4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
38 /* This check must be after config-host.h is included */
40 #include <sys/eventfd.h>
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
65 ram_addr_t memory_size
;
71 typedef struct kvm_dirty_log KVMDirtyLog
;
80 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
81 bool coalesced_flush_in_progress
;
82 int broken_set_mem_region
;
85 int robust_singlestep
;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
94 /* The man page (and posix) say ioctl numbers are signed int, but
95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
96 * unsigned, and treating them as signed here can break things */
97 unsigned irq_set_ioctl
;
98 #ifdef KVM_CAP_IRQ_ROUTING
99 struct kvm_irq_routing
*irq_routes
;
100 int nr_allocated_irq_routes
;
101 uint32_t *used_gsi_bitmap
;
102 unsigned int gsi_count
;
103 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
109 bool kvm_kernel_irqchip
;
110 bool kvm_async_interrupts_allowed
;
111 bool kvm_halt_in_kernel_allowed
;
112 bool kvm_irqfds_allowed
;
113 bool kvm_msi_via_irqfd_allowed
;
114 bool kvm_gsi_routing_allowed
;
115 bool kvm_gsi_direct_mapping
;
117 bool kvm_readonly_mem_allowed
;
119 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
120 KVM_CAP_INFO(USER_MEMORY
),
121 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
125 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
129 for (i
= 0; i
< s
->nr_slots
; i
++) {
130 if (s
->slots
[i
].memory_size
== 0) {
135 fprintf(stderr
, "%s: no free slot available\n", __func__
);
139 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
145 for (i
= 0; i
< s
->nr_slots
; i
++) {
146 KVMSlot
*mem
= &s
->slots
[i
];
148 if (start_addr
== mem
->start_addr
&&
149 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
158 * Find overlapping slot with lowest start address
160 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
164 KVMSlot
*found
= NULL
;
167 for (i
= 0; i
< s
->nr_slots
; i
++) {
168 KVMSlot
*mem
= &s
->slots
[i
];
170 if (mem
->memory_size
== 0 ||
171 (found
&& found
->start_addr
< mem
->start_addr
)) {
175 if (end_addr
> mem
->start_addr
&&
176 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
184 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
189 for (i
= 0; i
< s
->nr_slots
; i
++) {
190 KVMSlot
*mem
= &s
->slots
[i
];
192 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
193 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
201 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
203 struct kvm_userspace_memory_region mem
;
205 mem
.slot
= slot
->slot
;
206 mem
.guest_phys_addr
= slot
->start_addr
;
207 mem
.userspace_addr
= (unsigned long)slot
->ram
;
208 mem
.flags
= slot
->flags
;
209 if (s
->migration_log
) {
210 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
213 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
214 /* Set the slot size to 0 before setting the slot to the desired
215 * value. This is needed based on KVM commit 75d61fbc. */
217 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
219 mem
.memory_size
= slot
->memory_size
;
220 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
223 static void kvm_reset_vcpu(void *opaque
)
225 CPUState
*cpu
= opaque
;
227 kvm_arch_reset_vcpu(cpu
);
230 int kvm_init_vcpu(CPUState
*cpu
)
232 KVMState
*s
= kvm_state
;
236 DPRINTF("kvm_init_vcpu\n");
238 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
240 DPRINTF("kvm_create_vcpu failed\n");
246 cpu
->kvm_vcpu_dirty
= true;
248 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
251 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
255 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
257 if (cpu
->kvm_run
== MAP_FAILED
) {
259 DPRINTF("mmap'ing vcpu state failed\n");
263 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
264 s
->coalesced_mmio_ring
=
265 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
268 ret
= kvm_arch_init_vcpu(cpu
);
270 qemu_register_reset(kvm_reset_vcpu
, cpu
);
271 kvm_arch_reset_vcpu(cpu
);
278 * dirty pages logging control
281 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
284 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
285 if (readonly
&& kvm_readonly_mem_allowed
) {
286 flags
|= KVM_MEM_READONLY
;
291 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
293 KVMState
*s
= kvm_state
;
294 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
297 old_flags
= mem
->flags
;
299 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
302 /* If nothing changed effectively, no need to issue ioctl */
303 if (s
->migration_log
) {
304 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
307 if (flags
== old_flags
) {
311 return kvm_set_user_memory_region(s
, mem
);
314 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
315 ram_addr_t size
, bool log_dirty
)
317 KVMState
*s
= kvm_state
;
318 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
321 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
322 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
323 (hwaddr
)(phys_addr
+ size
- 1));
326 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
329 static void kvm_log_start(MemoryListener
*listener
,
