3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
17 #ifndef CONFIG_USER_ONLY
18 static inline bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
19 int access_type
, ARMMMUIdx mmu_idx
,
20 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
21 target_ulong
*page_size
, uint32_t *fsr
);
23 /* Definitions for the PMCCNTR and PMCR registers */
29 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
33 /* VFP data registers are always little-endian. */
34 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
36 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
39 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
40 /* Aliases for Q regs. */
43 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
44 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
48 switch (reg
- nregs
) {
49 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
50 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
51 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
56 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
60 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
62 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
65 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
68 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
69 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
73 switch (reg
- nregs
) {
74 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
75 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
76 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
81 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
85 /* 128 bit FP register */
86 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
87 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
91 stl_p(buf
, vfp_get_fpsr(env
));
95 stl_p(buf
, vfp_get_fpcr(env
));
102 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
106 /* 128 bit FP register */
107 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
108 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
112 vfp_set_fpsr(env
, ldl_p(buf
));
116 vfp_set_fpcr(env
, ldl_p(buf
));
123 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
125 assert(ri
->fieldoffset
);
126 if (cpreg_field_is_64bit(ri
)) {
127 return CPREG_FIELD64(env
, ri
);
129 return CPREG_FIELD32(env
, ri
);
133 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
136 assert(ri
->fieldoffset
);
137 if (cpreg_field_is_64bit(ri
)) {
138 CPREG_FIELD64(env
, ri
) = value
;
140 CPREG_FIELD32(env
, ri
) = value
;
144 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
146 return (char *)env
+ ri
->fieldoffset
;
149 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
151 /* Raw read of a coprocessor register (as needed for migration, etc). */
152 if (ri
->type
& ARM_CP_CONST
) {
153 return ri
->resetvalue
;
154 } else if (ri
->raw_readfn
) {
155 return ri
->raw_readfn(env
, ri
);
156 } else if (ri
->readfn
) {
157 return ri
->readfn(env
, ri
);
159 return raw_read(env
, ri
);
163 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
166 /* Raw write of a coprocessor register (as needed for migration, etc).
167 * Note that constant registers are treated as write-ignored; the
168 * caller should check for success by whether a readback gives the
171 if (ri
->type
& ARM_CP_CONST
) {
173 } else if (ri
->raw_writefn
) {
174 ri
->raw_writefn(env
, ri
, v
);
175 } else if (ri
->writefn
) {
176 ri
->writefn(env
, ri
, v
);
178 raw_write(env
, ri
, v
);
182 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
184 /* Return true if the regdef would cause an assertion if you called
185 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
186 * program bug for it not to have the NO_RAW flag).
187 * NB that returning false here doesn't necessarily mean that calling
188 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
189 * read/write access functions which are safe for raw use" from "has
190 * read/write access functions which have side effects but has forgotten
191 * to provide raw access functions".
192 * The tests here line up with the conditions in read/write_raw_cp_reg()
193 * and assertions in raw_read()/raw_write().
195 if ((ri
->type
& ARM_CP_CONST
) ||
197 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
203 bool write_cpustate_to_list(ARMCPU
*cpu
)
205 /* Write the coprocessor state from cpu->env to the (index,value) list. */
209 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
210 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
211 const ARMCPRegInfo
*ri
;
213 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
218 if (ri
->type
& ARM_CP_NO_RAW
) {
221 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
226 bool write_list_to_cpustate(ARMCPU
*cpu
)
231 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
232 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
233 uint64_t v
= cpu
->cpreg_values
[i
];
234 const ARMCPRegInfo
*ri
;
236 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
241 if (ri
->type
& ARM_CP_NO_RAW
) {
244 /* Write value and confirm it reads back as written
245 * (to catch read-only registers and partially read-only
246 * registers where the incoming migration value doesn't match)
248 write_raw_cp_reg(&cpu
->env
, ri
, v
);
249 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
256 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
258 ARMCPU
*cpu
= opaque
;
260 const ARMCPRegInfo
*ri
;
262 regidx
= *(uint32_t *)key
;
263 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
265 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
266 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
267 /* The value array need not be initialized at this point */
268 cpu
->cpreg_array_len
++;
272 static void count_cpreg(gpointer key
, gpointer opaque
)
274 ARMCPU
*cpu
= opaque
;
276 const ARMCPRegInfo
*ri
;
278 regidx
= *(uint32_t *)key
;
279 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
281 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
282 cpu
->cpreg_array_len
++;
286 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
288 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
289 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
300 void init_cpreg_list(ARMCPU
*cpu
)
302 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
303 * Note that we require cpreg_tuples[] to be sorted by key ID.
308 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
309 keys
= g_list_sort(keys
, cpreg_key_compare
);
311 cpu
->cpreg_array_len
= 0;
313 g_list_foreach(keys
, count_cpreg
, cpu
);
315 arraylen
= cpu
->cpreg_array_len
;
316 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
317 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
318 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
319 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
320 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
321 cpu
->cpreg_array_len
= 0;
323 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
325 assert(cpu
->cpreg_array_len
== arraylen
);
331 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
332 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
334 * access_el3_aa32ns: Used to check AArch32 register views.
335 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
337 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
338 const ARMCPRegInfo
*ri
)
340 bool secure
= arm_is_secure_below_el3(env
);
342 assert(!arm_el_is_aa64(env
, 3));
344 return CP_ACCESS_TRAP_UNCATEGORIZED
;
349 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
350 const ARMCPRegInfo
*ri
)
352 if (!arm_el_is_aa64(env
, 3)) {
353 return access_el3_aa32ns(env
, ri
);
358 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
360 ARMCPU
*cpu
= arm_env_get_cpu(env
);
362 raw_write(env
, ri
, value
);
363 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
366 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
368 ARMCPU
*cpu
= arm_env_get_cpu(env
);
370 if (raw_read(env
, ri
) != value
) {
371 /* Unlike real hardware the qemu TLB uses virtual addresses,
372 * not modified virtual addresses, so this causes a TLB flush.
374 tlb_flush(CPU(cpu
), 1);
375 raw_write(env
, ri
, value
);
379 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
382 ARMCPU
*cpu
= arm_env_get_cpu(env
);
384 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
385 && !extended_addresses_enabled(env
)) {
386 /* For VMSA (when not using the LPAE long descriptor page table
387 * format) this register includes the ASID, so do a TLB flush.
388 * For PMSA it is purely a process ID and no action is needed.
390 tlb_flush(CPU(cpu
), 1);
392 raw_write(env
, ri
, value
);
395 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
398 /* Invalidate all (TLBIALL) */
399 ARMCPU
*cpu
= arm_env_get_cpu(env
);
401 tlb_flush(CPU(cpu
), 1);
404 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
407 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
408 ARMCPU
*cpu
= arm_env_get_cpu(env
);
410 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
413 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
416 /* Invalidate by ASID (TLBIASID) */
417 ARMCPU
*cpu
= arm_env_get_cpu(env
);
419 tlb_flush(CPU(cpu
), value
== 0);
422 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
425 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
426 ARMCPU
*cpu
= arm_env_get_cpu(env
);
428 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
431 /* IS variants of TLB operations must affect all cores */
432 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
437 CPU_FOREACH(other_cs
) {
438 tlb_flush(other_cs
, 1);
442 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
447 CPU_FOREACH(other_cs
) {
448 tlb_flush(other_cs
, value
== 0);
452 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
457 CPU_FOREACH(other_cs
) {
458 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
462 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
467 CPU_FOREACH(other_cs
) {
468 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
472 static const ARMCPRegInfo cp_reginfo
[] = {
473 /* Define the secure and non-secure FCSE identifier CP registers
474 * separately because there is no secure bank in V8 (no _EL3). This allows
475 * the secure register to be properly reset and migrated. There is also no
476 * v8 EL1 version of the register so the non-secure instance stands alone.
478 { .name
= "FCSEIDR(NS)",
479 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
480 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
481 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
482 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
483 { .name
= "FCSEIDR(S)",
484 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
485 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
486 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
487 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
488 /* Define the secure and non-secure context identifier CP registers
489 * separately because there is no secure bank in V8 (no _EL3). This allows
490 * the secure register to be properly reset and migrated. In the
491 * non-secure case, the 32-bit register will have reset and migration
492 * disabled during registration as it is handled by the 64-bit instance.
494 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
495 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
496 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
497 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
498 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
499 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
500 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
501 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
502 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
503 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
507 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
508 /* NB: Some of these registers exist in v8 but with more precise
509 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
511 /* MMU Domain access control / MPU write buffer control */
513 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
514 .access
= PL1_RW
, .resetvalue
= 0,
515 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
516 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
517 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
518 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
519 * For v6 and v5, these mappings are overly broad.
521 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
522 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
523 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
524 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
525 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
526 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
527 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
528 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
529 /* Cache maintenance ops; some of this space may be overridden later. */
530 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
531 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
532 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
536 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
537 /* Not all pre-v6 cores implemented this WFI, so this is slightly
540 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
541 .access
= PL1_W
, .type
= ARM_CP_WFI
},
545 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
546 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
547 * is UNPREDICTABLE; we choose to NOP as most implementations do).
549 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
550 .access
= PL1_W
, .type
= ARM_CP_WFI
},
551 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
552 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
553 * OMAPCP will override this space.
555 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
556 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
558 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
559 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
561 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
562 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
563 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
565 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
566 * implementing it as RAZ means the "debug architecture version" bits
567 * will read as a reserved value, which should cause Linux to not try
568 * to use the debug hardware.
570 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
571 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
572 /* MMU TLB control. Note that the wildcarding means we cover not just
573 * the unified TLB ops but also the dside/iside/inner-shareable variants.
575 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
576 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
577 .type
= ARM_CP_NO_RAW
},
578 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
579 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
580 .type
= ARM_CP_NO_RAW
},
581 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
582 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
583 .type
= ARM_CP_NO_RAW
},
584 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
585 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
586 .type
= ARM_CP_NO_RAW
},
587 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
588 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
589 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
590 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
594 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
599 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
600 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
601 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
602 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
603 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
605 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
606 /* VFP coprocessor: cp10 & cp11 [23:20] */
607 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
609 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
610 /* ASEDIS [31] bit is RAO/WI */
614 /* VFPv3 and upwards with NEON implement 32 double precision
615 * registers (D0-D31).
617 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
618 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
619 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
625 env
->cp15
.cpacr_el1
= value
;
628 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
630 if (arm_feature(env
, ARM_FEATURE_V8
)) {
631 /* Check if CPACR accesses are to be trapped to EL2 */
632 if (arm_current_el(env
) == 1 &&
633 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
634 return CP_ACCESS_TRAP_EL2
;
635 /* Check if CPACR accesses are to be trapped to EL3 */
636 } else if (arm_current_el(env
) < 3 &&
637 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
638 return CP_ACCESS_TRAP_EL3
;
645 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
647 /* Check if CPTR accesses are set to trap to EL3 */
648 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
649 return CP_ACCESS_TRAP_EL3
;
655 static const ARMCPRegInfo v6_cp_reginfo
[] = {
656 /* prefetch by MVA in v6, NOP in v7 */
657 { .name
= "MVA_prefetch",
658 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
659 .access
= PL1_W
, .type
= ARM_CP_NOP
},
660 /* We need to break the TB after ISB to execute self-modifying code
661 * correctly and also to take any pending interrupts immediately.
662 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
664 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
665 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
666 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
667 .access
= PL0_W
, .type
= ARM_CP_NOP
},
668 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
669 .access
= PL0_W
, .type
= ARM_CP_NOP
},
670 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
672 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
673 offsetof(CPUARMState
, cp15
.ifar_ns
) },
675 /* Watchpoint Fault Address Register : should actually only be present
676 * for 1136, 1176, 11MPCore.
678 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
679 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
680 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
681 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
682 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
683 .resetvalue
= 0, .writefn
= cpacr_write
},
687 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
689 /* Performance monitor registers user accessibility is controlled
692 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
693 return CP_ACCESS_TRAP
;
698 #ifndef CONFIG_USER_ONLY
700 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
702 /* This does not support checking PMCCFILTR_EL0 register */
704 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
711 void pmccntr_sync(CPUARMState
*env
)
715 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
716 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
718 if (env
->cp15
.c9_pmcr
& PMCRD
) {
719 /* Increment once every 64 processor clock cycles */
723 if (arm_ccnt_enabled(env
)) {
724 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
728 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
734 /* The counter has been reset */
735 env
->cp15
.c15_ccnt
= 0;
738 /* only the DP, X, D and E bits are writable */
739 env
->cp15
.c9_pmcr
&= ~0x39;
740 env
->cp15
.c9_pmcr
|= (value
& 0x39);
745 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
747 uint64_t total_ticks
;
749 if (!arm_ccnt_enabled(env
)) {
750 /* Counter is disabled, do not change value */
751 return env
->cp15
.c15_ccnt
;
754 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
755 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
757 if (env
->cp15
.c9_pmcr
& PMCRD
) {
758 /* Increment once every 64 processor clock cycles */
761 return total_ticks
- env
->cp15
.c15_ccnt
;
764 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
767 uint64_t total_ticks
;
769 if (!arm_ccnt_enabled(env
)) {
770 /* Counter is disabled, set the absolute value */
771 env
->cp15
.c15_ccnt
= value
;
775 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
776 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
778 if (env
->cp15
.c9_pmcr
& PMCRD
) {
779 /* Increment once every 64 processor clock cycles */
782 env
->cp15
.c15_ccnt
= total_ticks
- value
;
785 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
788 uint64_t cur_val
= pmccntr_read(env
, NULL
);
790 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
793 #else /* CONFIG_USER_ONLY */
795 void pmccntr_sync(CPUARMState
*env
)
801 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
805 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
809 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
813 env
->cp15
.c9_pmcnten
|= value
;
816 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
820 env
->cp15
.c9_pmcnten
&= ~value
;
823 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
826 env
->cp15
.c9_pmovsr
&= ~value
;
829 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
832 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
835 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
838 env
->cp15
.c9_pmuserenr
= value
& 1;
841 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
844 /* We have no event counters so only the C bit can be changed */
846 env
->cp15
.c9_pminten
|= value
;
849 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
853 env
->cp15
.c9_pminten
&= ~value
;
856 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
859 /* Note that even though the AArch64 view of this register has bits
860 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
861 * architectural requirements for bits which are RES0 only in some
862 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
863 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
865 raw_write(env
, ri
, value
& ~0x1FULL
);
868 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
870 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
871 * For bits that vary between AArch32/64, code needs to check the
872 * current execution mode before directly using the feature bit.
874 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
876 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
877 valid_mask
&= ~SCR_HCE
;
879 /* On ARMv7, SMD (or SCD as it is called in v7) is only
880 * supported if EL2 exists. The bit is UNK/SBZP when
881 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
882 * when EL2 is unavailable.
883 * On ARMv8, this bit is always available.
885 if (arm_feature(env
, ARM_FEATURE_V7
) &&
886 !arm_feature(env
, ARM_FEATURE_V8
)) {
887 valid_mask
&= ~SCR_SMD
;
891 /* Clear all-context RES0 bits. */
893 raw_write(env
, ri
, value
);
896 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
898 ARMCPU
*cpu
= arm_env_get_cpu(env
);
900 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
903 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
904 ri
->secure
& ARM_CP_SECSTATE_S
);
906 return cpu
->ccsidr
[index
];
909 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
912 raw_write(env
, ri
, value
& 0xf);
915 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
917 CPUState
*cs
= ENV_GET_CPU(env
);
920 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
923 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
926 /* External aborts are not possible in QEMU so A bit is always clear */
930 static const ARMCPRegInfo v7_cp_reginfo
[] = {
931 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
932 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
933 .access
= PL1_W
, .type
= ARM_CP_NOP
},
934 /* Performance monitors are implementation defined in v7,
935 * but with an ARM recommended set of registers, which we
936 * follow (although we don't actually implement any counters)
938 * Performance registers fall into three categories:
939 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
940 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
941 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
942 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
943 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
945 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
946 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
947 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
948 .writefn
= pmcntenset_write
,
949 .accessfn
= pmreg_access
,
950 .raw_writefn
= raw_write
},
951 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
952 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
953 .access
= PL0_RW
, .accessfn
= pmreg_access
,
954 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
955 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
956 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
958 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
959 .accessfn
= pmreg_access
,
960 .writefn
= pmcntenclr_write
,
961 .type
= ARM_CP_ALIAS
},
962 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
963 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
964 .access
= PL0_RW
, .accessfn
= pmreg_access
,
965 .type
= ARM_CP_ALIAS
,
966 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
967 .writefn
= pmcntenclr_write
},
968 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
969 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
970 .accessfn
= pmreg_access
,
971 .writefn
= pmovsr_write
,
972 .raw_writefn
= raw_write
},
973 /* Unimplemented so WI. */
974 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
975 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
976 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
977 * We choose to RAZ/WI.
979 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
980 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
981 .accessfn
= pmreg_access
},
982 #ifndef CONFIG_USER_ONLY
983 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
984 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
985 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
986 .accessfn
= pmreg_access
},
987 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
988 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
989 .access
= PL0_RW
, .accessfn
= pmreg_access
,
991 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
993 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
994 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
995 .writefn
= pmccfiltr_write
,
996 .access
= PL0_RW
, .accessfn
= pmreg_access
,
998 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1000 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1002 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
1003 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1004 .raw_writefn
= raw_write
},
1005 /* Unimplemented, RAZ/WI. */
1006 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1007 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1008 .accessfn
= pmreg_access
},
1009 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1010 .access
= PL0_R
| PL1_RW
,
1011 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1013 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1014 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1016 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1018 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1019 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1020 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1021 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1022 .writefn
= pmintenclr_write
, },
1023 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1024 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1025 .access
= PL1_RW
, .writefn
= vbar_write
,
1026 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1027 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1029 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1030 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1031 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1032 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1033 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1034 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1035 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1036 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1037 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1038 * just RAZ for all cores:
1040 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1041 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1042 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1043 /* Auxiliary fault status registers: these also are IMPDEF, and we
1044 * choose to RAZ/WI for all cores.
1046 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1047 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1048 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1049 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1050 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1051 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1052 /* MAIR can just read-as-written because we don't implement caches
1053 * and so don't need to care about memory attributes.
1055 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1056 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1057 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1059 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1060 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1061 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1063 /* For non-long-descriptor page tables these are PRRR and NMRR;
1064 * regardless they still act as reads-as-written for QEMU.
1066 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1067 * allows them to assign the correct fieldoffset based on the endianness
1068 * handled in the field definitions.
1070 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1071 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1072 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1073 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1074 .resetfn
= arm_cp_reset_ignore
},
1075 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1076 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1077 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1078 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1079 .resetfn
= arm_cp_reset_ignore
},
1080 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1081 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1082 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1083 /* 32 bit ITLB invalidates */
1084 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1085 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1086 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1087 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1088 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1089 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1090 /* 32 bit DTLB invalidates */
1091 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1092 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1093 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1094 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1095 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1096 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1097 /* 32 bit TLB invalidates */
1098 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1099 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1100 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1101 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1102 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1103 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1104 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1105 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1109 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1110 /* 32 bit TLB invalidates, Inner Shareable */
1111 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1112 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1113 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1114 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1115 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1116 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1117 .writefn
= tlbiasid_is_write
},
1118 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1119 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1120 .writefn
= tlbimvaa_is_write
},
1124 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1131 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1133 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1134 return CP_ACCESS_TRAP
;
1136 return CP_ACCESS_OK
;
1139 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1140 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1141 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1143 .writefn
= teecr_write
},
1144 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1145 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1146 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1150 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1151 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1152 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1154 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1155 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1157 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1158 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1159 .resetfn
= arm_cp_reset_ignore
},
1160 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1161 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1162 .access
= PL0_R
|PL1_W
,
1163 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1165 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1166 .access
= PL0_R
|PL1_W
,
1167 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1168 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1169 .resetfn
= arm_cp_reset_ignore
},
1170 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1171 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1173 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1174 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1176 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1177 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1182 #ifndef CONFIG_USER_ONLY
1184 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1186 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1187 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1188 return CP_ACCESS_TRAP
;
1190 return CP_ACCESS_OK
;
1193 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1195 unsigned int cur_el
= arm_current_el(env
);
1196 bool secure
= arm_is_secure(env
);
1198 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1200 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1201 return CP_ACCESS_TRAP
;
1204 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1205 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1206 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1207 return CP_ACCESS_TRAP_EL2
;
1209 return CP_ACCESS_OK
;
1212 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1214 unsigned int cur_el
= arm_current_el(env
);
1215 bool secure
= arm_is_secure(env
);
1217 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1218 * EL0[PV]TEN is zero.
