2 #include "exec/gdbstub.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
10 int access_type
, int is_user
,
11 hwaddr
*phys_ptr
, int *prot
,
12 target_ulong
*page_size
);
15 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
19 /* VFP data registers are always little-endian. */
20 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
22 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
25 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
26 /* Aliases for Q regs. */
29 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
30 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
34 switch (reg
- nregs
) {
35 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
36 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
37 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
42 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
46 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
48 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
51 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
54 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
55 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
59 switch (reg
- nregs
) {
60 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
61 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
62 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
67 static int raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
70 if (ri
->type
& ARM_CP_64BIT
) {
71 *value
= CPREG_FIELD64(env
, ri
);
73 *value
= CPREG_FIELD32(env
, ri
);
78 static int raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
81 if (ri
->type
& ARM_CP_64BIT
) {
82 CPREG_FIELD64(env
, ri
) = value
;
84 CPREG_FIELD32(env
, ri
) = value
;
89 static bool read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
92 /* Raw read of a coprocessor register (as needed for migration, etc)
93 * return true on success, false if the read is impossible for some reason.
95 if (ri
->type
& ARM_CP_CONST
) {
97 } else if (ri
->raw_readfn
) {
98 return (ri
->raw_readfn(env
, ri
, v
) == 0);
99 } else if (ri
->readfn
) {
100 return (ri
->readfn(env
, ri
, v
) == 0);
102 if (ri
->type
& ARM_CP_64BIT
) {
103 *v
= CPREG_FIELD64(env
, ri
);
105 *v
= CPREG_FIELD32(env
, ri
);
111 static bool write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
114 /* Raw write of a coprocessor register (as needed for migration, etc).
115 * Return true on success, false if the write is impossible for some reason.
116 * Note that constant registers are treated as write-ignored; the
117 * caller should check for success by whether a readback gives the
120 if (ri
->type
& ARM_CP_CONST
) {
122 } else if (ri
->raw_writefn
) {
123 return (ri
->raw_writefn(env
, ri
, v
) == 0);
124 } else if (ri
->writefn
) {
125 return (ri
->writefn(env
, ri
, v
) == 0);
127 if (ri
->type
& ARM_CP_64BIT
) {
128 CPREG_FIELD64(env
, ri
) = v
;
130 CPREG_FIELD32(env
, ri
) = v
;
136 bool write_cpustate_to_list(ARMCPU
*cpu
)
138 /* Write the coprocessor state from cpu->env to the (index,value) list. */
142 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
143 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
144 const ARMCPRegInfo
*ri
;
146 ri
= get_arm_cp_reginfo(cpu
, regidx
);
151 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
154 if (!read_raw_cp_reg(&cpu
->env
, ri
, &v
)) {
158 cpu
->cpreg_values
[i
] = v
;
163 bool write_list_to_cpustate(ARMCPU
*cpu
)
168 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
169 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
170 uint64_t v
= cpu
->cpreg_values
[i
];
172 const ARMCPRegInfo
*ri
;
174 ri
= get_arm_cp_reginfo(cpu
, regidx
);
179 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
182 /* Write value and confirm it reads back as written
183 * (to catch read-only registers and partially read-only
184 * registers where the incoming migration value doesn't match)
186 if (!write_raw_cp_reg(&cpu
->env
, ri
, v
) ||
187 !read_raw_cp_reg(&cpu
->env
, ri
, &readback
) ||
195 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
197 ARMCPU
*cpu
= opaque
;
199 const ARMCPRegInfo
*ri
;
201 regidx
= *(uint32_t *)key
;
202 ri
= get_arm_cp_reginfo(cpu
, regidx
);
204 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
205 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
206 /* The value array need not be initialized at this point */
207 cpu
->cpreg_array_len
++;
211 static void count_cpreg(gpointer key
, gpointer opaque
)
213 ARMCPU
*cpu
= opaque
;
215 const ARMCPRegInfo
*ri
;
217 regidx
= *(uint32_t *)key
;
218 ri
= get_arm_cp_reginfo(cpu
, regidx
);
220 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
221 cpu
->cpreg_array_len
++;
225 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
227 uint32_t aidx
= *(uint32_t *)a
;
228 uint32_t bidx
= *(uint32_t *)b
;
233 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
235 GList
**plist
= udata
;
237 *plist
= g_list_prepend(*plist
, key
);
240 void init_cpreg_list(ARMCPU
*cpu
)
242 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
243 * Note that we require cpreg_tuples[] to be sorted by key ID.
248 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
250 keys
= g_list_sort(keys
, cpreg_key_compare
);
252 cpu
->cpreg_array_len
= 0;
254 g_list_foreach(keys
, count_cpreg
, cpu
);
256 arraylen
= cpu
->cpreg_array_len
;
257 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
258 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
259 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
260 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
261 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
262 cpu
->cpreg_array_len
= 0;
264 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
266 assert(cpu
->cpreg_array_len
== arraylen
);
271 static int dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
273 env
->cp15
.c3
= value
;
274 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
278 static int fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
280 if (env
->cp15
.c13_fcse
!= value
) {
281 /* Unlike real hardware the qemu TLB uses virtual addresses,
282 * not modified virtual addresses, so this causes a TLB flush.
285 env
->cp15
.c13_fcse
= value
;
289 static int contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
292 if (env
->cp15
.c13_context
!= value
&& !arm_feature(env
, ARM_FEATURE_MPU
)) {
293 /* For VMSA (when not using the LPAE long descriptor page table
294 * format) this register includes the ASID, so do a TLB flush.
295 * For PMSA it is purely a process ID and no action is needed.
299 env
->cp15
.c13_context
= value
;
303 static int tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
306 /* Invalidate all (TLBIALL) */
311 static int tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
314 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
315 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
319 static int tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
322 /* Invalidate by ASID (TLBIASID) */
323 tlb_flush(env
, value
== 0);
327 static int tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
330 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
331 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
335 static const ARMCPRegInfo cp_reginfo
[] = {
336 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
337 * version" bits will read as a reserved value, which should cause
338 * Linux to not try to use the debug hardware.
340 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
341 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
342 /* MMU Domain access control / MPU write buffer control */
343 { .name
= "DACR", .cp
= 15,
344 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
345 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
346 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
347 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
348 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
349 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
350 { .name
= "CONTEXTIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 1,
351 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
352 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
353 /* ??? This covers not just the impdef TLB lockdown registers but also
354 * some v7VMSA registers relating to TEX remap, so it is overly broad.
356 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
357 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
358 /* MMU TLB control. Note that the wildcarding means we cover not just
359 * the unified TLB ops but also the dside/iside/inner-shareable variants.
361 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
362 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
363 .type
= ARM_CP_NO_MIGRATE
},
364 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
365 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
366 .type
= ARM_CP_NO_MIGRATE
},
367 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
368 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
369 .type
= ARM_CP_NO_MIGRATE
},
370 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
371 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
372 .type
= ARM_CP_NO_MIGRATE
},
373 /* Cache maintenance ops; some of this space may be overridden later. */
374 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
375 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
376 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
380 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
381 /* Not all pre-v6 cores implemented this WFI, so this is slightly
384 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
385 .access
= PL1_W
, .type
= ARM_CP_WFI
},
389 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
390 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
391 * is UNPREDICTABLE; we choose to NOP as most implementations do).
393 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
394 .access
= PL1_W
, .type
= ARM_CP_WFI
},
395 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
396 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
397 * OMAPCP will override this space.
399 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
400 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
402 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
403 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
405 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
406 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
407 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
412 static int cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
414 if (env
->cp15
.c1_coproc
!= value
) {
415 env
->cp15
.c1_coproc
= value
;
416 /* ??? Is this safe when called from within a TB? */
422 static const ARMCPRegInfo v6_cp_reginfo
[] = {
423 /* prefetch by MVA in v6, NOP in v7 */
424 { .name
= "MVA_prefetch",
425 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
426 .access
= PL1_W
, .type
= ARM_CP_NOP
},
427 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
428 .access
= PL0_W
, .type
= ARM_CP_NOP
},
429 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
430 .access
= PL0_W
, .type
= ARM_CP_NOP
},
431 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
432 .access
= PL0_W
, .type
= ARM_CP_NOP
},
433 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
434 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_insn
),
436 /* Watchpoint Fault Address Register : should actually only be present
437 * for 1136, 1176, 11MPCore.
