
1120 default:
1121 s->regs[reg] = value;
1122 break;
1124 xlnx_zynqmp_qspips_update_cs_lines(s);
1125 xlnx_zynqmp_qspips_check_flush(s);
1126 xlnx_zynqmp_qspips_update_cs_lines(s);
1127 xlnx_zynqmp_qspips_update_ixr(s);
1129 xlnx_zynqmp_qspips_notify(s);
1132 static const MemoryRegionOps qspips_ops = {
1133 .read = xilinx_spips_read,
1134 .write = xilinx_qspips_write,
1135 .endianness = DEVICE_LITTLE_ENDIAN,
1138 static const MemoryRegionOps xlnx_zynqmp_qspips_ops = {
1139 .read = xlnx_zynqmp_qspips_read,
1140 .write = xlnx_zynqmp_qspips_write,
1141 .endianness = DEVICE_LITTLE_ENDIAN,
1144 #define LQSPI_CACHE_SIZE 1024
1146 static void lqspi_load_cache(void *opaque, hwaddr addr)
1148 XilinxQSPIPS *q = opaque;
1149 XilinxSPIPS *s = opaque;
1150 int i;
1151 int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1))
1152 / num_effective_busses(s));
1153 int peripheral = flash_addr >> LQSPI_ADDRESS_BITS;
1154 int cache_entry = 0;
1155 uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
1157 if (addr < q->lqspi_cached_addr ||
1158 addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
1159 xilinx_qspips_invalidate_mmio_ptr(q);
1160 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
1161 s->regs[R_LQSPI_STS] |= peripheral ? LQSPI_CFG_U_PAGE : 0;
1163 DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
1165 fifo8_reset(&s->tx_fifo);
1166 fifo8_reset(&s->rx_fifo);
1168 /* instruction */
1169 DB_PRINT_L(0, "pushing read instruction: %02x\n",
1170 (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
1171 LQSPI_CFG_INST_CODE));
1172 fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
1173 /* read address */
1174 DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
1175 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) {
1176 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24));
1178 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
1179 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
1180 fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
1181 /* mode bits */
1182 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
1183 fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
1184 LQSPI_CFG_MODE_SHIFT,
1185 LQSPI_CFG_MODE_WIDTH));
1187 /* dummy bytes */
1188 for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
1189 LQSPI_CFG_DUMMY_WIDTH)); ++i) {
1190 DB_PRINT_L(0, "pushing dummy byte\n");
1191 fifo8_push(&s->tx_fifo, 0);
1193 xilinx_spips_update_cs_lines(s);
1194 xilinx_spips_flush_txfifo(s);
1195 fifo8_reset(&s->rx_fifo);
1197 DB_PRINT_L(0, "starting QSPI data read\n");
1199 while (cache_entry < LQSPI_CACHE_SIZE) {
1200 for (i = 0; i < 64; ++i) {
1201 tx_data_bytes(&s->tx_fifo, 0, 1, false);
1203 xilinx_spips_flush_txfifo(s);
1204 for (i = 0; i < 64; ++i) {
1205 rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1);
1209 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
1210 s->regs[R_LQSPI_STS] |= u_page_save;
1211 xilinx_spips_update_cs_lines(s);
1213 q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
1217 static MemTxResult lqspi_read(void *opaque, hwaddr addr, uint64_t *value,
1218 unsigned size, MemTxAttrs attrs)
1220 XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
1222 if (addr >= q->lqspi_cached_addr &&
1223 addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
1224 uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
1225 *value = cpu_to_le32(*(uint32_t *)retp);
1226 DB_PRINT_L(1, "addr: %08" HWADDR_PRIx ", data: %08" PRIx64 "\n",
1227 addr, *value);
1228 return MEMTX_OK;
1231 lqspi_load_cache(opaque, addr);
1232 return lqspi_read(opaque, addr, value, size, attrs);
1235 static MemTxResult lqspi_write(void *opaque, hwaddr offset, uint64_t value,
1236 unsigned size, MemTxAttrs attrs)
1239 * From UG1085, Chapter 24 (Quad-SPI controllers):
1240 * - Writes are ignored
1241 * - AXI writes generate an external AXI slave error (SLVERR)
1243 qemu_log_mask(LOG_GUEST_ERROR, "%s Unexpected %u-bit access to 0x%" PRIx64