1221 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1222 return CP_ACCESS_TRAP
;
1225 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1226 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1227 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1228 return CP_ACCESS_TRAP_EL2
;
1230 return CP_ACCESS_OK
;
1233 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1234 const ARMCPRegInfo
*ri
)
1236 return gt_counter_access(env
, GTIMER_PHYS
);
1239 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1240 const ARMCPRegInfo
*ri
)
1242 return gt_counter_access(env
, GTIMER_VIRT
);
1245 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1247 return gt_timer_access(env
, GTIMER_PHYS
);
1250 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1252 return gt_timer_access(env
, GTIMER_VIRT
);
1255 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1256 const ARMCPRegInfo
*ri
)
1258 /* The AArch64 register view of the secure physical timer is
1259 * always accessible from EL3, and configurably accessible from
1262 switch (arm_current_el(env
)) {
1264 if (!arm_is_secure(env
)) {
1265 return CP_ACCESS_TRAP
;
1267 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1268 return CP_ACCESS_TRAP_EL3
;
1270 return CP_ACCESS_OK
;
1273 return CP_ACCESS_TRAP
;
1275 return CP_ACCESS_OK
;
1277 g_assert_not_reached();
1281 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1283 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1286 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1288 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1291 /* Timer enabled: calculate and set current ISTATUS, irq, and
1292 * reset timer to when ISTATUS next has to change
1294 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1295 cpu
->env
.cp15
.cntvoff_el2
: 0;
1296 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1297 /* Note that this must be unsigned 64 bit arithmetic: */
1298 int istatus
= count
- offset
>= gt
->cval
;
1301 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1302 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1303 (istatus
&& !(gt
->ctl
& 2)));
1305 /* Next transition is when count rolls back over to zero */
1306 nexttick
= UINT64_MAX
;
1308 /* Next transition is when we hit cval */
1309 nexttick
= gt
->cval
+ offset
;
1311 /* Note that the desired next expiry time might be beyond the
1312 * signed-64-bit range of a QEMUTimer -- in this case we just
1313 * set the timer for as far in the future as possible. When the
1314 * timer expires we will reset the timer for any remaining period.
1316 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1317 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1319 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1321 /* Timer disabled: ISTATUS and timer output always clear */
1323 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1324 timer_del(cpu
->gt_timer
[timeridx
]);
1328 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1331 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1333 timer_del(cpu
->gt_timer
[timeridx
]);
1336 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1338 return gt_get_countervalue(env
);
1341 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1343 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1346 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1350 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1351 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1354 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1357 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1359 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1360 (gt_get_countervalue(env
) - offset
));
1363 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1367 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1369 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1370 sextract64(value
, 0, 32);
1371 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1374 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1378 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1379 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1381 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1382 if ((oldval
^ value
) & 1) {
1383 /* Enable toggled */
1384 gt_recalc_timer(cpu
, timeridx
);
1385 } else if ((oldval
^ value
) & 2) {
1386 /* IMASK toggled: don't need to recalculate,
1387 * just set the interrupt line based on ISTATUS
1389 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1390 (oldval
& 4) && !(value
& 2));
1394 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1396 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1399 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1402 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1405 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1407 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1410 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1413 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1416 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1419 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1422 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1424 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1427 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1430 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1433 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1435 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1438 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1441 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1444 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1447 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1450 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1453 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1455 raw_write(env
, ri
, value
);
1456 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1459 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1461 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1464 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1467 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1470 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1472 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1475 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1478 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1481 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1484 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1487 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1489 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1492 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1495 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1498 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1500 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1503 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1506 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1509 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1512 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1515 void arm_gt_ptimer_cb(void *opaque
)
1517 ARMCPU
*cpu
= opaque
;
1519 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1522 void arm_gt_vtimer_cb(void *opaque
)
1524 ARMCPU
*cpu
= opaque
;
1526 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1529 void arm_gt_htimer_cb(void *opaque
)
1531 ARMCPU
*cpu
= opaque
;
1533 gt_recalc_timer(cpu
, GTIMER_HYP
);
1536 void arm_gt_stimer_cb(void *opaque
)
1538 ARMCPU
*cpu
= opaque
;
1540 gt_recalc_timer(cpu
, GTIMER_SEC
);
1543 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1544 /* Note that CNTFRQ is purely reads-as-written for the benefit
1545 * of software; writing it doesn't actually change the timer frequency.
1546 * Our reset value matches the fixed frequency we implement the timer at.
1548 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1549 .type
= ARM_CP_ALIAS
,
1550 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1551 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1553 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1554 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1555 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1556 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1557 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1559 /* overall control: mostly access permissions */
1560 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1561 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1563 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1566 /* per-timer control */
1567 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1568 .secure
= ARM_CP_SECSTATE_NS
,
1569 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1570 .accessfn
= gt_ptimer_access
,
1571 .fieldoffset
= offsetoflow32(CPUARMState
,
1572 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1573 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1575 { .name
= "CNTP_CTL(S)",
1576 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1577 .secure
= ARM_CP_SECSTATE_S
,
1578 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1579 .accessfn
= gt_ptimer_access
,
1580 .fieldoffset
= offsetoflow32(CPUARMState
,
1581 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1582 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1584 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1585 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1586 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1587 .accessfn
= gt_ptimer_access
,
1588 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1590 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1592 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1593 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1594 .accessfn
= gt_vtimer_access
,
1595 .fieldoffset
= offsetoflow32(CPUARMState
,
1596 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1597 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1599 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1600 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1601 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1602 .accessfn
= gt_vtimer_access
,
1603 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1605 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1607 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1608 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1609 .secure
= ARM_CP_SECSTATE_NS
,
1610 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1611 .accessfn
= gt_ptimer_access
,
1612 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1614 { .name
= "CNTP_TVAL(S)",
1615 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1616 .secure
= ARM_CP_SECSTATE_S
,
1617 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1618 .accessfn
= gt_ptimer_access
,
1619 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1621 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1622 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1623 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1624 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1625 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1627 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1628 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1629 .accessfn
= gt_vtimer_access
,
1630 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1632 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1633 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1634 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1635 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1636 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1638 /* The counter itself */
1639 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1640 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1641 .accessfn
= gt_pct_access
,
1642 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1644 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1645 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1646 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1647 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1649 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1650 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1651 .accessfn
= gt_vct_access
,
1652 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1654 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1655 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1656 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1657 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1659 /* Comparison value, indicating when the timer goes off */
1660 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1661 .secure
= ARM_CP_SECSTATE_NS
,
1662 .access
= PL1_RW
| PL0_R
,
1663 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1664 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1665 .accessfn
= gt_ptimer_access
,
1666 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1668 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1669 .secure
= ARM_CP_SECSTATE_S
,
1670 .access
= PL1_RW
| PL0_R
,
1671 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1672 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1673 .accessfn
= gt_ptimer_access
,
1674 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1676 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1677 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1678 .access
= PL1_RW
| PL0_R
,
1680 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1681 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1682 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1684 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1685 .access
= PL1_RW
| PL0_R
,
1686 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1687 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1688 .accessfn
= gt_vtimer_access
,
1689 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1691 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1692 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1693 .access
= PL1_RW
| PL0_R
,
1695 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1696 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1697 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1699 /* Secure timer -- this is actually restricted to only EL3
1700 * and configurably Secure-EL1 via the accessfn.
1702 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1703 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1704 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1705 .accessfn
= gt_stimer_access
,
1706 .readfn
= gt_sec_tval_read
,
1707 .writefn
= gt_sec_tval_write
,
1708 .resetfn
= gt_sec_timer_reset
,
1710 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1711 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1712 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1713 .accessfn
= gt_stimer_access
,
1714 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1716 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1718 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1719 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1720 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1721 .accessfn
= gt_stimer_access
,
1722 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1723 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1729 /* In user-mode none of the generic timer registers are accessible,
1730 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1731 * so instead just don't register any of them.
1733 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1739 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1741 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1742 raw_write(env
, ri
, value
);
1743 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1744 raw_write(env
, ri
, value
& 0xfffff6ff);
1746 raw_write(env
, ri
, value
& 0xfffff1ff);
1750 #ifndef CONFIG_USER_ONLY
1751 /* get_phys_addr() isn't present for user-mode-only targets */
1753 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1756 /* The ATS12NSO* operations must trap to EL3 if executed in
1757 * Secure EL1 (which can only happen if EL3 is AArch64).
1758 * They are simply UNDEF if executed from NS EL1.
1759 * They function normally from EL2 or EL3.
1761 if (arm_current_el(env
) == 1) {
1762 if (arm_is_secure_below_el3(env
)) {
1763 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1765 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1768 return CP_ACCESS_OK
;
1771 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1772 int access_type
, ARMMMUIdx mmu_idx
)
1775 target_ulong page_size
;
1780 MemTxAttrs attrs
= {};
1782 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1783 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
);
1784 if (extended_addresses_enabled(env
)) {
1785 /* fsr is a DFSR/IFSR value for the long descriptor
1786 * translation table format, but with WnR always clear.
1787 * Convert it to a 64-bit PAR.
1789 par64
= (1 << 11); /* LPAE bit always set */
1791 par64
|= phys_addr
& ~0xfffULL
;
1792 if (!attrs
.secure
) {
1793 par64
|= (1 << 9); /* NS */
1795 /* We don't set the ATTR or SH fields in the PAR. */
1798 par64
|= (fsr
& 0x3f) << 1; /* FS */
1799 /* Note that S2WLK and FSTAGE are always zero, because we don't
1800 * implement virtualization and therefore there can't be a stage 2
1805 /* fsr is a DFSR/IFSR value for the short descriptor
1806 * translation table format (with WnR always clear).
1807 * Convert it to a 32-bit PAR.
1810 /* We do not set any attribute bits in the PAR */
1811 if (page_size
== (1 << 24)
1812 && arm_feature(env
, ARM_FEATURE_V7
)) {
1813 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1815 par64
= phys_addr
& 0xfffff000;
1817 if (!attrs
.secure
) {
1818 par64
|= (1 << 9); /* NS */
1821 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1822 ((fsr
& 0xf) << 1) | 1;
1828 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1830 int access_type
= ri
->opc2
& 1;
1833 int el
= arm_current_el(env
);
1834 bool secure
= arm_is_secure_below_el3(env
);
1836 switch (ri
->opc2
& 6) {
1838 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1841 mmu_idx
= ARMMMUIdx_S1E3
;
1844 mmu_idx
= ARMMMUIdx_S1NSE1
;
1847 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1850 g_assert_not_reached();
1854 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1857 mmu_idx
= ARMMMUIdx_S1SE0
;
1860 mmu_idx
= ARMMMUIdx_S1NSE0
;
1863 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1866 g_assert_not_reached();
1870 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1871 mmu_idx
= ARMMMUIdx_S12NSE1
;
1874 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1875 mmu_idx
= ARMMMUIdx_S12NSE0
;
1878 g_assert_not_reached();
1881 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
1883 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1886 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1889 int access_type
= ri
->opc2
& 1;
1892 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
1894 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1897 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1899 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
1900 return CP_ACCESS_TRAP
;
1902 return CP_ACCESS_OK
;
1905 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1908 int access_type
= ri
->opc2
& 1;
1910 int secure
= arm_is_secure_below_el3(env
);
1912 switch (ri
->opc2
& 6) {
1915 case 0: /* AT S1E1R, AT S1E1W */
1916 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1918 case 4: /* AT S1E2R, AT S1E2W */
1919 mmu_idx
= ARMMMUIdx_S1E2
;
1921 case 6: /* AT S1E3R, AT S1E3W */
1922 mmu_idx
= ARMMMUIdx_S1E3
;
1925 g_assert_not_reached();
1928 case 2: /* AT S1E0R, AT S1E0W */
1929 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1931 case 4: /* AT S12E1R, AT S12E1W */
1932 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
1934 case 6: /* AT S12E0R, AT S12E0W */
1935 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
1938 g_assert_not_reached();
1941 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
1945 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1946 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1947 .access
= PL1_RW
, .resetvalue
= 0,
1948 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1949 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1950 .writefn
= par_write
},
1951 #ifndef CONFIG_USER_ONLY
1952 /* This underdecoding is safe because the reginfo is NO_RAW. */
1953 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1954 .access
= PL1_W
, .accessfn
= ats_access
,
1955 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
1960 /* Return basic MPU access permission bits. */
1961 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1968 for (i
= 0; i
< 16; i
+= 2) {
1969 ret
|= (val
>> i
) & mask
;
1975 /* Pad basic MPU access permission bits to extended format. */
1976 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1983 for (i
= 0; i
< 16; i
+= 2) {
1984 ret
|= (val
& mask
) << i
;
1990 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1993 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1996 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1998 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2001 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2004 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2007 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2009 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2012 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2014 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2020 u32p
+= env
->cp15
.c6_rgnr
;
2024 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2027 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2028 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2034 u32p
+= env
->cp15
.c6_rgnr
;
2035 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2039 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2041 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2042 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2048 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2051 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2054 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2055 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2057 if (value
>= nrgs
) {
2058 qemu_log_mask(LOG_GUEST_ERROR
,
2059 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2060 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2064 raw_write(env
, ri
, value
);
2067 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2068 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2069 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2070 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2071 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2072 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2073 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2074 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2075 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2076 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2077 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2078 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2079 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2080 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2082 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2083 .writefn
= pmsav7_rgnr_write
},
2087 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2088 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2089 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2090 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2091 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2092 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2093 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2094 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2095 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2096 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2098 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2100 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2102 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2104 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2106 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2107 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2109 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2110 /* Protection region base and size registers */
2111 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2112 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2113 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2114 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2115 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2116 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2117 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2118 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2119 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2120 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2121 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2122 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2123 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2124 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2125 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2126 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2127 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2128 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2129 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2130 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2131 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2132 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2133 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2134 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2138 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2141 TCR
*tcr
= raw_ptr(env
, ri
);
2142 int maskshift
= extract32(value
, 0, 3);
2144 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2145 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2146 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2147 * using Long-desciptor translation table format */
2148 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2149 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2150 /* In an implementation that includes the Security Extensions
2151 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2152 * Short-descriptor translation table format.
2154 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2160 /* Update the masks corresponding to the TCR bank being written
2161 * Note that we always calculate mask and base_mask, but
2162 * they are only used for short-descriptor tables (ie if EAE is 0);
2163 * for long-descriptor tables the TCR fields are used differently
2164 * and the mask and base_mask values are meaningless.
2166 tcr
->raw_tcr
= value
;
2167 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2168 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2171 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2174 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2176 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2177 /* With LPAE the TTBCR could result in a change of ASID
2178 * via the TTBCR.A1 bit, so do a TLB flush.
2180 tlb_flush(CPU(cpu
), 1);
2182 vmsa_ttbcr_raw_write(env
, ri
, value
);
2185 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2187 TCR
*tcr
= raw_ptr(env
, ri
);
2189 /* Reset both the TCR as well as the masks corresponding to the bank of
2190 * the TCR being reset.
2194 tcr
->base_mask
= 0xffffc000u
;
2197 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2200 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2201 TCR
*tcr
= raw_ptr(env
, ri
);
2203 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2204 tlb_flush(CPU(cpu
), 1);
2205 tcr
->raw_tcr
= value
;
2208 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2211 /* 64 bit accesses to the TTBRs can change the ASID and so we
2212 * must flush the TLB.
2214 if (cpreg_field_is_64bit(ri
)) {
2215 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2217 tlb_flush(CPU(cpu
), 1);
2219 raw_write(env
, ri
, value
);
2222 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2225 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2226 CPUState
*cs
= CPU(cpu
);
2228 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2229 if (raw_read(env
, ri
) != value
) {
2230 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2231 ARMMMUIdx_S2NS
, -1);
2232 raw_write(env
, ri
, value
);
2236 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2237 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2238 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2239 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2240 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2241 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2242 .access
= PL1_RW
, .resetvalue
= 0,
2243 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2244 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2245 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2246 .access
= PL1_RW
, .resetvalue
= 0,
2247 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2248 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2249 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2250 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2251 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2256 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2257 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2258 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2260 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2261 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2262 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2263 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2264 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2265 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2266 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2267 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2268 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2269 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2270 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2271 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2272 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2273 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2274 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2275 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2276 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2277 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2278 .raw_writefn
= vmsa_ttbcr_raw_write
,
2279 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2280 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2284 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2287 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2288 /* The OS_TYPE bit in this register changes the reported CPUID! */
2289 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2290 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2293 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2296 env
->cp15
.c15_threadid
= value
& 0xffff;
2299 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2302 /* Wait-for-interrupt (deprecated) */
2303 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2306 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2309 /* On OMAP there are registers indicating the max/min index of dcache lines
2310 * containing a dirty line; cache flush operations have to reset these.
2312 env
->cp15
.c15_i_max
= 0x000;
2313 env
->cp15
.c15_i_min
= 0xff0;
2316 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2317 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2318 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2319 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2321 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2322 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2323 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2325 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2326 .writefn
= omap_ticonfig_write
},
2327 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2329 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2330 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2331 .access
= PL1_RW
, .resetvalue
= 0xff0,
2332 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2333 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2335 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2336 .writefn
= omap_threadid_write
},
2337 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2338 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2339 .type
= ARM_CP_NO_RAW
,
2340 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2341 /* TODO: Peripheral port remap register:
2342 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2343 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2346 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2347 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2348 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2349 .writefn
= omap_cachemaint_write
},
2350 { .name
= "C9", .cp
= 15, .crn
= 9,
2351 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2352 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2356 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2359 env
->cp15
.c15_cpar
= value
& 0x3fff;
2362 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2363 { .name
= "XSCALE_CPAR",
2364 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2365 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2366 .writefn
= xscale_cpar_write
, },
2367 { .name
= "XSCALE_AUXCR",
2368 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2369 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2371 /* XScale specific cache-lockdown: since we have no cache we NOP these
2372 * and hope the guest does not really rely on cache behaviour.
2374 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2375 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2376 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2377 { .name
= "XSCALE_UNLOCK_ICACHE",
2378 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2379 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2380 { .name
= "XSCALE_DCACHE_LOCK",
2381 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2382 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2383 { .name
= "XSCALE_UNLOCK_DCACHE",
2384 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2385 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2389 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2390 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2391 * implementation of this implementation-defined space.
2392 * Ideally this should eventually disappear in favour of actually
2393 * implementing the correct behaviour for all cores.
2395 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2396 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2398 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2403 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2404 /* Cache status: RAZ because we have no cache so it's always clean */
2405 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2406 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2411 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2412 /* We never have a a block transfer operation in progress */
2413 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2414 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2416 /* The cache ops themselves: these all NOP for QEMU */
2417 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2418 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2419 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2420 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2421 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2422 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2423 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2424 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2425 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2426 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2427 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2428 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2432 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2433 /* The cache test-and-clean instructions always return (1 << 30)
2434 * to indicate that there are no dirty cache lines.
2436 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2437 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2438 .resetvalue
= (1 << 30) },
2439 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2440 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2441 .resetvalue
= (1 << 30) },
2445 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2446 /* Ignore ReadBuffer accesses */
2447 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2448 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2449 .access
= PL1_RW
, .resetvalue
= 0,
2450 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2454 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2456 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2457 unsigned int cur_el
= arm_current_el(env
);
2458 bool secure
= arm_is_secure(env
);
2460 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2461 return env
->cp15
.vpidr_el2
;
2463 return raw_read(env
, ri
);
2466 static uint64_t mpidr_read_val(CPUARMState
*env
)
2468 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2469 uint64_t mpidr
= cpu
->mp_affinity
;
2471 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2472 mpidr
|= (1U << 31);
2473 /* Cores which are uniprocessor (non-coherent)
2474 * but still implement the MP extensions set
2475 * bit 30. (For instance, Cortex-R5).
