docs: merge HACKING.rst contents into CODING_STYLE.rst
[qemu/ar7.git] / hw / net / mcf_fec.c
blob8fcf354a4b1509def09a63637e216b8a0f7f92f0
1 /*
2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GPL
7 */
9 #include "qemu/osdep.h"
10 #include "hw/hw.h"
11 #include "hw/irq.h"
12 #include "net/net.h"
13 #include "qemu/module.h"
14 #include "hw/m68k/mcf.h"
15 #include "hw/m68k/mcf_fec.h"
16 #include "hw/net/mii.h"
17 #include "hw/qdev-properties.h"
18 #include "hw/sysbus.h"
19 /* For crc32 */
20 #include <zlib.h>
22 //#define DEBUG_FEC 1
24 #ifdef DEBUG_FEC
25 #define DPRINTF(fmt, ...) \
26 do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
27 #else
28 #define DPRINTF(fmt, ...) do {} while(0)
29 #endif
31 #define FEC_MAX_DESC 1024
32 #define FEC_MAX_FRAME_SIZE 2032
33 #define FEC_MIB_SIZE 64
35 typedef struct {
36 SysBusDevice parent_obj;
38 MemoryRegion iomem;
39 qemu_irq irq[FEC_NUM_IRQ];
40 NICState *nic;
41 NICConf conf;
42 uint32_t irq_state;
43 uint32_t eir;
44 uint32_t eimr;
45 int rx_enabled;
46 uint32_t rx_descriptor;
47 uint32_t tx_descriptor;
48 uint32_t ecr;
49 uint32_t mmfr;
50 uint32_t mscr;
51 uint32_t rcr;
52 uint32_t tcr;
53 uint32_t tfwr;
54 uint32_t rfsr;
55 uint32_t erdsr;
56 uint32_t etdsr;
57 uint32_t emrbr;
58 uint32_t mib[FEC_MIB_SIZE];
59 } mcf_fec_state;
61 #define FEC_INT_HB 0x80000000
62 #define FEC_INT_BABR 0x40000000
63 #define FEC_INT_BABT 0x20000000
64 #define FEC_INT_GRA 0x10000000
65 #define FEC_INT_TXF 0x08000000
66 #define FEC_INT_TXB 0x04000000
67 #define FEC_INT_RXF 0x02000000
68 #define FEC_INT_RXB 0x01000000
69 #define FEC_INT_MII 0x00800000
70 #define FEC_INT_EB 0x00400000
71 #define FEC_INT_LC 0x00200000
72 #define FEC_INT_RL 0x00100000
73 #define FEC_INT_UN 0x00080000
75 #define FEC_EN 2
76 #define FEC_RESET 1
78 /* Map interrupt flags onto IRQ lines. */
79 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
80 FEC_INT_TXF,
81 FEC_INT_TXB,
82 FEC_INT_UN,
83 FEC_INT_RL,
84 FEC_INT_RXF,
85 FEC_INT_RXB,
86 FEC_INT_MII,
87 FEC_INT_LC,
88 FEC_INT_HB,
89 FEC_INT_GRA,
90 FEC_INT_EB,
91 FEC_INT_BABT,
92 FEC_INT_BABR
95 /* Buffer Descriptor. */
96 typedef struct {
97 uint16_t flags;
98 uint16_t length;
99 uint32_t data;
100 } mcf_fec_bd;
102 #define FEC_BD_R 0x8000
103 #define FEC_BD_E 0x8000
104 #define FEC_BD_O1 0x4000
105 #define FEC_BD_W 0x2000
106 #define FEC_BD_O2 0x1000
107 #define FEC_BD_L 0x0800
108 #define FEC_BD_TC 0x0400
109 #define FEC_BD_ABC 0x0200
110 #define FEC_BD_M 0x0100
111 #define FEC_BD_BC 0x0080
112 #define FEC_BD_MC 0x0040
113 #define FEC_BD_LG 0x0020
114 #define FEC_BD_NO 0x0010
115 #define FEC_BD_CR 0x0004
116 #define FEC_BD_OV 0x0002
117 #define FEC_BD_TR 0x0001
119 #define MIB_RMON_T_DROP 0
120 #define MIB_RMON_T_PACKETS 1
121 #define MIB_RMON_T_BC_PKT 2
122 #define MIB_RMON_T_MC_PKT 3
123 #define MIB_RMON_T_CRC_ALIGN 4
124 #define MIB_RMON_T_UNDERSIZE 5
125 #define MIB_RMON_T_OVERSIZE 6