439 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
440 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
441 { .name
= "CPACR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
442 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
443 .resetvalue
= 0, .writefn
= cpacr_write
},
448 static int pmreg_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
451 /* Generic performance monitor register read function for where
452 * user access may be allowed by PMUSERENR.
454 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
457 *value
= CPREG_FIELD32(env
, ri
);
461 static int pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
464 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
467 /* only the DP, X, D and E bits are writable */
468 env
->cp15
.c9_pmcr
&= ~0x39;
469 env
->cp15
.c9_pmcr
|= (value
& 0x39);
473 static int pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
476 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
480 env
->cp15
.c9_pmcnten
|= value
;
484 static int pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
487 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
491 env
->cp15
.c9_pmcnten
&= ~value
;
495 static int pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
498 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
501 env
->cp15
.c9_pmovsr
&= ~value
;
505 static int pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
508 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
511 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
515 static int pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
518 env
->cp15
.c9_pmuserenr
= value
& 1;
522 static int pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
525 /* We have no event counters so only the C bit can be changed */
527 env
->cp15
.c9_pminten
|= value
;
531 static int pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
535 env
->cp15
.c9_pminten
&= ~value
;
539 static int ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
542 ARMCPU
*cpu
= arm_env_get_cpu(env
);
543 *value
= cpu
->ccsidr
[env
->cp15
.c0_cssel
];
547 static int csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
550 env
->cp15
.c0_cssel
= value
& 0xf;
554 static const ARMCPRegInfo v7_cp_reginfo
[] = {
555 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
558 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
559 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
560 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
561 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
562 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
563 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
564 .access
= PL1_W
, .type
= ARM_CP_NOP
},
565 /* Performance monitors are implementation defined in v7,
566 * but with an ARM recommended set of registers, which we
567 * follow (although we don't actually implement any counters)
569 * Performance registers fall into three categories:
570 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
571 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
572 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
573 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
574 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
576 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
577 .access
= PL0_RW
, .resetvalue
= 0,
578 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
579 .readfn
= pmreg_read
, .writefn
= pmcntenset_write
,
580 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
581 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
582 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
583 .readfn
= pmreg_read
, .writefn
= pmcntenclr_write
,
584 .type
= ARM_CP_NO_MIGRATE
},
585 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
586 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
587 .readfn
= pmreg_read
, .writefn
= pmovsr_write
,
588 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
589 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
592 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
593 .access
= PL0_W
, .type
= ARM_CP_NOP
},
594 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
595 * We choose to RAZ/WI. XXX should respect PMUSERENR.
597 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
598 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
599 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
600 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
601 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
602 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
604 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
605 .readfn
= pmreg_read
, .writefn
= pmxevtyper_write
,
606 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
607 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
608 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
609 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
610 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
611 .access
= PL0_R
| PL1_RW
,
612 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
614 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
615 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
617 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
619 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
620 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
621 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
622 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
623 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
624 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
625 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
627 { .name
= "CCSIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
628 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
629 { .name
= "CSSELR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
630 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
631 .writefn
= csselr_write
, .resetvalue
= 0 },
632 /* Auxiliary ID register: this actually has an IMPDEF value but for now
633 * just RAZ for all cores:
635 { .name
= "AIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 7,
636 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
640 static int teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
647 static int teehbr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
650 /* This is a helper function because the user access rights
651 * depend on the value of the TEECR.
653 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
656 *value
= env
->teehbr
;
660 static int teehbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
663 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
670 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
671 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
672 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
674 .writefn
= teecr_write
},
675 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
676 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
677 .resetvalue
= 0, .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
678 .readfn
= teehbr_read
, .writefn
= teehbr_write
},
682 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
683 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
685 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls1
),
687 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
688 .access
= PL0_R
|PL1_W
,
689 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls2
),
691 { .name
= "TPIDRPRW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 4,
693 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls3
),
698 #ifndef CONFIG_USER_ONLY
700 static uint64_t gt_get_countervalue(CPUARMState
*env
)
702 return qemu_get_clock_ns(vm_clock
) / GTIMER_SCALE
;
705 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
707 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
710 /* Timer enabled: calculate and set current ISTATUS, irq, and
711 * reset timer to when ISTATUS next has to change
713 uint64_t count
= gt_get_countervalue(&cpu
->env
);
714 /* Note that this must be unsigned 64 bit arithmetic: */
715 int istatus
= count
>= gt
->cval
;
718 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
719 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
720 (istatus
&& !(gt
->ctl
& 2)));
722 /* Next transition is when count rolls back over to zero */
723 nexttick
= UINT64_MAX
;
725 /* Next transition is when we hit cval */
728 /* Note that the desired next expiry time might be beyond the
729 * signed-64-bit range of a QEMUTimer -- in this case we just
730 * set the timer for as far in the future as possible. When the
731 * timer expires we will reset the timer for any remaining period.
733 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
734 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
736 qemu_mod_timer(cpu
->gt_timer
[timeridx
], nexttick
);
738 /* Timer disabled: ISTATUS and timer output always clear */
740 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
741 qemu_del_timer(cpu
->gt_timer
[timeridx
]);
745 static int gt_cntfrq_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
748 /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
749 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
752 *value
= env
->cp15
.c14_cntfrq
;
756 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
758 ARMCPU
*cpu
= arm_env_get_cpu(env
);
759 int timeridx
= ri
->opc1
& 1;
761 qemu_del_timer(cpu
->gt_timer
[timeridx
]);
764 static int gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
767 int timeridx
= ri
->opc1
& 1;
769 if (arm_current_pl(env
) == 0 &&
770 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
773 *value
= gt_get_countervalue(env
);
777 static int gt_cval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
780 int timeridx
= ri
->opc1
& 1;
782 if (arm_current_pl(env
) == 0 &&
783 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
786 *value
= env
->cp15
.c14_timer
[timeridx
].cval
;
790 static int gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
793 int timeridx
= ri
->opc1
& 1;
795 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
796 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
799 static int gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
802 int timeridx
= ri
->crm
& 1;
804 if (arm_current_pl(env
) == 0 &&
805 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
808 *value
= (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
809 gt_get_countervalue(env
));
813 static int gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
816 int timeridx
= ri
->crm
& 1;
818 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
819 + sextract64(value
, 0, 32);
820 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
824 static int gt_ctl_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
827 int timeridx
= ri
->crm
& 1;
829 if (arm_current_pl(env
) == 0 &&
830 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
833 *value
= env
->cp15
.c14_timer
[timeridx
].ctl
;
837 static int gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
840 ARMCPU
*cpu
= arm_env_get_cpu(env
);
841 int timeridx
= ri
->crm
& 1;
842 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
844 env
->cp15
.c14_timer
[timeridx
].ctl
= value
& 3;
845 if ((oldval
^ value
) & 1) {
847 gt_recalc_timer(cpu
, timeridx
);
848 } else if ((oldval
& value
) & 2) {
849 /* IMASK toggled: don't need to recalculate,
850 * just set the interrupt line based on ISTATUS
852 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
853 (oldval
& 4) && (value
& 2));
858 void arm_gt_ptimer_cb(void *opaque
)
860 ARMCPU
*cpu
= opaque
;
862 gt_recalc_timer(cpu
, GTIMER_PHYS
);
865 void arm_gt_vtimer_cb(void *opaque
)
867 ARMCPU
*cpu
= opaque
;
869 gt_recalc_timer(cpu
, GTIMER_VIRT
);
872 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
873 /* Note that CNTFRQ is purely reads-as-written for the benefit
874 * of software; writing it doesn't actually change the timer frequency.