2477 if (cpu
->mp_is_up
) {
2478 mpidr
|= (1u << 30);
2484 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2486 unsigned int cur_el
= arm_current_el(env
);
2487 bool secure
= arm_is_secure(env
);
2489 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2490 return env
->cp15
.vmpidr_el2
;
2492 return mpidr_read_val(env
);
2495 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2496 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2497 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2498 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2502 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2504 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2505 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2506 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2508 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2509 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2510 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2512 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2513 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2514 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2515 offsetof(CPUARMState
, cp15
.par_ns
)} },
2516 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2517 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2518 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2519 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2520 .writefn
= vmsa_ttbr_write
, },
2521 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2522 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2523 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2524 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2525 .writefn
= vmsa_ttbr_write
, },
2529 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2531 return vfp_get_fpcr(env
);
2534 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2537 vfp_set_fpcr(env
, value
);
2540 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2542 return vfp_get_fpsr(env
);
2545 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2548 vfp_set_fpsr(env
, value
);
2551 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2553 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2554 return CP_ACCESS_TRAP
;
2556 return CP_ACCESS_OK
;
2559 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2562 env
->daif
= value
& PSTATE_DAIF
;
2565 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2566 const ARMCPRegInfo
*ri
)
2568 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2569 * SCTLR_EL1.UCI is set.
2571 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2572 return CP_ACCESS_TRAP
;
2574 return CP_ACCESS_OK
;
2577 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2578 * Page D4-1736 (DDI0487A.b)
2581 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2584 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2585 CPUState
*cs
= CPU(cpu
);
2587 if (arm_is_secure_below_el3(env
)) {
2588 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2590 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2594 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2597 bool sec
= arm_is_secure_below_el3(env
);
2600 CPU_FOREACH(other_cs
) {
2602 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2604 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2605 ARMMMUIdx_S12NSE0
, -1);
2610 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2613 /* Note that the 'ALL' scope must invalidate both stage 1 and
2614 * stage 2 translations, whereas most other scopes only invalidate
2615 * stage 1 translations.
2617 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2618 CPUState
*cs
= CPU(cpu
);
2620 if (arm_is_secure_below_el3(env
)) {
2621 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2623 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2624 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2625 ARMMMUIdx_S2NS
, -1);
2627 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2632 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2635 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2636 CPUState
*cs
= CPU(cpu
);
2638 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2641 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2644 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2645 CPUState
*cs
= CPU(cpu
);
2647 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2650 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2653 /* Note that the 'ALL' scope must invalidate both stage 1 and
2654 * stage 2 translations, whereas most other scopes only invalidate
2655 * stage 1 translations.
2657 bool sec
= arm_is_secure_below_el3(env
);
2658 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2661 CPU_FOREACH(other_cs
) {
2663 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2664 } else if (has_el2
) {
2665 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2666 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2668 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2669 ARMMMUIdx_S12NSE0
, -1);
2674 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2679 CPU_FOREACH(other_cs
) {
2680 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2684 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2689 CPU_FOREACH(other_cs
) {
2690 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2694 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2697 /* Invalidate by VA, EL1&0 (AArch64 version).
2698 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2699 * since we don't support flush-for-specific-ASID-only or
2700 * flush-last-level-only.
2702 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2703 CPUState
*cs
= CPU(cpu
);
2704 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2706 if (arm_is_secure_below_el3(env
)) {
2707 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2708 ARMMMUIdx_S1SE0
, -1);
2710 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2711 ARMMMUIdx_S12NSE0
, -1);
2715 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2718 /* Invalidate by VA, EL2
2719 * Currently handles both VAE2 and VALE2, since we don't support
2720 * flush-last-level-only.
2722 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2723 CPUState
*cs
= CPU(cpu
);
2724 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2726 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2729 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2732 /* Invalidate by VA, EL3
2733 * Currently handles both VAE3 and VALE3, since we don't support
2734 * flush-last-level-only.
2736 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2737 CPUState
*cs
= CPU(cpu
);
2738 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2740 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2743 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2746 bool sec
= arm_is_secure_below_el3(env
);
2748 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2750 CPU_FOREACH(other_cs
) {
2752 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2753 ARMMMUIdx_S1SE0
, -1);
2755 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2756 ARMMMUIdx_S12NSE0
, -1);
2761 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2765 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2767 CPU_FOREACH(other_cs
) {
2768 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2772 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2776 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2778 CPU_FOREACH(other_cs
) {
2779 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2783 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2786 /* Invalidate by IPA. This has to invalidate any structures that
2787 * contain only stage 2 translation information, but does not need
2788 * to apply to structures that contain combined stage 1 and stage 2
2789 * translation information.
2790 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2792 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2793 CPUState
*cs
= CPU(cpu
);
2796 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2800 pageaddr
= sextract64(value
<< 12, 0, 48);
2802 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2805 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2811 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2815 pageaddr
= sextract64(value
<< 12, 0, 48);
2817 CPU_FOREACH(other_cs
) {
2818 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2822 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2824 /* We don't implement EL2, so the only control on DC ZVA is the
2825 * bit in the SCTLR which can prohibit access for EL0.
2827 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2828 return CP_ACCESS_TRAP
;
2830 return CP_ACCESS_OK
;
2833 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2835 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2836 int dzp_bit
= 1 << 4;
2838 /* DZP indicates whether DC ZVA access is allowed */
2839 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2842 return cpu
->dcz_blocksize
| dzp_bit
;
2845 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2847 if (!(env
->pstate
& PSTATE_SP
)) {
2848 /* Access to SP_EL0 is undefined if it's being used as
2849 * the stack pointer.
2851 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2853 return CP_ACCESS_OK
;
2856 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2858 return env
->pstate
& PSTATE_SP
;
2861 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2863 update_spsel(env
, val
);
2866 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2869 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2871 if (raw_read(env
, ri
) == value
) {
2872 /* Skip the TLB flush if nothing actually changed; Linux likes
2873 * to do a lot of pointless SCTLR writes.
2878 raw_write(env
, ri
, value
);
2879 /* ??? Lots of these bits are not implemented. */
2880 /* This may enable/disable the MMU, so do a TLB flush. */
2881 tlb_flush(CPU(cpu
), 1);
2884 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2885 /* Minimal set of EL0-visible registers. This will need to be expanded
2886 * significantly for system emulation of AArch64 CPUs.
2888 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2889 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2890 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2891 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2892 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2893 .type
= ARM_CP_NO_RAW
,
2894 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2895 .fieldoffset
= offsetof(CPUARMState
, daif
),
2896 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2897 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2898 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2899 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2900 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2901 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2902 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2903 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2904 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2905 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
2906 .readfn
= aa64_dczid_read
},
2907 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2908 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2909 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2910 #ifndef CONFIG_USER_ONLY
2911 /* Avoid overhead of an access check that always passes in user-mode */
2912 .accessfn
= aa64_zva_access
,
2915 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2916 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2917 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2918 /* Cache ops: all NOPs since we don't emulate caches */
2919 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2920 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2921 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2922 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2923 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2924 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2925 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2926 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2927 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2928 .accessfn
= aa64_cacheop_access
},
2929 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2930 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2931 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2932 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2933 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2934 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2935 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2936 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2937 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2938 .accessfn
= aa64_cacheop_access
},
2939 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2940 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2941 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2942 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2943 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2944 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2945 .accessfn
= aa64_cacheop_access
},
2946 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2947 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2948 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2949 .accessfn
= aa64_cacheop_access
},
2950 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2951 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2952 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2953 /* TLBI operations */
2954 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2955 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2956 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2957 .writefn
= tlbi_aa64_vmalle1is_write
},
2958 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2959 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2960 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2961 .writefn
= tlbi_aa64_vae1is_write
},
2962 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2963 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2964 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2965 .writefn
= tlbi_aa64_vmalle1is_write
},
2966 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2967 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2968 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2969 .writefn
= tlbi_aa64_vae1is_write
},
2970 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2971 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2972 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2973 .writefn
= tlbi_aa64_vae1is_write
},
2974 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2975 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2976 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2977 .writefn
= tlbi_aa64_vae1is_write
},
2978 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2979 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2980 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2981 .writefn
= tlbi_aa64_vmalle1_write
},
2982 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2983 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2984 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2985 .writefn
= tlbi_aa64_vae1_write
},
2986 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2987 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2988 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2989 .writefn
= tlbi_aa64_vmalle1_write
},
2990 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2991 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2992 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2993 .writefn
= tlbi_aa64_vae1_write
},
2994 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2995 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2996 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2997 .writefn
= tlbi_aa64_vae1_write
},
2998 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2999 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3000 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3001 .writefn
= tlbi_aa64_vae1_write
},
3002 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3003 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3004 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3005 .writefn
= tlbi_aa64_ipas2e1is_write
},
3006 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3007 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3008 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3009 .writefn
= tlbi_aa64_ipas2e1is_write
},
3010 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3011 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3012 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3013 .writefn
= tlbi_aa64_alle1is_write
},
3014 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3015 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3016 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3017 .writefn
= tlbi_aa64_alle1is_write
},
3018 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3019 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3020 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3021 .writefn
= tlbi_aa64_ipas2e1_write
},
3022 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3023 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3024 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3025 .writefn
= tlbi_aa64_ipas2e1_write
},
3026 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3027 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3028 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3029 .writefn
= tlbi_aa64_alle1_write
},
3030 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3031 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3032 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3033 .writefn
= tlbi_aa64_alle1is_write
},
3034 #ifndef CONFIG_USER_ONLY
3035 /* 64 bit address translation operations */
3036 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3037 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3038 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3039 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3040 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3041 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3042 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3043 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3044 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3045 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3046 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3047 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3048 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3049 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3050 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3051 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3052 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3053 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3054 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3055 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3056 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3057 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3058 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3059 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3060 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3061 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3062 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3063 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3064 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3065 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3066 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3067 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3068 .type
= ARM_CP_ALIAS
,
3069 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3070 .access
= PL1_RW
, .resetvalue
= 0,
3071 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3072 .writefn
= par_write
},
3074 /* TLB invalidate last level of translation table walk */
3075 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3076 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3077 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3078 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3079 .writefn
= tlbimvaa_is_write
},
3080 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3081 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3082 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3083 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3084 /* 32 bit cache operations */
3085 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3086 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3087 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3088 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3089 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3090 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3091 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3092 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3093 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3094 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3095 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3096 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3097 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3098 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3099 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3100 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3101 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3102 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3103 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3104 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3105 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3106 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3107 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3108 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3109 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3110 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3111 /* MMU Domain access control / MPU write buffer control */
3112 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3113 .access
= PL1_RW
, .resetvalue
= 0,
3114 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3115 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3116 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3117 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3118 .type
= ARM_CP_ALIAS
,
3119 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3121 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3122 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3123 .type
= ARM_CP_ALIAS
,
3124 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3125 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[1]) },
3126 /* We rely on the access checks not allowing the guest to write to the
3127 * state field when SPSel indicates that it's being used as the stack
3130 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3131 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3132 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3133 .type
= ARM_CP_ALIAS
,
3134 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3135 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3136 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3137 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3138 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3139 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3140 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3141 .type
= ARM_CP_NO_RAW
,
3142 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3146 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3147 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3148 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3149 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3151 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3152 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3153 .type
= ARM_CP_NO_RAW
,
3154 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3156 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3157 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3158 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3159 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3160 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3161 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3162 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3164 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3165 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3166 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3167 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3168 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3169 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3171 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3172 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3173 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3175 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3176 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3177 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3179 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3180 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3181 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3183 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3184 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3185 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3186 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3187 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3188 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3189 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3190 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3191 .cp
= 15, .opc1
= 6, .crm
= 2,
3192 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3193 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3194 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3195 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3196 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3197 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3198 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3199 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3200 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3201 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3202 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3203 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3204 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3205 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3206 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3207 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3209 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3210 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3211 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3212 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3213 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3214 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3215 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3216 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3218 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3219 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3220 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3221 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3222 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3224 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3225 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3226 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3227 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3228 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3229 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3230 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3231 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3232 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3236 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3238 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3239 uint64_t valid_mask
= HCR_MASK
;
3241 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3242 valid_mask
&= ~HCR_HCD
;
3244 valid_mask
&= ~HCR_TSC
;
3247 /* Clear RES0 bits. */
3248 value
&= valid_mask
;
3250 /* These bits change the MMU setup:
3251 * HCR_VM enables stage 2 translation
3252 * HCR_PTW forbids certain page-table setups
3253 * HCR_DC Disables stage1 and enables stage2 translation
3255 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3256 tlb_flush(CPU(cpu
), 1);
3258 raw_write(env
, ri
, value
);
3261 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3262 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3263 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3264 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3265 .writefn
= hcr_write
},
3266 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3267 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3268 .access
= PL2_RW
, .resetvalue
= 0,
3269 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3270 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3271 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3272 .type
= ARM_CP_ALIAS
,
3273 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3275 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3276 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3277 .type
= ARM_CP_ALIAS
,
3278 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3279 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3280 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3281 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3282 .access
= PL2_RW
, .resetvalue
= 0,
3283 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3284 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3285 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3286 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3287 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3288 .type
= ARM_CP_ALIAS
,
3289 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3290 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
3291 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3292 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3293 .access
= PL2_RW
, .writefn
= vbar_write
,
3294 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3296 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3297 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3298 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3299 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3300 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3301 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3302 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3303 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3304 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3305 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3306 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3308 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3309 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3310 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3311 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3312 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3313 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3314 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3316 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3317 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3318 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3319 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3321 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3322 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3323 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3325 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3326 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3327 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3329 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3330 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3331 .access
= PL2_RW
, .writefn
= vmsa_tcr_el1_write
,
3332 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3333 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3334 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3335 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3336 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3337 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3338 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3339 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3340 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3341 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3342 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3343 .cp
= 15, .opc1
= 6, .crm
= 2,
3344 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3345 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3346 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3347 .writefn
= vttbr_write
},
3348 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3349 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3350 .access
= PL2_RW
, .writefn
= vttbr_write
,
3351 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3352 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3353 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3354 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3355 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3356 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3357 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3358 .access
= PL2_RW
, .resetvalue
= 0,
3359 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3360 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3361 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3362 .access
= PL2_RW
, .resetvalue
= 0,
3363 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3364 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3365 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3366 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3367 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3368 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3369 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3370 .writefn
= tlbi_aa64_alle2_write
},
3371 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3372 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3373 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3374 .writefn
= tlbi_aa64_vae2_write
},
3375 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3376 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3377 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3378 .writefn
= tlbi_aa64_vae2_write
},
3379 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3380 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3381 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3382 .writefn
= tlbi_aa64_alle2is_write
},
3383 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3384 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3385 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3386 .writefn
= tlbi_aa64_vae2is_write
},
3387 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3388 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3389 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3390 .writefn
= tlbi_aa64_vae2is_write
},
3391 #ifndef CONFIG_USER_ONLY
3392 /* Unlike the other EL2-related AT operations, these must
3393 * UNDEF from EL3 if EL2 is not implemented, which is why we
3394 * define them here rather than with the rest of the AT ops.
3396 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3397 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3398 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3399 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3400 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3401 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3402 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3403 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3404 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3405 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3406 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3407 * to behave as if SCR.NS was 1.
3409 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3411 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3412 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3414 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3415 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3416 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3417 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3418 * reset values as IMPDEF. We choose to reset to 3 to comply with
3419 * both ARMv7 and ARMv8.
3421 .access
= PL2_RW
, .resetvalue
= 3,
3422 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3423 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3424 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3425 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3426 .writefn
= gt_cntvoff_write
,
3427 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3428 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3429 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3430 .writefn
= gt_cntvoff_write
,
3431 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3432 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3433 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3434 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3435 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3436 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3437 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3438 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3439 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3440 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3441 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3442 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3443 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3444 .resetfn
= gt_hyp_timer_reset
,
3445 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3446 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3448 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3450 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3452 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3454 /* The only field of MDCR_EL2 that has a defined architectural reset value
3455 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3456 * don't impelment any PMU event counters, so using zero as a reset
3457 * value for MDCR_EL2 is okay
3459 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3460 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3461 .access
= PL2_RW
, .resetvalue
= 0,
3462 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3466 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3467 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3468 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3469 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3470 .resetvalue
= 0, .writefn
= scr_write
},
3471 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3472 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3473 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3474 .writefn
= scr_write
},
3475 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3476 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3477 .access
= PL3_RW
, .resetvalue
= 0,
3478 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3480 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3481 .access
= PL3_RW
, .resetvalue
= 0,
3482 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3483 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3484 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
3485 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
3486 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
3487 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3488 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
3489 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3490 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
3491 .type
= ARM_CP_ALIAS
, /* reset handled by AArch32 view */
3492 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
3493 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3494 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
3495 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3496 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3497 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3498 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3499 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3500 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3501 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
3502 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3503 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3504 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3505 .type
= ARM_CP_ALIAS
,
3506 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3508 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3509 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3510 .type
= ARM_CP_ALIAS
,
3511 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3512 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3513 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3514 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3515 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3516 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3517 .type
= ARM_CP_ALIAS
,
3518 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3519 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
3520 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3521 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3522 .access
= PL3_RW
, .writefn
= vbar_write
,
3523 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3525 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3526 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3527 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3528 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3529 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3530 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3531 .access
= PL3_RW
, .resetvalue
= 0,
3532 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3533 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3534 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3535 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3537 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3538 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3539 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3541 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3542 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3543 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3545 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3546 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3547 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3548 .writefn
= tlbi_aa64_alle3is_write
},
3549 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3550 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3551 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3552 .writefn
= tlbi_aa64_vae3is_write
},
3553 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3554 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3555 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3556 .writefn
= tlbi_aa64_vae3is_write
},
3557 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3558 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3559 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3560 .writefn
= tlbi_aa64_alle3_write
},
3561 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3562 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3563 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3564 .writefn
= tlbi_aa64_vae3_write
},
3565 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3566 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3567 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3568 .writefn
= tlbi_aa64_vae3_write
},
3572 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3574 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3575 * but the AArch32 CTR has its own reginfo struct)
3577 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3578 return CP_ACCESS_TRAP
;
3580 return CP_ACCESS_OK
;
3583 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3586 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3587 * read via a bit in OSLSR_EL1.
3591 if (ri
->state
== ARM_CP_STATE_AA32
) {
3592 oslock
= (value
== 0xC5ACCE55);
3597 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
3600 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3601 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3602 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3603 * unlike DBGDRAR it is never accessible from EL0.
3604 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3607 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3608 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3609 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3610 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3611 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3612 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3613 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3614 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3615 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3616 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3618 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3620 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3621 * We don't implement the configurable EL0 access.
3623 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3624 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3625 .type
= ARM_CP_ALIAS
,
3627 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3628 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3629 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3630 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3631 .writefn
= oslar_write
},
3632 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
3633 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
3634 .access
= PL1_R
, .resetvalue
= 10,
3635 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
3636 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3637 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3638 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3639 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3640 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3641 * implement vector catch debug events yet.
3644 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3645 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3649 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3650 /* 64 bit access versions of the (dummy) debug registers */
3651 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3652 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3653 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3654 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3658 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3660 CPUARMState
*env
= &cpu
->env
;
3662 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3663 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3665 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3667 if (env
->cpu_watchpoint
[n
]) {
3668 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3669 env
->cpu_watchpoint
[n
] = NULL
;
3672 if (!extract64(wcr
, 0, 1)) {
3673 /* E bit clear : watchpoint disabled */
3677 switch (extract64(wcr
, 3, 2)) {
3679 /* LSC 00 is reserved and must behave as if the wp is disabled */
3682 flags
|= BP_MEM_READ
;
3685 flags
|= BP_MEM_WRITE
;
3688 flags
|= BP_MEM_ACCESS
;
3692 /* Attempts to use both MASK and BAS fields simultaneously are
3693 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3694 * thus generating a watchpoint for every byte in the masked region.
3696 mask
= extract64(wcr
, 24, 4);
3697 if (mask
== 1 || mask
== 2) {
3698 /* Reserved values of MASK; we must act as if the mask value was
3699 * some non-reserved value, or as if the watchpoint were disabled.
3700 * We choose the latter.
3704 /* Watchpoint covers an aligned area up to 2GB in size */
3706 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3707 * whether the watchpoint fires when the unmasked bits match; we opt
3708 * to generate the exceptions.
3712 /* Watchpoint covers bytes defined by the byte address select bits */
3713 int bas
= extract64(wcr
, 5, 8);
3717 /* This must act as if the watchpoint is disabled */
3721 if (extract64(wvr
, 2, 1)) {
3722 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3723 * ignored, and BAS[3:0] define which bytes to watch.
