s390x/kvm: Fix diagnose handling.
[qemu/ar7.git] / kvm-all.c
blob393775459d9fd6b5d71eaa6a29ec3c9b92c342fa
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36 #include "trace.h"
38 /* This check must be after config-host.h is included */
39 #ifdef CONFIG_EVENTFD
40 #include <sys/eventfd.h>
41 #endif
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
45 #endif
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
50 //#define DEBUG_KVM
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
64 hwaddr start_addr;
65 ram_addr_t memory_size;
66 void *ram;
67 int slot;
68 int flags;
69 } KVMSlot;
71 typedef struct kvm_dirty_log KVMDirtyLog;
73 struct KVMState
75 KVMSlot *slots;
76 int nr_slots;
77 int fd;
78 int vmfd;
79 int coalesced_mmio;
80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
81 bool coalesced_flush_in_progress;
82 int broken_set_mem_region;
83 int migration_log;
84 int vcpu_events;
85 int robust_singlestep;
86 int debugregs;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
89 #endif
90 int pit_state2;
91 int xsave, xcrs;
92 int many_ioeventfds;
93 int intx_set_mask;
94 /* The man page (and posix) say ioctl numbers are signed int, but
95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
96 * unsigned, and treating them as signed here can break things */
97 unsigned irq_set_ioctl;
98 #ifdef KVM_CAP_IRQ_ROUTING
99 struct kvm_irq_routing *irq_routes;
100 int nr_allocated_irq_routes;
101 uint32_t *used_gsi_bitmap;
102 unsigned int gsi_count;
103 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
104 bool direct_msi;
105 #endif
108 KVMState *kvm_state;
109 bool kvm_kernel_irqchip;
110 bool kvm_async_interrupts_allowed;
111 bool kvm_halt_in_kernel_allowed;
112 bool kvm_irqfds_allowed;
113 bool kvm_msi_via_irqfd_allowed;
114 bool kvm_gsi_routing_allowed;
115 bool kvm_gsi_direct_mapping;
116 bool kvm_allowed;
117 bool kvm_readonly_mem_allowed;
119 static const KVMCapabilityInfo kvm_required_capabilites[] = {
120 KVM_CAP_INFO(USER_MEMORY),
121 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
122 KVM_CAP_LAST_INFO
125 static KVMSlot *kvm_alloc_slot(KVMState *s)
127 int i;
129 for (i = 0; i < s->nr_slots; i++) {
130 if (s->slots[i].memory_size == 0) {
131 return &s->slots[i];
135 fprintf(stderr, "%s: no free slot available\n", __func__);
136 abort();
139 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
140 hwaddr start_addr,
141 hwaddr end_addr)
143 int i;
145 for (i = 0; i < s->nr_slots; i++) {
146 KVMSlot *mem = &s->slots[i];
148 if (start_addr == mem->start_addr &&
149 end_addr == mem->start_addr + mem->memory_size) {
150 return mem;
154 return NULL;
158 * Find overlapping slot with lowest start address
160 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
161 hwaddr start_addr,
162 hwaddr end_addr)
164 KVMSlot *found = NULL;
165 int i;
167 for (i = 0; i < s->nr_slots; i++) {
168 KVMSlot *mem = &s->slots[i];
170 if (mem->memory_size == 0 ||
171 (found && found->start_addr < mem->start_addr)) {
172 continue;
175 if (end_addr > mem->start_addr &&
176 start_addr < mem->start_addr + mem->memory_size) {
177 found = mem;
181 return found;
184 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
185 hwaddr *phys_addr)
187 int i;
189 for (i = 0; i < s->nr_slots; i++) {
190 KVMSlot *mem = &s->slots[i];
192 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
193 *phys_addr = mem->start_addr + (ram - mem->ram);
194 return 1;
198 return 0;
201 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
203 struct kvm_userspace_memory_region mem;
205 mem.slot = slot->slot;
206 mem.guest_phys_addr = slot->start_addr;
207 mem.userspace_addr = (unsigned long)slot->ram;
208 mem.flags = slot->flags;
209 if (s->migration_log) {
210 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
213 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
214 /* Set the slot size to 0 before setting the slot to the desired
215 * value. This is needed based on KVM commit 75d61fbc. */
216 mem.memory_size = 0;
217 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
219 mem.memory_size = slot->memory_size;
220 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
223 static void kvm_reset_vcpu(void *opaque)
225 CPUState *cpu = opaque;
227 kvm_arch_reset_vcpu(cpu);
230 int kvm_init_vcpu(CPUState *cpu)
232 KVMState *s = kvm_state;
233 long mmap_size;
234 int ret;
236 DPRINTF("kvm_init_vcpu\n");
238 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
239 if (ret < 0) {
240 DPRINTF("kvm_create_vcpu failed\n");
241 goto err;
244 cpu->kvm_fd = ret;
245 cpu->kvm_state = s;
246 cpu->kvm_vcpu_dirty = true;
248 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
249 if (mmap_size < 0) {
250 ret = mmap_size;
251 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
252 goto err;
255 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
256 cpu->kvm_fd, 0);
257 if (cpu->kvm_run == MAP_FAILED) {
258 ret = -errno;
259 DPRINTF("mmap'ing vcpu state failed\n");
260 goto err;
263 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
264 s->coalesced_mmio_ring =
265 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
268 ret = kvm_arch_init_vcpu(cpu);
269 if (ret == 0) {
270 qemu_register_reset(kvm_reset_vcpu, cpu);
271 kvm_arch_reset_vcpu(cpu);
273 err:
274 return ret;
278 * dirty pages logging control
281 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
283 int flags = 0;
284 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
285 if (readonly && kvm_readonly_mem_allowed) {
286 flags |= KVM_MEM_READONLY;
288 return flags;
291 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
293 KVMState *s = kvm_state;
294 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
295 int old_flags;
297 old_flags = mem->flags;
299 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
300 mem->flags = flags;
302 /* If nothing changed effectively, no need to issue ioctl */
303 if (s->migration_log) {
304 flags |= KVM_MEM_LOG_DIRTY_PAGES;
307 if (flags == old_flags) {
308 return 0;
311 return kvm_set_user_memory_region(s, mem);
314 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
315 ram_addr_t size, bool log_dirty)
317 KVMState *s = kvm_state;
318 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
320 if (mem == NULL) {
321 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
322 TARGET_FMT_plx "\n", __func__, phys_addr,