330 MemoryRegionSection
*section
)
334 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
335 int128_get64(section
->size
), true);
341 static void kvm_log_stop(MemoryListener
*listener
,
342 MemoryRegionSection
*section
)
346 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
347 int128_get64(section
->size
), false);
353 static int kvm_set_migration_log(int enable
)
355 KVMState
*s
= kvm_state
;
359 s
->migration_log
= enable
;
361 for (i
= 0; i
< s
->nr_slots
; i
++) {
364 if (!mem
->memory_size
) {
367 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
370 err
= kvm_set_user_memory_region(s
, mem
);
378 /* get kvm's dirty pages bitmap and update qemu's */
379 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
380 unsigned long *bitmap
)
383 unsigned long page_number
, c
;
385 unsigned int pages
= int128_get64(section
->size
) / getpagesize();
386 unsigned int len
= (pages
+ HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
387 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
390 * bitmap-traveling is faster than memory-traveling (for addr...)
391 * especially when most of the memory is not dirty.
393 for (i
= 0; i
< len
; i
++) {
394 if (bitmap
[i
] != 0) {
395 c
= leul_to_cpu(bitmap
[i
]);
399 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
400 addr1
= page_number
* TARGET_PAGE_SIZE
;
401 addr
= section
->offset_within_region
+ addr1
;
402 memory_region_set_dirty(section
->mr
, addr
,
403 TARGET_PAGE_SIZE
* hpratio
);
410 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
413 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
414 * This function updates qemu's dirty bitmap using
415 * memory_region_set_dirty(). This means all bits are set
418 * @start_add: start of logged region.
419 * @end_addr: end of logged region.
421 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
423 KVMState
*s
= kvm_state
;
424 unsigned long size
, allocated_size
= 0;
428 hwaddr start_addr
= section
->offset_within_address_space
;
429 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
431 d
.dirty_bitmap
= NULL
;
432 while (start_addr
< end_addr
) {
433 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
438 /* XXX bad kernel interface alert
439 * For dirty bitmap, kernel allocates array of size aligned to
440 * bits-per-long. But for case when the kernel is 64bits and
441 * the userspace is 32bits, userspace can't align to the same
442 * bits-per-long, since sizeof(long) is different between kernel
443 * and user space. This way, userspace will provide buffer which
444 * may be 4 bytes less than the kernel will use, resulting in
445 * userspace memory corruption (which is not detectable by valgrind
446 * too, in most cases).
447 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
448 * a hope that sizeof(long) wont become >8 any time soon.
450 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
451 /*HOST_LONG_BITS*/ 64) / 8;
452 if (!d
.dirty_bitmap
) {
453 d
.dirty_bitmap
= g_malloc(size
);
454 } else if (size
> allocated_size
) {
455 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
457 allocated_size
= size
;
458 memset(d
.dirty_bitmap
, 0, allocated_size
);
462 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
463 DPRINTF("ioctl failed %d\n", errno
);
468 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
469 start_addr
= mem
->start_addr
+ mem
->memory_size
;
471 g_free(d
.dirty_bitmap
);
476 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
477 MemoryRegionSection
*secion
,
478 hwaddr start
, hwaddr size
)
480 KVMState
*s
= kvm_state
;
482 if (s
->coalesced_mmio
) {
483 struct kvm_coalesced_mmio_zone zone
;
489 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
493 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
494 MemoryRegionSection
*secion
,
495 hwaddr start
, hwaddr size
)
497 KVMState
*s
= kvm_state
;
499 if (s
->coalesced_mmio
) {
500 struct kvm_coalesced_mmio_zone zone
;
506 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
510 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
514 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
522 static int kvm_set_ioeventfd_mmio(int fd
, uint32_t addr
, uint32_t val
,
523 bool assign
, uint32_t size
, bool datamatch
)
526 struct kvm_ioeventfd iofd
;
528 iofd
.datamatch
= datamatch
? val
: 0;
534 if (!kvm_enabled()) {
539 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
542 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
545 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
554 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
555 bool assign
, uint32_t size
, bool datamatch
)
557 struct kvm_ioeventfd kick
= {
558 .datamatch
= datamatch
? val
: 0,
560 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
565 if (!kvm_enabled()) {
569 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
572 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
574 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
582 static int kvm_check_many_ioeventfds(void)
584 /* Userspace can use ioeventfd for io notification. This requires a host
585 * that supports eventfd(2) and an I/O thread; since eventfd does not
586 * support SIGIO it cannot interrupt the vcpu.