3727 /* The BAS bits are supposed to be programmed to indicate a contiguous
3728 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3729 * we fire for each byte in the word/doubleword addressed by the WVR.
3730 * We choose to ignore any non-zero bits after the first range of 1s.
3732 basstart
= ctz32(bas
);
3733 len
= cto32(bas
>> basstart
);
3737 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
3738 &env
->cpu_watchpoint
[n
]);
3741 void hw_watchpoint_update_all(ARMCPU
*cpu
)
3744 CPUARMState
*env
= &cpu
->env
;
3746 /* Completely clear out existing QEMU watchpoints and our array, to
3747 * avoid possible stale entries following migration load.
3749 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
3750 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
3752 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
3753 hw_watchpoint_update(cpu
, i
);
3757 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3760 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3763 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3764 * register reads and behaves as if values written are sign extended.
3765 * Bits [1:0] are RES0.
3767 value
= sextract64(value
, 0, 49) & ~3ULL;
3769 raw_write(env
, ri
, value
);
3770 hw_watchpoint_update(cpu
, i
);
3773 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3776 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3779 raw_write(env
, ri
, value
);
3780 hw_watchpoint_update(cpu
, i
);
3783 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
3785 CPUARMState
*env
= &cpu
->env
;
3786 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
3787 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
3792 if (env
->cpu_breakpoint
[n
]) {
3793 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
3794 env
->cpu_breakpoint
[n
] = NULL
;
3797 if (!extract64(bcr
, 0, 1)) {
3798 /* E bit clear : watchpoint disabled */
3802 bt
= extract64(bcr
, 20, 4);
3805 case 4: /* unlinked address mismatch (reserved if AArch64) */
3806 case 5: /* linked address mismatch (reserved if AArch64) */
3807 qemu_log_mask(LOG_UNIMP
,
3808 "arm: address mismatch breakpoint types not implemented");
3810 case 0: /* unlinked address match */
3811 case 1: /* linked address match */
3813 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3814 * we behave as if the register was sign extended. Bits [1:0] are
3815 * RES0. The BAS field is used to allow setting breakpoints on 16
3816 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3817 * a bp will fire if the addresses covered by the bp and the addresses
3818 * covered by the insn overlap but the insn doesn't start at the
3819 * start of the bp address range. We choose to require the insn and
3820 * the bp to have the same address. The constraints on writing to
3821 * BAS enforced in dbgbcr_write mean we have only four cases:
3822 * 0b0000 => no breakpoint
3823 * 0b0011 => breakpoint on addr
3824 * 0b1100 => breakpoint on addr + 2
3825 * 0b1111 => breakpoint on addr
3826 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3828 int bas
= extract64(bcr
, 5, 4);
3829 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
3838 case 2: /* unlinked context ID match */
3839 case 8: /* unlinked VMID match (reserved if no EL2) */
3840 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3841 qemu_log_mask(LOG_UNIMP
,
3842 "arm: unlinked context breakpoint types not implemented");
3844 case 9: /* linked VMID match (reserved if no EL2) */
3845 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3846 case 3: /* linked context ID match */
3848 /* We must generate no events for Linked context matches (unless
3849 * they are linked to by some other bp/wp, which is handled in
3850 * updates for the linking bp/wp). We choose to also generate no events
3851 * for reserved values.
3856 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
3859 void hw_breakpoint_update_all(ARMCPU
*cpu
)
3862 CPUARMState
*env
= &cpu
->env
;
3864 /* Completely clear out existing QEMU breakpoints and our array, to
3865 * avoid possible stale entries following migration load.
3867 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
3868 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
3870 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
3871 hw_breakpoint_update(cpu
, i
);
3875 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3878 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3881 raw_write(env
, ri
, value
);
3882 hw_breakpoint_update(cpu
, i
);
3885 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3888 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3891 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3894 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
3895 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
3897 raw_write(env
, ri
, value
);
3898 hw_breakpoint_update(cpu
, i
);
3901 static void define_debug_regs(ARMCPU
*cpu
)
3903 /* Define v7 and v8 architectural debug registers.
3904 * These are just dummy implementations for now.
3907 int wrps
, brps
, ctx_cmps
;
3908 ARMCPRegInfo dbgdidr
= {
3909 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
3910 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
3913 /* Note that all these register fields hold "number of Xs minus 1". */
3914 brps
= extract32(cpu
->dbgdidr
, 24, 4);
3915 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
3916 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
3918 assert(ctx_cmps
<= brps
);
3920 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3921 * of the debug registers such as number of breakpoints;
3922 * check that if they both exist then they agree.
3924 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
3925 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
3926 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
3927 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
3930 define_one_arm_cp_reg(cpu
, &dbgdidr
);
3931 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
3933 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
3934 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
3937 for (i
= 0; i
< brps
+ 1; i
++) {
3938 ARMCPRegInfo dbgregs
[] = {
3939 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
3940 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
3942 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
3943 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
3945 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
3946 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
3948 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
3949 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
3953 define_arm_cp_regs(cpu
, dbgregs
);
3956 for (i
= 0; i
< wrps
+ 1; i
++) {
3957 ARMCPRegInfo dbgregs
[] = {
3958 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
3959 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
3961 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
3962 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
3964 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
3965 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
3967 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
3968 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
3972 define_arm_cp_regs(cpu
, dbgregs
);
3976 void register_cp_regs_for_features(ARMCPU
*cpu
)
3978 /* Register all the coprocessor registers based on feature bits */
3979 CPUARMState
*env
= &cpu
->env
;
3980 if (arm_feature(env
, ARM_FEATURE_M
)) {
3981 /* M profile has no coprocessor registers */
3985 define_arm_cp_regs(cpu
, cp_reginfo
);
3986 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3987 /* Must go early as it is full of wildcards that may be
3988 * overridden by later definitions.
3990 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
3993 if (arm_feature(env
, ARM_FEATURE_V6
)) {
3994 /* The ID registers all have impdef reset values */
3995 ARMCPRegInfo v6_idregs
[] = {
3996 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
3997 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3998 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3999 .resetvalue
= cpu
->id_pfr0
},
4000 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4001 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4002 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4003 .resetvalue
= cpu
->id_pfr1
},
4004 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4005 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4006 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4007 .resetvalue
= cpu
->id_dfr0
},
4008 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4009 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4010 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4011 .resetvalue
= cpu
->id_afr0
},
4012 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4013 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4014 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4015 .resetvalue
= cpu
->id_mmfr0
},
4016 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4017 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4018 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4019 .resetvalue
= cpu
->id_mmfr1
},
4020 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4021 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4022 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4023 .resetvalue
= cpu
->id_mmfr2
},
4024 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4025 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4026 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4027 .resetvalue
= cpu
->id_mmfr3
},
4028 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4029 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4030 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4031 .resetvalue
= cpu
->id_isar0
},
4032 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4033 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4034 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4035 .resetvalue
= cpu
->id_isar1
},
4036 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4037 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4038 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4039 .resetvalue
= cpu
->id_isar2
},
4040 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4041 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4042 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4043 .resetvalue
= cpu
->id_isar3
},
4044 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4045 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4046 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4047 .resetvalue
= cpu
->id_isar4
},
4048 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4049 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4050 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4051 .resetvalue
= cpu
->id_isar5
},
4052 /* 6..7 are as yet unallocated and must RAZ */
4053 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
4054 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4056 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
4057 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4061 define_arm_cp_regs(cpu
, v6_idregs
);
4062 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4064 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4066 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4067 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4069 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4070 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4071 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4073 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4074 /* v7 performance monitor control register: same implementor
4075 * field as main ID register, and we implement only the cycle
4078 #ifndef CONFIG_USER_ONLY
4079 ARMCPRegInfo pmcr
= {
4080 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4082 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4083 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4084 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4085 .raw_writefn
= raw_write
,
4087 ARMCPRegInfo pmcr64
= {
4088 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4089 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4090 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4092 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4093 .resetvalue
= cpu
->midr
& 0xff000000,
4094 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4096 define_one_arm_cp_reg(cpu
, &pmcr
);
4097 define_one_arm_cp_reg(cpu
, &pmcr64
);
4099 ARMCPRegInfo clidr
= {
4100 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4101 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4102 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4104 define_one_arm_cp_reg(cpu
, &clidr
);
4105 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4106 define_debug_regs(cpu
);
4108 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4110 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4111 /* AArch64 ID registers, which all have impdef reset values */
4112 ARMCPRegInfo v8_idregs
[] = {
4113 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4114 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4115 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4116 .resetvalue
= cpu
->id_aa64pfr0
},
4117 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4118 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4119 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4120 .resetvalue
= cpu
->id_aa64pfr1
},
4121 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4122 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4123 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4124 /* We mask out the PMUVer field, because we don't currently
4125 * implement the PMU. Not advertising it prevents the guest
4126 * from trying to use it and getting UNDEFs on registers we
4129 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4130 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4131 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4132 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4133 .resetvalue
= cpu
->id_aa64dfr1
},
4134 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4135 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4136 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4137 .resetvalue
= cpu
->id_aa64afr0
},
4138 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4139 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4140 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4141 .resetvalue
= cpu
->id_aa64afr1
},
4142 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4143 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4144 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4145 .resetvalue
= cpu
->id_aa64isar0
},
4146 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4147 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4148 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4149 .resetvalue
= cpu
->id_aa64isar1
},
4150 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4151 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4152 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4153 .resetvalue
= cpu
->id_aa64mmfr0
},
4154 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4155 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4156 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4157 .resetvalue
= cpu
->id_aa64mmfr1
},
4158 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4159 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4160 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4161 .resetvalue
= cpu
->mvfr0
},
4162 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4163 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4164 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4165 .resetvalue
= cpu
->mvfr1
},
4166 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4167 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4168 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4169 .resetvalue
= cpu
->mvfr2
},
4172 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4173 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4174 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4175 ARMCPRegInfo rvbar
= {
4176 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4177 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4178 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4180 define_one_arm_cp_reg(cpu
, &rvbar
);
4182 define_arm_cp_regs(cpu
, v8_idregs
);
4183 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4185 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4186 uint64_t vmpidr_def
= mpidr_read_val(env
);
4187 ARMCPRegInfo vpidr_regs
[] = {
4188 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4189 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4190 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4191 .resetvalue
= cpu
->midr
,
4192 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4193 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4194 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4195 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4196 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4197 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4198 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4199 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4200 .resetvalue
= vmpidr_def
,
4201 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4202 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4203 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4205 .resetvalue
= vmpidr_def
,
4206 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4209 define_arm_cp_regs(cpu
, vpidr_regs
);
4210 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4211 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4212 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4213 ARMCPRegInfo rvbar
= {
4214 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4215 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4216 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4218 define_one_arm_cp_reg(cpu
, &rvbar
);
4221 /* If EL2 is missing but higher ELs are enabled, we need to
4222 * register the no_el2 reginfos.
4224 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4225 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4226 * of MIDR_EL1 and MPIDR_EL1.
4228 ARMCPRegInfo vpidr_regs
[] = {
4229 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4230 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4231 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4232 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4233 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4234 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4235 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4236 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4237 .type
= ARM_CP_NO_RAW
,
4238 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4241 define_arm_cp_regs(cpu
, vpidr_regs
);
4242 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4245 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4246 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4247 ARMCPRegInfo rvbar
= {
4248 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4249 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4250 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
4252 define_one_arm_cp_reg(cpu
, &rvbar
);
4254 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4255 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4256 /* PMSAv6 not implemented */
4257 assert(arm_feature(env
, ARM_FEATURE_V7
));
4258 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4259 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4261 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4264 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4265 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4267 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4268 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4270 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4271 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4273 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4274 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4276 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4277 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4279 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4280 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4282 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4283 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4285 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4286 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4288 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4289 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4291 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4292 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4294 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4295 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4297 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4298 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4300 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4301 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4302 * be read-only (ie write causes UNDEF exception).
4305 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4306 /* Pre-v8 MIDR space.
4307 * Note that the MIDR isn't a simple constant register because
4308 * of the TI925 behaviour where writes to another register can
4309 * cause the MIDR value to change.
4311 * Unimplemented registers in the c15 0 0 0 space default to
4312 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4313 * and friends override accordingly.
4316 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4317 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4318 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4319 .readfn
= midr_read
,
4320 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4321 .type
= ARM_CP_OVERRIDE
},
4322 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4324 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4325 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4327 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4328 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4330 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4331 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4333 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4334 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4336 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4337 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4340 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4341 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4342 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4343 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4344 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4345 .readfn
= midr_read
},
4346 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4347 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4348 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4349 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4350 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4351 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4352 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4353 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4354 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4355 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4358 ARMCPRegInfo id_cp_reginfo
[] = {
4359 /* These are common to v8 and pre-v8 */
4361 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4362 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4363 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4364 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4365 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4366 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4367 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4369 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4370 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4373 /* TLBTR is specific to VMSA */
4374 ARMCPRegInfo id_tlbtr_reginfo
= {
4376 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4377 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4379 /* MPUIR is specific to PMSA V6+ */
4380 ARMCPRegInfo id_mpuir_reginfo
= {
4382 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4383 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4384 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4386 ARMCPRegInfo crn0_wi_reginfo
= {
4387 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4388 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4389 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4391 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4392 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4394 /* Register the blanket "writes ignored" value first to cover the
4395 * whole space. Then update the specific ID registers to allow write
4396 * access, so that they ignore writes rather than causing them to
4399 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4400 for (r
= id_pre_v8_midr_cp_reginfo
;
4401 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4404 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4407 id_tlbtr_reginfo
.access
= PL1_RW
;
4408 id_tlbtr_reginfo
.access
= PL1_RW
;
4410 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4411 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4413 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4415 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4416 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4417 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4418 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4419 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4423 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4424 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4427 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4428 ARMCPRegInfo auxcr_reginfo
[] = {
4429 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4430 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4431 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4432 .resetvalue
= cpu
->reset_auxcr
},
4433 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4434 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4435 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4437 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4438 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4439 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4443 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4446 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4447 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4448 /* 32 bit view is [31:18] 0...0 [43:32]. */
4449 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4450 | extract64(cpu
->reset_cbar
, 32, 12);
4451 ARMCPRegInfo cbar_reginfo
[] = {
4453 .type
= ARM_CP_CONST
,
4454 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4455 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4456 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4457 .type
= ARM_CP_CONST
,
4458 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4459 .access
= PL1_R
, .resetvalue
= cbar32
},
4462 /* We don't implement a r/w 64 bit CBAR currently */
4463 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4464 define_arm_cp_regs(cpu
, cbar_reginfo
);
4466 ARMCPRegInfo cbar
= {
4468 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4469 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4470 .fieldoffset
= offsetof(CPUARMState
,
4471 cp15
.c15_config_base_address
)
4473 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4474 cbar
.access
= PL1_R
;
4475 cbar
.fieldoffset
= 0;
4476 cbar
.type
= ARM_CP_CONST
;
4478 define_one_arm_cp_reg(cpu
, &cbar
);
4482 /* Generic registers whose values depend on the implementation */
4484 ARMCPRegInfo sctlr
= {
4485 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4486 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4488 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4489 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4490 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4491 .raw_writefn
= raw_write
,
4493 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4494 /* Normally we would always end the TB on an SCTLR write, but Linux
4495 * arch/arm/mach-pxa/sleep.S expects two instructions following
4496 * an MMU enable to execute from cache. Imitate this behaviour.
4498 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4500 define_one_arm_cp_reg(cpu
, &sctlr
);
4504 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4506 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4509 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4511 CPUState
*cs
= CPU(cpu
);
4512 CPUARMState
*env
= &cpu
->env
;
4514 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4515 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4516 aarch64_fpu_gdb_set_reg
,
4517 34, "aarch64-fpu.xml", 0);
4518 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4519 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4520 51, "arm-neon.xml", 0);
4521 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4522 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4523 35, "arm-vfp3.xml", 0);
4524 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4525 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4526 19, "arm-vfp.xml", 0);
4530 /* Sort alphabetically by type name, except for "any". */
4531 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4533 ObjectClass
*class_a
= (ObjectClass
*)a
;
4534 ObjectClass
*class_b
= (ObjectClass
*)b
;
4535 const char *name_a
, *name_b
;
4537 name_a
= object_class_get_name(class_a
);
4538 name_b
= object_class_get_name(class_b
);
4539 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4541 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4544 return strcmp(name_a
, name_b
);
4548 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4550 ObjectClass
*oc
= data
;
4551 CPUListState
*s
= user_data
;
4552 const char *typename
;
4555 typename
= object_class_get_name(oc
);
4556 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4557 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
4562 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
4566 .cpu_fprintf
= cpu_fprintf
,
4570 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4571 list
= g_slist_sort(list
, arm_cpu_list_compare
);
4572 (*cpu_fprintf
)(f
, "Available CPUs:\n");
4573 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
4576 /* The 'host' CPU type is dynamically registered only if KVM is
4577 * enabled, so we have to special-case it here:
4579 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
4583 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
4585 ObjectClass
*oc
= data
;
4586 CpuDefinitionInfoList
**cpu_list
= user_data
;
4587 CpuDefinitionInfoList
*entry
;
4588 CpuDefinitionInfo
*info
;
4589 const char *typename
;
4591 typename
= object_class_get_name(oc
);
4592 info
= g_malloc0(sizeof(*info
));
4593 info
->name
= g_strndup(typename
,
4594 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4596 entry
= g_malloc0(sizeof(*entry
));
4597 entry
->value
= info
;
4598 entry
->next
= *cpu_list
;
4602 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
4604 CpuDefinitionInfoList
*cpu_list
= NULL
;
4607 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4608 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
4614 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
4615 void *opaque
, int state
, int secstate
,
4616 int crm
, int opc1
, int opc2
)
4618 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4619 * add a single reginfo struct to the hash table.
4621 uint32_t *key
= g_new(uint32_t, 1);
4622 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
4623 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
4624 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
4626 /* Reset the secure state to the specific incoming state. This is
4627 * necessary as the register may have been defined with both states.
4629 r2
->secure
= secstate
;
4631 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4632 /* Register is banked (using both entries in array).
4633 * Overwriting fieldoffset as the array is only used to define
4634 * banked registers but later only fieldoffset is used.
4636 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
4639 if (state
== ARM_CP_STATE_AA32
) {
4640 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4641 /* If the register is banked then we don't need to migrate or
4642 * reset the 32-bit instance in certain cases:
4644 * 1) If the register has both 32-bit and 64-bit instances then we
4645 * can count on the 64-bit instance taking care of the
4647 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4648 * taking care of the secure bank. This requires that separate
4649 * 32 and 64-bit definitions are provided.
4651 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
4652 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
4653 r2
->type
|= ARM_CP_ALIAS
;
4655 } else if ((secstate
!= r
->secure
) && !ns
) {
4656 /* The register is not banked so we only want to allow migration of
4657 * the non-secure instance.
4659 r2
->type
|= ARM_CP_ALIAS
;
4662 if (r
->state
== ARM_CP_STATE_BOTH
) {
4663 /* We assume it is a cp15 register if the .cp field is left unset.
4669 #ifdef HOST_WORDS_BIGENDIAN
4670 if (r2
->fieldoffset
) {
4671 r2
->fieldoffset
+= sizeof(uint32_t);
4676 if (state
== ARM_CP_STATE_AA64
) {
4677 /* To allow abbreviation of ARMCPRegInfo
4678 * definitions, we treat cp == 0 as equivalent to
4679 * the value for "standard guest-visible sysreg".
4680 * STATE_BOTH definitions are also always "standard
4681 * sysreg" in their AArch64 view (the .cp value may
4682 * be non-zero for the benefit of the AArch32 view).
4684 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
4685 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
4687 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
4688 r2
->opc0
, opc1
, opc2
);
4690 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
4693 r2
->opaque
= opaque
;
4695 /* reginfo passed to helpers is correct for the actual access,
4696 * and is never ARM_CP_STATE_BOTH:
4699 /* Make sure reginfo passed to helpers for wildcarded regs
4700 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4705 /* By convention, for wildcarded registers only the first
4706 * entry is used for migration; the others are marked as
4707 * ALIAS so we don't try to transfer the register
4708 * multiple times. Special registers (ie NOP/WFI) are
4709 * never migratable and not even raw-accessible.