323 (hwaddr)(phys_addr + size - 1));
324 return -EINVAL;
326 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
329 static void kvm_log_start(MemoryListener *listener,
330 MemoryRegionSection *section)
332 int r;
334 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
335 int128_get64(section->size), true);
336 if (r < 0) {
337 abort();
341 static void kvm_log_stop(MemoryListener *listener,
342 MemoryRegionSection *section)
344 int r;
346 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
347 int128_get64(section->size), false);
348 if (r < 0) {
349 abort();
353 static int kvm_set_migration_log(int enable)
355 KVMState *s = kvm_state;
356 KVMSlot *mem;
357 int i, err;
359 s->migration_log = enable;
361 for (i = 0; i < s->nr_slots; i++) {
362 mem = &s->slots[i];
364 if (!mem->memory_size) {
365 continue;
367 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
368 continue;
370 err = kvm_set_user_memory_region(s, mem);
371 if (err) {
372 return err;
375 return 0;
378 /* get kvm's dirty pages bitmap and update qemu's */
379 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
380 unsigned long *bitmap)
382 unsigned int i, j;
383 unsigned long page_number, c;
384 hwaddr addr, addr1;
385 unsigned int pages = int128_get64(section->size) / getpagesize();
386 unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
387 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
390 * bitmap-traveling is faster than memory-traveling (for addr...)
391 * especially when most of the memory is not dirty.
393 for (i = 0; i < len; i++) {
394 if (bitmap[i] != 0) {
395 c = leul_to_cpu(bitmap[i]);
396 do {
397 j = ffsl(c) - 1;
398 c &= ~(1ul << j);
399 page_number = (i * HOST_LONG_BITS + j) * hpratio;
400 addr1 = page_number * TARGET_PAGE_SIZE;
401 addr = section->offset_within_region + addr1;
402 memory_region_set_dirty(section->mr, addr,
403 TARGET_PAGE_SIZE * hpratio);
404 } while (c != 0);
407 return 0;
410 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
413 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
414 * This function updates qemu's dirty bitmap using
415 * memory_region_set_dirty(). This means all bits are set
416 * to dirty.
418 * @start_add: start of logged region.
419 * @end_addr: end of logged region.
421 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
423 KVMState *s = kvm_state;
424 unsigned long size, allocated_size = 0;
425 KVMDirtyLog d;
426 KVMSlot *mem;
427 int ret = 0;
428 hwaddr start_addr = section->offset_within_address_space;
429 hwaddr end_addr = start_addr + int128_get64(section->size);
431 d.dirty_bitmap = NULL;
432 while (start_addr < end_addr) {
433 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
434 if (mem == NULL) {
435 break;
438 /* XXX bad kernel interface alert
439 * For dirty bitmap, kernel allocates array of size aligned to
440 * bits-per-long. But for case when the kernel is 64bits and
441 * the userspace is 32bits, userspace can't align to the same
442 * bits-per-long, since sizeof(long) is different between kernel
443 * and user space. This way, userspace will provide buffer which
444 * may be 4 bytes less than the kernel will use, resulting in
445 * userspace memory corruption (which is not detectable by valgrind
446 * too, in most cases).
447 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
448 * a hope that sizeof(long) wont become >8 any time soon.
450 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
451 /*HOST_LONG_BITS*/ 64) / 8;
452 if (!d.dirty_bitmap) {
453 d.dirty_bitmap = g_malloc(size);
454 } else if (size > allocated_size) {
455 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
457 allocated_size = size;
458 memset(d.dirty_bitmap, 0, allocated_size);
460 d.slot = mem->slot;
462 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
463 DPRINTF("ioctl failed %d\n", errno);
464 ret = -1;
465 break;
468 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
469 start_addr = mem->start_addr + mem->memory_size;
471 g_free(d.dirty_bitmap);
473 return ret;
476 static void kvm_coalesce_mmio_region(MemoryListener *listener,
477 MemoryRegionSection *secion,
478 hwaddr start, hwaddr size)
480 KVMState *s = kvm_state;
482 if (s->coalesced_mmio) {
483 struct kvm_coalesced_mmio_zone zone;
485 zone.addr = start;
486 zone.size = size;
487 zone.pad = 0;
489 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
493 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
494 MemoryRegionSection *secion,
495 hwaddr start, hwaddr size)
497 KVMState *s = kvm_state;
499 if (s->coalesced_mmio) {
500 struct kvm_coalesced_mmio_zone zone;
502 zone.addr = start;
503 zone.size = size;
504 zone.pad = 0;
506 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
510 int kvm_check_extension(KVMState *s, unsigned int extension)
512 int ret;
514 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
515 if (ret < 0) {
516 ret = 0;
519 return ret;
522 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
523 bool assign, uint32_t size, bool datamatch)
525 int ret;
526 struct kvm_ioeventfd iofd;
528 iofd.datamatch = datamatch ? val : 0;
529 iofd.addr = addr;
530 iofd.len = size;
531 iofd.flags = 0;
532 iofd.fd = fd;
534 if (!kvm_enabled()) {
535 return -ENOSYS;
538 if (datamatch) {
539 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
541 if (!assign) {
542 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
545 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
547 if (ret < 0) {
548 return -errno;
551 return 0;
554 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
555 bool assign, uint32_t size, bool datamatch)
557 struct kvm_ioeventfd kick = {
558 .datamatch = datamatch ? val : 0,
559 .addr = addr,
560 .flags = KVM_IOEVENTFD_FLAG_PIO,
561 .len = size,
562 .fd = fd,
564 int r;
565 if (!kvm_enabled()) {
566 return -ENOSYS;
568 if (datamatch) {
569 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
571 if (!assign) {
572 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
574 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
575 if (r < 0) {
576 return r;
578 return 0;
582 static int kvm_check_many_ioeventfds(void)
584 /* Userspace can use ioeventfd for io notification. This requires a host
585 * that supports eventfd(2) and an I/O thread; since eventfd does not
586 * support SIGIO it cannot interrupt the vcpu.