875 * Our reset value matches the fixed frequency we implement the timer at.
877 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
878 .access
= PL1_RW
| PL0_R
,
879 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
880 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
881 .readfn
= gt_cntfrq_read
, .raw_readfn
= raw_read
,
883 /* overall control: mostly access permissions */
884 { .name
= "CNTKCTL", .cp
= 15, .crn
= 14, .crm
= 1, .opc1
= 0, .opc2
= 0,
886 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
889 /* per-timer control */
890 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
891 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
892 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
894 .readfn
= gt_ctl_read
, .writefn
= gt_ctl_write
,
895 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
897 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
898 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
899 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
901 .readfn
= gt_ctl_read
, .writefn
= gt_ctl_write
,
902 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
904 /* TimerValue views: a 32 bit downcounting view of the underlying state */
905 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
906 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
907 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
909 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
910 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
911 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
913 /* The counter itself */
914 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
915 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
916 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
918 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
919 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
920 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
922 /* Comparison value, indicating when the timer goes off */
923 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
924 .access
= PL1_RW
| PL0_R
,
925 .type
= ARM_CP_64BIT
| ARM_CP_IO
,
926 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
928 .readfn
= gt_cval_read
, .writefn
= gt_cval_write
,
929 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
931 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
932 .access
= PL1_RW
| PL0_R
,
933 .type
= ARM_CP_64BIT
| ARM_CP_IO
,
934 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
936 .readfn
= gt_cval_read
, .writefn
= gt_cval_write
,
937 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
943 /* In user-mode none of the generic timer registers are accessible,
944 * and their implementation depends on vm_clock and qdev gpio outputs,
945 * so instead just don't register any of them.
947 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
953 static int par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
955 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
956 env
->cp15
.c7_par
= value
;
957 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
958 env
->cp15
.c7_par
= value
& 0xfffff6ff;
960 env
->cp15
.c7_par
= value
& 0xfffff1ff;
965 #ifndef CONFIG_USER_ONLY
966 /* get_phys_addr() isn't present for user-mode-only targets */
968 /* Return true if extended addresses are enabled, ie this is an
969 * LPAE implementation and we are using the long-descriptor translation
970 * table format because the TTBCR EAE bit is set.
972 static inline bool extended_addresses_enabled(CPUARMState
*env
)
974 return arm_feature(env
, ARM_FEATURE_LPAE
)
975 && (env
->cp15
.c2_control
& (1 << 31));
978 static int ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
981 target_ulong page_size
;
983 int ret
, is_user
= ri
->opc2
& 2;
984 int access_type
= ri
->opc2
& 1;
987 /* Other states are only available with TrustZone */
990 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
991 &phys_addr
, &prot
, &page_size
);
992 if (extended_addresses_enabled(env
)) {
993 /* ret is a DFSR/IFSR value for the long descriptor
994 * translation table format, but with WnR always clear.
995 * Convert it to a 64-bit PAR.
997 uint64_t par64
= (1 << 11); /* LPAE bit always set */
999 par64
|= phys_addr
& ~0xfffULL
;
1000 /* We don't set the ATTR or SH fields in the PAR. */
1003 par64
|= (ret
& 0x3f) << 1; /* FS */
1004 /* Note that S2WLK and FSTAGE are always zero, because we don't
1005 * implement virtualization and therefore there can't be a stage 2
1009 env
->cp15
.c7_par
= par64
;
1010 env
->cp15
.c7_par_hi
= par64
>> 32;
1012 /* ret is a DFSR/IFSR value for the short descriptor
1013 * translation table format (with WnR always clear).
1014 * Convert it to a 32-bit PAR.
1017 /* We do not set any attribute bits in the PAR */
1018 if (page_size
== (1 << 24)
1019 && arm_feature(env
, ARM_FEATURE_V7
)) {
1020 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1022 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1025 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1026 ((ret
& (12 << 1)) >> 6) |
1027 ((ret
& 0xf) << 1) | 1;
1029 env
->cp15
.c7_par_hi
= 0;
1035 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1036 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1037 .access
= PL1_RW
, .resetvalue
= 0,
1038 .fieldoffset
= offsetof(CPUARMState
, cp15
.c7_par
),
1039 .writefn
= par_write
},
1040 #ifndef CONFIG_USER_ONLY
1041 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1042 .access
= PL1_W
, .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1047 /* Return basic MPU access permission bits. */
1048 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1055 for (i
= 0; i
< 16; i
+= 2) {
1056 ret
|= (val
>> i
) & mask
;
1062 /* Pad basic MPU access permission bits to extended format. */
1063 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1070 for (i
= 0; i
< 16; i
+= 2) {
1071 ret
|= (val
& mask
) << i
;
1077 static int pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1080 env
->cp15
.c5_data
= extended_mpu_ap_bits(value
);
1084 static int pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1087 *value
= simple_mpu_ap_bits(env
->cp15
.c5_data
);
1091 static int pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1094 env
->cp15
.c5_insn
= extended_mpu_ap_bits(value
);
1098 static int pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1101 *value
= simple_mpu_ap_bits(env
->cp15
.c5_insn
);
1105 static int arm946_prbs_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1111 *value
= env
->cp15
.c6_region
[ri
->crm
];
1115 static int arm946_prbs_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1121 env
->cp15
.c6_region
[ri
->crm
] = value
;
1125 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1126 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1127 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1128 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0,
1129 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1130 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1131 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1132 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0,
1133 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1134 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1136 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1137 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1139 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
1140 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1142 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1143 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1145 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1146 /* Protection region base and size registers */
1147 { .name
= "946_PRBS", .cp
= 15, .crn
= 6, .crm
= CP_ANY
, .opc1
= 0,
1148 .opc2
= CP_ANY
, .access
= PL1_RW
,
1149 .readfn
= arm946_prbs_read
, .writefn
= arm946_prbs_write
, },
1153 static int vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1156 int maskshift
= extract32(value
, 0, 3);
1158 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1159 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1163 /* Note that we always calculate c2_mask and c2_base_mask, but
1164 * they are only used for short-descriptor tables (ie if EAE is 0);
1165 * for long-descriptor tables the TTBCR fields are used differently
1166 * and the c2_mask and c2_base_mask values are meaningless.
1168 env
->cp15
.c2_control
= value
;
1169 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1170 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1174 static int vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1177 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1178 /* With LPAE the TTBCR could result in a change of ASID
1179 * via the TTBCR.A1 bit, so do a TLB flush.
1183 return vmsa_ttbcr_raw_write(env
, ri
, value
);
1186 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1188 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1189 env
->cp15
.c2_control
= 0;
1190 env
->cp15
.c2_mask
= 0;
1193 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1194 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1196 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1197 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1199 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
1200 { .name
= "TTBR0", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1202 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base0
), .resetvalue
= 0, },
1203 { .name
= "TTBR1", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1205 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base1
), .resetvalue
= 0, },
1206 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1207 .access
= PL1_RW
, .writefn
= vmsa_ttbcr_write
,
1208 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1209 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1210 { .name
= "DFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1211 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_data
),
1216 static int omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1219 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1220 /* The OS_TYPE bit in this register changes the reported CPUID! */
1221 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1222 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1226 static int omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1229 env
->cp15
.c15_threadid
= value
& 0xffff;
1233 static int omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1236 /* Wait-for-interrupt (deprecated) */
1237 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1241 static int omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1244 /* On OMAP there are registers indicating the max/min index of dcache lines
1245 * containing a dirty line; cache flush operations have to reset these.