4711 if ((r
->type
& ARM_CP_SPECIAL
)) {
4712 r2
->type
|= ARM_CP_NO_RAW
;
4714 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
4715 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
4716 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
4717 r2
->type
|= ARM_CP_ALIAS
;
4720 /* Check that raw accesses are either forbidden or handled. Note that
4721 * we can't assert this earlier because the setup of fieldoffset for
4722 * banked registers has to be done first.
4724 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
4725 assert(!raw_accessors_invalid(r2
));
4728 /* Overriding of an existing definition must be explicitly
4731 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
4732 ARMCPRegInfo
*oldreg
;
4733 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
4734 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
4735 fprintf(stderr
, "Register redefined: cp=%d %d bit "
4736 "crn=%d crm=%d opc1=%d opc2=%d, "
4737 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
4738 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
4739 oldreg
->name
, r2
->name
);
4740 g_assert_not_reached();
4743 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
4747 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
4748 const ARMCPRegInfo
*r
, void *opaque
)
4750 /* Define implementations of coprocessor registers.
4751 * We store these in a hashtable because typically
4752 * there are less than 150 registers in a space which
4753 * is 16*16*16*8*8 = 262144 in size.
4754 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4755 * If a register is defined twice then the second definition is
4756 * used, so this can be used to define some generic registers and
4757 * then override them with implementation specific variations.
4758 * At least one of the original and the second definition should
4759 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4760 * against accidental use.
4762 * The state field defines whether the register is to be
4763 * visible in the AArch32 or AArch64 execution state. If the
4764 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4765 * reginfo structure for the AArch32 view, which sees the lower
4766 * 32 bits of the 64 bit register.
4768 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4769 * be wildcarded. AArch64 registers are always considered to be 64
4770 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4771 * the register, if any.
4773 int crm
, opc1
, opc2
, state
;
4774 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
4775 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
4776 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
4777 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
4778 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
4779 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
4780 /* 64 bit registers have only CRm and Opc1 fields */
4781 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
4782 /* op0 only exists in the AArch64 encodings */
4783 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
4784 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4785 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
4786 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4787 * encodes a minimum access level for the register. We roll this
4788 * runtime check into our general permission check code, so check
4789 * here that the reginfo's specified permissions are strict enough
4790 * to encompass the generic architectural permission check.
4792 if (r
->state
!= ARM_CP_STATE_AA32
) {
4795 case 0: case 1: case 2:
4808 /* unallocated encoding, so not possible */
4816 /* min_EL EL1, secure mode only (we don't check the latter) */
4820 /* broken reginfo with out-of-range opc1 */
4824 /* assert our permissions are not too lax (stricter is fine) */
4825 assert((r
->access
& ~mask
) == 0);
4828 /* Check that the register definition has enough info to handle
4829 * reads and writes if they are permitted.
4831 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
4832 if (r
->access
& PL3_R
) {
4833 assert((r
->fieldoffset
||
4834 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4837 if (r
->access
& PL3_W
) {
4838 assert((r
->fieldoffset
||
4839 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4843 /* Bad type field probably means missing sentinel at end of reg list */
4844 assert(cptype_valid(r
->type
));
4845 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
4846 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
4847 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
4848 for (state
= ARM_CP_STATE_AA32
;
4849 state
<= ARM_CP_STATE_AA64
; state
++) {
4850 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
4853 if (state
== ARM_CP_STATE_AA32
) {
4854 /* Under AArch32 CP registers can be common
4855 * (same for secure and non-secure world) or banked.
4857 switch (r
->secure
) {
4858 case ARM_CP_SECSTATE_S
:
4859 case ARM_CP_SECSTATE_NS
:
4860 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4861 r
->secure
, crm
, opc1
, opc2
);
4864 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4867 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4873 /* AArch64 registers get mapped to non-secure instance
4875 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4885 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
4886 const ARMCPRegInfo
*regs
, void *opaque
)
4888 /* Define a whole list of registers */
4889 const ARMCPRegInfo
*r
;
4890 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4891 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
4895 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
4897 return g_hash_table_lookup(cpregs
, &encoded_cp
);
4900 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4903 /* Helper coprocessor write function for write-ignore registers */
4906 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4908 /* Helper coprocessor write function for read-as-zero registers */
4912 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
4914 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4917 static int bad_mode_switch(CPUARMState
*env
, int mode
)
4919 /* Return true if it is not valid for us to switch to
4920 * this CPU mode (ie all the UNPREDICTABLE cases in
4921 * the ARM ARM CPSRWriteByInstr pseudocode).
4924 case ARM_CPU_MODE_USR
:
4925 case ARM_CPU_MODE_SYS
:
4926 case ARM_CPU_MODE_SVC
:
4927 case ARM_CPU_MODE_ABT
:
4928 case ARM_CPU_MODE_UND
:
4929 case ARM_CPU_MODE_IRQ
:
4930 case ARM_CPU_MODE_FIQ
:
4932 case ARM_CPU_MODE_MON
:
4933 return !arm_is_secure(env
);
4939 uint32_t cpsr_read(CPUARMState
*env
)
4942 ZF
= (env
->ZF
== 0);
4943 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
4944 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
4945 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
4946 | ((env
->condexec_bits
& 0xfc) << 8)
4947 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
4950 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
4952 uint32_t changed_daif
;
4954 if (mask
& CPSR_NZCV
) {
4955 env
->ZF
= (~val
) & CPSR_Z
;
4957 env
->CF
= (val
>> 29) & 1;
4958 env
->VF
= (val
<< 3) & 0x80000000;
4961 env
->QF
= ((val
& CPSR_Q
) != 0);
4963 env
->thumb
= ((val
& CPSR_T
) != 0);
4964 if (mask
& CPSR_IT_0_1
) {
4965 env
->condexec_bits
&= ~3;
4966 env
->condexec_bits
|= (val
>> 25) & 3;
4968 if (mask
& CPSR_IT_2_7
) {
4969 env
->condexec_bits
&= 3;
4970 env
->condexec_bits
|= (val
>> 8) & 0xfc;
4972 if (mask
& CPSR_GE
) {
4973 env
->GE
= (val
>> 16) & 0xf;
4976 /* In a V7 implementation that includes the security extensions but does
4977 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4978 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4979 * bits respectively.
4981 * In a V8 implementation, it is permitted for privileged software to
4982 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4984 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
4985 arm_feature(env
, ARM_FEATURE_EL3
) &&
4986 !arm_feature(env
, ARM_FEATURE_EL2
) &&
4987 !arm_is_secure(env
)) {
4989 changed_daif
= (env
->daif
^ val
) & mask
;
4991 if (changed_daif
& CPSR_A
) {
4992 /* Check to see if we are allowed to change the masking of async
4993 * abort exceptions from a non-secure state.
4995 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
4996 qemu_log_mask(LOG_GUEST_ERROR
,
4997 "Ignoring attempt to switch CPSR_A flag from "
4998 "non-secure world with SCR.AW bit clear\n");
5003 if (changed_daif
& CPSR_F
) {
5004 /* Check to see if we are allowed to change the masking of FIQ
5005 * exceptions from a non-secure state.
5007 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5008 qemu_log_mask(LOG_GUEST_ERROR
,
5009 "Ignoring attempt to switch CPSR_F flag from "
5010 "non-secure world with SCR.FW bit clear\n");
5014 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5015 * If this bit is set software is not allowed to mask
5016 * FIQs, but is allowed to set CPSR_F to 0.
5018 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5020 qemu_log_mask(LOG_GUEST_ERROR
,
5021 "Ignoring attempt to enable CPSR_F flag "
5022 "(non-maskable FIQ [NMFI] support enabled)\n");
5028 env
->daif
&= ~(CPSR_AIF
& mask
);
5029 env
->daif
|= val
& CPSR_AIF
& mask
;
5031 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
5032 if (bad_mode_switch(env
, val
& CPSR_M
)) {
5033 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
5034 * We choose to ignore the attempt and leave the CPSR M field
5039 switch_mode(env
, val
& CPSR_M
);
5042 mask
&= ~CACHED_CPSR_BITS
;
5043 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5046 /* Sign/zero extend */
5047 uint32_t HELPER(sxtb16
)(uint32_t x
)
5050 res
= (uint16_t)(int8_t)x
;
5051 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5055 uint32_t HELPER(uxtb16
)(uint32_t x
)
5058 res
= (uint16_t)(uint8_t)x
;
5059 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5063 uint32_t HELPER(clz
)(uint32_t x
)
5068 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5072 if (num
== INT_MIN
&& den
== -1)
5077 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5084 uint32_t HELPER(rbit
)(uint32_t x
)
5089 #if defined(CONFIG_USER_ONLY)
5091 /* These should probably raise undefined insn exceptions. */
5092 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5094 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5096 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5099 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5101 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5103 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5107 void switch_mode(CPUARMState
*env
, int mode
)
5109 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5111 if (mode
!= ARM_CPU_MODE_USR
) {
5112 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5116 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
5118 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5120 cpu_abort(CPU(cpu
), "banked r13 write\n");
5123 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
5125 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5127 cpu_abort(CPU(cpu
), "banked r13 read\n");
5131 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5132 uint32_t cur_el
, bool secure
)
5137 void aarch64_sync_64_to_32(CPUARMState
*env
)
5139 g_assert_not_reached();
5144 /* Map CPU modes onto saved register banks. */
5145 int bank_number(int mode
)
5148 case ARM_CPU_MODE_USR
:
5149 case ARM_CPU_MODE_SYS
:
5151 case ARM_CPU_MODE_SVC
:
5153 case ARM_CPU_MODE_ABT
:
5155 case ARM_CPU_MODE_UND
:
5157 case ARM_CPU_MODE_IRQ
:
5159 case ARM_CPU_MODE_FIQ
:
5161 case ARM_CPU_MODE_HYP
:
5163 case ARM_CPU_MODE_MON
:
5166 g_assert_not_reached();
5169 void switch_mode(CPUARMState
*env
, int mode
)
5174 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5175 if (mode
== old_mode
)
5178 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5179 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5180 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5181 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5182 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5183 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5186 i
= bank_number(old_mode
);
5187 env
->banked_r13
[i
] = env
->regs
[13];
5188 env
->banked_r14
[i
] = env
->regs
[14];
5189 env
->banked_spsr
[i
] = env
->spsr
;
5191 i
= bank_number(mode
);
5192 env
->regs
[13] = env
->banked_r13
[i
];
5193 env
->regs
[14] = env
->banked_r14
[i
];
5194 env
->spsr
= env
->banked_spsr
[i
];
5197 /* Physical Interrupt Target EL Lookup Table
5199 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5201 * The below multi-dimensional table is used for looking up the target
5202 * exception level given numerous condition criteria. Specifically, the
5203 * target EL is based on SCR and HCR routing controls as well as the
5204 * currently executing EL and secure state.
5207 * target_el_table[2][2][2][2][2][4]
5208 * | | | | | +--- Current EL
5209 * | | | | +------ Non-secure(0)/Secure(1)
5210 * | | | +--------- HCR mask override
5211 * | | +------------ SCR exec state control
5212 * | +--------------- SCR mask override
5213 * +------------------ 32-bit(0)/64-bit(1) EL3
5215 * The table values are as such:
5219 * The ARM ARM target EL table includes entries indicating that an "exception
5220 * is not taken". The two cases where this is applicable are:
5221 * 1) An exception is taken from EL3 but the SCR does not have the exception
5223 * 2) An exception is taken from EL2 but the HCR does not have the exception
5225 * In these two cases, the below table contain a target of EL1. This value is
5226 * returned as it is expected that the consumer of the table data will check
5227 * for "target EL >= current EL" to ensure the exception is not taken.
5231 * BIT IRQ IMO Non-secure Secure
5232 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5234 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5235 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5236 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5237 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5238 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5239 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5240 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5241 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5242 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5243 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5244 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5245 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5246 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5247 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5248 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5249 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5250 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5254 * Determine the target EL for physical exceptions
5256 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5257 uint32_t cur_el
, bool secure
)
5259 CPUARMState
*env
= cs
->env_ptr
;
5264 /* Is the highest EL AArch64? */
5265 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5267 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5268 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5270 /* Either EL2 is the highest EL (and so the EL2 register width
5271 * is given by is64); or there is no EL2 or EL3, in which case
5272 * the value of 'rw' does not affect the table lookup anyway.
5279 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5280 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5283 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5284 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5287 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5288 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5292 /* If HCR.TGE is set then HCR is treated as being 1 */
5293 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5295 /* Perform a table-lookup for the target EL given the current state */
5296 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5298 assert(target_el
> 0);
5303 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5305 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5308 stl_phys(cs
->as
, env
->regs
[13], val
);
5311 static uint32_t v7m_pop(CPUARMState
*env
)
5313 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5316 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5321 /* Switch to V7M main or process stack pointer. */
5322 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5325 if (env
->v7m
.current_sp
!= process
) {
5326 tmp
= env
->v7m
.other_sp
;
5327 env
->v7m
.other_sp
= env
->regs
[13];
5328 env
->regs
[13] = tmp
;
5329 env
->v7m
.current_sp
= process
;
5333 static void do_v7m_exception_exit(CPUARMState
*env
)
5338 type
= env
->regs
[15];
5339 if (env
->v7m
.exception
!= 0)
5340 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5342 /* Switch to the target stack. */
5343 switch_v7m_sp(env
, (type
& 4) != 0);
5344 /* Pop registers. */
5345 env
->regs
[0] = v7m_pop(env
);
5346 env
->regs
[1] = v7m_pop(env
);
5347 env
->regs
[2] = v7m_pop(env
);
5348 env
->regs
[3] = v7m_pop(env
);
5349 env
->regs
[12] = v7m_pop(env
);
5350 env
->regs
[14] = v7m_pop(env
);
5351 env
->regs
[15] = v7m_pop(env
);
5352 if (env
->regs
[15] & 1) {
5353 qemu_log_mask(LOG_GUEST_ERROR
,
5354 "M profile return from interrupt with misaligned "
5355 "PC is UNPREDICTABLE\n");
5356 /* Actual hardware seems to ignore the lsbit, and there are several
5357 * RTOSes out there which incorrectly assume the r15 in the stack
5358 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5360 env
->regs
[15] &= ~1U;
5362 xpsr
= v7m_pop(env
);
5363 xpsr_write(env
, xpsr
, 0xfffffdff);
5364 /* Undo stack alignment. */
5367 /* ??? The exception return type specifies Thread/Handler mode. However
5368 this is also implied by the xPSR value. Not sure what to do
5369 if there is a mismatch. */
5370 /* ??? Likewise for mismatches between the CONTROL register and the stack
5374 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5376 ARMCPU
*cpu
= ARM_CPU(cs
);
5377 CPUARMState
*env
= &cpu
->env
;
5378 uint32_t xpsr
= xpsr_read(env
);
5382 arm_log_exception(cs
->exception_index
);
5385 if (env
->v7m
.current_sp
)
5387 if (env
->v7m
.exception
== 0)
5390 /* For exceptions we just mark as pending on the NVIC, and let that
5392 /* TODO: Need to escalate if the current priority is higher than the
5393 one we're raising. */
5394 switch (cs
->exception_index
) {
5396 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5399 /* The PC already points to the next instruction. */
5400 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5402 case EXCP_PREFETCH_ABORT
:
5403 case EXCP_DATA_ABORT
:
5404 /* TODO: if we implemented the MPU registers, this is where we
5405 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5407 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5410 if (semihosting_enabled()) {
5412 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5415 qemu_log_mask(CPU_LOG_INT
,
5416 "...handling as semihosting call 0x%x\n",
5418 env
->regs
[0] = do_arm_semihosting(env
);
5422 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5425 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5427 case EXCP_EXCEPTION_EXIT
:
5428 do_v7m_exception_exit(env
);
5431 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5432 return; /* Never happens. Keep compiler happy. */
5435 /* Align stack pointer. */
5436 /* ??? Should only do this if Configuration Control Register
5437 STACKALIGN bit is set. */
5438 if (env
->regs
[13] & 4) {
5442 /* Switch to the handler mode. */
5443 v7m_push(env
, xpsr
);
5444 v7m_push(env
, env
->regs
[15]);
5445 v7m_push(env
, env
->regs
[14]);
5446 v7m_push(env
, env
->regs
[12]);
5447 v7m_push(env
, env
->regs
[3]);
5448 v7m_push(env
, env
->regs
[2]);
5449 v7m_push(env
, env
->regs
[1]);
5450 v7m_push(env
, env
->regs
[0]);
5451 switch_v7m_sp(env
, 0);
5453 env
->condexec_bits
= 0;
5455 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5456 env
->regs
[15] = addr
& 0xfffffffe;
5457 env
->thumb
= addr
& 1;
5460 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5461 * register set. This is necessary when switching between AArch32 and AArch64
5464 void aarch64_sync_32_to_64(CPUARMState
*env
)
5467 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5469 /* We can blanket copy R[0:7] to X[0:7] */
5470 for (i
= 0; i
< 8; i
++) {
5471 env
->xregs
[i
] = env
->regs
[i
];
5474 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5475 * Otherwise, they come from the banked user regs.
5477 if (mode
== ARM_CPU_MODE_FIQ
) {
5478 for (i
= 8; i
< 13; i
++) {
5479 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5482 for (i
= 8; i
< 13; i
++) {
5483 env
->xregs
[i
] = env
->regs
[i
];
5487 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5488 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5489 * from the mode banked register.
5491 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5492 env
->xregs
[13] = env
->regs
[13];
5493 env
->xregs
[14] = env
->regs
[14];
5495 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5496 /* HYP is an exception in that it is copied from r14 */
5497 if (mode
== ARM_CPU_MODE_HYP
) {
5498 env
->xregs
[14] = env
->regs
[14];
5500 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5504 if (mode
== ARM_CPU_MODE_HYP
) {
5505 env
->xregs
[15] = env
->regs
[13];
5507 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5510 if (mode
== ARM_CPU_MODE_IRQ
) {
5511 env
->xregs
[16] = env
->regs
[14];
5512 env
->xregs
[17] = env
->regs
[13];
5514 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5515 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5518 if (mode
== ARM_CPU_MODE_SVC
) {
5519 env
->xregs
[18] = env
->regs
[14];
5520 env
->xregs
[19] = env
->regs
[13];
5522 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5523 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5526 if (mode
== ARM_CPU_MODE_ABT
) {
5527 env
->xregs
[20] = env
->regs
[14];
5528 env
->xregs
[21] = env
->regs
[13];
5530 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5531 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5534 if (mode
== ARM_CPU_MODE_UND
) {
5535 env
->xregs
[22] = env
->regs
[14];
5536 env
->xregs
[23] = env
->regs
[13];
5538 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
5539 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
5542 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5543 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5544 * FIQ bank for r8-r14.
5546 if (mode
== ARM_CPU_MODE_FIQ
) {
5547 for (i
= 24; i
< 31; i
++) {
5548 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
5551 for (i
= 24; i
< 29; i
++) {
5552 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
5554 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
5555 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
5558 env
->pc
= env
->regs
[15];
5561 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5562 * register set. This is necessary when switching between AArch32 and AArch64
5565 void aarch64_sync_64_to_32(CPUARMState
*env
)
5568 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5570 /* We can blanket copy X[0:7] to R[0:7] */
5571 for (i
= 0; i
< 8; i
++) {
5572 env
->regs
[i
] = env
->xregs
[i
];
5575 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5576 * Otherwise, we copy x8-x12 into the banked user regs.
5578 if (mode
== ARM_CPU_MODE_FIQ
) {
5579 for (i
= 8; i
< 13; i
++) {
5580 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
5583 for (i
= 8; i
< 13; i
++) {
5584 env
->regs
[i
] = env
->xregs
[i
];
5588 /* Registers r13 & r14 depend on the current mode.
5589 * If we are in a given mode, we copy the corresponding x registers to r13
5590 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5593 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5594 env
->regs
[13] = env
->xregs
[13];
5595 env
->regs
[14] = env
->xregs
[14];
5597 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
5599 /* HYP is an exception in that it does not have its own banked r14 but
5600 * shares the USR r14
5602 if (mode
== ARM_CPU_MODE_HYP
) {
5603 env
->regs
[14] = env
->xregs
[14];
5605 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
5609 if (mode
== ARM_CPU_MODE_HYP
) {
5610 env
->regs
[13] = env
->xregs
[15];
5612 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
5615 if (mode
== ARM_CPU_MODE_IRQ
) {
5616 env
->regs
[14] = env
->xregs
[16];
5617 env
->regs
[13] = env
->xregs
[17];
5619 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
5620 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
5623 if (mode
== ARM_CPU_MODE_SVC
) {
5624 env
->regs
[14] = env
->xregs
[18];
5625 env
->regs
[13] = env
->xregs
[19];
5627 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
5628 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
5631 if (mode
== ARM_CPU_MODE_ABT
) {
5632 env
->regs
[14] = env
->xregs
[20];
5633 env
->regs
[13] = env
->xregs
[21];
5635 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
5636 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
5639 if (mode
== ARM_CPU_MODE_UND
) {
5640 env
->regs
[14] = env
->xregs
[22];
5641 env
->regs
[13] = env
->xregs
[23];
5643 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
5644 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
5647 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5648 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5649 * FIQ bank for r8-r14.