588 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
589 * can avoid creating too many ioeventfds.
591 #if defined(CONFIG_EVENTFD)
592 int ioeventfds[7];
593 int i, ret = 0;
594 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
595 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
596 if (ioeventfds[i] < 0) {
597 break;
599 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
600 if (ret < 0) {
601 close(ioeventfds[i]);
602 break;
606 /* Decide whether many devices are supported or not */
607 ret = i == ARRAY_SIZE(ioeventfds);
609 while (i-- > 0) {
610 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
611 close(ioeventfds[i]);
613 return ret;
614 #else
615 return 0;
616 #endif
619 static const KVMCapabilityInfo *
620 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
622 while (list->name) {
623 if (!kvm_check_extension(s, list->value)) {
624 return list;
626 list++;
628 return NULL;
631 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
633 KVMState *s = kvm_state;
634 KVMSlot *mem, old;
635 int err;
636 MemoryRegion *mr = section->mr;
637 bool log_dirty = memory_region_is_logging(mr);
638 bool writeable = !mr->readonly && !mr->rom_device;
639 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
640 hwaddr start_addr = section->offset_within_address_space;
641 ram_addr_t size = int128_get64(section->size);
642 void *ram = NULL;
643 unsigned delta;
645 /* kvm works in page size chunks, but the function may be called
646 with sub-page size and unaligned start address. */
647 delta = TARGET_PAGE_ALIGN(size) - size;
648 if (delta > size) {
649 return;
651 start_addr += delta;
652 size -= delta;
653 size &= TARGET_PAGE_MASK;
654 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
655 return;
658 if (!memory_region_is_ram(mr)) {
659 if (writeable || !kvm_readonly_mem_allowed) {
660 return;
661 } else if (!mr->romd_mode) {
662 /* If the memory device is not in romd_mode, then we actually want
663 * to remove the kvm memory slot so all accesses will trap. */
664 add = false;
668 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
670 while (1) {
671 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
672 if (!mem) {
673 break;
676 if (add && start_addr >= mem->start_addr &&
677 (start_addr + size <= mem->start_addr + mem->memory_size) &&
678 (ram - start_addr == mem->ram - mem->start_addr)) {
679 /* The new slot fits into the existing one and comes with
680 * identical parameters - update flags and done. */
681 kvm_slot_dirty_pages_log_change(mem, log_dirty);
682 return;
685 old = *mem;
687 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
688 kvm_physical_sync_dirty_bitmap(section);
691 /* unregister the overlapping slot */
692 mem->memory_size = 0;
693 err = kvm_set_user_memory_region(s, mem);
694 if (err) {
695 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
696 __func__, strerror(-err));
697 abort();
700 /* Workaround for older KVM versions: we can't join slots, even not by
701 * unregistering the previous ones and then registering the larger
702 * slot. We have to maintain the existing fragmentation. Sigh.
704 * This workaround assumes that the new slot starts at the same
705 * address as the first existing one. If not or if some overlapping
706 * slot comes around later, we will fail (not seen in practice so far)
707 * - and actually require a recent KVM version. */
708 if (s->broken_set_mem_region &&
709 old.start_addr == start_addr && old.memory_size < size && add) {
710 mem = kvm_alloc_slot(s);
711 mem->memory_size = old.memory_size;
712 mem->start_addr = old.start_addr;
713 mem->ram = old.ram;
714 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
716 err = kvm_set_user_memory_region(s, mem);
717 if (err) {
718 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
719 strerror(-err));
720 abort();
723 start_addr += old.memory_size;
724 ram += old.memory_size;
725 size -= old.memory_size;
726 continue;
729 /* register prefix slot */
730 if (old.start_addr < start_addr) {
731 mem = kvm_alloc_slot(s);
732 mem->memory_size = start_addr - old.start_addr;
733 mem->start_addr = old.start_addr;
734 mem->ram = old.ram;
735 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
737 err = kvm_set_user_memory_region(s, mem);
738 if (err) {
739 fprintf(stderr, "%s: error registering prefix slot: %s\n",
740 __func__, strerror(-err));
741 #ifdef TARGET_PPC
742 fprintf(stderr, "%s: This is probably because your kernel's " \
743 "PAGE_SIZE is too big. Please try to use 4k " \
744 "PAGE_SIZE!\n", __func__);
745 #endif
746 abort();
750 /* register suffix slot */
751 if (old.start_addr + old.memory_size > start_addr + size) {
752 ram_addr_t size_delta;
754 mem = kvm_alloc_slot(s);
755 mem->start_addr = start_addr + size;
756 size_delta = mem->start_addr - old.start_addr;
757 mem->memory_size = old.memory_size - size_delta;
758 mem->ram = old.ram + size_delta;
759 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
761 err = kvm_set_user_memory_region(s, mem);
762 if (err) {
763 fprintf(stderr, "%s: error registering suffix slot: %s\n",
764 __func__, strerror(-err));
765 abort();
770 /* in case the KVM bug workaround already "consumed" the new slot */
771 if (!size) {
772 return;
774 if (!add) {
775 return;
777 mem = kvm_alloc_slot(s);
778 mem->memory_size = size;
779 mem->start_addr = start_addr;
780 mem->ram = ram;
781 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
783 err = kvm_set_user_memory_region(s, mem);
784 if (err) {
785 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
786 strerror(-err));
787 abort();
791 static void kvm_region_add(MemoryListener *listener,
792 MemoryRegionSection *section)
794 memory_region_ref(section->mr);
795 kvm_set_phys_mem(section, true);
798 static void kvm_region_del(MemoryListener *listener,
799 MemoryRegionSection *section)
801 kvm_set_phys_mem(section, false);
802 memory_region_unref(section->mr);
805 static void kvm_log_sync(MemoryListener *listener,
806 MemoryRegionSection *section)
808 int r;