588 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
589 * can avoid creating too many ioeventfds.
591 #if defined(CONFIG_EVENTFD)
594 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
595 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
596 if (ioeventfds
[i
] < 0) {
599 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
601 close(ioeventfds
[i
]);
606 /* Decide whether many devices are supported or not */
607 ret
= i
== ARRAY_SIZE(ioeventfds
);
610 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
611 close(ioeventfds
[i
]);
619 static const KVMCapabilityInfo
*
620 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
623 if (!kvm_check_extension(s
, list
->value
)) {
631 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
633 KVMState
*s
= kvm_state
;
636 MemoryRegion
*mr
= section
->mr
;
637 bool log_dirty
= memory_region_is_logging(mr
);
638 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
639 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
640 hwaddr start_addr
= section
->offset_within_address_space
;
641 ram_addr_t size
= int128_get64(section
->size
);
645 /* kvm works in page size chunks, but the function may be called
646 with sub-page size and unaligned start address. */
647 delta
= TARGET_PAGE_ALIGN(size
) - size
;
653 size
&= TARGET_PAGE_MASK
;
654 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
658 if (!memory_region_is_ram(mr
)) {
659 if (writeable
|| !kvm_readonly_mem_allowed
) {
661 } else if (!mr
->romd_mode
) {
662 /* If the memory device is not in romd_mode, then we actually want
663 * to remove the kvm memory slot so all accesses will trap. */
668 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
671 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
676 if (add
&& start_addr
>= mem
->start_addr
&&
677 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
678 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
679 /* The new slot fits into the existing one and comes with
680 * identical parameters - update flags and done. */
681 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
687 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
688 kvm_physical_sync_dirty_bitmap(section
);
691 /* unregister the overlapping slot */
692 mem
->memory_size
= 0;
693 err
= kvm_set_user_memory_region(s
, mem
);
695 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
696 __func__
, strerror(-err
));
700 /* Workaround for older KVM versions: we can't join slots, even not by
701 * unregistering the previous ones and then registering the larger
702 * slot. We have to maintain the existing fragmentation. Sigh.
704 * This workaround assumes that the new slot starts at the same
705 * address as the first existing one. If not or if some overlapping
706 * slot comes around later, we will fail (not seen in practice so far)
707 * - and actually require a recent KVM version. */
708 if (s
->broken_set_mem_region
&&
709 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
710 mem
= kvm_alloc_slot(s
);
711 mem
->memory_size
= old
.memory_size
;
712 mem
->start_addr
= old
.start_addr
;
714 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
716 err
= kvm_set_user_memory_region(s
, mem
);
718 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
723 start_addr
+= old
.memory_size
;
724 ram
+= old
.memory_size
;
725 size
-= old
.memory_size
;
729 /* register prefix slot */
730 if (old
.start_addr
< start_addr
) {
731 mem
= kvm_alloc_slot(s
);
732 mem
->memory_size
= start_addr
- old
.start_addr
;
733 mem
->start_addr
= old
.start_addr
;
735 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
737 err
= kvm_set_user_memory_region(s
, mem
);
739 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
740 __func__
, strerror(-err
));
742 fprintf(stderr
, "%s: This is probably because your kernel's " \
743 "PAGE_SIZE is too big. Please try to use 4k " \
744 "PAGE_SIZE!\n", __func__
);
750 /* register suffix slot */
751 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
752 ram_addr_t size_delta
;
754 mem
= kvm_alloc_slot(s
);
755 mem
->start_addr
= start_addr
+ size
;
756 size_delta
= mem
->start_addr
- old
.start_addr
;
757 mem
->memory_size
= old
.memory_size
- size_delta
;
758 mem
->ram
= old
.ram
+ size_delta
;
759 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
761 err
= kvm_set_user_memory_region(s
, mem
);
763 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
764 __func__
, strerror(-err
));
770 /* in case the KVM bug workaround already "consumed" the new slot */
777 mem
= kvm_alloc_slot(s
);
778 mem
->memory_size
= size
;
779 mem
->start_addr
= start_addr
;
781 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
783 err
= kvm_set_user_memory_region(s
, mem
);
785 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
791 static void kvm_region_add(MemoryListener
*listener
,
792 MemoryRegionSection
*section
)
794 memory_region_ref(section
->mr
);
795 kvm_set_phys_mem(section
, true);
798 static void kvm_region_del(MemoryListener
*listener
,
799 MemoryRegionSection
*section
)
801 kvm_set_phys_mem(section
, false);
802 memory_region_unref(section
->mr
);
805 static void kvm_log_sync(MemoryListener