5651 if (mode
== ARM_CPU_MODE_FIQ
) {
5652 for (i
= 24; i
< 31; i
++) {
5653 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
5656 for (i
= 24; i
< 29; i
++) {
5657 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
5659 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
5660 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
5663 env
->regs
[15] = env
->pc
;
5666 /* Handle a CPU exception. */
5667 void arm_cpu_do_interrupt(CPUState
*cs
)
5669 ARMCPU
*cpu
= ARM_CPU(cs
);
5670 CPUARMState
*env
= &cpu
->env
;
5679 arm_log_exception(cs
->exception_index
);
5681 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
5682 arm_handle_psci_call(cpu
);
5683 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
5687 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5688 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
5690 case EC_BREAKPOINT_SAME_EL
:
5694 case EC_WATCHPOINT_SAME_EL
:
5700 case EC_VECTORCATCH
:
5709 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
5712 /* TODO: Vectored interrupt controller. */
5713 switch (cs
->exception_index
) {
5715 new_mode
= ARM_CPU_MODE_UND
;
5724 if (semihosting_enabled()) {
5725 /* Check for semihosting interrupt. */
5727 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
5730 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
5733 /* Only intercept calls from privileged modes, to provide some
5734 semblance of security. */
5735 if (((mask
== 0x123456 && !env
->thumb
)
5736 || (mask
== 0xab && env
->thumb
))
5737 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
5738 qemu_log_mask(CPU_LOG_INT
,
5739 "...handling as semihosting call 0x%x\n",
5741 env
->regs
[0] = do_arm_semihosting(env
);
5745 new_mode
= ARM_CPU_MODE_SVC
;
5748 /* The PC already points to the next instruction. */
5752 /* See if this is a semihosting syscall. */
5753 if (env
->thumb
&& semihosting_enabled()) {
5754 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5756 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
5758 qemu_log_mask(CPU_LOG_INT
,
5759 "...handling as semihosting call 0x%x\n",
5761 env
->regs
[0] = do_arm_semihosting(env
);
5765 env
->exception
.fsr
= 2;
5766 /* Fall through to prefetch abort. */
5767 case EXCP_PREFETCH_ABORT
:
5768 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
5769 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
5770 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
5771 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
5772 new_mode
= ARM_CPU_MODE_ABT
;
5774 mask
= CPSR_A
| CPSR_I
;
5777 case EXCP_DATA_ABORT
:
5778 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
5779 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
5780 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
5782 (uint32_t)env
->exception
.vaddress
);
5783 new_mode
= ARM_CPU_MODE_ABT
;
5785 mask
= CPSR_A
| CPSR_I
;
5789 new_mode
= ARM_CPU_MODE_IRQ
;
5791 /* Disable IRQ and imprecise data aborts. */
5792 mask
= CPSR_A
| CPSR_I
;
5794 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
5795 /* IRQ routed to monitor mode */
5796 new_mode
= ARM_CPU_MODE_MON
;
5801 new_mode
= ARM_CPU_MODE_FIQ
;
5803 /* Disable FIQ, IRQ and imprecise data aborts. */
5804 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5805 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
5806 /* FIQ routed to monitor mode */
5807 new_mode
= ARM_CPU_MODE_MON
;
5812 new_mode
= ARM_CPU_MODE_MON
;
5814 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5818 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5819 return; /* Never happens. Keep compiler happy. */
5822 if (new_mode
== ARM_CPU_MODE_MON
) {
5823 addr
+= env
->cp15
.mvbar
;
5824 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
5825 /* High vectors. When enabled, base address cannot be remapped. */
5828 /* ARM v7 architectures provide a vector base address register to remap
5829 * the interrupt vector table.
5830 * This register is only followed in non-monitor mode, and is banked.
5831 * Note: only bits 31:5 are valid.
5833 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
5836 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
5837 env
->cp15
.scr_el3
&= ~SCR_NS
;
5840 switch_mode (env
, new_mode
);
5841 /* For exceptions taken to AArch32 we must clear the SS bit in both
5842 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5844 env
->uncached_cpsr
&= ~PSTATE_SS
;
5845 env
->spsr
= cpsr_read(env
);
5846 /* Clear IT bits. */
5847 env
->condexec_bits
= 0;
5848 /* Switch to the new mode, and to the correct instruction set. */
5849 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
5851 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5852 * and we should just guard the thumb mode on V4 */
5853 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
5854 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
5856 env
->regs
[14] = env
->regs
[15] + offset
;
5857 env
->regs
[15] = addr
;
5858 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
5862 /* Return the exception level which controls this address translation regime */
5863 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5866 case ARMMMUIdx_S2NS
:
5867 case ARMMMUIdx_S1E2
:
5869 case ARMMMUIdx_S1E3
:
5871 case ARMMMUIdx_S1SE0
:
5872 return arm_el_is_aa64(env
, 3) ? 1 : 3;
5873 case ARMMMUIdx_S1SE1
:
5874 case ARMMMUIdx_S1NSE0
:
5875 case ARMMMUIdx_S1NSE1
:
5878 g_assert_not_reached();
5882 /* Return true if this address translation regime is secure */
5883 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5886 case ARMMMUIdx_S12NSE0
:
5887 case ARMMMUIdx_S12NSE1
:
5888 case ARMMMUIdx_S1NSE0
:
5889 case ARMMMUIdx_S1NSE1
:
5890 case ARMMMUIdx_S1E2
:
5891 case ARMMMUIdx_S2NS
:
5893 case ARMMMUIdx_S1E3
:
5894 case ARMMMUIdx_S1SE0
:
5895 case ARMMMUIdx_S1SE1
:
5898 g_assert_not_reached();
5902 /* Return the SCTLR value which controls this address translation regime */
5903 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5905 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
5908 /* Return true if the specified stage of address translation is disabled */
5909 static inline bool regime_translation_disabled(CPUARMState
*env
,
5912 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5913 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
5915 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
5918 /* Return the TCR controlling this translation regime */
5919 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5921 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5922 return &env
->cp15
.vtcr_el2
;
5924 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
5927 /* Return the TTBR associated with this translation regime */
5928 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5931 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5932 return env
->cp15
.vttbr_el2
;
5935 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
5937 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
5941 /* Return true if the translation regime is using LPAE format page tables */
5942 static inline bool regime_using_lpae_format(CPUARMState
*env
,
5945 int el
= regime_el(env
, mmu_idx
);
5946 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
5949 if (arm_feature(env
, ARM_FEATURE_LPAE
)
5950 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
5956 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5959 case ARMMMUIdx_S1SE0
:
5960 case ARMMMUIdx_S1NSE0
:
5964 case ARMMMUIdx_S12NSE0
:
5965 case ARMMMUIdx_S12NSE1
:
5966 g_assert_not_reached();
5970 /* Translate section/page access permissions to page
5971 * R/W protection flags
5974 * @mmu_idx: MMU index indicating required translation regime
5975 * @ap: The 3-bit access permissions (AP[2:0])
5976 * @domain_prot: The 2-bit domain access permissions
5978 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5979 int ap
, int domain_prot
)
5981 bool is_user
= regime_is_user(env
, mmu_idx
);
5983 if (domain_prot
== 3) {
5984 return PAGE_READ
| PAGE_WRITE
;
5989 if (arm_feature(env
, ARM_FEATURE_V7
)) {
5992 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
5994 return is_user
? 0 : PAGE_READ
;
6001 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6006 return PAGE_READ
| PAGE_WRITE
;
6009 return PAGE_READ
| PAGE_WRITE
;
6010 case 4: /* Reserved. */
6013 return is_user
? 0 : PAGE_READ
;
6017 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
6022 g_assert_not_reached();
6026 /* Translate section/page access permissions to page
6027 * R/W protection flags.
6029 * @ap: The 2-bit simple AP (AP[2:1])
6030 * @is_user: TRUE if accessing from PL0
6032 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
6036 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6038 return PAGE_READ
| PAGE_WRITE
;
6040 return is_user
? 0 : PAGE_READ
;
6044 g_assert_not_reached();
6049 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6051 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6054 /* Translate section/page access permissions to protection flags
6057 * @mmu_idx: MMU index indicating required translation regime
6058 * @is_aa64: TRUE if AArch64
6059 * @ap: The 2-bit simple AP (AP[2:1])
6060 * @ns: NS (non-secure) bit
6061 * @xn: XN (execute-never) bit
6062 * @pxn: PXN (privileged execute-never) bit
6064 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6065 int ap
, int ns
, int xn
, int pxn
)
6067 bool is_user
= regime_is_user(env
, mmu_idx
);
6068 int prot_rw
, user_rw
;
6072 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6074 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6078 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6081 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6085 /* TODO have_wxn should be replaced with
6086 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6087 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6088 * compatible processors have EL2, which is required for [U]WXN.
6090 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6093 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6097 switch (regime_el(env
, mmu_idx
)) {
6100 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6107 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6108 switch (regime_el(env
, mmu_idx
)) {
6112 xn
= xn
|| !(user_rw
& PAGE_READ
);
6116 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6118 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6119 (uwxn
&& (user_rw
& PAGE_WRITE
));
6129 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6132 return prot_rw
| PAGE_EXEC
;
6135 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6136 uint32_t *table
, uint32_t address
)
6138 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6139 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6141 if (address
& tcr
->mask
) {
6142 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6143 /* Translation table walk disabled for TTBR1 */
6146 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6148 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6149 /* Translation table walk disabled for TTBR0 */
6152 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6154 *table
|= (address
>> 18) & 0x3ffc;
6158 /* All loads done in the course of a page table walk go through here.
6159 * TODO: rather than ignoring errors from physical memory reads (which
6160 * are external aborts in ARM terminology) we should propagate this
6161 * error out so that we can turn it into a Data Abort if this walk
6162 * was being done for a CPU load/store or an address translation instruction
6163 * (but not if it was for a debug access).
6165 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
6167 MemTxAttrs attrs
= {};
6169 attrs
.secure
= is_secure
;
6170 return address_space_ldl(cs
->as
, addr
, attrs
, NULL
);
6173 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
6175 MemTxAttrs attrs
= {};
6177 attrs
.secure
= is_secure
;
6178 return address_space_ldq(cs
->as
, addr
, attrs
, NULL
);
6181 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6182 int access_type
, ARMMMUIdx mmu_idx
,
6183 hwaddr
*phys_ptr
, int *prot
,
6184 target_ulong
*page_size
, uint32_t *fsr
)
6186 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6197 /* Pagetable walk. */
6198 /* Lookup l1 descriptor. */
6199 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6200 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6204 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6206 domain
= (desc
>> 5) & 0x0f;
6207 if (regime_el(env
, mmu_idx
) == 1) {
6208 dacr
= env
->cp15
.dacr_ns
;
6210 dacr
= env
->cp15
.dacr_s
;
6212 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6214 /* Section translation fault. */
6218 if (domain_prot
== 0 || domain_prot
== 2) {
6220 code
= 9; /* Section domain fault. */
6222 code
= 11; /* Page domain fault. */
6227 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6228 ap
= (desc
>> 10) & 3;
6230 *page_size
= 1024 * 1024;
6232 /* Lookup l2 entry. */
6234 /* Coarse pagetable. */
6235 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6237 /* Fine pagetable. */
6238 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6240 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6242 case 0: /* Page translation fault. */
6245 case 1: /* 64k page. */
6246 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6247 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6248 *page_size
= 0x10000;
6250 case 2: /* 4k page. */
6251 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6252 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6253 *page_size
= 0x1000;
6255 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6257 /* ARMv6/XScale extended small page format */
6258 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
6259 || arm_feature(env
, ARM_FEATURE_V6
)) {
6260 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6261 *page_size
= 0x1000;
6263 /* UNPREDICTABLE in ARMv5; we choose to take a
6264 * page translation fault.
6270 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
6273 ap
= (desc
>> 4) & 3;
6276 /* Never happens, but compiler isn't smart enough to tell. */
6281 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6282 *prot
|= *prot
? PAGE_EXEC
: 0;
6283 if (!(*prot
& (1 << access_type
))) {
6284 /* Access permission fault. */
6287 *phys_ptr
= phys_addr
;
6290 *fsr
= code
| (domain
<< 4);
6294 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
6295 int access_type
, ARMMMUIdx mmu_idx
,
6296 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6297 target_ulong
*page_size
, uint32_t *fsr
)
6299 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6313 /* Pagetable walk. */
6314 /* Lookup l1 descriptor. */
6315 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6316 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6320 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6322 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
6323 /* Section translation fault, or attempt to use the encoding
6324 * which is Reserved on implementations without PXN.
6329 if ((type
== 1) || !(desc
& (1 << 18))) {
6330 /* Page or Section. */
6331 domain
= (desc
>> 5) & 0x0f;
6333 if (regime_el(env
, mmu_idx
) == 1) {
6334 dacr
= env
->cp15
.dacr_ns
;
6336 dacr
= env
->cp15
.dacr_s
;
6338 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6339 if (domain_prot
== 0 || domain_prot
== 2) {
6341 code
= 9; /* Section domain fault. */
6343 code
= 11; /* Page domain fault. */
6348 if (desc
& (1 << 18)) {
6350 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
6351 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
6352 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
6353 *page_size
= 0x1000000;
6356 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6357 *page_size
= 0x100000;
6359 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
6360 xn
= desc
& (1 << 4);
6363 ns
= extract32(desc
, 19, 1);
6365 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
6366 pxn
= (desc
>> 2) & 1;
6368 ns
= extract32(desc
, 3, 1);
6369 /* Lookup l2 entry. */
6370 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6371 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
6372 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
6374 case 0: /* Page translation fault. */
6377 case 1: /* 64k page. */
6378 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6379 xn
= desc
& (1 << 15);
6380 *page_size
= 0x10000;
6382 case 2: case 3: /* 4k page. */
6383 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6385 *page_size
= 0x1000;
6388 /* Never happens, but compiler isn't smart enough to tell. */
6393 if (domain_prot
== 3) {
6394 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
6396 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
6399 if (xn
&& access_type
== 2)
6402 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
6403 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
6404 /* The simplified model uses AP[0] as an access control bit. */
6405 if ((ap
& 1) == 0) {
6406 /* Access flag fault. */
6407 code
= (code
== 15) ? 6 : 3;
6410 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
6412 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6417 if (!(*prot
& (1 << access_type
))) {
6418 /* Access permission fault. */
6423 /* The NS bit will (as required by the architecture) have no effect if
6424 * the CPU doesn't support TZ or this is a non-secure translation
6425 * regime, because the attribute will already be non-secure.
6427 attrs
->secure
= false;
6429 *phys_ptr
= phys_addr
;
6432 *fsr
= code
| (domain
<< 4);
6436 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6437 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6440 translation_fault
= 1,
6442 permission_fault
= 3,
6445 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
6446 int access_type
, ARMMMUIdx mmu_idx
,
6447 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
6448 target_ulong
*page_size_ptr
, uint32_t *fsr
)
6450 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6451 /* Read an LPAE long-descriptor translation table. */
6452 MMUFaultType fault_type
= translation_fault
;
6459 hwaddr descaddr
, descmask
;
6460 uint32_t tableattrs
;
6461 target_ulong page_size
;
6463 int32_t granule_sz
= 9;
6464 int32_t va_size
= 32;
6466 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6467 int ap
, ns
, xn
, pxn
;
6468 uint32_t el
= regime_el(env
, mmu_idx
);
6469 bool ttbr1_valid
= true;
6472 * This code does not handle the different format TCR for VTCR_EL2.
6473 * This code also does not support shareability levels.
6474 * Attribute and permission bit handling should also be checked when adding
6475 * support for those page table walks.
6477 if (arm_el_is_aa64(env
, el
)) {
6480 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
6481 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
6484 if (extract64(address
, 55, 1)) {
6485 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
6487 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
6492 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6496 ttbr1_valid
= false;
6499 /* There is no TTBR1 for EL2 */
6501 ttbr1_valid
= false;
6505 /* Determine whether this address is in the region controlled by
6506 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6507 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6508 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6510 uint32_t t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
6511 if (va_size
== 64) {
6512 t0sz
= MIN(t0sz
, 39);
6513 t0sz
= MAX(t0sz
, 16);
6515 uint32_t t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
6516 if (va_size
== 64) {
6517 t1sz
= MIN(t1sz
, 39);
6518 t1sz
= MAX(t1sz
, 16);
6520 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
6521 /* there is a ttbr0 region and we are in it (high bits all zero) */
6523 } else if (ttbr1_valid
&& t1sz
&&
6524 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
6525 /* there is a ttbr1 region and we are in it (high bits all one) */
6528 /* ttbr0 region is "everything not in the ttbr1 region" */
6530 } else if (!t1sz
&& ttbr1_valid
) {
6531 /* ttbr1 region is "everything not in the ttbr0 region" */
6534 /* in the gap between the two regions, this is a Translation fault */
6535 fault_type
= translation_fault
;
6539 /* Note that QEMU ignores shareability and cacheability attributes,
6540 * so we don't need to do anything with the SH, ORGN, IRGN fields
6541 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6542 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6543 * implement any ASID-like capability so we can ignore it (instead
6544 * we will always flush the TLB any time the ASID is changed).
6546 if (ttbr_select
== 0) {
6547 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
6549 epd
= extract32(tcr
->raw_tcr
, 7, 1);
6553 tg
= extract32(tcr
->raw_tcr
, 14, 2);
6554 if (tg
== 1) { /* 64KB pages */
6557 if (tg
== 2) { /* 16KB pages */
6561 /* We should only be here if TTBR1 is valid */
6562 assert(ttbr1_valid
);
6564 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
6565 epd
= extract32(tcr
->raw_tcr
, 23, 1);
6568 tg
= extract32(tcr
->raw_tcr
, 30, 2);
6569 if (tg
== 3) { /* 64KB pages */
6572 if (tg
== 1) { /* 16KB pages */
6577 /* Here we should have set up all the parameters for the translation:
6578 * va_size, ttbr, epd, tsz, granule_sz, tbi
6582 /* Translation table walk disabled => Translation fault on TLB miss
6583 * Note: This is always 0 on 64-bit EL2 and EL3.
6588 /* The starting level depends on the virtual address size (which can be
6589 * up to 48 bits) and the translation granule size. It indicates the number
6590 * of strides (granule_sz bits at a time) needed to consume the bits
6591 * of the input address. In the pseudocode this is:
6592 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6593 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6594 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6595 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6596 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6597 * = 4 - (va_size - tsz - 4) / granule_sz;
6599 level
= 4 - (va_size
- tsz
- 4) / granule_sz
;
6601 /* Clear the vaddr bits which aren't part of the within-region address,
6602 * so that we don't have to special case things when calculating the
6603 * first descriptor address.
6606 address
&= (1ULL << (va_size
- tsz
)) - 1;
6609 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
6611 /* Now we can extract the actual base address from the TTBR */
6612 descaddr
= extract64(ttbr
, 0, 48);
6613 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
6615 /* Secure accesses start with the page table in secure memory and
6616 * can be downgraded to non-secure at any step. Non-secure accesses
6617 * remain non-secure. We implement this by just ORing in the NSTable/NS
6618 * bits at each step.
6620 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
6622 uint64_t descriptor
;
6625 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
6627 nstable
= extract32(tableattrs
, 4, 1);
6628 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
);
6629 if (!(descriptor
& 1) ||
6630 (!(descriptor
& 2) && (level
== 3))) {
6631 /* Invalid, or the Reserved level 3 encoding */
6634 descaddr
= descriptor
& 0xfffffff000ULL
;
6636 if ((descriptor
& 2) && (level
< 3)) {
6637 /* Table entry. The top five bits are attributes which may
6638 * propagate down through lower levels of the table (and
6639 * which are all arranged so that 0 means "no effect", so
6640 * we can gather them up by ORing in the bits at each level).