810 r = kvm_physical_sync_dirty_bitmap(section);
811 if (r < 0) {
812 abort();
816 static void kvm_log_global_start(struct MemoryListener *listener)
818 int r;
820 r = kvm_set_migration_log(1);
821 assert(r >= 0);
824 static void kvm_log_global_stop(struct MemoryListener *listener)
826 int r;
828 r = kvm_set_migration_log(0);
829 assert(r >= 0);
832 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
833 MemoryRegionSection *section,
834 bool match_data, uint64_t data,
835 EventNotifier *e)
837 int fd = event_notifier_get_fd(e);
838 int r;
840 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
841 data, true, int128_get64(section->size),
842 match_data);
843 if (r < 0) {
844 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
845 __func__, strerror(-r));
846 abort();
850 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
851 MemoryRegionSection *section,
852 bool match_data, uint64_t data,
853 EventNotifier *e)
855 int fd = event_notifier_get_fd(e);
856 int r;
858 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
859 data, false, int128_get64(section->size),
860 match_data);
861 if (r < 0) {
862 abort();
866 static void kvm_io_ioeventfd_add(MemoryListener *listener,
867 MemoryRegionSection *section,
868 bool match_data, uint64_t data,
869 EventNotifier *e)
871 int fd = event_notifier_get_fd(e);
872 int r;
874 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
875 data, true, int128_get64(section->size),
876 match_data);
877 if (r < 0) {
878 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
879 __func__, strerror(-r));
880 abort();
884 static void kvm_io_ioeventfd_del(MemoryListener *listener,
885 MemoryRegionSection *section,
886 bool match_data, uint64_t data,
887 EventNotifier *e)
890 int fd = event_notifier_get_fd(e);
891 int r;
893 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
894 data, false, int128_get64(section->size),
895 match_data);
896 if (r < 0) {
897 abort();
901 static MemoryListener kvm_memory_listener = {
902 .region_add = kvm_region_add,
903 .region_del = kvm_region_del,
904 .log_start = kvm_log_start,
905 .log_stop = kvm_log_stop,
906 .log_sync = kvm_log_sync,
907 .log_global_start = kvm_log_global_start,
908 .log_global_stop = kvm_log_global_stop,
909 .eventfd_add = kvm_mem_ioeventfd_add,
910 .eventfd_del = kvm_mem_ioeventfd_del,
911 .coalesced_mmio_add = kvm_coalesce_mmio_region,
912 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
913 .priority = 10,
916 static MemoryListener kvm_io_listener = {
917 .eventfd_add = kvm_io_ioeventfd_add,
918 .eventfd_del = kvm_io_ioeventfd_del,
919 .priority = 10,
922 static void kvm_handle_interrupt(CPUState *cpu, int mask)
924 cpu->interrupt_request |= mask;
926 if (!qemu_cpu_is_self(cpu)) {
927 qemu_cpu_kick(cpu);
931 int kvm_set_irq(KVMState *s, int irq, int level)
933 struct kvm_irq_level event;
934 int ret;
936 assert(kvm_async_interrupts_enabled());
938 event.level = level;
939 event.irq = irq;
940 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
941 if (ret < 0) {
942 perror("kvm_set_irq");
943 abort();
946 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
949 #ifdef KVM_CAP_IRQ_ROUTING
950 typedef struct KVMMSIRoute {
951 struct kvm_irq_routing_entry kroute;
952 QTAILQ_ENTRY(KVMMSIRoute) entry;
953 } KVMMSIRoute;
955 static void set_gsi(KVMState *s, unsigned int gsi)
957 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
960 static void clear_gsi(KVMState *s, unsigned int gsi)
962 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
965 void kvm_init_irq_routing(KVMState *s)
967 int gsi_count, i;
969 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
970 if (gsi_count > 0) {
971 unsigned int gsi_bits, i;
973 /* Round up so we can search ints using ffs */
974 gsi_bits = ALIGN(gsi_count, 32);
975 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
976 s->gsi_count = gsi_count;
978 /* Mark any over-allocated bits as already in use */
979 for (i = gsi_count; i < gsi_bits; i++) {
980 set_gsi(s, i);
984 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
985 s->nr_allocated_irq_routes = 0;
987 if (!s->direct_msi) {
988 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
989 QTAILQ_INIT(&s->msi_hashtab[i]);
993 kvm_arch_init_irq_routing(s);
996 void kvm_irqchip_commit_routes(KVMState *s)
998 int ret;
1000 s->irq_routes->flags = 0;
1001 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1002 assert(ret == 0);
1005 static void kvm_add_routing_entry(KVMState *s,
1006 struct kvm_irq_routing_entry *entry)
1008 struct kvm_irq_routing_entry *new;
1009 int n, size;
1011 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1012 n = s->nr_allocated_irq_routes * 2;
1013 if (n < 64) {
1014 n = 64;
1016 size = sizeof(struct kvm_irq_routing);
1017 size += n * sizeof(*new);
1018 s->irq_routes = g_realloc(s->irq_routes, size);
1019 s->nr_allocated_irq_routes = n;
1021 n = s->irq_routes->nr++;
1022 new = &s->irq_routes->entries[n];
1024 *new = *entry;
1026 set_gsi(s, entry->gsi);
1029 static int kvm_update_routing_entry(KVMState *s,
1030 struct kvm_irq_routing_entry *new_entry)
1032 struct kvm_irq_routing_entry *entry;
1033 int n;
1035 for (n = 0; n < s->irq_routes->nr; n++) {
1036 entry = &s->irq_routes->entries[n];
1037 if (entry->gsi != new_entry->gsi) {
1038 continue;
1041 if(!memcmp(entry, new_entry, sizeof *entry)) {
1042 return 0;
1045 *entry = *new_entry;
1047 kvm_irqchip_commit_routes(s);
1049 return 0;
1052 return -ESRCH;
1055 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1057 struct kvm_irq_routing_entry e = {};
1059 assert(pin < s->gsi_count);
1061 e.gsi = irq;
1062 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1063 e.flags = 0;
1064 e.u.irqchip.irqchip = irqchip;
1065 e.u.irqchip.pin = pin;
1066 kvm_add_routing_entry(s, &e);
1069 void kvm_irqchip_release_virq(KVMState *s, int virq)
1071 struct kvm_irq_routing_entry *e;
1072 int i;
1074 if (kvm_gsi_direct_mapping()) {
1075 return;
1078 for (i = 0; i < s->irq_routes->nr; i++) {
1079 e = &s->irq_routes->entries[i];