126 #define MIB_RMON_T_FRAG 7
127 #define MIB_RMON_T_JAB 8
128 #define MIB_RMON_T_COL 9
129 #define MIB_RMON_T_P64 10
130 #define MIB_RMON_T_P65TO127 11
131 #define MIB_RMON_T_P128TO255 12
132 #define MIB_RMON_T_P256TO511 13
133 #define MIB_RMON_T_P512TO1023 14
134 #define MIB_RMON_T_P1024TO2047 15
135 #define MIB_RMON_T_P_GTE2048 16
136 #define MIB_RMON_T_OCTETS 17
137 #define MIB_IEEE_T_DROP 18
138 #define MIB_IEEE_T_FRAME_OK 19
139 #define MIB_IEEE_T_1COL 20
140 #define MIB_IEEE_T_MCOL 21
141 #define MIB_IEEE_T_DEF 22
142 #define MIB_IEEE_T_LCOL 23
143 #define MIB_IEEE_T_EXCOL 24
144 #define MIB_IEEE_T_MACERR 25
145 #define MIB_IEEE_T_CSERR 26
146 #define MIB_IEEE_T_SQE 27
147 #define MIB_IEEE_T_FDXFC 28
148 #define MIB_IEEE_T_OCTETS_OK 29
150 #define MIB_RMON_R_DROP 32
151 #define MIB_RMON_R_PACKETS 33
152 #define MIB_RMON_R_BC_PKT 34
153 #define MIB_RMON_R_MC_PKT 35
154 #define MIB_RMON_R_CRC_ALIGN 36
155 #define MIB_RMON_R_UNDERSIZE 37
156 #define MIB_RMON_R_OVERSIZE 38
157 #define MIB_RMON_R_FRAG 39
158 #define MIB_RMON_R_JAB 40
159 #define MIB_RMON_R_RESVD_0 41
160 #define MIB_RMON_R_P64 42
161 #define MIB_RMON_R_P65TO127 43
162 #define MIB_RMON_R_P128TO255 44
163 #define MIB_RMON_R_P256TO511 45
164 #define MIB_RMON_R_P512TO1023 46
165 #define MIB_RMON_R_P1024TO2047 47
166 #define MIB_RMON_R_P_GTE2048 48
167 #define MIB_RMON_R_OCTETS 49
168 #define MIB_IEEE_R_DROP 50
169 #define MIB_IEEE_R_FRAME_OK 51
170 #define MIB_IEEE_R_CRC 52
171 #define MIB_IEEE_R_ALIGN 53
172 #define MIB_IEEE_R_MACERR 54
173 #define MIB_IEEE_R_FDXFC 55
174 #define MIB_IEEE_R_OCTETS_OK 56
176 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
178 cpu_physical_memory_read(addr, bd, sizeof(*bd));
179 be16_to_cpus(&bd->flags);
180 be16_to_cpus(&bd->length);
181 be32_to_cpus(&bd->data);
184 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
186 mcf_fec_bd tmp;
187 tmp.flags = cpu_to_be16(bd->flags);
188 tmp.length = cpu_to_be16(bd->length);
189 tmp.data = cpu_to_be32(bd->data);
190 cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
193 static void mcf_fec_update(mcf_fec_state *s)
195 uint32_t active;
196 uint32_t changed;
197 uint32_t mask;
198 int i;
200 active = s->eir & s->eimr;
201 changed = active ^s->irq_state;
202 for (i = 0; i < FEC_NUM_IRQ; i++) {
203 mask = mcf_fec_irq_map[i];
204 if (changed & mask) {
205 DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
206 qemu_set_irq(s->irq[i], (active & mask) != 0);
209 s->irq_state = active;
212 static void mcf_fec_tx_stats(mcf_fec_state *s, int size)
214 s->mib[MIB_RMON_T_PACKETS]++;
215 s->mib[MIB_RMON_T_OCTETS] += size;
216 if (size < 64) {
217 s->mib[MIB_RMON_T_FRAG]++;
218 } else if (size == 64) {
219 s->mib[MIB_RMON_T_P64]++;
220 } else if (size < 128) {
221 s->mib[MIB_RMON_T_P65TO127]++;
222 } else if (size < 256) {
223 s->mib[MIB_RMON_T_P128TO255]++;
224 } else if (size < 512) {
225 s->mib[MIB_RMON_T_P256TO511]++;