1247 env
->cp15
.c15_i_max
= 0x000;
1248 env
->cp15
.c15_i_min
= 0xff0;
1252 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1253 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1254 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1255 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1256 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1257 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1258 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1260 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1261 .writefn
= omap_ticonfig_write
},
1262 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1264 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1265 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1266 .access
= PL1_RW
, .resetvalue
= 0xff0,
1267 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1268 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1270 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1271 .writefn
= omap_threadid_write
},
1272 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1273 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1274 .type
= ARM_CP_NO_MIGRATE
,
1275 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1276 /* TODO: Peripheral port remap register:
1277 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1278 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1281 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1282 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1283 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1284 .writefn
= omap_cachemaint_write
},
1285 { .name
= "C9", .cp
= 15, .crn
= 9,
1286 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1287 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1291 static int xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1295 if (env
->cp15
.c15_cpar
!= value
) {
1296 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1298 env
->cp15
.c15_cpar
= value
;
1303 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1304 { .name
= "XSCALE_CPAR",
1305 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1306 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1307 .writefn
= xscale_cpar_write
, },
1308 { .name
= "XSCALE_AUXCR",
1309 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1310 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1315 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1316 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1317 * implementation of this implementation-defined space.
1318 * Ideally this should eventually disappear in favour of actually
1319 * implementing the correct behaviour for all cores.
1321 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1322 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1323 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1328 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1329 /* Cache status: RAZ because we have no cache so it's always clean */
1330 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1331 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1336 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1337 /* We never have a a block transfer operation in progress */
1338 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1339 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1341 /* The cache ops themselves: these all NOP for QEMU */
1342 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1343 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1344 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1345 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1346 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1347 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1348 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1349 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1350 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1351 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1352 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1353 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1357 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1358 /* The cache test-and-clean instructions always return (1 << 30)
1359 * to indicate that there are no dirty cache lines.
1361 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1362 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1363 .resetvalue
= (1 << 30) },
1364 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1365 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1366 .resetvalue
= (1 << 30) },
1370 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1371 /* Ignore ReadBuffer accesses */
1372 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1373 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1374 .access
= PL1_RW
, .resetvalue
= 0,
1375 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1379 static int mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1382 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1383 uint32_t mpidr
= cs
->cpu_index
;
1384 /* We don't support setting cluster ID ([8..11])
1385 * so these bits always RAZ.
1387 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1389 /* Cores which are uniprocessor (non-coherent)
1390 * but still implement the MP extensions set
1391 * bit 30. (For instance, A9UP.) However we do
1392 * not currently model any of those cores.
1399 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1400 { .name
= "MPIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1401 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1405 static int par64_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
1407 *value
= ((uint64_t)env
->cp15
.c7_par_hi
<< 32) | env
->cp15
.c7_par
;
1411 static int par64_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1413 env
->cp15
.c7_par_hi
= value
>> 32;
1414 env
->cp15
.c7_par
= value
;
1418 static void par64_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1420 env
->cp15
.c7_par_hi
= 0;
1421 env
->cp15
.c7_par
= 0;
1424 static int ttbr064_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1427 *value
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
1431 static int ttbr064_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1434 env
->cp15
.c2_base0_hi
= value
>> 32;
1435 env
->cp15
.c2_base0
= value
;
1439 static int ttbr064_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1442 /* Writes to the 64 bit format TTBRs may change the ASID */
1444 return ttbr064_raw_write(env
, ri
, value
);
1447 static void ttbr064_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1449 env
->cp15
.c2_base0_hi
= 0;
1450 env
->cp15
.c2_base0
= 0;
1453 static int ttbr164_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1456 *value
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
1460 static int ttbr164_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1463 env
->cp15
.c2_base1_hi
= value
>> 32;
1464 env
->cp15
.c2_base1
= value
;
1468 static void ttbr164_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1470 env
->cp15
.c2_base1_hi
= 0;
1471 env
->cp15
.c2_base1
= 0;
1474 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1475 /* NOP AMAIR0/1: the override is because these clash with the rather
1476 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1478 { .name
= "AMAIR0", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1479 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1481 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1482 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1484 /* 64 bit access versions of the (dummy) debug registers */
1485 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1486 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1487 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1488 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1489 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1490 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1491 .readfn
= par64_read
, .writefn
= par64_write
, .resetfn
= par64_reset
},
1492 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1493 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr064_read
,
1494 .writefn
= ttbr064_write
, .raw_writefn
= ttbr064_raw_write
,
1495 .resetfn
= ttbr064_reset
},
1496 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1497 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr164_read
,
1498 .writefn
= ttbr164_write
, .resetfn
= ttbr164_reset
},
1502 static int sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1504 env
->cp15
.c1_sys
= value
;
1505 /* ??? Lots of these bits are not implemented. */
1506 /* This may enable/disable the MMU, so do a TLB flush. */
1511 void register_cp_regs_for_features(ARMCPU
*cpu
)
1513 /* Register all the coprocessor registers based on feature bits */
1514 CPUARMState
*env
= &cpu
->env
;
1515 if (arm_feature(env
, ARM_FEATURE_M
)) {
1516 /* M profile has no coprocessor registers */
1520 define_arm_cp_regs(cpu
, cp_reginfo
);
1521 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1522 /* The ID registers all have impdef reset values */
1523 ARMCPRegInfo v6_idregs
[] = {
1524 { .name
= "ID_PFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1525 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1526 .resetvalue
= cpu
->id_pfr0
},
1527 { .name
= "ID_PFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1528 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1529 .resetvalue
= cpu
->id_pfr1
},
1530 { .name
= "ID_DFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1531 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1532 .resetvalue
= cpu
->id_dfr0
},
1533 { .name
= "ID_AFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1534 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1535 .resetvalue
= cpu
->id_afr0
},
1536 { .name
= "ID_MMFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1537 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1538 .resetvalue
= cpu
->id_mmfr0
},
1539 { .name
= "ID_MMFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1540 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1541 .resetvalue
= cpu
->id_mmfr1
},
1542 { .name
= "ID_MMFR2", .cp
= 15, .crn
= 0, .crm
= 1,
1543 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1544 .resetvalue
= cpu
->id_mmfr2
},
1545 { .name
= "ID_MMFR3", .cp
= 15, .crn
= 0, .crm
= 1,
1546 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1547 .resetvalue
= cpu
->id_mmfr3
},
1548 { .name
= "ID_ISAR0", .cp
= 15, .crn
= 0, .crm
= 2,
1549 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1550 .resetvalue
= cpu
->id_isar0
},
1551 { .name
= "ID_ISAR1", .cp
= 15, .crn
= 0, .crm
= 2,
1552 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1553 .resetvalue
= cpu
->id_isar1
},
1554 { .name
= "ID_ISAR2", .cp
= 15, .crn
= 0, .crm
= 2,
1555 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1556 .resetvalue
= cpu
->id_isar2
},
1557 { .name
= "ID_ISAR3", .cp
= 15, .crn
= 0, .crm
= 2,
1558 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1559 .resetvalue
= cpu
->id_isar3
},
1560 { .name
= "ID_ISAR4", .cp
= 15, .crn
= 0, .crm
= 2,
1561 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1562 .resetvalue
= cpu
->id_isar4
},
1563 { .name
= "ID_ISAR5", .cp
= 15, .crn
= 0, .crm
= 2,
1564 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1565 .resetvalue
= cpu
->id_isar5
},
1566 /* 6..7 are as yet unallocated and must RAZ */
1567 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
1568 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1570 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
1571 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1575 define_arm_cp_regs(cpu
, v6_idregs
);
1576 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
1578 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
1580 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1581 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
1583 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1584 /* v7 performance monitor control register: same implementor
1585 * field as main ID register, and we implement no event counters.
1587 ARMCPRegInfo pmcr
= {
1588 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
1589 .access
= PL0_RW
, .resetvalue
= cpu
->midr
& 0xff000000,
1590 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
1591 .readfn
= pmreg_read
, .writefn
= pmcr_write
,
1592 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
1594 ARMCPRegInfo clidr
= {
1595 .name
= "CLIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
1596 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
1598 define_one_arm_cp_reg(cpu
, &pmcr
);
1599 define_one_arm_cp_reg(cpu
, &clidr
);
1600 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
1602 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
1604 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1605 /* These are the MPU registers prior to PMSAv6. Any new
1606 * PMSA core later than the ARM946 will require that we
1607 * implement the PMSAv6 or PMSAv7 registers, which are
1608 * completely different.