1080 if (e->gsi == virq) {
1081 s->irq_routes->nr--;
1082 *e = s->irq_routes->entries[s->irq_routes->nr];
1085 clear_gsi(s, virq);
1088 static unsigned int kvm_hash_msi(uint32_t data)
1090 /* This is optimized for IA32 MSI layout. However, no other arch shall
1091 * repeat the mistake of not providing a direct MSI injection API. */
1092 return data & 0xff;
1095 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1097 KVMMSIRoute *route, *next;
1098 unsigned int hash;
1100 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1101 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1102 kvm_irqchip_release_virq(s, route->kroute.gsi);
1103 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1104 g_free(route);
1109 static int kvm_irqchip_get_virq(KVMState *s)
1111 uint32_t *word = s->used_gsi_bitmap;
1112 int max_words = ALIGN(s->gsi_count, 32) / 32;
1113 int i, bit;
1114 bool retry = true;
1116 again:
1117 /* Return the lowest unused GSI in the bitmap */
1118 for (i = 0; i < max_words; i++) {
1119 bit = ffs(~word[i]);
1120 if (!bit) {
1121 continue;
1124 return bit - 1 + i * 32;
1126 if (!s->direct_msi && retry) {
1127 retry = false;
1128 kvm_flush_dynamic_msi_routes(s);
1129 goto again;
1131 return -ENOSPC;
1135 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1137 unsigned int hash = kvm_hash_msi(msg.data);
1138 KVMMSIRoute *route;
1140 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1141 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1142 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1143 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1144 return route;
1147 return NULL;
1150 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1152 struct kvm_msi msi;
1153 KVMMSIRoute *route;
1155 if (s->direct_msi) {
1156 msi.address_lo = (uint32_t)msg.address;
1157 msi.address_hi = msg.address >> 32;
1158 msi.data = le32_to_cpu(msg.data);
1159 msi.flags = 0;
1160 memset(msi.pad, 0, sizeof(msi.pad));
1162 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1165 route = kvm_lookup_msi_route(s, msg);
1166 if (!route) {
1167 int virq;
1169 virq = kvm_irqchip_get_virq(s);
1170 if (virq < 0) {
1171 return virq;
1174 route = g_malloc0(sizeof(KVMMSIRoute));
1175 route->kroute.gsi = virq;
1176 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1177 route->kroute.flags = 0;
1178 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1179 route->kroute.u.msi.address_hi = msg.address >> 32;
1180 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1182 kvm_add_routing_entry(s, &route->kroute);
1183 kvm_irqchip_commit_routes(s);
1185 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1186 entry);
1189 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1191 return kvm_set_irq(s, route->kroute.gsi, 1);
1194 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1196 struct kvm_irq_routing_entry kroute = {};
1197 int virq;
1199 if (kvm_gsi_direct_mapping()) {
1200 return msg.data & 0xffff;
1203 if (!kvm_gsi_routing_enabled()) {
1204 return -ENOSYS;
1207 virq = kvm_irqchip_get_virq(s);
1208 if (virq < 0) {
1209 return virq;
1212 kroute.gsi = virq;
1213 kroute.type = KVM_IRQ_ROUTING_MSI;
1214 kroute.flags = 0;
1215 kroute.u.msi.address_lo = (uint32_t)msg.address;
1216 kroute.u.msi.address_hi = msg.address >> 32;
1217 kroute.u.msi.data = le32_to_cpu(msg.data);
1219 kvm_add_routing_entry(s, &kroute);
1220 kvm_irqchip_commit_routes(s);
1222 return virq;
1225 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1227 struct kvm_irq_routing_entry kroute = {};
1229 if (kvm_gsi_direct_mapping()) {
1230 return 0;
1233 if (!kvm_irqchip_in_kernel()) {
1234 return -ENOSYS;
1237 kroute.gsi = virq;
1238 kroute.type = KVM_IRQ_ROUTING_MSI;
1239 kroute.flags = 0;
1240 kroute.u.msi.address_lo = (uint32_t)msg.address;
1241 kroute.u.msi.address_hi = msg.address >> 32;
1242 kroute.u.msi.data = le32_to_cpu(msg.data);
1244 return kvm_update_routing_entry(s, &kroute);
1247 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1248 bool assign)
1250 struct kvm_irqfd irqfd = {
1251 .fd = fd,
1252 .gsi = virq,
1253 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1256 if (rfd != -1) {
1257 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1258 irqfd.resamplefd = rfd;
1261 if (!kvm_irqfds_enabled()) {
1262 return -ENOSYS;
1265 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1268 #else /* !KVM_CAP_IRQ_ROUTING */
1270 void kvm_init_irq_routing(KVMState *s)
1274 void kvm_irqchip_release_virq(KVMState *s, int virq)
1278 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1280 abort();
1283 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1285 return -ENOSYS;
1288 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1290 abort();
1293 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1295 return -ENOSYS;
1297 #endif /* !KVM_CAP_IRQ_ROUTING */
1299 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1300 EventNotifier *rn, int virq)
1302 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1303 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1306 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1308 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1309 false);
1312 static int kvm_irqchip_create(KVMState *s)
1314 int ret;
1316 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1317 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1318 return 0;
1321 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1322 if (ret < 0) {
1323 fprintf(stderr, "Create kernel irqchip failed\n");
1324 return ret;
1327 kvm_kernel_irqchip = true;
1328 /* If we have an in-kernel IRQ chip then we must have asynchronous
1329 * interrupt delivery (though the reverse is not necessarily true)
1331 kvm_async_interrupts_allowed = true;
1332 kvm_halt_in_kernel_allowed = true;
1334 kvm_init_irq_routing(s);
1336 return 0;
1339 /* Find number of supported CPUs using the recommended
1340 * procedure from the kernel API documentation to cope with
1341 * older kernels that may be missing capabilities.