6642 tableattrs
|= extract64(descriptor
, 59, 5);
6646 /* Block entry at level 1 or 2, or page entry at level 3.
6647 * These are basically the same thing, although the number
6648 * of bits we pull in from the vaddr varies.
6650 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
6651 descaddr
|= (address
& (page_size
- 1));
6652 /* Extract attributes from the descriptor and merge with table attrs */
6653 attrs
= extract64(descriptor
, 2, 10)
6654 | (extract64(descriptor
, 52, 12) << 10);
6655 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
6656 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
6657 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6658 * means "force PL1 access only", which means forcing AP[1] to 0.
6660 if (extract32(tableattrs
, 2, 1)) {
6663 attrs
|= nstable
<< 3; /* NS */
6666 /* Here descaddr is the final physical address, and attributes
6669 fault_type
= access_fault
;
6670 if ((attrs
& (1 << 8)) == 0) {
6675 ap
= extract32(attrs
, 4, 2);
6676 ns
= extract32(attrs
, 3, 1);
6677 xn
= extract32(attrs
, 12, 1);
6678 pxn
= extract32(attrs
, 11, 1);
6680 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
6682 fault_type
= permission_fault
;
6683 if (!(*prot
& (1 << access_type
))) {
6688 /* The NS bit will (as required by the architecture) have no effect if
6689 * the CPU doesn't support TZ or this is a non-secure translation
6690 * regime, because the attribute will already be non-secure.
6692 txattrs
->secure
= false;
6694 *phys_ptr
= descaddr
;
6695 *page_size_ptr
= page_size
;
6699 /* Long-descriptor format IFSR/DFSR value */
6700 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
6704 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
6706 int32_t address
, int *prot
)
6708 *prot
= PAGE_READ
| PAGE_WRITE
;
6710 case 0xF0000000 ... 0xFFFFFFFF:
6711 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
6715 case 0x00000000 ... 0x7FFFFFFF:
6722 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
6723 int access_type
, ARMMMUIdx mmu_idx
,
6724 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
6726 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6728 bool is_user
= regime_is_user(env
, mmu_idx
);
6730 *phys_ptr
= address
;
6733 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
6734 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
6735 } else { /* MPU enabled */
6736 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
6738 uint32_t base
= env
->pmsav7
.drbar
[n
];
6739 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
6743 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
6748 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
6752 rmask
= (1ull << rsize
) - 1;
6755 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
6756 "to DRSR region size, mask = %" PRIx32
,
6761 if (address
< base
|| address
> base
+ rmask
) {
6765 /* Region matched */
6767 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
6769 uint32_t srdis_mask
;
6771 rsize
-= 3; /* sub region size (power of 2) */
6772 snd
= ((address
- base
) >> rsize
) & 0x7;
6773 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
6775 srdis_mask
= srdis
? 0x3 : 0x0;
6776 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
6777 /* This will check in groups of 2, 4 and then 8, whether
6778 * the subregion bits are consistent. rsize is incremented
6779 * back up to give the region size, considering consistent
6780 * adjacent subregions as one region. Stop testing if rsize
6781 * is already big enough for an entire QEMU page.
6783 int snd_rounded
= snd
& ~(i
- 1);
6784 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
6785 snd_rounded
+ 8, i
);
6786 if (srdis_mask
^ srdis_multi
) {
6789 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
6793 if (rsize
< TARGET_PAGE_BITS
) {
6794 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
6795 "alignment of %" PRIu32
" bits. Minimum is %d\n",
6796 rsize
, TARGET_PAGE_BITS
);
6805 if (n
== -1) { /* no hits */
6806 if (cpu
->pmsav7_dregion
&&
6807 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
6808 /* background fault */
6812 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
6813 } else { /* a MPU hit! */
6814 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
6816 if (is_user
) { /* User mode AP bit decoding */
6821 break; /* no access */
6823 *prot
|= PAGE_WRITE
;
6827 *prot
|= PAGE_READ
| PAGE_EXEC
;
6830 qemu_log_mask(LOG_GUEST_ERROR
,
6831 "Bad value for AP bits in DRACR %"
6834 } else { /* Priv. mode AP bits decoding */
6837 break; /* no access */
6841 *prot
|= PAGE_WRITE
;
6845 *prot
|= PAGE_READ
| PAGE_EXEC
;
6848 qemu_log_mask(LOG_GUEST_ERROR
,
6849 "Bad value for AP bits in DRACR %"
6855 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
6856 *prot
&= ~PAGE_EXEC
;
6861 *fsr
= 0x00d; /* Permission fault */
6862 return !(*prot
& (1 << access_type
));
6865 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
6866 int access_type
, ARMMMUIdx mmu_idx
,
6867 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
6872 bool is_user
= regime_is_user(env
, mmu_idx
);
6874 *phys_ptr
= address
;
6875 for (n
= 7; n
>= 0; n
--) {
6876 base
= env
->cp15
.c6_region
[n
];
6877 if ((base
& 1) == 0) {
6880 mask
= 1 << ((base
>> 1) & 0x1f);
6881 /* Keep this shift separate from the above to avoid an
6882 (undefined) << 32. */
6883 mask
= (mask
<< 1) - 1;
6884 if (((base
^ address
) & ~mask
) == 0) {
6893 if (access_type
== 2) {
6894 mask
= env
->cp15
.pmsav5_insn_ap
;
6896 mask
= env
->cp15
.pmsav5_data_ap
;
6898 mask
= (mask
>> (n
* 4)) & 0xf;
6908 *prot
= PAGE_READ
| PAGE_WRITE
;
6913 *prot
|= PAGE_WRITE
;
6917 *prot
= PAGE_READ
| PAGE_WRITE
;
6930 /* Bad permission. */
6938 /* get_phys_addr - get the physical address for this virtual address
6940 * Find the physical address corresponding to the given virtual address,
6941 * by doing a translation table walk on MMU based systems or using the
6942 * MPU state on MPU based systems.
6944 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6945 * prot and page_size may not be filled in, and the populated fsr value provides
6946 * information on why the translation aborted, in the format of a
6947 * DFSR/IFSR fault register, with the following caveats:
6948 * * we honour the short vs long DFSR format differences.
6949 * * the WnR bit is never set (the caller must do this).
6950 * * for PSMAv5 based systems we don't bother to return a full FSR format
6954 * @address: virtual address to get physical address for
6955 * @access_type: 0 for read, 1 for write, 2 for execute
6956 * @mmu_idx: MMU index indicating required translation regime
6957 * @phys_ptr: set to the physical address corresponding to the virtual address
6958 * @attrs: set to the memory transaction attributes to use
6959 * @prot: set to the permissions for the page containing phys_ptr
6960 * @page_size: set to the size of the page containing phys_ptr
6961 * @fsr: set to the DFSR/IFSR value on failure
6963 static inline bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
6964 int access_type
, ARMMMUIdx mmu_idx
,
6965 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6966 target_ulong
*page_size
, uint32_t *fsr
)
6968 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6969 /* TODO: when we support EL2 we should here call ourselves recursively
6970 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6971 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6972 * rather than direct physical memory loads when appropriate.
6973 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6975 assert(!arm_feature(env
, ARM_FEATURE_EL2
));
6976 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6979 /* The page table entries may downgrade secure to non-secure, but
6980 * cannot upgrade an non-secure translation regime's attributes
6983 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
6984 attrs
->user
= regime_is_user(env
, mmu_idx
);
6986 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6987 * In v7 and earlier it affects all stage 1 translations.
6989 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
6990 && !arm_feature(env
, ARM_FEATURE_V8
)) {
6991 if (regime_el(env
, mmu_idx
) == 3) {
6992 address
+= env
->cp15
.fcseidr_s
;
6994 address
+= env
->cp15
.fcseidr_ns
;
6998 /* pmsav7 has special handling for when MPU is disabled so call it before
6999 * the common MMU/MPU disabled check below.
7001 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
7002 arm_feature(env
, ARM_FEATURE_V7
)) {
7003 *page_size
= TARGET_PAGE_SIZE
;
7004 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
7005 phys_ptr
, prot
, fsr
);
7008 if (regime_translation_disabled(env
, mmu_idx
)) {
7009 /* MMU/MPU disabled. */
7010 *phys_ptr
= address
;
7011 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7012 *page_size
= TARGET_PAGE_SIZE
;
7016 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
7018 *page_size
= TARGET_PAGE_SIZE
;
7019 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
7020 phys_ptr
, prot
, fsr
);
7023 if (regime_using_lpae_format(env
, mmu_idx
)) {
7024 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7025 attrs
, prot
, page_size
, fsr
);
7026 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
7027 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7028 attrs
, prot
, page_size
, fsr
);
7030 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7031 prot
, page_size
, fsr
);
7035 /* Walk the page table and (if the mapping exists) add the page
7036 * to the TLB. Return false on success, or true on failure. Populate
7037 * fsr with ARM DFSR/IFSR fault register format value on failure.
7039 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
7040 int access_type
, int mmu_idx
, uint32_t *fsr
)
7042 ARMCPU
*cpu
= ARM_CPU(cs
);
7043 CPUARMState
*env
= &cpu
->env
;
7045 target_ulong page_size
;
7048 MemTxAttrs attrs
= {};
7050 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
7051 &attrs
, &prot
, &page_size
, fsr
);
7053 /* Map a single [sub]page. */
7054 phys_addr
&= TARGET_PAGE_MASK
;
7055 address
&= TARGET_PAGE_MASK
;
7056 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
7057 prot
, mmu_idx
, page_size
);
7064 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
7066 ARMCPU
*cpu
= ARM_CPU(cs
);
7067 CPUARMState
*env
= &cpu
->env
;
7069 target_ulong page_size
;
7073 MemTxAttrs attrs
= {};
7075 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
7076 &attrs
, &prot
, &page_size
, &fsr
);
7085 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
7087 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
7088 env
->regs
[13] = val
;
7090 env
->banked_r13
[bank_number(mode
)] = val
;
7094 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
7096 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
7097 return env
->regs
[13];
7099 return env
->banked_r13
[bank_number(mode
)];
7103 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7105 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7109 return xpsr_read(env
) & 0xf8000000;
7111 return xpsr_read(env
) & 0xf80001ff;
7113 return xpsr_read(env
) & 0xff00fc00;
7115 return xpsr_read(env
) & 0xff00fdff;
7117 return xpsr_read(env
) & 0x000001ff;
7119 return xpsr_read(env
) & 0x0700fc00;
7121 return xpsr_read(env
) & 0x0700edff;
7123 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
7125 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
7126 case 16: /* PRIMASK */
7127 return (env
->daif
& PSTATE_I
) != 0;
7128 case 17: /* BASEPRI */
7129 case 18: /* BASEPRI_MAX */
7130 return env
->v7m
.basepri
;
7131 case 19: /* FAULTMASK */
7132 return (env
->daif
& PSTATE_F
) != 0;
7133 case 20: /* CONTROL */
7134 return env
->v7m
.control
;
7136 /* ??? For debugging only. */
7137 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
7142 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
7144 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7148 xpsr_write(env
, val
, 0xf8000000);
7151 xpsr_write(env
, val
, 0xf8000000);
7154 xpsr_write(env
, val
, 0xfe00fc00);
7157 xpsr_write(env
, val
, 0xfe00fc00);
7160 /* IPSR bits are readonly. */
7163 xpsr_write(env
, val
, 0x0600fc00);
7166 xpsr_write(env
, val
, 0x0600fc00);
7169 if (env
->v7m
.current_sp
)
7170 env
->v7m
.other_sp
= val
;
7172 env
->regs
[13] = val
;
7175 if (env
->v7m
.current_sp
)
7176 env
->regs
[13] = val
;
7178 env
->v7m
.other_sp
= val
;
7180 case 16: /* PRIMASK */
7182 env
->daif
|= PSTATE_I
;
7184 env
->daif
&= ~PSTATE_I
;
7187 case 17: /* BASEPRI */
7188 env
->v7m
.basepri
= val
& 0xff;
7190 case 18: /* BASEPRI_MAX */
7192 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
7193 env
->v7m
.basepri
= val
;
7195 case 19: /* FAULTMASK */
7197 env
->daif
|= PSTATE_F
;
7199 env
->daif
&= ~PSTATE_F
;
7202 case 20: /* CONTROL */
7203 env
->v7m
.control
= val
& 3;
7204 switch_v7m_sp(env
, (val
& 2) != 0);
7207 /* ??? For debugging only. */
7208 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
7215 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
7217 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7218 * Note that we do not implement the (architecturally mandated)
7219 * alignment fault for attempts to use this on Device memory
7220 * (which matches the usual QEMU behaviour of not implementing either
7221 * alignment faults or any memory attribute handling).
7224 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7225 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
7226 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
7228 #ifndef CONFIG_USER_ONLY
7230 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7231 * the block size so we might have to do more than one TLB lookup.
7232 * We know that in fact for any v8 CPU the page size is at least 4K
7233 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7234 * 1K as an artefact of legacy v5 subpage support being present in the
7235 * same QEMU executable.
7237 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
7238 void *hostaddr
[maxidx
];
7240 unsigned mmu_idx
= cpu_mmu_index(env
, false);
7241 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
7243 for (try = 0; try < 2; try++) {
7245 for (i
= 0; i
< maxidx
; i
++) {
7246 hostaddr
[i
] = tlb_vaddr_to_host(env
,
7247 vaddr
+ TARGET_PAGE_SIZE
* i
,
7254 /* If it's all in the TLB it's fair game for just writing to;
7255 * we know we don't need to update dirty status, etc.
7257 for (i
= 0; i
< maxidx
- 1; i
++) {
7258 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
7260 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
7263 /* OK, try a store and see if we can populate the tlb. This
7264 * might cause an exception if the memory isn't writable,
7265 * in which case we will longjmp out of here. We must for
7266 * this purpose use the actual register value passed to us
7267 * so that we get the fault address right.
7269 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
7270 /* Now we can populate the other TLB entries, if any */
7271 for (i
= 0; i
< maxidx
; i
++) {
7272 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
7273 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
7274 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
7279 /* Slow path (probably attempt to do this to an I/O device or
7280 * similar, or clearing of a block of code we have translations
7281 * cached for). Just do a series of byte writes as the architecture
7282 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7283 * memset(), unmap() sequence here because:
7284 * + we'd need to account for the blocksize being larger than a page
7285 * + the direct-RAM access case is almost always going to be dealt
7286 * with in the fastpath code above, so there's no speed benefit
7287 * + we would have to deal with the map returning NULL because the
7288 * bounce buffer was in use
7290 for (i
= 0; i
< blocklen
; i
++) {
7291 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
7295 memset(g2h(vaddr
), 0, blocklen
);
7299 /* Note that signed overflow is undefined in C. The following routines are
7300 careful to use unsigned types where modulo arithmetic is required.
7301 Failure to do so _will_ break on newer gcc. */
7303 /* Signed saturating arithmetic. */
7305 /* Perform 16-bit signed saturating addition. */
7306 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
7311 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
7320 /* Perform 8-bit signed saturating addition. */
7321 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
7326 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
7335 /* Perform 16-bit signed saturating subtraction. */
7336 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
7341 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
7350 /* Perform 8-bit signed saturating subtraction. */
7351 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
7356 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
7365 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7366 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7367 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7368 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7371 #include "op_addsub.h"
7373 /* Unsigned saturating arithmetic. */
7374 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
7383 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
7391 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
7400 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
7408 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7409 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7410 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7411 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7414 #include "op_addsub.h"
7416 /* Signed modulo arithmetic. */
7417 #define SARITH16(a, b, n, op) do { \
7419 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7420 RESULT(sum, n, 16); \
7422 ge |= 3 << (n * 2); \
7425 #define SARITH8(a, b, n, op) do { \
7427 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7428 RESULT(sum, n, 8); \
7434 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7435 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7436 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7437 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7441 #include "op_addsub.h"
7443 /* Unsigned modulo arithmetic. */
7444 #define ADD16(a, b, n) do { \
7446 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7447 RESULT(sum, n, 16); \
7448 if ((sum >> 16) == 1) \
7449 ge |= 3 << (n * 2); \
7452 #define ADD8(a, b, n) do { \
7454 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7455 RESULT(sum, n, 8); \
7456 if ((sum >> 8) == 1) \
7460 #define SUB16(a, b, n) do { \
7462 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7463 RESULT(sum, n, 16); \
7464 if ((sum >> 16) == 0) \
7465 ge |= 3 << (n * 2); \
7468 #define SUB8(a, b, n) do { \
7470 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7471 RESULT(sum, n, 8); \
7472 if ((sum >> 8) == 0) \
7479 #include "op_addsub.h"
7481 /* Halved signed arithmetic. */
7482 #define ADD16(a, b, n) \
7483 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7484 #define SUB16(a, b, n) \
7485 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7486 #define ADD8(a, b, n) \
7487 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7488 #define SUB8(a, b, n) \
7489 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7492 #include "op_addsub.h"
7494 /* Halved unsigned arithmetic. */
7495 #define ADD16(a, b, n) \
7496 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7497 #define SUB16(a, b, n) \
7498 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7499 #define ADD8(a, b, n) \
7500 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7501 #define SUB8(a, b, n) \
7502 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7505 #include "op_addsub.h"
7507 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
7515 /* Unsigned sum of absolute byte differences. */
7516 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
7519 sum
= do_usad(a
, b
);
7520 sum
+= do_usad(a
>> 8, b
>> 8);
7521 sum
+= do_usad(a
>> 16, b
>>16);
7522 sum
+= do_usad(a
>> 24, b
>> 24);
7526 /* For ARMv6 SEL instruction. */
7527 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
7540 return (a
& mask
) | (b
& ~mask
);
7543 /* VFP support. We follow the convention used for VFP instructions:
7544 Single precision routines have a "s" suffix, double precision a
7547 /* Convert host exception flags to vfp form. */
7548 static inline int vfp_exceptbits_from_host(int host_bits
)
7550 int target_bits
= 0;
7552 if (host_bits
& float_flag_invalid
)
7554 if (host_bits
& float_flag_divbyzero
)
7556 if (host_bits
& float_flag_overflow
)
7558 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
7560 if (host_bits
& float_flag_inexact
)
7561 target_bits
|= 0x10;
7562 if (host_bits
& float_flag_input_denormal
)
7563 target_bits
|= 0x80;
7567 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
7572 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
7573 | (env
->vfp
.vec_len
<< 16)
7574 | (env
->vfp
.vec_stride
<< 20);
7575 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
7576 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
7577 fpscr
|= vfp_exceptbits_from_host(i
);
7581 uint32_t vfp_get_fpscr(CPUARMState
*env
)
7583 return HELPER(vfp_get_fpscr
)(env
);
7586 /* Convert vfp exception flags to target form. */
7587 static inline int vfp_exceptbits_to_host(int target_bits
)
7591 if (target_bits
& 1)
7592 host_bits
|= float_flag_invalid
;
7593 if (target_bits
& 2)
7594 host_bits
|= float_flag_divbyzero
;
7595 if (target_bits
& 4)
7596 host_bits
|= float_flag_overflow
;
7597 if (target_bits
& 8)
7598 host_bits
|= float_flag_underflow
;
7599 if (target_bits
& 0x10)
7600 host_bits
|= float_flag_inexact
;
7601 if (target_bits
& 0x80)
7602 host_bits
|= float_flag_input_denormal
;
7606 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
7611 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
7612 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
7613 env
->vfp
.vec_len
= (val
>> 16) & 7;
7614 env
->vfp
.vec_stride
= (val
>> 20) & 3;
7617 if (changed
& (3 << 22)) {
7618 i
= (val
>> 22) & 3;
7620 case FPROUNDING_TIEEVEN
:
7621 i
= float_round_nearest_even
;
7623 case FPROUNDING_POSINF
:
7626 case FPROUNDING_NEGINF
:
7627 i
= float_round_down
;
7629 case FPROUNDING_ZERO
:
7630 i
= float_round_to_zero
;
7633 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
7635 if (changed
& (1 << 24)) {
7636 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
7637 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
7639 if (changed
& (1 << 25))
7640 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
7642 i
= vfp_exceptbits_to_host(val
);
7643 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
7644 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
7647 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
7649 HELPER(vfp_set_fpscr
)(env
, val
);
7652 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7654 #define VFP_BINOP(name) \
7655 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7657 float_status *fpst = fpstp; \
7658 return float32_ ## name(a, b, fpst); \
7660 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7662 float_status *fpst = fpstp; \
7663 return float64_ ## name(a, b, fpst); \
7675 float32
VFP_HELPER(neg
, s
)(float32 a
)
7677 return float32_chs(a
);
7680 float64
VFP_HELPER(neg
, d
)(float64 a
)
7682 return float64_chs(a
);
7685 float32
VFP_HELPER(abs
, s
)(float32 a
)
7687 return float32_abs(a
);
7690 float64
VFP_HELPER(abs
, d
)(float64 a
)
7692 return float64_abs(a
);
7695 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
7697 return float32_sqrt(a
, &env
->vfp
.fp_status
);
7700 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
7702 return float64_sqrt(a
, &env
->vfp
.fp_status
);
7705 /* XXX: check quiet/signaling case */
7706 #define DO_VFP_cmp(p, type) \
7707 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7710 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7711 case 0: flags = 0x6; break; \
7712 case -1: flags = 0x8; break; \
7713 case 1: flags = 0x2; break; \
7714 default: case 2: flags = 0x3; break; \
7716 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7717 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7719 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7722 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7723 case 0: flags = 0x6; break; \
7724 case -1: flags = 0x8; break; \
7725 case 1: flags = 0x2; break; \
7726 default: case 2: flags = 0x3; break; \
7728 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7729 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7731 DO_VFP_cmp(s
, float32
)
7732 DO_VFP_cmp(d
, float64
)
7735 /* Integer to float and float to integer conversions */
7737 #define CONV_ITOF(name, fsz, sign) \
7738 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7740 float_status *fpst = fpstp; \
7741 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
7744 #define CONV_FTOI(name, fsz, sign, round) \
7745 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7747 float_status *fpst = fpstp; \
7748 if (float##fsz##_is_any_nan(x)) { \
7749 float_raise(float_flag_invalid, fpst); \
7752 return float##fsz##_to_##sign##int32##round(x, fpst); \
7755 #define FLOAT_CONVS(name, p, fsz, sign) \
7756 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7757 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7758 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
7760 FLOAT_CONVS(si
, s
, 32, )
7761 FLOAT_CONVS(si
, d
, 64, )
7762 FLOAT_CONVS(ui
, s
, 32, u
)
7763 FLOAT_CONVS(ui
, d
, 64, u
)
7769 /* floating point conversion */
7770 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
7772 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
7773 /* ARM requires that S<->D conversion of any kind of NaN generates
7774 * a quiet NaN by forcing the most significant frac bit to 1.