*listener
,
806 MemoryRegionSection
*section
)
810 r
= kvm_physical_sync_dirty_bitmap(section
);
816 static void kvm_log_global_start(struct MemoryListener
*listener
)
820 r
= kvm_set_migration_log(1);
824 static void kvm_log_global_stop(struct MemoryListener
*listener
)
828 r
= kvm_set_migration_log(0);
832 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
833 MemoryRegionSection
*section
,
834 bool match_data
, uint64_t data
,
837 int fd
= event_notifier_get_fd(e
);
840 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
841 data
, true, int128_get64(section
->size
),
844 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
845 __func__
, strerror(-r
));
850 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
851 MemoryRegionSection
*section
,
852 bool match_data
, uint64_t data
,
855 int fd
= event_notifier_get_fd(e
);
858 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
859 data
, false, int128_get64(section
->size
),
866 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
867 MemoryRegionSection
*section
,
868 bool match_data
, uint64_t data
,
871 int fd
= event_notifier_get_fd(e
);
874 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
875 data
, true, int128_get64(section
->size
),
878 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
879 __func__
, strerror(-r
));
884 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
885 MemoryRegionSection
*section
,
886 bool match_data
, uint64_t data
,
890 int fd
= event_notifier_get_fd(e
);
893 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
894 data
, false, int128_get64(section
->size
),
901 static MemoryListener kvm_memory_listener
= {
902 .region_add
= kvm_region_add
,
903 .region_del
= kvm_region_del
,
904 .log_start
= kvm_log_start
,
905 .log_stop
= kvm_log_stop
,
906 .log_sync
= kvm_log_sync
,
907 .log_global_start
= kvm_log_global_start
,
908 .log_global_stop
= kvm_log_global_stop
,
909 .eventfd_add
= kvm_mem_ioeventfd_add
,
910 .eventfd_del
= kvm_mem_ioeventfd_del
,
911 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
912 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
916 static MemoryListener kvm_io_listener
= {
917 .eventfd_add
= kvm_io_ioeventfd_add
,
918 .eventfd_del
= kvm_io_ioeventfd_del
,
922 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
924 cpu
->interrupt_request
|= mask
;
926 if (!qemu_cpu_is_self(cpu
)) {
931 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
933 struct kvm_irq_level event
;
936 assert(kvm_async_interrupts_enabled());
940 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
942 perror("kvm_set_irq");
946 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
949 #ifdef KVM_CAP_IRQ_ROUTING
950 typedef struct KVMMSIRoute
{
951 struct kvm_irq_routing_entry kroute
;
952 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
955 static void set_gsi(KVMState
*s
, unsigned int gsi
)
957 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
960 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
962 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
965 void kvm_init_irq_routing(KVMState
*s
)
969 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
971 unsigned int gsi_bits
, i
;
973 /* Round up so we can search ints using ffs */
974 gsi_bits
= ALIGN(gsi_count
, 32);
975 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
976 s
->gsi_count
= gsi_count
;
978 /* Mark any over-allocated bits as already in use */
979 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
984 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
985 s
->nr_allocated_irq_routes
= 0;
987 if (!s
->direct_msi
) {
988 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
989 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
993 kvm_arch_init_irq_routing(s
);
996 void kvm_irqchip_commit_routes(KVMState
*s
)
1000 s
->irq_routes
->flags
= 0;
1001 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1005 static void kvm_add_routing_entry(KVMState
*s
,
1006 struct kvm_irq_routing_entry
*entry
)
1008 struct kvm_irq_routing_entry
*new;
1011 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1012 n
= s
->nr_allocated_irq_routes
* 2;
1016 size
= sizeof(struct kvm_irq_routing
);
1017 size
+= n
* sizeof(*new);
1018 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1019 s
->nr_allocated_irq_routes
= n
;
1021 n
= s
->irq_routes
->nr
++;
1022 new = &s
->irq_routes
->entries
[n
];
1026 set_gsi(s
, entry
->gsi
);
1029 static int kvm_update_routing_entry(KVMState
*s
,
1030 struct kvm_irq_routing_entry
*new_entry
)
1032 struct kvm_irq_routing_entry
*entry
;
1035 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1036 entry
= &s
->irq_routes
->entries
[n
];
1037 if (entry
->gsi
!= new_entry
->gsi
) {
1041 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1045 *entry
= *new_entry
;
1047 kvm_irqchip_commit_routes(s
);
1055 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1057 struct kvm_irq_routing_entry e
= {};
1059 assert(pin
< s
->gsi_count
);
1062 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1064 e
.u
.irqchip
.irqchip
= irqchip
;
1065 e
.u
.irqchip
.pin
= pin
;
1066 kvm_add_routing_entry(s
, &e
);