1244 " (value: 0x%" PRIx64 "\n",
1245 __func__, size << 3, offset, value);
1247 return MEMTX_ERROR;
1250 static const MemoryRegionOps lqspi_ops = {
1251 .read_with_attrs = lqspi_read,
1252 .write_with_attrs = lqspi_write,
1253 .endianness = DEVICE_NATIVE_ENDIAN,
1254 .impl = {
1255 .min_access_size = 4,
1256 .max_access_size = 4,
1258 .valid = {
1259 .min_access_size = 1,
1260 .max_access_size = 4
1264 static void xilinx_spips_realize(DeviceState *dev, Error **errp)
1266 XilinxSPIPS *s = XILINX_SPIPS(dev);
1267 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1268 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
1269 int i;
1271 DB_PRINT_L(0, "realized spips\n");
1273 if (s->num_busses > MAX_NUM_BUSSES) {
1274 error_setg(errp,
1275 "requested number of SPI busses %u exceeds maximum %d",
1276 s->num_busses, MAX_NUM_BUSSES);
1277 return;
1279 if (s->num_busses < MIN_NUM_BUSSES) {
1280 error_setg(errp,
1281 "requested number of SPI busses %u is below minimum %d",
1282 s->num_busses, MIN_NUM_BUSSES);
1283 return;
1286 s->spi = g_new(SSIBus *, s->num_busses);
1287 for (i = 0; i < s->num_busses; ++i) {
1288 char bus_name[16];
1289 snprintf(bus_name, 16, "spi%d", i);
1290 s->spi[i] = ssi_create_bus(dev, bus_name);
1293 s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
1294 s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses);
1296 sysbus_init_irq(sbd, &s->irq);
1297 for (i = 0; i < s->num_cs * s->num_busses; ++i) {
1298 sysbus_init_irq(sbd, &s->cs_lines[i]);
1301 memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
1302 "spi", XLNX_ZYNQMP_SPIPS_R_MAX * 4);
1303 sysbus_init_mmio(sbd, &s->iomem);
1305 s->irqline = -1;
1307 fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
1308 fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
1311 static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
1313 XilinxSPIPS *s = XILINX_SPIPS(dev);
1314 XilinxQSPIPS *q = XILINX_QSPIPS(dev);
1315 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1317 DB_PRINT_L(0, "realized qspips\n");
1319 s->num_busses = 2;
1320 s->num_cs = 2;
1321 s->num_txrx_bytes = 4;
1323 xilinx_spips_realize(dev, errp);
1324 memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
1325 (1 << LQSPI_ADDRESS_BITS) * 2);
1326 sysbus_init_mmio(sbd, &s->mmlqspi);
1328 q->lqspi_cached_addr = ~0ULL;
1331 static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp)
1333 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev);
1334 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
1336 if (s->dma_burst_size > QSPI_DMA_MAX_BURST_SIZE) {
1337 error_setg(errp,
1338 "qspi dma burst size %u exceeds maximum limit %d",
1339 s->dma_burst_size, QSPI_DMA_MAX_BURST_SIZE);
1340 return;
1342 xilinx_qspips_realize(dev, errp);
1343 fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size);
1344 fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size);
1345 fifo32_create(&s->fifo_g, 32);
1348 static void xlnx_zynqmp_qspips_init(Object *obj)
1350 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj);
1352 object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SINK,
1353 (Object **)&rq->dma,
1354 object_property_allow_set_link,
1355 OBJ_PROP_LINK_STRONG);
1358 static int xilinx_spips_post_load(void *opaque, int version_id)
1360 xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
1361 xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
1362 return 0;
1365 static const VMStateDescription vmstate_xilinx_spips = {
1366 .name = "xilinx_spips",
1367 .version_id = 2,
1368 .minimum_version_id = 2,
1369 .post_load = xilinx_spips_post_load,
1370 .fields = (VMStateField[]) {
1371 VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
1372 VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
1373 VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX),
1374 VMSTATE_UINT8(snoop_state, XilinxSPIPS),
1375 VMSTATE_END_OF_LIST()
1379 static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id)