226 } else if (size < 1024) {
227 s->mib[MIB_RMON_T_P512TO1023]++;
228 } else if (size < 2048) {
229 s->mib[MIB_RMON_T_P1024TO2047]++;
230 } else {
231 s->mib[MIB_RMON_T_P_GTE2048]++;
233 s->mib[MIB_IEEE_T_FRAME_OK]++;
234 s->mib[MIB_IEEE_T_OCTETS_OK] += size;
237 static void mcf_fec_do_tx(mcf_fec_state *s)
239 uint32_t addr;
240 mcf_fec_bd bd;
241 int frame_size;
242 int len, descnt = 0;
243 uint8_t frame[FEC_MAX_FRAME_SIZE];
244 uint8_t *ptr;
246 DPRINTF("do_tx\n");
247 ptr = frame;
248 frame_size = 0;
249 addr = s->tx_descriptor;
250 while (descnt++ < FEC_MAX_DESC) {
251 mcf_fec_read_bd(&bd, addr);
252 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
253 addr, bd.flags, bd.length, bd.data);
254 if ((bd.flags & FEC_BD_R) == 0) {
255 /* Run out of descriptors to transmit. */
256 break;
258 len = bd.length;
259 if (frame_size + len > FEC_MAX_FRAME_SIZE) {
260 len = FEC_MAX_FRAME_SIZE - frame_size;
261 s->eir |= FEC_INT_BABT;
263 cpu_physical_memory_read(bd.data, ptr, len);
264 ptr += len;
265 frame_size += len;
266 if (bd.flags & FEC_BD_L) {
267 /* Last buffer in frame. */
268 DPRINTF("Sending packet\n");
269 qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
270 mcf_fec_tx_stats(s, frame_size);
271 ptr = frame;
272 frame_size = 0;
273 s->eir |= FEC_INT_TXF;
275 s->eir |= FEC_INT_TXB;
276 bd.flags &= ~FEC_BD_R;
277 /* Write back the modified descriptor. */
278 mcf_fec_write_bd(&bd, addr);
279 /* Advance to the next descriptor. */
280 if ((bd.flags & FEC_BD_W) != 0) {
281 addr = s->etdsr;
282 } else {
283 addr += 8;
286 s->tx_descriptor = addr;
289 static void mcf_fec_enable_rx(mcf_fec_state *s)
291 NetClientState *nc = qemu_get_queue(s->nic);
292 mcf_fec_bd bd;
294 mcf_fec_read_bd(&bd, s->rx_descriptor);
295 s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
296 if (s->rx_enabled) {
297 qemu_flush_queued_packets(nc);
301 static void mcf_fec_reset(DeviceState *dev)
303 mcf_fec_state *s = MCF_FEC_NET(dev);
305 s->eir = 0;
306 s->eimr = 0;
307 s->rx_enabled = 0;
308 s->ecr = 0;
309 s->mscr = 0;
310 s->rcr = 0x05ee0001;
311 s->tcr = 0;
312 s->tfwr = 0;
313 s->rfsr = 0x500;
316 #define MMFR_WRITE_OP (1 << 28)
317 #define MMFR_READ_OP (2 << 28)
318 #define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
319 #define MMFR_REGNUM(v) (((v) >> 18) & 0x1f)
321 static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
323 uint64_t v;
325 if (s->mmfr & MMFR_WRITE_OP)
326 return s->mmfr;
327 if (MMFR_PHYADDR(s->mmfr) != 1)
328 return s->mmfr |= 0xffff;
330 switch (MMFR_REGNUM(s->mmfr)) {
331 case MII_BMCR:
332 v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
333 break;
334 case MII_BMSR:
335 v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
336 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
337 MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
338 break;
339 case MII_PHYID1:
340 v = DP83848_PHYID1;
341 break;
342 case MII_PHYID2:
343 v = DP83848_PHYID2;
344 break;
345 case MII_ANAR:
346 v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
347 MII_ANAR_10 | MII_ANAR_CSMACD;
348 break;
349 case MII_ANLPAR:
350 v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
351 MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
352 break;
353 default:
354 v = 0xffff;
355 break;
357 s->mmfr = (s->mmfr & ~0xffff) | v;
358 return s->mmfr;
361 static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
362 unsigned size)
364 mcf_fec_state *s = (mcf_fec_state *)opaque;
365 switch (addr & 0x3ff) {
366 case 0x004: return s->eir;
367 case 0x008: return s->eimr;
368 case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
369 case 0x014: return 0; /* TDAR */
370 case 0x024: return s->ecr;
371 case 0x040: return mcf_fec_read_mdio(s);
372 case 0x044: return s->mscr;
373 case 0x064: return 0; /* MIBC */
374 case 0x084: return s->rcr;
375 case 0x0c4: return s->tcr;
376 case 0x0e4: /* PALR */
377 return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
378 | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
379 break;
380 case 0x0e8: /* PAUR */
381 return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
382 case 0x0ec: return 0x10000; /* OPD */
383 case 0x118: return 0;
384 case 0x11c: return 0;
385 case 0x120: return 0;
386 case 0x124: return 0;
387 case 0x144: return s->tfwr;
388 case 0x14c: return 0x600;
389 case 0x150: return s->rfsr;
390 case 0x180: return s->erdsr;
391 case 0x184: return s->etdsr;
392 case 0x188: return s->emrbr;
393 case 0x200 ... 0x2e0: return s->mib[(addr & 0x1ff) / 4];
394 default:
395 hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
396 return 0;
400 static void mcf_fec_write(void *opaque, hwaddr addr,
401 uint64_t value, unsigned size)
403 mcf_fec_state *s = (mcf_fec_state *)opaque;
404 switch (addr & 0x3ff) {
405 case 0x004:
406 s->eir &= ~value;
407 break;
408 case 0x008:
409 s->eimr = value;
410 break;
411 case 0x010: /* RDAR */
412 if ((s->ecr & FEC_EN) && !s->rx_enabled) {
413 DPRINTF("RX enable\n");
414 mcf_fec_enable_rx(s);
416 break;
417 case 0x014: /* TDAR */
418 if (s->ecr & FEC_EN) {
419 mcf_fec_do_tx(s);
421 break;
422 case 0x024:
423 s->ecr = value;
424 if (value & FEC_RESET) {
425 DPRINTF("Reset\n");
426 mcf_fec_reset(opaque);
428 if ((s->ecr & FEC_EN) == 0) {
429 s->rx_enabled = 0;
431 break;
432 case 0x040:
433 s->mmfr = value;
434 s->eir |= FEC_INT_MII;
435 break;
436 case 0x044:
437 s->mscr = value & 0xfe;
438 break;
439 case 0x064:
440 /* TODO: Implement MIB. */
441 break;
442 case 0x084:
443 s->rcr = value & 0x07ff003f;
444 /* TODO: Implement LOOP mode. */
445 break;
446 case 0x0c4: /* TCR */
447 /* We transmit immediately, so raise GRA immediately. */
448 s->tcr = value;
449 if (value & 1)
450 s->eir |= FEC_INT_GRA;
451 break;
452 case 0x0e4: /* PALR */
453 s->conf.macaddr.a[0] = value >> 24;
454 s->conf.macaddr.a[1] = value >> 16;