1069 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1071 struct kvm_irq_routing_entry
*e
;
1074 if (kvm_gsi_direct_mapping()) {
1078 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1079 e
= &s
->irq_routes
->entries
[i
];
1080 if (e
->gsi
== virq
) {
1081 s
->irq_routes
->nr
--;
1082 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1088 static unsigned int kvm_hash_msi(uint32_t data
)
1090 /* This is optimized for IA32 MSI layout. However, no other arch shall
1091 * repeat the mistake of not providing a direct MSI injection API. */
1095 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1097 KVMMSIRoute
*route
, *next
;
1100 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1101 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1102 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1103 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1109 static int kvm_irqchip_get_virq(KVMState
*s
)
1111 uint32_t *word
= s
->used_gsi_bitmap
;
1112 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1117 /* Return the lowest unused GSI in the bitmap */
1118 for (i
= 0; i
< max_words
; i
++) {
1119 bit
= ffs(~word
[i
]);
1124 return bit
- 1 + i
* 32;
1126 if (!s
->direct_msi
&& retry
) {
1128 kvm_flush_dynamic_msi_routes(s
);
1135 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1137 unsigned int hash
= kvm_hash_msi(msg
.data
);
1140 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1141 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1142 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1143 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1150 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1155 if (s
->direct_msi
) {
1156 msi
.address_lo
= (uint32_t)msg
.address
;
1157 msi
.address_hi
= msg
.address
>> 32;
1158 msi
.data
= le32_to_cpu(msg
.data
);
1160 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1162 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1165 route
= kvm_lookup_msi_route(s
, msg
);
1169 virq
= kvm_irqchip_get_virq(s
);
1174 route
= g_malloc0(sizeof(KVMMSIRoute
));
1175 route
->kroute
.gsi
= virq
;
1176 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1177 route
->kroute
.flags
= 0;
1178 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1179 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1180 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1182 kvm_add_routing_entry(s
, &route
->kroute
);
1183 kvm_irqchip_commit_routes(s
);
1185 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1189 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1191 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1194 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1196 struct kvm_irq_routing_entry kroute
= {};
1199 if (kvm_gsi_direct_mapping()) {
1200 return msg
.data
& 0xffff;
1203 if (!kvm_gsi_routing_enabled()) {
1207 virq
= kvm_irqchip_get_virq(s
);
1213 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1215 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1216 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1217 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1219 kvm_add_routing_entry(s
, &kroute
);
1220 kvm_irqchip_commit_routes(s
);
1225 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1227 struct kvm_irq_routing_entry kroute
= {};
1229 if (kvm_gsi_direct_mapping()) {
1233 if (!kvm_irqchip_in_kernel()) {
1238 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1240 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1241 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1242 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1244 return kvm_update_routing_entry(s
, &kroute
);
1247 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1250 struct kvm_irqfd irqfd
= {
1253 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1257 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1258 irqfd
.resamplefd
= rfd
;
1261 if (!kvm_irqfds_enabled()) {
1265 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1268 #else /* !KVM_CAP_IRQ_ROUTING */
1270 void kvm_init_irq_routing(KVMState
*s
)
1274 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1278 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1283 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1288 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1293 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1297 #endif /* !KVM_CAP_IRQ_ROUTING */
1299 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1300 EventNotifier
*rn
, int virq
)
1302 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1303 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1306 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1308 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1312 static int kvm_irqchip_create(KVMState
*s
)
1316 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1317 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1321 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1323 fprintf(stderr
, "Create kernel irqchip failed\n");
1327 kvm_kernel_irqchip
= true;
1328 /* If we have an in-kernel IRQ chip then we must have asynchronous
1329 * interrupt delivery (though the reverse is not necessarily true)
1331 kvm_async_interrupts_allowed