1610 assert(!arm_feature(env
, ARM_FEATURE_V6
));
1611 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
1613 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
1615 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
1616 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
1618 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1619 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
1621 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1622 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
1624 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
1625 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
1627 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
1628 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
1630 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
1631 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
1633 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1634 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
1636 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1637 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
1639 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1640 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
1642 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
1643 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
1645 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1646 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
1648 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1649 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1650 * be read-only (ie write causes UNDEF exception).
1653 ARMCPRegInfo id_cp_reginfo
[] = {
1654 /* Note that the MIDR isn't a simple constant register because
1655 * of the TI925 behaviour where writes to another register can
1656 * cause the MIDR value to change.
1658 * Unimplemented registers in the c15 0 0 0 space default to
1659 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1660 * and friends override accordingly.
1663 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
1664 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
1665 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
1666 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
1667 .type
= ARM_CP_OVERRIDE
},
1669 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
1670 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
1672 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
1673 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1675 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
1676 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1677 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1679 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
1680 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1682 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
1683 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1685 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
1686 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1688 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
1689 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1691 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
1692 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1695 ARMCPRegInfo crn0_wi_reginfo
= {
1696 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
1697 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
1698 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
1700 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
1701 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1703 /* Register the blanket "writes ignored" value first to cover the
1704 * whole space. Then update the specific ID registers to allow write
1705 * access, so that they ignore writes rather than causing them to
1708 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
1709 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
1713 define_arm_cp_regs(cpu
, id_cp_reginfo
);
1716 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
1717 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
1720 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
1721 ARMCPRegInfo auxcr
= {
1722 .name
= "AUXCR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1,
1723 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
1724 .resetvalue
= cpu
->reset_auxcr
1726 define_one_arm_cp_reg(cpu
, &auxcr
);
1729 /* Generic registers whose values depend on the implementation */
1731 ARMCPRegInfo sctlr
= {
1732 .name
= "SCTLR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
1733 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
1734 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
1735 .raw_writefn
= raw_write
,
1737 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1738 /* Normally we would always end the TB on an SCTLR write, but Linux
1739 * arch/arm/mach-pxa/sleep.S expects two instructions following
1740 * an MMU enable to execute from cache. Imitate this behaviour.
1742 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
1744 define_one_arm_cp_reg(cpu
, &sctlr
);
1748 ARMCPU
*cpu_arm_init(const char *cpu_model
)
1754 oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpu_model
);
1758 cpu
= ARM_CPU(object_new(object_class_get_name(oc
)));
1760 env
->cpu_model_str
= cpu_model
;
1762 /* TODO this should be set centrally, once possible */
1763 object_property_set_bool(OBJECT(cpu
), true, "realized", NULL
);
1768 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
1770 CPUState
*cs
= CPU(cpu
);
1771 CPUARMState
*env
= &cpu
->env
;
1773 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
1774 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1775 51, "arm-neon.xml", 0);
1776 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
1777 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1778 35, "arm-vfp3.xml", 0);
1779 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
1780 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1781 19, "arm-vfp.xml", 0);
1785 /* Sort alphabetically by type name, except for "any". */
1786 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
1788 ObjectClass
*class_a
= (ObjectClass
*)a
;
1789 ObjectClass
*class_b
= (ObjectClass
*)b
;
1790 const char *name_a
, *name_b
;
1792 name_a
= object_class_get_name(class_a
);
1793 name_b
= object_class_get_name(class_b
);
1794 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
1796 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
1799 return strcmp(name_a
, name_b
);
1803 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
1805 ObjectClass
*oc
= data
;
1806 CPUListState
*s
= user_data
;
1807 const char *typename
;
1810 typename
= object_class_get_name(oc
);
1811 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
1812 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
1817 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
1821 .cpu_fprintf
= cpu_fprintf
,
1825 list
= object_class_get_list(TYPE_ARM_CPU
, false);
1826 list
= g_slist_sort(list
, arm_cpu_list_compare
);
1827 (*cpu_fprintf
)(f
, "Available CPUs:\n");
1828 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
1832 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
1833 const ARMCPRegInfo
*r
, void *opaque
)
1835 /* Define implementations of coprocessor registers.
1836 * We store these in a hashtable because typically
1837 * there are less than 150 registers in a space which
1838 * is 16*16*16*8*8 = 262144 in size.
1839 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1840 * If a register is defined twice then the second definition is
1841 * used, so this can be used to define some generic registers and
1842 * then override them with implementation specific variations.
1843 * At least one of the original and the second definition should
1844 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1845 * against accidental use.
1847 int crm
, opc1
, opc2
;
1848 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
1849 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
1850 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
1851 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
1852 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
1853 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
1854 /* 64 bit registers have only CRm and Opc1 fields */
1855 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
1856 /* Check that the register definition has enough info to handle
1857 * reads and writes if they are permitted.
1859 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
1860 if (r
->access
& PL3_R
) {
1861 assert(r
->fieldoffset
|| r
->readfn
);
1863 if (r
->access
& PL3_W
) {
1864 assert(r
->fieldoffset
|| r
->writefn
);
1867 /* Bad type field probably means missing sentinel at end of reg list */
1868 assert(cptype_valid(r
->type
));
1869 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
1870 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
1871 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
1872 uint32_t *key
= g_new(uint32_t, 1);
1873 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
1874 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
1875 *key
= ENCODE_CP_REG(r
->cp
, is64
, r
->crn
, crm
, opc1
, opc2
);
1877 r2
->opaque
= opaque
;
1879 /* Make sure reginfo passed to helpers for wildcarded regs
1880 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1885 /* By convention, for wildcarded registers only the first
1886 * entry is used for migration; the others are marked as
1887 * NO_MIGRATE so we don't try to transfer the register
1888 * multiple times. Special registers (ie NOP/WFI) are
1891 if ((r
->type
& ARM_CP_SPECIAL
) ||
1892 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
1893 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
1894 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
1895 r2
->type
|= ARM_CP_NO_MIGRATE
;
1898 /* Overriding of an existing definition must be explicitly
1901 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
1902 ARMCPRegInfo
*oldreg
;
1903 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
1904 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
1905 fprintf(stderr
, "Register redefined: cp=%d %d bit "
1906 "crn=%d crm=%d opc1=%d opc2=%d, "
1907 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
1908 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
1909 oldreg
->name
, r2
->name
);
1910 g_assert_not_reached();
1913 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
1919 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
1920 const ARMCPRegInfo
*regs
, void *opaque
)
1922 /* Define a whole list of registers */
1923 const ARMCPRegInfo
*r
;
1924 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
1925 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
1929 const ARMCPRegInfo
*get_arm_cp_reginfo(ARMCPU
*cpu
, uint32_t encoded_cp
)
1931 return g_hash_table_lookup(cpu
->cp_regs
, &encoded_cp
);
1934 int arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1937 /* Helper coprocessor write function for write-ignore registers */
1941 int arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
1943 /* Helper coprocessor write function for read-as-zero registers */
1948 static int bad_mode_switch(CPUARMState
*env
, int mode
)
1950 /* Return true if it is not valid for us to switch to
1951 * this CPU mode (ie all the UNPREDICTABLE cases in
1952 * the ARM ARM CPSRWriteByInstr pseudocode).