1343 static int kvm_recommended_vcpus(KVMState *s)
1345 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1346 return (ret) ? ret : 4;
1349 static int kvm_max_vcpus(KVMState *s)
1351 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1352 return (ret) ? ret : kvm_recommended_vcpus(s);
1355 int kvm_init(void)
1357 static const char upgrade_note[] =
1358 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1359 "(see http://sourceforge.net/projects/kvm).\n";
1360 struct {
1361 const char *name;
1362 int num;
1363 } num_cpus[] = {
1364 { "SMP", smp_cpus },
1365 { "hotpluggable", max_cpus },
1366 { NULL, }
1367 }, *nc = num_cpus;
1368 int soft_vcpus_limit, hard_vcpus_limit;
1369 KVMState *s;
1370 const KVMCapabilityInfo *missing_cap;
1371 int ret;
1372 int i;
1374 s = g_malloc0(sizeof(KVMState));
1377 * On systems where the kernel can support different base page
1378 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1379 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1380 * page size for the system though.
1382 assert(TARGET_PAGE_SIZE <= getpagesize());
1384 #ifdef KVM_CAP_SET_GUEST_DEBUG
1385 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1386 #endif
1387 s->vmfd = -1;
1388 s->fd = qemu_open("/dev/kvm", O_RDWR);
1389 if (s->fd == -1) {
1390 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1391 ret = -errno;
1392 goto err;
1395 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1396 if (ret < KVM_API_VERSION) {
1397 if (ret > 0) {
1398 ret = -EINVAL;
1400 fprintf(stderr, "kvm version too old\n");
1401 goto err;
1404 if (ret > KVM_API_VERSION) {
1405 ret = -EINVAL;
1406 fprintf(stderr, "kvm version not supported\n");
1407 goto err;
1410 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1412 /* If unspecified, use the default value */
1413 if (!s->nr_slots) {
1414 s->nr_slots = 32;
1417 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1419 for (i = 0; i < s->nr_slots; i++) {
1420 s->slots[i].slot = i;
1423 /* check the vcpu limits */
1424 soft_vcpus_limit = kvm_recommended_vcpus(s);
1425 hard_vcpus_limit = kvm_max_vcpus(s);
1427 while (nc->name) {
1428 if (nc->num > soft_vcpus_limit) {
1429 fprintf(stderr,
1430 "Warning: Number of %s cpus requested (%d) exceeds "
1431 "the recommended cpus supported by KVM (%d)\n",
1432 nc->name, nc->num, soft_vcpus_limit);
1434 if (nc->num > hard_vcpus_limit) {
1435 ret = -EINVAL;
1436 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1437 "the maximum cpus supported by KVM (%d)\n",
1438 nc->name, nc->num, hard_vcpus_limit);
1439 goto err;
1442 nc++;
1445 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1446 if (s->vmfd < 0) {
1447 #ifdef TARGET_S390X
1448 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1449 "your host kernel command line\n");
1450 #endif
1451 ret = s->vmfd;
1452 goto err;
1455 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1456 if (!missing_cap) {
1457 missing_cap =
1458 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1460 if (missing_cap) {
1461 ret = -EINVAL;
1462 fprintf(stderr, "kvm does not support %s\n%s",
1463 missing_cap->name, upgrade_note);
1464 goto err;
1467 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1469 s->broken_set_mem_region = 1;
1470 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1471 if (ret > 0) {
1472 s->broken_set_mem_region = 0;
1475 #ifdef KVM_CAP_VCPU_EVENTS
1476 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1477 #endif
1479 s->robust_singlestep =
1480 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1482 #ifdef KVM_CAP_DEBUGREGS
1483 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1484 #endif
1486 #ifdef KVM_CAP_XSAVE
1487 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1488 #endif
1490 #ifdef KVM_CAP_XCRS
1491 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1492 #endif
1494 #ifdef KVM_CAP_PIT_STATE2
1495 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1496 #endif
1498 #ifdef KVM_CAP_IRQ_ROUTING
1499 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1500 #endif
1502 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1504 s->irq_set_ioctl = KVM_IRQ_LINE;
1505 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1506 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1509 #ifdef KVM_CAP_READONLY_MEM
1510 kvm_readonly_mem_allowed =
1511 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1512 #endif
1514 ret = kvm_arch_init(s);
1515 if (ret < 0) {
1516 goto err;
1519 ret = kvm_irqchip_create(s);
1520 if (ret < 0) {
1521 goto err;
1524 kvm_state = s;
1525 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1526 memory_listener_register(&kvm_io_listener, &address_space_io);
1528 s->many_ioeventfds = kvm_check_many_ioeventfds();
1530 cpu_interrupt_handler = kvm_handle_interrupt;
1532 return 0;
1534 err:
1535 if (s->vmfd >= 0) {
1536 close(s->vmfd);
1538 if (s->fd != -1) {
1539 close(s->fd);
1541 g_free(s->slots);
1542 g_free(s);
1544 return ret;
1547 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1548 uint32_t count)
1550 int i;
1551 uint8_t *ptr = data;
1553 for (i = 0; i < count; i++) {
1554 address_space_rw(&address_space_io, port, ptr, size,
1555 direction == KVM_EXIT_IO_OUT);
1556 ptr += size;
1560 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1562 fprintf(stderr, "KVM internal error.");
1563 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1564 int i;
1566 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1567 for (i = 0; i < run->internal.ndata; ++i) {
1568 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1569 i, (uint64_t)run->internal.data[i]);
1571 } else {
1572 fprintf(stderr, "\n");
1574 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1575 fprintf(stderr, "emulation failure\n");
1576 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1577 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1578 return EXCP_INTERRUPT;
1581 /* FIXME: Should trigger a qmp message to let management know
1582 * something went wrong.