= true;
1332 kvm_halt_in_kernel_allowed
= true;
1334 kvm_init_irq_routing(s
);
1339 /* Find number of supported CPUs using the recommended
1340 * procedure from the kernel API documentation to cope with
1341 * older kernels that may be missing capabilities.
1343 static int kvm_recommended_vcpus(KVMState
*s
)
1345 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1346 return (ret
) ? ret
: 4;
1349 static int kvm_max_vcpus(KVMState
*s
)
1351 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1352 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1357 static const char upgrade_note
[] =
1358 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1359 "(see http://sourceforge.net/projects/kvm).\n";
1364 { "SMP", smp_cpus
},
1365 { "hotpluggable", max_cpus
},
1368 int soft_vcpus_limit
, hard_vcpus_limit
;
1370 const KVMCapabilityInfo
*missing_cap
;
1374 s
= g_malloc0(sizeof(KVMState
));
1377 * On systems where the kernel can support different base page
1378 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1379 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1380 * page size for the system though.
1382 assert(TARGET_PAGE_SIZE
<= getpagesize());
1384 #ifdef KVM_CAP_SET_GUEST_DEBUG
1385 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1388 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1390 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1395 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1396 if (ret
< KVM_API_VERSION
) {
1400 fprintf(stderr
, "kvm version too old\n");
1404 if (ret
> KVM_API_VERSION
) {
1406 fprintf(stderr
, "kvm version not supported\n");
1410 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1412 /* If unspecified, use the default value */
1417 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1419 for (i
= 0; i
< s
->nr_slots
; i
++) {
1420 s
->slots
[i
].slot
= i
;
1423 /* check the vcpu limits */
1424 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1425 hard_vcpus_limit
= kvm_max_vcpus(s
);
1428 if (nc
->num
> soft_vcpus_limit
) {
1430 "Warning: Number of %s cpus requested (%d) exceeds "
1431 "the recommended cpus supported by KVM (%d)\n",
1432 nc
->name
, nc
->num
, soft_vcpus_limit
);
1434 if (nc
->num
> hard_vcpus_limit
) {
1436 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1437 "the maximum cpus supported by KVM (%d)\n",
1438 nc
->name
, nc
->num
, hard_vcpus_limit
);
1445 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1448 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1449 "your host kernel command line\n");
1455 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1458 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1462 fprintf(stderr
, "kvm does not support %s\n%s",
1463 missing_cap
->name
, upgrade_note
);
1467 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1469 s
->broken_set_mem_region
= 1;
1470 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1472 s
->broken_set_mem_region
= 0;
1475 #ifdef KVM_CAP_VCPU_EVENTS
1476 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1479 s
->robust_singlestep
=
1480 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1482 #ifdef KVM_CAP_DEBUGREGS
1483 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1486 #ifdef KVM_CAP_XSAVE
1487 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1491 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1494 #ifdef KVM_CAP_PIT_STATE2
1495 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1498 #ifdef KVM_CAP_IRQ_ROUTING
1499 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1502 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1504 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1505 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1506 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1509 #ifdef KVM_CAP_READONLY_MEM
1510 kvm_readonly_mem_allowed
=
1511 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1514 ret
= kvm_arch_init(s
);
1519 ret
= kvm_irqchip_create(s
);
1525 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1526 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1528 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1530 cpu_interrupt_handler
= kvm_handle_interrupt
;
1547 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1551 uint8_t *ptr
= data
;
1553 for (i
= 0; i
< count
; i
++) {
1554 address_space_rw(&address_space_io
, port
, ptr
, size
,
1555 direction
== KVM_EXIT_IO_OUT
);
1560 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1562 fprintf(stderr
, "KVM internal error.");
1563 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1566 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1567 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1568 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1569 i
, (uint64_t)run
->internal
.data
[i
]);
1572 fprintf(stderr
, "\n");
1574 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1575 fprintf(stderr
, "emulation failure\n");
1576 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1577 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1578 return EXCP_INTERRUPT
;
1581 /* FIXME: Should trigger a qmp message to let management know
1582 * something went wrong.