1381 XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque;
1382 XilinxSPIPS *qs = XILINX_SPIPS(s);
1384 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) &&
1385 fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) {
1386 xlnx_zynqmp_qspips_update_ixr(s);
1387 xlnx_zynqmp_qspips_update_cs_lines(s);
1389 return 0;
1392 static const VMStateDescription vmstate_xilinx_qspips = {
1393 .name = "xilinx_qspips",
1394 .version_id = 1,
1395 .minimum_version_id = 1,
1396 .fields = (VMStateField[]) {
1397 VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0,
1398 vmstate_xilinx_spips, XilinxSPIPS),
1399 VMSTATE_END_OF_LIST()
1403 static const VMStateDescription vmstate_xlnx_zynqmp_qspips = {
1404 .name = "xlnx_zynqmp_qspips",
1405 .version_id = 1,
1406 .minimum_version_id = 1,
1407 .post_load = xlnx_zynqmp_qspips_post_load,
1408 .fields = (VMStateField[]) {
1409 VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0,
1410 vmstate_xilinx_qspips, XilinxQSPIPS),
1411 VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS),
1412 VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS),
1413 VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS),
1414 VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX),
1415 VMSTATE_END_OF_LIST()
1419 static Property xilinx_zynqmp_qspips_properties[] = {
1420 DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64),
1421 DEFINE_PROP_END_OF_LIST(),
1424 static Property xilinx_spips_properties[] = {
1425 DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
1426 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
1427 DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
1428 DEFINE_PROP_END_OF_LIST(),
1431 static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
1433 DeviceClass *dc = DEVICE_CLASS(klass);
1434 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1436 dc->realize = xilinx_qspips_realize;
1437 xsc->reg_ops = &qspips_ops;
1438 xsc->rx_fifo_size = RXFF_A_Q;
1439 xsc->tx_fifo_size = TXFF_A_Q;
1442 static void xilinx_spips_class_init(ObjectClass *klass, void *data)
1444 DeviceClass *dc = DEVICE_CLASS(klass);
1445 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1447 dc->realize = xilinx_spips_realize;
1448 dc->reset = xilinx_spips_reset;
1449 device_class_set_props(dc, xilinx_spips_properties);
1450 dc->vmsd = &vmstate_xilinx_spips;
1452 xsc->reg_ops = &spips_ops;
1453 xsc->rx_fifo_size = RXFF_A;
1454 xsc->tx_fifo_size = TXFF_A;
1457 static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data)
1459 DeviceClass *dc = DEVICE_CLASS(klass);
1460 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1462 dc->realize = xlnx_zynqmp_qspips_realize;
1463 dc->reset = xlnx_zynqmp_qspips_reset;
1464 dc->vmsd = &vmstate_xlnx_zynqmp_qspips;
1465 device_class_set_props(dc, xilinx_zynqmp_qspips_properties);
1466 xsc->reg_ops = &xlnx_zynqmp_qspips_ops;
1467 xsc->rx_fifo_size = RXFF_A_Q;
1468 xsc->tx_fifo_size = TXFF_A_Q;
1471 static const TypeInfo xilinx_spips_info = {
1472 .name = TYPE_XILINX_SPIPS,
1473 .parent = TYPE_SYS_BUS_DEVICE,
1474 .instance_size = sizeof(XilinxSPIPS),
1475 .class_init = xilinx_spips_class_init,
1476 .class_size = sizeof(XilinxSPIPSClass),
1479 static const TypeInfo xilinx_qspips_info = {
1480 .name = TYPE_XILINX_QSPIPS,
1481 .parent = TYPE_XILINX_SPIPS,
1482 .instance_size = sizeof(XilinxQSPIPS),
1483 .class_init = xilinx_qspips_class_init,
1486 static const TypeInfo xlnx_zynqmp_qspips_info = {
1487 .name = TYPE_XLNX_ZYNQMP_QSPIPS,
1488 .parent = TYPE_XILINX_QSPIPS,
1489 .instance_size = sizeof(XlnxZynqMPQSPIPS),
1490 .instance_init = xlnx_zynqmp_qspips_init,
1491 .class_init = xlnx_zynqmp_qspips_class_init,
1494 static void xilinx_spips_register_types(void)
1496 type_register_static(&xilinx_spips_info);
1497 type_register_static(&xilinx_qspips_info);
1498 type_register_static(&xlnx_zynqmp_qspips_info);
1501 type_init(xilinx_spips_register_types)