7776 return float64_maybe_silence_nan(r
);
7779 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
7781 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
7782 /* ARM requires that S<->D conversion of any kind of NaN generates
7783 * a quiet NaN by forcing the most significant frac bit to 1.
7785 return float32_maybe_silence_nan(r
);
7788 /* VFP3 fixed point conversion. */
7789 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7790 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7793 float_status *fpst = fpstp; \
7795 tmp = itype##_to_##float##fsz(x, fpst); \
7796 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7799 /* Notice that we want only input-denormal exception flags from the
7800 * scalbn operation: the other possible flags (overflow+inexact if
7801 * we overflow to infinity, output-denormal) aren't correct for the
7802 * complete scale-and-convert operation.
7804 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7805 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7809 float_status *fpst = fpstp; \
7810 int old_exc_flags = get_float_exception_flags(fpst); \
7812 if (float##fsz##_is_any_nan(x)) { \
7813 float_raise(float_flag_invalid, fpst); \
7816 tmp = float##fsz##_scalbn(x, shift, fpst); \
7817 old_exc_flags |= get_float_exception_flags(fpst) \
7818 & float_flag_input_denormal; \
7819 set_float_exception_flags(old_exc_flags, fpst); \
7820 return float##fsz##_to_##itype##round(tmp, fpst); \
7823 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7824 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7825 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7826 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7828 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7829 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7830 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7832 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
7833 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
7834 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
7835 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
7836 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
7837 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
7838 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
7839 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
7840 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
7841 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
7842 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
7843 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
7845 #undef VFP_CONV_FIX_FLOAT
7846 #undef VFP_CONV_FLOAT_FIX_ROUND
7848 /* Set the current fp rounding mode and return the old one.
7849 * The argument is a softfloat float_round_ value.
7851 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
7853 float_status
*fp_status
= &env
->vfp
.fp_status
;
7855 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
7856 set_float_rounding_mode(rmode
, fp_status
);
7861 /* Set the current fp rounding mode in the standard fp status and return
7862 * the old one. This is for NEON instructions that need to change the
7863 * rounding mode but wish to use the standard FPSCR values for everything
7864 * else. Always set the rounding mode back to the correct value after
7866 * The argument is a softfloat float_round_ value.
7868 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
7870 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
7872 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
7873 set_float_rounding_mode(rmode
, fp_status
);
7878 /* Half precision conversions. */
7879 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
7881 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7882 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
7884 return float32_maybe_silence_nan(r
);
7889 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
7891 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7892 float16 r
= float32_to_float16(a
, ieee
, s
);
7894 r
= float16_maybe_silence_nan(r
);
7896 return float16_val(r
);
7899 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
7901 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
7904 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
7906 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
7909 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
7911 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
7914 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
7916 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
7919 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
7921 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7922 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
7924 return float64_maybe_silence_nan(r
);
7929 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
7931 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
7932 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
7934 r
= float16_maybe_silence_nan(r
);
7936 return float16_val(r
);
7939 #define float32_two make_float32(0x40000000)
7940 #define float32_three make_float32(0x40400000)
7941 #define float32_one_point_five make_float32(0x3fc00000)
7943 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
7945 float_status
*s
= &env
->vfp
.standard_fp_status
;
7946 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
7947 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
7948 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
7949 float_raise(float_flag_input_denormal
, s
);
7953 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
7956 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
7958 float_status
*s
= &env
->vfp
.standard_fp_status
;
7960 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
7961 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
7962 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
7963 float_raise(float_flag_input_denormal
, s
);
7965 return float32_one_point_five
;
7967 product
= float32_mul(a
, b
, s
);
7968 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
7973 /* Constants 256 and 512 are used in some helpers; we avoid relying on
7974 * int->float conversions at run-time. */
7975 #define float64_256 make_float64(0x4070000000000000LL)
7976 #define float64_512 make_float64(0x4080000000000000LL)
7977 #define float32_maxnorm make_float32(0x7f7fffff)
7978 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7980 /* Reciprocal functions
7982 * The algorithm that must be used to calculate the estimate
7983 * is specified by the ARM ARM, see FPRecipEstimate()
7986 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
7988 /* These calculations mustn't set any fp exception flags,
7989 * so we use a local copy of the fp_status.
7991 float_status dummy_status
= *real_fp_status
;
7992 float_status
*s
= &dummy_status
;
7993 /* q = (int)(a * 512.0) */
7994 float64 q
= float64_mul(float64_512
, a
, s
);
7995 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
7997 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7998 q
= int64_to_float64(q_int
, s
);
7999 q
= float64_add(q
, float64_half
, s
);
8000 q
= float64_div(q
, float64_512
, s
);
8001 q
= float64_div(float64_one
, q
, s
);
8003 /* s = (int)(256.0 * r + 0.5) */
8004 q
= float64_mul(q
, float64_256
, s
);
8005 q
= float64_add(q
, float64_half
, s
);
8006 q_int
= float64_to_int64_round_to_zero(q
, s
);
8008 /* return (double)s / 256.0 */
8009 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8012 /* Common wrapper to call recip_estimate */
8013 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
8015 uint64_t val64
= float64_val(num
);
8016 uint64_t frac
= extract64(val64
, 0, 52);
8017 int64_t exp
= extract64(val64
, 52, 11);
8019 float64 scaled
, estimate
;
8021 /* Generate the scaled number for the estimate function */
8023 if (extract64(frac
, 51, 1) == 0) {
8025 frac
= extract64(frac
, 0, 50) << 2;
8027 frac
= extract64(frac
, 0, 51) << 1;
8031 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8032 scaled
= make_float64((0x3feULL
<< 52)
8033 | extract64(frac
, 44, 8) << 44);
8035 estimate
= recip_estimate(scaled
, fpst
);
8037 /* Build new result */
8038 val64
= float64_val(estimate
);
8039 sbit
= 0x8000000000000000ULL
& val64
;
8041 frac
= extract64(val64
, 0, 52);
8044 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
8045 } else if (exp
== -1) {
8046 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
8050 return make_float64(sbit
| (exp
<< 52) | frac
);
8053 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
8055 switch (fpst
->float_rounding_mode
) {
8056 case float_round_nearest_even
: /* Round to Nearest */
8058 case float_round_up
: /* Round to +Inf */
8060 case float_round_down
: /* Round to -Inf */
8062 case float_round_to_zero
: /* Round to Zero */
8066 g_assert_not_reached();
8069 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
8071 float_status
*fpst
= fpstp
;
8072 float32 f32
= float32_squash_input_denormal(input
, fpst
);
8073 uint32_t f32_val
= float32_val(f32
);
8074 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
8075 int32_t f32_exp
= extract32(f32_val
, 23, 8);
8076 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
8082 if (float32_is_any_nan(f32
)) {
8084 if (float32_is_signaling_nan(f32
)) {
8085 float_raise(float_flag_invalid
, fpst
);
8086 nan
= float32_maybe_silence_nan(f32
);
8088 if (fpst
->default_nan_mode
) {
8089 nan
= float32_default_nan
;
8092 } else if (float32_is_infinity(f32
)) {
8093 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8094 } else if (float32_is_zero(f32
)) {
8095 float_raise(float_flag_divbyzero
, fpst
);
8096 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8097 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
8098 /* Abs(value) < 2.0^-128 */
8099 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8100 if (round_to_inf(fpst
, f32_sbit
)) {
8101 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8103 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
8105 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
8106 float_raise(float_flag_underflow
, fpst
);
8107 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8111 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
8112 r64
= call_recip_estimate(f64
, 253, fpst
);
8113 r64_val
= float64_val(r64
);
8114 r64_exp
= extract64(r64_val
, 52, 11);
8115 r64_frac
= extract64(r64_val
, 0, 52);
8117 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8118 return make_float32(f32_sbit
|
8119 (r64_exp
& 0xff) << 23 |
8120 extract64(r64_frac
, 29, 24));
8123 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
8125 float_status
*fpst
= fpstp
;
8126 float64 f64
= float64_squash_input_denormal(input
, fpst
);
8127 uint64_t f64_val
= float64_val(f64
);
8128 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
8129 int64_t f64_exp
= extract64(f64_val
, 52, 11);
8135 /* Deal with any special cases */
8136 if (float64_is_any_nan(f64
)) {
8138 if (float64_is_signaling_nan(f64
)) {
8139 float_raise(float_flag_invalid
, fpst
);
8140 nan
= float64_maybe_silence_nan(f64
);
8142 if (fpst
->default_nan_mode
) {
8143 nan
= float64_default_nan
;
8146 } else if (float64_is_infinity(f64
)) {
8147 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8148 } else if (float64_is_zero(f64
)) {
8149 float_raise(float_flag_divbyzero
, fpst
);
8150 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8151 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
8152 /* Abs(value) < 2.0^-1024 */
8153 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8154 if (round_to_inf(fpst
, f64_sbit
)) {
8155 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8157 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
8159 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
8160 float_raise(float_flag_underflow
, fpst
);
8161 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8164 r64
= call_recip_estimate(f64
, 2045, fpst
);
8165 r64_val
= float64_val(r64
);
8166 r64_exp
= extract64(r64_val
, 52, 11);
8167 r64_frac
= extract64(r64_val
, 0, 52);
8169 /* result = sign : result_exp<10:0> : fraction<51:0> */
8170 return make_float64(f64_sbit
|
8171 ((r64_exp
& 0x7ff) << 52) |
8175 /* The algorithm that must be used to calculate the estimate
8176 * is specified by the ARM ARM.
8178 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
8180 /* These calculations mustn't set any fp exception flags,
8181 * so we use a local copy of the fp_status.
8183 float_status dummy_status
= *real_fp_status
;
8184 float_status
*s
= &dummy_status
;
8188 if (float64_lt(a
, float64_half
, s
)) {
8189 /* range 0.25 <= a < 0.5 */
8191 /* a in units of 1/512 rounded down */
8192 /* q0 = (int)(a * 512.0); */
8193 q
= float64_mul(float64_512
, a
, s
);
8194 q_int
= float64_to_int64_round_to_zero(q
, s
);
8196 /* reciprocal root r */
8197 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8198 q
= int64_to_float64(q_int
, s
);
8199 q
= float64_add(q
, float64_half
, s
);
8200 q
= float64_div(q
, float64_512
, s
);
8201 q
= float64_sqrt(q
, s
);
8202 q
= float64_div(float64_one
, q
, s
);
8204 /* range 0.5 <= a < 1.0 */
8206 /* a in units of 1/256 rounded down */
8207 /* q1 = (int)(a * 256.0); */
8208 q
= float64_mul(float64_256
, a
, s
);
8209 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8211 /* reciprocal root r */
8212 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8213 q
= int64_to_float64(q_int
, s
);
8214 q
= float64_add(q
, float64_half
, s
);
8215 q
= float64_div(q
, float64_256
, s
);
8216 q
= float64_sqrt(q
, s
);
8217 q
= float64_div(float64_one
, q
, s
);
8219 /* r in units of 1/256 rounded to nearest */
8220 /* s = (int)(256.0 * r + 0.5); */
8222 q
= float64_mul(q
, float64_256
,s
);
8223 q
= float64_add(q
, float64_half
, s
);
8224 q_int
= float64_to_int64_round_to_zero(q
, s
);
8226 /* return (double)s / 256.0;*/
8227 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8230 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
8232 float_status
*s
= fpstp
;
8233 float32 f32
= float32_squash_input_denormal(input
, s
);
8234 uint32_t val
= float32_val(f32
);
8235 uint32_t f32_sbit
= 0x80000000 & val
;
8236 int32_t f32_exp
= extract32(val
, 23, 8);
8237 uint32_t f32_frac
= extract32(val
, 0, 23);
8243 if (float32_is_any_nan(f32
)) {
8245 if (float32_is_signaling_nan(f32
)) {
8246 float_raise(float_flag_invalid
, s
);
8247 nan
= float32_maybe_silence_nan(f32
);
8249 if (s
->default_nan_mode
) {
8250 nan
= float32_default_nan
;
8253 } else if (float32_is_zero(f32
)) {
8254 float_raise(float_flag_divbyzero
, s
);
8255 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8256 } else if (float32_is_neg(f32
)) {
8257 float_raise(float_flag_invalid
, s
);
8258 return float32_default_nan
;
8259 } else if (float32_is_infinity(f32
)) {
8260 return float32_zero
;
8263 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8264 * preserving the parity of the exponent. */
8266 f64_frac
= ((uint64_t) f32_frac
) << 29;
8268 while (extract64(f64_frac
, 51, 1) == 0) {
8269 f64_frac
= f64_frac
<< 1;
8270 f32_exp
= f32_exp
-1;
8272 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8275 if (extract64(f32_exp
, 0, 1) == 0) {
8276 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8280 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8285 result_exp
= (380 - f32_exp
) / 2;
8287 f64
= recip_sqrt_estimate(f64
, s
);
8289 val64
= float64_val(f64
);
8291 val
= ((result_exp
& 0xff) << 23)
8292 | ((val64
>> 29) & 0x7fffff);
8293 return make_float32(val
);
8296 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
8298 float_status
*s
= fpstp
;
8299 float64 f64
= float64_squash_input_denormal(input
, s
);
8300 uint64_t val
= float64_val(f64
);
8301 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
8302 int64_t f64_exp
= extract64(val
, 52, 11);
8303 uint64_t f64_frac
= extract64(val
, 0, 52);
8305 uint64_t result_frac
;
8307 if (float64_is_any_nan(f64
)) {
8309 if (float64_is_signaling_nan(f64
)) {
8310 float_raise(float_flag_invalid
, s
);
8311 nan
= float64_maybe_silence_nan(f64
);
8313 if (s
->default_nan_mode
) {
8314 nan
= float64_default_nan
;
8317 } else if (float64_is_zero(f64
)) {
8318 float_raise(float_flag_divbyzero
, s
);
8319 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8320 } else if (float64_is_neg(f64
)) {
8321 float_raise(float_flag_invalid
, s
);
8322 return float64_default_nan
;
8323 } else if (float64_is_infinity(f64
)) {
8324 return float64_zero
;
8327 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8328 * preserving the parity of the exponent. */
8331 while (extract64(f64_frac
, 51, 1) == 0) {
8332 f64_frac
= f64_frac
<< 1;
8333 f64_exp
= f64_exp
- 1;
8335 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8338 if (extract64(f64_exp
, 0, 1) == 0) {
8339 f64
= make_float64(f64_sbit
8343 f64
= make_float64(f64_sbit
8348 result_exp
= (3068 - f64_exp
) / 2;
8350 f64
= recip_sqrt_estimate(f64
, s
);
8352 result_frac
= extract64(float64_val(f64
), 0, 52);
8354 return make_float64(f64_sbit
|
8355 ((result_exp
& 0x7ff) << 52) |
8359 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
8361 float_status
*s
= fpstp
;
8364 if ((a
& 0x80000000) == 0) {
8368 f64
= make_float64((0x3feULL
<< 52)
8369 | ((int64_t)(a
& 0x7fffffff) << 21));
8371 f64
= recip_estimate(f64
, s
);
8373 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8376 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
8378 float_status
*fpst
= fpstp
;
8381 if ((a
& 0xc0000000) == 0) {
8385 if (a
& 0x80000000) {
8386 f64
= make_float64((0x3feULL
<< 52)
8387 | ((uint64_t)(a
& 0x7fffffff) << 21));
8388 } else { /* bits 31-30 == '01' */
8389 f64
= make_float64((0x3fdULL
<< 52)
8390 | ((uint64_t)(a
& 0x3fffffff) << 22));
8393 f64
= recip_sqrt_estimate(f64
, fpst
);
8395 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8398 /* VFPv4 fused multiply-accumulate */
8399 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
8401 float_status
*fpst
= fpstp
;
8402 return float32_muladd(a
, b
, c
, 0, fpst
);
8405 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
8407 float_status
*fpst
= fpstp
;
8408 return float64_muladd(a
, b
, c
, 0, fpst
);
8411 /* ARMv8 round to integral */
8412 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
8414 return float32_round_to_int(x
, fp_status
);
8417 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
8419 return float64_round_to_int(x
, fp_status
);
8422 float32
HELPER(rints
)(float32 x
, void *fp_status
)
8424 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8427 ret
= float32_round_to_int(x
, fp_status
);
8429 /* Suppress any inexact exceptions the conversion produced */
8430 if (!(old_flags
& float_flag_inexact
)) {
8431 new_flags
= get_float_exception_flags(fp_status
);
8432 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8438 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
8440 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8443 ret
= float64_round_to_int(x
, fp_status
);
8445 new_flags
= get_float_exception_flags(fp_status
);
8447 /* Suppress any inexact exceptions the conversion produced */
8448 if (!(old_flags
& float_flag_inexact
)) {
8449 new_flags
= get_float_exception_flags(fp_status
);
8450 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8456 /* Convert ARM rounding mode to softfloat */
8457 int arm_rmode_to_sf(int rmode
)
8460 case FPROUNDING_TIEAWAY
:
8461 rmode
= float_round_ties_away
;
8463 case FPROUNDING_ODD
:
8464 /* FIXME: add support for TIEAWAY and ODD */
8465 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
8467 case FPROUNDING_TIEEVEN
:
8469 rmode
= float_round_nearest_even
;
8471 case FPROUNDING_POSINF
:
8472 rmode
= float_round_up
;
8474 case FPROUNDING_NEGINF
:
8475 rmode
= float_round_down
;
8477 case FPROUNDING_ZERO
:
8478 rmode
= float_round_to_zero
;
8485 * The upper bytes of val (above the number specified by 'bytes') must have
8486 * been zeroed out by the caller.
8488 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8494 /* zlib crc32 converts the accumulator and output to one's complement. */
8495 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
8498 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8504 /* Linux crc32c converts the output to one's complement. */
8505 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;