1584 return -1;
1587 void kvm_flush_coalesced_mmio_buffer(void)
1589 KVMState *s = kvm_state;
1591 if (s->coalesced_flush_in_progress) {
1592 return;
1595 s->coalesced_flush_in_progress = true;
1597 if (s->coalesced_mmio_ring) {
1598 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1599 while (ring->first != ring->last) {
1600 struct kvm_coalesced_mmio *ent;
1602 ent = &ring->coalesced_mmio[ring->first];
1604 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1605 smp_wmb();
1606 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1610 s->coalesced_flush_in_progress = false;
1613 static void do_kvm_cpu_synchronize_state(void *arg)
1615 CPUState *cpu = arg;
1617 if (!cpu->kvm_vcpu_dirty) {
1618 kvm_arch_get_registers(cpu);
1619 cpu->kvm_vcpu_dirty = true;
1623 void kvm_cpu_synchronize_state(CPUState *cpu)
1625 if (!cpu->kvm_vcpu_dirty) {
1626 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1630 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1632 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1633 cpu->kvm_vcpu_dirty = false;
1636 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1638 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1639 cpu->kvm_vcpu_dirty = false;
1642 int kvm_cpu_exec(CPUState *cpu)
1644 struct kvm_run *run = cpu->kvm_run;
1645 int ret, run_ret;
1647 DPRINTF("kvm_cpu_exec()\n");
1649 if (kvm_arch_process_async_events(cpu)) {
1650 cpu->exit_request = 0;
1651 return EXCP_HLT;
1654 do {
1655 if (cpu->kvm_vcpu_dirty) {
1656 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1657 cpu->kvm_vcpu_dirty = false;
1660 kvm_arch_pre_run(cpu, run);
1661 if (cpu->exit_request) {
1662 DPRINTF("interrupt exit requested\n");
1664 * KVM requires us to reenter the kernel after IO exits to complete
1665 * instruction emulation. This self-signal will ensure that we
1666 * leave ASAP again.
1668 qemu_cpu_kick_self();
1670 qemu_mutex_unlock_iothread();
1672 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1674 qemu_mutex_lock_iothread();
1675 kvm_arch_post_run(cpu, run);
1677 if (run_ret < 0) {
1678 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1679 DPRINTF("io window exit\n");
1680 ret = EXCP_INTERRUPT;
1681 break;
1683 fprintf(stderr, "error: kvm run failed %s\n",
1684 strerror(-run_ret));
1685 abort();
1688 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1689 switch (run->exit_reason) {
1690 case KVM_EXIT_IO:
1691 DPRINTF("handle_io\n");
1692 kvm_handle_io(run->io.port,
1693 (uint8_t *)run + run->io.data_offset,
1694 run->io.direction,
1695 run->io.size,
1696 run->io.count);
1697 ret = 0;
1698 break;
1699 case KVM_EXIT_MMIO:
1700 DPRINTF("handle_mmio\n");
1701 cpu_physical_memory_rw(run->mmio.phys_addr,
1702 run->mmio.data,
1703 run->mmio.len,
1704 run->mmio.is_write);
1705 ret = 0;
1706 break;
1707 case KVM_EXIT_IRQ_WINDOW_OPEN:
1708 DPRINTF("irq_window_open\n");
1709 ret = EXCP_INTERRUPT;
1710 break;
1711 case KVM_EXIT_SHUTDOWN:
1712 DPRINTF("shutdown\n");
1713 qemu_system_reset_request();
1714 ret = EXCP_INTERRUPT;
1715 break;
1716 case KVM_EXIT_UNKNOWN:
1717 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1718 (uint64_t)run->hw.hardware_exit_reason);
1719 ret = -1;
1720 break;
1721 case KVM_EXIT_INTERNAL_ERROR:
1722 ret = kvm_handle_internal_error(cpu, run);
1723 break;
1724 default:
1725 DPRINTF("kvm_arch_handle_exit\n");
1726 ret = kvm_arch_handle_exit(cpu, run);
1727 break;
1729 } while (ret == 0);
1731 if (ret < 0) {
1732 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1733 vm_stop(RUN_STATE_INTERNAL_ERROR);
1736 cpu->exit_request = 0;
1737 return ret;
1740 int kvm_ioctl(KVMState *s, int type, ...)
1742 int ret;
1743 void *arg;
1744 va_list ap;
1746 va_start(ap, type);
1747 arg = va_arg(ap, void *);
1748 va_end(ap);
1750 trace_kvm_ioctl(type, arg);
1751 ret = ioctl(s->fd, type, arg);
1752 if (ret == -1) {
1753 ret = -errno;
1755 return ret;
1758 int kvm_vm_ioctl(KVMState *s, int type, ...)