455 s->conf.macaddr.a[2] = value >> 8;
456 s->conf.macaddr.a[3] = value;
457 break;
458 case 0x0e8: /* PAUR */
459 s->conf.macaddr.a[4] = value >> 24;
460 s->conf.macaddr.a[5] = value >> 16;
461 break;
462 case 0x0ec:
463 /* OPD */
464 break;
465 case 0x118:
466 case 0x11c:
467 case 0x120:
468 case 0x124:
469 /* TODO: implement MAC hash filtering. */
470 break;
471 case 0x144:
472 s->tfwr = value & 3;
473 break;
474 case 0x14c:
475 /* FRBR writes ignored. */
476 break;
477 case 0x150:
478 s->rfsr = (value & 0x3fc) | 0x400;
479 break;
480 case 0x180:
481 s->erdsr = value & ~3;
482 s->rx_descriptor = s->erdsr;
483 break;
484 case 0x184:
485 s->etdsr = value & ~3;
486 s->tx_descriptor = s->etdsr;
487 break;
488 case 0x188:
489 s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
490 break;
491 case 0x200 ... 0x2e0:
492 s->mib[(addr & 0x1ff) / 4] = value;
493 break;
494 default:
495 hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
497 mcf_fec_update(s);
500 static void mcf_fec_rx_stats(mcf_fec_state *s, int size)
502 s->mib[MIB_RMON_R_PACKETS]++;
503 s->mib[MIB_RMON_R_OCTETS] += size;
504 if (size < 64) {
505 s->mib[MIB_RMON_R_FRAG]++;
506 } else if (size == 64) {
507 s->mib[MIB_RMON_R_P64]++;
508 } else if (size < 128) {
509 s->mib[MIB_RMON_R_P65TO127]++;
510 } else if (size < 256) {
511 s->mib[MIB_RMON_R_P128TO255]++;
512 } else if (size < 512) {
513 s->mib[MIB_RMON_R_P256TO511]++;
514 } else if (size < 1024) {
515 s->mib[MIB_RMON_R_P512TO1023]++;
516 } else if (size < 2048) {
517 s->mib[MIB_RMON_R_P1024TO2047]++;
518 } else {
519 s->mib[MIB_RMON_R_P_GTE2048]++;
521 s->mib[MIB_IEEE_R_FRAME_OK]++;
522 s->mib[MIB_IEEE_R_OCTETS_OK] += size;
525 static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
527 mcf_fec_bd bd;
528 uint32_t addr;
530 /* Walk descriptor list to determine if we have enough buffer */
531 addr = s->rx_descriptor;
532 while (want > 0) {
533 mcf_fec_read_bd(&bd, addr);
534 if ((bd.flags & FEC_BD_E) == 0) {
535 return 0;
537 if (want < s->emrbr) {
538 return 1;
540 want -= s->emrbr;
541 /* Advance to the next descriptor. */
542 if ((bd.flags & FEC_BD_W) != 0) {
543 addr = s->erdsr;
544 } else {
545 addr += 8;
548 return 0;
551 static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
553 mcf_fec_state *s = qemu_get_nic_opaque(nc);
554 mcf_fec_bd bd;
555 uint32_t flags = 0;
556 uint32_t addr;
557 uint32_t crc;
558 uint32_t buf_addr;
559 uint8_t *crc_ptr;
560 unsigned int buf_len;
561 size_t retsize;
563 DPRINTF("do_rx len %d\n", size);
564 if (!s->rx_enabled) {
565 return -1;
567 /* 4 bytes for the CRC. */
568 size += 4;
569 crc = cpu_to_be32(crc32(~0, buf, size));
570 crc_ptr = (uint8_t *)&crc;
571 /* Huge frames are truncted. */
572 if (size > FEC_MAX_FRAME_SIZE) {
573 size = FEC_MAX_FRAME_SIZE;
574 flags |= FEC_BD_TR | FEC_BD_LG;
576 /* Frames larger than the user limit just set error flags. */
577 if (size > (s->rcr >> 16)) {
578 flags |= FEC_BD_LG;