1955 case ARM_CPU_MODE_USR
:
1956 case ARM_CPU_MODE_SYS
:
1957 case ARM_CPU_MODE_SVC
:
1958 case ARM_CPU_MODE_ABT
:
1959 case ARM_CPU_MODE_UND
:
1960 case ARM_CPU_MODE_IRQ
:
1961 case ARM_CPU_MODE_FIQ
:
1968 uint32_t cpsr_read(CPUARMState
*env
)
1971 ZF
= (env
->ZF
== 0);
1972 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
1973 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
1974 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
1975 | ((env
->condexec_bits
& 0xfc) << 8)
1979 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
1981 if (mask
& CPSR_NZCV
) {
1982 env
->ZF
= (~val
) & CPSR_Z
;
1984 env
->CF
= (val
>> 29) & 1;
1985 env
->VF
= (val
<< 3) & 0x80000000;
1988 env
->QF
= ((val
& CPSR_Q
) != 0);
1990 env
->thumb
= ((val
& CPSR_T
) != 0);
1991 if (mask
& CPSR_IT_0_1
) {
1992 env
->condexec_bits
&= ~3;
1993 env
->condexec_bits
|= (val
>> 25) & 3;
1995 if (mask
& CPSR_IT_2_7
) {
1996 env
->condexec_bits
&= 3;
1997 env
->condexec_bits
|= (val
>> 8) & 0xfc;
1999 if (mask
& CPSR_GE
) {
2000 env
->GE
= (val
>> 16) & 0xf;
2003 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
2004 if (bad_mode_switch(env
, val
& CPSR_M
)) {
2005 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2006 * We choose to ignore the attempt and leave the CPSR M field
2011 switch_mode(env
, val
& CPSR_M
);
2014 mask
&= ~CACHED_CPSR_BITS
;
2015 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
2018 /* Sign/zero extend */
2019 uint32_t HELPER(sxtb16
)(uint32_t x
)
2022 res
= (uint16_t)(int8_t)x
;
2023 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
2027 uint32_t HELPER(uxtb16
)(uint32_t x
)
2030 res
= (uint16_t)(uint8_t)x
;
2031 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
2035 uint32_t HELPER(clz
)(uint32_t x
)
2040 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
2044 if (num
== INT_MIN
&& den
== -1)
2049 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
2056 uint32_t HELPER(rbit
)(uint32_t x
)
2058 x
= ((x
& 0xff000000) >> 24)
2059 | ((x
& 0x00ff0000) >> 8)
2060 | ((x
& 0x0000ff00) << 8)
2061 | ((x
& 0x000000ff) << 24);
2062 x
= ((x
& 0xf0f0f0f0) >> 4)
2063 | ((x
& 0x0f0f0f0f) << 4);
2064 x
= ((x
& 0x88888888) >> 3)
2065 | ((x
& 0x44444444) >> 1)
2066 | ((x
& 0x22222222) << 1)
2067 | ((x
& 0x11111111) << 3);
2071 #if defined(CONFIG_USER_ONLY)
2073 void arm_cpu_do_interrupt(CPUState
*cs
)
2075 ARMCPU
*cpu
= ARM_CPU(cs
);
2076 CPUARMState
*env
= &cpu
->env
;
2078 env
->exception_index
= -1;
2081 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
2085 env
->exception_index
= EXCP_PREFETCH_ABORT
;
2086 env
->cp15
.c6_insn
= address
;
2088 env
->exception_index
= EXCP_DATA_ABORT
;
2089 env
->cp15
.c6_data
= address
;
2094 /* These should probably raise undefined insn exceptions. */
2095 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
2097 cpu_abort(env
, "v7m_mrs %d\n", reg
);
2100 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2102 cpu_abort(env
, "v7m_mrs %d\n", reg
);
2106 void switch_mode(CPUARMState
*env
, int mode
)
2108 if (mode
!= ARM_CPU_MODE_USR
)
2109 cpu_abort(env
, "Tried to switch out of user mode\n");
2112 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
2114 cpu_abort(env
, "banked r13 write\n");
2117 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
2119 cpu_abort(env
, "banked r13 read\n");
2125 /* Map CPU modes onto saved register banks. */
2126 int bank_number(int mode
)
2129 case ARM_CPU_MODE_USR
:
2130 case ARM_CPU_MODE_SYS
:
2132 case ARM_CPU_MODE_SVC
:
2134 case ARM_CPU_MODE_ABT
:
2136 case ARM_CPU_MODE_UND
:
2138 case ARM_CPU_MODE_IRQ
:
2140 case ARM_CPU_MODE_FIQ
:
2143 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
2146 void switch_mode(CPUARMState
*env
, int mode
)
2151 old_mode
= env
->uncached_cpsr
& CPSR_M
;
2152 if (mode
== old_mode
)
2155 if (old_mode
== ARM_CPU_MODE_FIQ
) {
2156 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
2157 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
2158 } else if (mode
== ARM_CPU_MODE_FIQ
) {
2159 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
2160 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
2163 i
= bank_number(old_mode
);
2164 env
->banked_r13
[i
] = env
->regs
[13];
2165 env
->banked_r14
[i
] = env
->regs
[14];
2166 env
->banked_spsr
[i
] = env
->spsr
;
2168 i
= bank_number(mode
);
2169 env
->regs
[13] = env
->banked_r13
[i
];
2170 env
->regs
[14] = env
->banked_r14
[i
];
2171 env
->spsr
= env
->banked_spsr
[i
];
2174 static void v7m_push(CPUARMState
*env
, uint32_t val
)
2177 stl_phys(env
->regs
[13], val
);
2180 static uint32_t v7m_pop(CPUARMState
*env
)
2183 val
= ldl_phys(env
->regs
[13]);
2188 /* Switch to V7M main or process stack pointer. */
2189 static void switch_v7m_sp(CPUARMState
*env
, int process
)
2192 if (env
->v7m
.current_sp
!= process
) {
2193 tmp
= env
->v7m
.other_sp
;
2194 env
->v7m
.other_sp
= env
->regs
[13];
2195 env
->regs
[13] = tmp
;
2196 env
->v7m
.current_sp
= process
;
2200 static void do_v7m_exception_exit(CPUARMState
*env
)
2205 type
= env
->regs
[15];
2206 if (env
->v7m
.exception
!= 0)
2207 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
2209 /* Switch to the target stack. */
2210 switch_v7m_sp(env
, (type
& 4) != 0);
2211 /* Pop registers. */
2212 env
->regs
[0] = v7m_pop(env
);
2213 env
->regs
[1] = v7m_pop(env
);
2214 env
->regs
[2] = v7m_pop(env
);
2215 env
->regs
[3] = v7m_pop(env
);
2216 env
->regs
[12] = v7m_pop(env
);
2217 env
->regs
[14] = v7m_pop(env
);
2218 env
->regs
[15] = v7m_pop(env
);
2219 xpsr
= v7m_pop(env
);
2220 xpsr_write(env
, xpsr
, 0xfffffdff);
2221 /* Undo stack alignment. */
2224 /* ??? The exception return type specifies Thread/Handler mode. However
2225 this is also implied by the xPSR value. Not sure what to do
2226 if there is a mismatch. */
2227 /* ??? Likewise for mismatches between the CONTROL register and the stack
2231 /* Exception names for debug logging; note that not all of these
2232 * precisely correspond to architectural exceptions.