1587 void kvm_flush_coalesced_mmio_buffer(void)
1589 KVMState
*s
= kvm_state
;
1591 if (s
->coalesced_flush_in_progress
) {
1595 s
->coalesced_flush_in_progress
= true;
1597 if (s
->coalesced_mmio_ring
) {
1598 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1599 while (ring
->first
!= ring
->last
) {
1600 struct kvm_coalesced_mmio
*ent
;
1602 ent
= &ring
->coalesced_mmio
[ring
->first
];
1604 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1606 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1610 s
->coalesced_flush_in_progress
= false;
1613 static void do_kvm_cpu_synchronize_state(void *arg
)
1615 CPUState
*cpu
= arg
;
1617 if (!cpu
->kvm_vcpu_dirty
) {
1618 kvm_arch_get_registers(cpu
);
1619 cpu
->kvm_vcpu_dirty
= true;
1623 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1625 if (!cpu
->kvm_vcpu_dirty
) {
1626 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1630 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1632 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1633 cpu
->kvm_vcpu_dirty
= false;
1636 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1638 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1639 cpu
->kvm_vcpu_dirty
= false;
1642 int kvm_cpu_exec(CPUState
*cpu
)
1644 struct kvm_run
*run
= cpu
->kvm_run
;
1647 DPRINTF("kvm_cpu_exec()\n");
1649 if (kvm_arch_process_async_events(cpu
)) {
1650 cpu
->exit_request
= 0;
1655 if (cpu
->kvm_vcpu_dirty
) {
1656 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1657 cpu
->kvm_vcpu_dirty
= false;
1660 kvm_arch_pre_run(cpu
, run
);
1661 if (cpu
->exit_request
) {
1662 DPRINTF("interrupt exit requested\n");
1664 * KVM requires us to reenter the kernel after IO exits to complete
1665 * instruction emulation. This self-signal will ensure that we
1668 qemu_cpu_kick_self();
1670 qemu_mutex_unlock_iothread();
1672 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1674 qemu_mutex_lock_iothread();
1675 kvm_arch_post_run(cpu
, run
);
1678 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1679 DPRINTF("io window exit\n");
1680 ret
= EXCP_INTERRUPT
;
1683 fprintf(stderr
, "error: kvm run failed %s\n",
1684 strerror(-run_ret
));
1688 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1689 switch (run
->exit_reason
) {
1691 DPRINTF("handle_io\n");
1692 kvm_handle_io(run
->io
.port
,
1693 (uint8_t *)run
+ run
->io
.data_offset
,
1700 DPRINTF("handle_mmio\n");
1701 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1704 run
->mmio
.is_write
);
1707 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1708 DPRINTF("irq_window_open\n");
1709 ret
= EXCP_INTERRUPT
;
1711 case KVM_EXIT_SHUTDOWN
:
1712 DPRINTF("shutdown\n");
1713 qemu_system_reset_request();
1714 ret
= EXCP_INTERRUPT
;
1716 case KVM_EXIT_UNKNOWN
:
1717 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1718 (uint64_t)run
->hw
.hardware_exit_reason
);
1721 case KVM_EXIT_INTERNAL_ERROR
:
1722 ret
= kvm_handle_internal_error(cpu
, run
);
1725 DPRINTF("kvm_arch_handle_exit\n");
1726 ret
= kvm_arch_handle_exit(cpu
, run
);
1732 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1733 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1736 cpu
->exit_request
= 0;
1740 int kvm_ioctl(KVMState
*s
, int type
, ...)