580 /* Check if we have enough space in current descriptors */
581 if (!mcf_fec_have_receive_space(s, size)) {
582 return 0;
584 addr = s->rx_descriptor;
585 retsize = size;
586 while (size > 0) {
587 mcf_fec_read_bd(&bd, addr);
588 buf_len = (size <= s->emrbr) ? size: s->emrbr;
589 bd.length = buf_len;
590 size -= buf_len;
591 DPRINTF("rx_bd %x length %d\n", addr, bd.length);
592 /* The last 4 bytes are the CRC. */
593 if (size < 4)
594 buf_len += size - 4;
595 buf_addr = bd.data;
596 cpu_physical_memory_write(buf_addr, buf, buf_len);
597 buf += buf_len;
598 if (size < 4) {
599 cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
600 crc_ptr += 4 - size;
602 bd.flags &= ~FEC_BD_E;
603 if (size == 0) {
604 /* Last buffer in frame. */
605 bd.flags |= flags | FEC_BD_L;
606 DPRINTF("rx frame flags %04x\n", bd.flags);
607 s->eir |= FEC_INT_RXF;
608 } else {
609 s->eir |= FEC_INT_RXB;
611 mcf_fec_write_bd(&bd, addr);
612 /* Advance to the next descriptor. */
613 if ((bd.flags & FEC_BD_W) != 0) {
614 addr = s->erdsr;
615 } else {
616 addr += 8;
619 s->rx_descriptor = addr;
620 mcf_fec_rx_stats(s, retsize);
621 mcf_fec_enable_rx(s);
622 mcf_fec_update(s);
623 return retsize;
626 static const MemoryRegionOps mcf_fec_ops = {
627 .read = mcf_fec_read,
628 .write = mcf_fec_write,
629 .endianness = DEVICE_NATIVE_ENDIAN,
632 static NetClientInfo net_mcf_fec_info = {
633 .type = NET_CLIENT_DRIVER_NIC,
634 .size = sizeof(NICState),
635 .receive = mcf_fec_receive,
638 static void mcf_fec_realize(DeviceState *dev, Error **errp)
640 mcf_fec_state *s = MCF_FEC_NET(dev);
642 s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf,
643 object_get_typename(OBJECT(dev)), dev->id, s);
644 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
647 static void mcf_fec_instance_init(Object *obj)
649 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
650 mcf_fec_state *s = MCF_FEC_NET(obj);
651 int i;
653 memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400);
654 sysbus_init_mmio(sbd, &s->iomem);
655 for (i = 0; i < FEC_NUM_IRQ; i++) {
656 sysbus_init_irq(sbd, &s->irq[i]);
660 static Property mcf_fec_properties[] = {
661 DEFINE_NIC_PROPERTIES(mcf_fec_state, conf),
662 DEFINE_PROP_END_OF_LIST(),
665 static void mcf_fec_class_init(ObjectClass *oc, void *data)
667 DeviceClass *dc = DEVICE_CLASS(oc);
669 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
670 dc->realize = mcf_fec_realize;
671 dc->desc = "MCF Fast Ethernet Controller network device";
672 dc->reset = mcf_fec_reset;
673 dc->props = mcf_fec_properties;
676 static const TypeInfo mcf_fec_info = {
677 .name = TYPE_MCF_FEC_NET,
678 .parent = TYPE_SYS_BUS_DEVICE,
679 .instance_size = sizeof(mcf_fec_state),
680 .instance_init = mcf_fec_instance_init,
681 .class_init = mcf_fec_class_init,
684 static void mcf_fec_register_types(void)
686 type_register_static(&mcf_fec_info);
689 type_init(mcf_fec_register_types)