2234 static const char * const excnames
[] = {
2235 [EXCP_UDEF
] = "Undefined Instruction",
2237 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
2238 [EXCP_DATA_ABORT
] = "Data Abort",
2241 [EXCP_BKPT
] = "Breakpoint",
2242 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
2243 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
2244 [EXCP_STREX
] = "QEMU intercept of STREX",
2247 static inline void arm_log_exception(int idx
)
2249 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
2250 const char *exc
= NULL
;
2252 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
2253 exc
= excnames
[idx
];
2258 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
2262 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
2264 ARMCPU
*cpu
= ARM_CPU(cs
);
2265 CPUARMState
*env
= &cpu
->env
;
2266 uint32_t xpsr
= xpsr_read(env
);
2270 arm_log_exception(env
->exception_index
);
2273 if (env
->v7m
.current_sp
)
2275 if (env
->v7m
.exception
== 0)
2278 /* For exceptions we just mark as pending on the NVIC, and let that
2280 /* TODO: Need to escalate if the current priority is higher than the
2281 one we're raising. */
2282 switch (env
->exception_index
) {
2284 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
2287 /* The PC already points to the next instruction. */
2288 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
2290 case EXCP_PREFETCH_ABORT
:
2291 case EXCP_DATA_ABORT
:
2292 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
2295 if (semihosting_enabled
) {
2297 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
2300 env
->regs
[0] = do_arm_semihosting(env
);
2301 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2305 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
2308 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
2310 case EXCP_EXCEPTION_EXIT
:
2311 do_v7m_exception_exit(env
);
2314 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
2315 return; /* Never happens. Keep compiler happy. */
2318 /* Align stack pointer. */
2319 /* ??? Should only do this if Configuration Control Register
2320 STACKALIGN bit is set. */
2321 if (env
->regs
[13] & 4) {
2325 /* Switch to the handler mode. */
2326 v7m_push(env
, xpsr
);
2327 v7m_push(env
, env
->regs
[15]);
2328 v7m_push(env
, env
->regs
[14]);
2329 v7m_push(env
, env
->regs
[12]);
2330 v7m_push(env
, env
->regs
[3]);
2331 v7m_push(env
, env
->regs
[2]);
2332 v7m_push(env
, env
->regs
[1]);
2333 v7m_push(env
, env
->regs
[0]);
2334 switch_v7m_sp(env
, 0);
2336 env
->condexec_bits
= 0;
2338 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
2339 env
->regs
[15] = addr
& 0xfffffffe;
2340 env
->thumb
= addr
& 1;
2343 /* Handle a CPU exception. */
2344 void arm_cpu_do_interrupt(CPUState
*cs
)
2346 ARMCPU
*cpu
= ARM_CPU(cs
);
2347 CPUARMState
*env
= &cpu
->env
;
2355 arm_log_exception(env
->exception_index
);
2357 /* TODO: Vectored interrupt controller. */
2358 switch (env
->exception_index
) {
2360 new_mode
= ARM_CPU_MODE_UND
;
2369 if (semihosting_enabled
) {
2370 /* Check for semihosting interrupt. */
2372 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
2375 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
2378 /* Only intercept calls from privileged modes, to provide some
2379 semblance of security. */
2380 if (((mask
== 0x123456 && !env
->thumb
)
2381 || (mask
== 0xab && env
->thumb
))
2382 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
2383 env
->regs
[0] = do_arm_semihosting(env
);
2384 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2388 new_mode
= ARM_CPU_MODE_SVC
;
2391 /* The PC already points to the next instruction. */
2395 /* See if this is a semihosting syscall. */
2396 if (env
->thumb
&& semihosting_enabled
) {
2397 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
2399 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
2401 env
->regs
[0] = do_arm_semihosting(env
);
2402 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2406 env
->cp15
.c5_insn
= 2;
2407 /* Fall through to prefetch abort. */
2408 case EXCP_PREFETCH_ABORT
:
2409 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
2410 env
->cp15
.c5_insn
, env
->cp15
.c6_insn
);
2411 new_mode
= ARM_CPU_MODE_ABT
;
2413 mask
= CPSR_A
| CPSR_I
;
2416 case EXCP_DATA_ABORT
:
2417 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
2418 env
->cp15
.c5_data
, env
->cp15
.c6_data
);
2419 new_mode
= ARM_CPU_MODE_ABT
;
2421 mask
= CPSR_A
| CPSR_I
;
2425 new_mode
= ARM_CPU_MODE_IRQ
;
2427 /* Disable IRQ and imprecise data aborts. */
2428 mask
= CPSR_A
| CPSR_I
;
2432 new_mode
= ARM_CPU_MODE_FIQ
;
2434 /* Disable FIQ, IRQ and imprecise data aborts. */
2435 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
2439 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
2440 return; /* Never happens. Keep compiler happy. */
2443 if (env
->cp15
.c1_sys
& (1 << 13)) {
2446 switch_mode (env
, new_mode
);
2447 env
->spsr
= cpsr_read(env
);
2448 /* Clear IT bits. */
2449 env
->condexec_bits
= 0;
2450 /* Switch to the new mode, and to the correct instruction set. */
2451 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
2452 env
->uncached_cpsr
|= mask
;
2453 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2454 * and we should just guard the thumb mode on V4 */
2455 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
2456 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
2458 env
->regs
[14] = env
->regs
[15] + offset
;
2459 env
->regs
[15] = addr
;
2460 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
2463 /* Check section/page access permissions.
2464 Returns the page protection flags, or zero if the access is not
2466 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
2467 int access_type
, int is_user
)
2471 if (domain_prot
== 3) {
2472 return PAGE_READ
| PAGE_WRITE
;
2475 if (access_type
== 1)
2478 prot_ro
= PAGE_READ
;
2482 if (access_type
== 1)
2484 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
2486 return is_user
? 0 : PAGE_READ
;
2493 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
2498 return PAGE_READ
| PAGE_WRITE
;
2500 return PAGE_READ
| PAGE_WRITE
;
2501 case 4: /* Reserved. */
2504 return is_user
? 0 : prot_ro
;
2508 if (!arm_feature (env
, ARM_FEATURE_V6K
))
2516 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
2520 if (address
& env
->cp15
.c2_mask
)
2521 table
= env
->cp15
.c2_base1
& 0xffffc000;
2523 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
2525 table
|= (address
>> 18) & 0x3ffc;
2529 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
2530 int is_user
, hwaddr
*phys_ptr
,
2531 int *prot
, target_ulong
*page_size
)
2542 /* Pagetable walk. */
2543 /* Lookup l1 descriptor. */
2544 table
= get_level1_table_address(env
, address
);
2545 desc
= ldl_phys(table
);
2547 domain
= (desc
>> 5) & 0x0f;
2548 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2550 /* Section translation fault. */
2554 if (domain_prot
== 0 || domain_prot
== 2) {
2556 code
= 9; /* Section domain fault. */
2558 code
= 11; /* Page domain fault. */
2563 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2564 ap
= (desc
>> 10) & 3;
2566 *page_size
= 1024 * 1024;
2568 /* Lookup l2 entry. */
2570 /* Coarse pagetable. */
2571 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2573 /* Fine pagetable. */
2574 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
2576 desc
= ldl_phys(table
);
2578 case 0: /* Page translation fault. */
2581 case 1: /* 64k page. */
2582 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2583 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2584 *page_size
= 0x10000;
2586 case 2: /* 4k page. */
2587 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2588 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2589 *page_size
= 0x1000;
2591 case 3: /* 1k page. */
2593 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2594 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2596 /* Page translation fault. */
2601 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
2603 ap
= (desc
>> 4) & 3;
2607 /* Never happens, but compiler isn't smart enough to tell. */
2612 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
2614 /* Access permission fault. */
2618 *phys_ptr
= phys_addr
;
2621 return code
| (domain
<< 4);
2624 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
2625 int is_user
, hwaddr
*phys_ptr
,
2626 int *prot
, target_ulong
*page_size
)
2639 /* Pagetable walk. */
2640 /* Lookup l1 descriptor. */
2641 table
= get_level1_table_address(env
, address
);
2642 desc
= ldl_phys(table
);
2644 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
2645 /* Section translation fault, or attempt to use the encoding
2646 * which is Reserved on implementations without PXN.