1747 arg
= va_arg(ap
, void *);
1750 trace_kvm_ioctl(type
, arg
);
1751 ret
= ioctl(s
->fd
, type
, arg
);
1758 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1765 arg
= va_arg(ap
, void *);
1768 trace_kvm_vm_ioctl(type
, arg
);
1769 ret
= ioctl(s
->vmfd
, type
, arg
);
1776 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1783 arg
= va_arg(ap
, void *);
1786 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1787 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1794 int kvm_has_sync_mmu(void)
1796 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1799 int kvm_has_vcpu_events(void)
1801 return kvm_state
->vcpu_events
;
1804 int kvm_has_robust_singlestep(void)
1806 return kvm_state
->robust_singlestep
;
1809 int kvm_has_debugregs(void)
1811 return kvm_state
->debugregs
;
1814 int kvm_has_xsave(void)
1816 return kvm_state
->xsave
;
1819 int kvm_has_xcrs(void)
1821 return kvm_state
->xcrs
;
1824 int kvm_has_pit_state2(void)
1826 return kvm_state
->pit_state2
;
1829 int kvm_has_many_ioeventfds(void)
1831 if (!kvm_enabled()) {
1834 return kvm_state
->many_ioeventfds
;
1837 int kvm_has_gsi_routing(void)
1839 #ifdef KVM_CAP_IRQ_ROUTING
1840 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1846 int kvm_has_intx_set_mask(void)
1848 return kvm_state
->intx_set_mask
;
1851 void kvm_setup_guest_memory(void *start
, size_t size
)
1853 #ifdef CONFIG_VALGRIND_H
1854 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1856 if (!kvm_has_sync_mmu()) {
1857 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1860 perror("qemu_madvise");
1862 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1868 #ifdef KVM_CAP_SET_GUEST_DEBUG
1869 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1872 struct kvm_sw_breakpoint
*bp
;
1874 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1882 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1884 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1887 struct kvm_set_guest_debug_data
{
1888 struct kvm_guest_debug dbg
;
1893 static void kvm_invoke_set_guest_debug(void *data
)
1895 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1897 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
1901 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
1903 struct kvm_set_guest_debug_data data
;
1905 data
.dbg
.control
= reinject_trap
;
1907 if (cpu
->singlestep_enabled
) {
1908 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1910 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
1913 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
1917 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
1918 target_ulong len
, int type
)
1920 struct kvm_sw_breakpoint
*bp
;
1923 if (type
== GDB_BREAKPOINT_SW
) {
1924 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1930 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1937 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
1943 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1945 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1952 err
= kvm_update_guest_debug(cpu
, 0);
1960 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
1961 target_ulong len
, int type
)
1963 struct kvm_sw_breakpoint
*bp
;
1966 if (type
== GDB_BREAKPOINT_SW
) {
1967 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1972 if (bp
->use_count
> 1) {
1977 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
1982 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1985 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1992 err
= kvm_update_guest_debug(cpu
, 0);
2000 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2002 struct kvm_sw_breakpoint
*bp
, *next
;
2003 KVMState
*s
= cpu
->kvm_state
;
2005 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2006 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2007 /* Try harder to find a CPU that currently sees the breakpoint. */
2009 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) == 0) {
2014 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2017 kvm_arch_remove_all_hw_breakpoints();
2020 kvm_update_guest_debug(cpu
, 0);
2024 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2026 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2031 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2032 target_ulong len
, int type
)
2037 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2038 target_ulong len
, int type
)
2043 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2046 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2048 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2050 struct kvm_signal_mask
*sigmask
;
2054 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2057 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2060 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2061 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2066 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2068 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2071 int kvm_on_sigbus(int code
, void *addr
)
2073 return kvm_arch_on_sigbus(code
, addr
);