1760 int ret;
1761 void *arg;
1762 va_list ap;
1764 va_start(ap, type);
1765 arg = va_arg(ap, void *);
1766 va_end(ap);
1768 trace_kvm_vm_ioctl(type, arg);
1769 ret = ioctl(s->vmfd, type, arg);
1770 if (ret == -1) {
1771 ret = -errno;
1773 return ret;
1776 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1778 int ret;
1779 void *arg;
1780 va_list ap;
1782 va_start(ap, type);
1783 arg = va_arg(ap, void *);
1784 va_end(ap);
1786 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1787 ret = ioctl(cpu->kvm_fd, type, arg);
1788 if (ret == -1) {
1789 ret = -errno;
1791 return ret;
1794 int kvm_has_sync_mmu(void)
1796 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1799 int kvm_has_vcpu_events(void)
1801 return kvm_state->vcpu_events;
1804 int kvm_has_robust_singlestep(void)
1806 return kvm_state->robust_singlestep;
1809 int kvm_has_debugregs(void)
1811 return kvm_state->debugregs;
1814 int kvm_has_xsave(void)
1816 return kvm_state->xsave;
1819 int kvm_has_xcrs(void)
1821 return kvm_state->xcrs;
1824 int kvm_has_pit_state2(void)
1826 return kvm_state->pit_state2;
1829 int kvm_has_many_ioeventfds(void)
1831 if (!kvm_enabled()) {
1832 return 0;
1834 return kvm_state->many_ioeventfds;
1837 int kvm_has_gsi_routing(void)
1839 #ifdef KVM_CAP_IRQ_ROUTING
1840 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1841 #else
1842 return false;
1843 #endif
1846 int kvm_has_intx_set_mask(void)
1848 return kvm_state->intx_set_mask;
1851 void kvm_setup_guest_memory(void *start, size_t size)
1853 #ifdef CONFIG_VALGRIND_H
1854 VALGRIND_MAKE_MEM_DEFINED(start, size);
1855 #endif
1856 if (!kvm_has_sync_mmu()) {
1857 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1859 if (ret) {
1860 perror("qemu_madvise");
1861 fprintf(stderr,
1862 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1863 exit(1);
1868 #ifdef KVM_CAP_SET_GUEST_DEBUG
1869 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1870 target_ulong pc)
1872 struct kvm_sw_breakpoint *bp;
1874 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1875 if (bp->pc == pc) {
1876 return bp;
1879 return NULL;
1882 int kvm_sw_breakpoints_active(CPUState *cpu)
1884 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1887 struct kvm_set_guest_debug_data {
1888 struct kvm_guest_debug dbg;
1889 CPUState *cpu;
1890 int err;
1893 static void kvm_invoke_set_guest_debug(void *data)
1895 struct kvm_set_guest_debug_data *dbg_data = data;
1897 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1898 &dbg_data->dbg);
1901 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1903 struct kvm_set_guest_debug_data data;
1905 data.dbg.control = reinject_trap;
1907 if (cpu->singlestep_enabled) {
1908 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1910 kvm_arch_update_guest_debug(cpu, &data.dbg);
1911 data.cpu = cpu;
1913 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1914 return data.err;
1917 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1918 target_ulong len, int type)
1920 struct kvm_sw_breakpoint *bp;
1921 int err;
1923 if (type == GDB_BREAKPOINT_SW) {
1924 bp = kvm_find_sw_breakpoint(cpu, addr);
1925 if (bp) {
1926 bp->use_count++;
1927 return 0;
1930 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1931 if (!bp) {
1932 return -ENOMEM;
1935 bp->pc = addr;
1936 bp->use_count = 1;
1937 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
1938 if (err) {
1939 g_free(bp);
1940 return err;
1943 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1944 } else {
1945 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1946 if (err) {
1947 return err;
1951 CPU_FOREACH(cpu) {
1952 err = kvm_update_guest_debug(cpu, 0);
1953 if (err) {
1954 return err;
1957 return 0;
1960 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
1961 target_ulong len, int type)
1963 struct kvm_sw_breakpoint *bp;
1964 int err;
1966 if (type == GDB_BREAKPOINT_SW) {
1967 bp = kvm_find_sw_breakpoint(cpu, addr);
1968 if (!bp) {
1969 return -ENOENT;
1972 if (bp->use_count > 1) {
1973 bp->use_count--;
1974 return 0;
1977 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
1978 if (err) {
1979 return err;
1982 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1983 g_free(bp);
1984 } else {
1985 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1986 if (err) {
1987 return err;
1991 CPU_FOREACH(cpu) {
1992 err = kvm_update_guest_debug(cpu, 0);
1993 if (err) {
1994 return err;
1997 return 0;
2000 void kvm_remove_all_breakpoints(CPUState *cpu)
2002 struct kvm_sw_breakpoint *bp, *next;
2003 KVMState *s = cpu->kvm_state;
2005 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2006 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2007 /* Try harder to find a CPU that currently sees the breakpoint. */
2008 CPU_FOREACH(cpu) {
2009 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2010 break;
2014 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2015 g_free(bp);
2017 kvm_arch_remove_all_hw_breakpoints();
2019 CPU_FOREACH(cpu) {
2020 kvm_update_guest_debug(cpu, 0);
2024 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2026 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2028 return -EINVAL;
2031 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2032 target_ulong len, int type)
2034 return -EINVAL;
2037 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2038 target_ulong len, int type)
2040 return -EINVAL;
2043 void kvm_remove_all_breakpoints(CPUState *cpu)
2046 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2048 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2050 struct kvm_signal_mask *sigmask;
2051 int r;
2053 if (!sigset) {
2054 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2057 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2059 sigmask->len = 8;
2060 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2061 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2062 g_free(sigmask);
2064 return r;
2066 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2068 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2071 int kvm_on_sigbus(int code, void *addr)
2073 return kvm_arch_on_sigbus(code, addr);