2651 if ((type
== 1) || !(desc
& (1 << 18))) {
2652 /* Page or Section. */
2653 domain
= (desc
>> 5) & 0x0f;
2655 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2656 if (domain_prot
== 0 || domain_prot
== 2) {
2658 code
= 9; /* Section domain fault. */
2660 code
= 11; /* Page domain fault. */
2665 if (desc
& (1 << 18)) {
2667 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
2668 *page_size
= 0x1000000;
2671 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2672 *page_size
= 0x100000;
2674 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
2675 xn
= desc
& (1 << 4);
2679 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
2680 pxn
= (desc
>> 2) & 1;
2682 /* Lookup l2 entry. */
2683 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2684 desc
= ldl_phys(table
);
2685 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
2687 case 0: /* Page translation fault. */
2690 case 1: /* 64k page. */
2691 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2692 xn
= desc
& (1 << 15);
2693 *page_size
= 0x10000;
2695 case 2: case 3: /* 4k page. */
2696 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2698 *page_size
= 0x1000;
2701 /* Never happens, but compiler isn't smart enough to tell. */
2706 if (domain_prot
== 3) {
2707 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
2709 if (pxn
&& !is_user
) {
2712 if (xn
&& access_type
== 2)
2715 /* The simplified model uses AP[0] as an access control bit. */
2716 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
2717 /* Access flag fault. */
2718 code
= (code
== 15) ? 6 : 3;
2721 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
2723 /* Access permission fault. */
2730 *phys_ptr
= phys_addr
;
2733 return code
| (domain
<< 4);
2736 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2737 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2740 translation_fault
= 1,
2742 permission_fault
= 3,
2745 static int get_phys_addr_lpae(CPUARMState
*env
, uint32_t address
,
2746 int access_type
, int is_user
,
2747 hwaddr
*phys_ptr
, int *prot
,
2748 target_ulong
*page_size_ptr
)
2750 /* Read an LPAE long-descriptor translation table. */
2751 MMUFaultType fault_type
= translation_fault
;
2759 uint32_t tableattrs
;
2760 target_ulong page_size
;
2763 /* Determine whether this address is in the region controlled by
2764 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2765 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2766 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2768 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 3);
2769 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 3);
2770 if (t0sz
&& !extract32(address
, 32 - t0sz
, t0sz
)) {
2771 /* there is a ttbr0 region and we are in it (high bits all zero) */
2773 } else if (t1sz
&& !extract32(~address
, 32 - t1sz
, t1sz
)) {
2774 /* there is a ttbr1 region and we are in it (high bits all one) */
2777 /* ttbr0 region is "everything not in the ttbr1 region" */
2780 /* ttbr1 region is "everything not in the ttbr0 region" */
2783 /* in the gap between the two regions, this is a Translation fault */
2784 fault_type
= translation_fault
;
2788 /* Note that QEMU ignores shareability and cacheability attributes,
2789 * so we don't need to do anything with the SH, ORGN, IRGN fields
2790 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2791 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2792 * implement any ASID-like capability so we can ignore it (instead
2793 * we will always flush the TLB any time the ASID is changed).
2795 if (ttbr_select
== 0) {
2796 ttbr
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
2797 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
2800 ttbr
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
2801 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
2806 /* Translation table walk disabled => Translation fault on TLB miss */
2810 /* If the region is small enough we will skip straight to a 2nd level
2811 * lookup. This affects the number of bits of the address used in
2812 * combination with the TTBR to find the first descriptor. ('n' here
2813 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2814 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2823 /* Clear the vaddr bits which aren't part of the within-region address,
2824 * so that we don't have to special case things when calculating the
2825 * first descriptor address.
2827 address
&= (0xffffffffU
>> tsz
);
2829 /* Now we can extract the actual base address from the TTBR */
2830 descaddr
= extract64(ttbr
, 0, 40);
2831 descaddr
&= ~((1ULL << n
) - 1);
2835 uint64_t descriptor
;
2837 descaddr
|= ((address
>> (9 * (4 - level
))) & 0xff8);
2838 descriptor
= ldq_phys(descaddr
);
2839 if (!(descriptor
& 1) ||
2840 (!(descriptor
& 2) && (level
== 3))) {
2841 /* Invalid, or the Reserved level 3 encoding */
2844 descaddr
= descriptor
& 0xfffffff000ULL
;
2846 if ((descriptor
& 2) && (level
< 3)) {
2847 /* Table entry. The top five bits are attributes which may
2848 * propagate down through lower levels of the table (and
2849 * which are all arranged so that 0 means "no effect", so
2850 * we can gather them up by ORing in the bits at each level).
2852 tableattrs
|= extract64(descriptor
, 59, 5);
2856 /* Block entry at level 1 or 2, or page entry at level 3.
2857 * These are basically the same thing, although the number
2858 * of bits we pull in from the vaddr varies.
2860 page_size
= (1 << (39 - (9 * level
)));
2861 descaddr
|= (address
& (page_size
- 1));
2862 /* Extract attributes from the descriptor and merge with table attrs */
2863 attrs
= extract64(descriptor
, 2, 10)
2864 | (extract64(descriptor
, 52, 12) << 10);
2865 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
2866 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
2867 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2868 * means "force PL1 access only", which means forcing AP[1] to 0.
2870 if (extract32(tableattrs
, 2, 1)) {
2873 /* Since we're always in the Non-secure state, NSTable is ignored. */
2876 /* Here descaddr is the final physical address, and attributes
2879 fault_type
= access_fault
;
2880 if ((attrs
& (1 << 8)) == 0) {
2884 fault_type
= permission_fault
;
2885 if (is_user
&& !(attrs
& (1 << 4))) {
2886 /* Unprivileged access not enabled */
2889 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
2890 if (attrs
& (1 << 12) || (!is_user
&& (attrs
& (1 << 11)))) {
2892 if (access_type
== 2) {
2895 *prot
&= ~PAGE_EXEC
;
2897 if (attrs
& (1 << 5)) {
2898 /* Write access forbidden */
2899 if (access_type
== 1) {
2902 *prot
&= ~PAGE_WRITE
;
2905 *phys_ptr
= descaddr
;
2906 *page_size_ptr
= page_size
;
2910 /* Long-descriptor format IFSR/DFSR value */
2911 return (1 << 9) | (fault_type
<< 2) | level
;
2914 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
2915 int access_type
, int is_user
,
2916 hwaddr
*phys_ptr
, int *prot
)
2922 *phys_ptr
= address
;
2923 for (n
= 7; n
>= 0; n
--) {
2924 base
= env
->cp15
.c6_region
[n
];
2925 if ((base
& 1) == 0)
2927 mask
= 1 << ((base
>> 1) & 0x1f);
2928 /* Keep this shift separate from the above to avoid an
2929 (undefined) << 32. */
2930 mask
= (mask
<< 1) - 1;
2931 if (((base
^ address
) & ~mask
) == 0)
2937 if (access_type
== 2) {
2938 mask
= env
->cp15
.c5_insn
;
2940 mask
= env
->cp15
.c5_data
;
2942 mask
= (mask
>> (n
* 4)) & 0xf;
2949 *prot
= PAGE_READ
| PAGE_WRITE
;
2954 *prot
|= PAGE_WRITE
;
2957 *prot
= PAGE_READ
| PAGE_WRITE
;
2968 /* Bad permission. */
2975 /* get_phys_addr - get the physical address for this virtual address
2977 * Find the physical address corresponding to the given virtual address,
2978 * by doing a translation table walk on MMU based systems or using the
2979 * MPU state on MPU based systems.
2981 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2982 * prot and page_size are not filled in, and the return value provides
2983 * information on why the translation aborted, in the format of a
2984 * DFSR/IFSR fault register, with the following caveats:
2985 * * we honour the short vs long DFSR format differences.
2986 * * the WnR bit is never set (the caller must do this).
2987 * * for MPU based systems we don't bother to return a full FSR format
2991 * @address: virtual address to get physical address for
2992 * @access_type: 0 for read, 1 for write, 2 for execute
2993 * @is_user: 0 for privileged access, 1 for user
2994 * @phys_ptr: set to the physical address corresponding to the virtual address
2995 * @prot: set to the permissions for the page containing phys_ptr
2996 * @page_size: set to the size of the page containing phys_ptr
2998 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
2999 int access_type
, int is_user
,
3000 hwaddr
*phys_ptr
, int *prot
,
3001 target_ulong
*page_size
)
3003 /* Fast Context Switch Extension. */
3004 if (address
< 0x02000000)
3005 address
+= env
->cp15
.c13_fcse
;
3007 if ((env
->cp15
.c1_sys
& 1) == 0) {
3008 /* MMU/MPU disabled. */
3009 *phys_ptr
= address
;
3010 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3011 *page_size
= TARGET_PAGE_SIZE
;
3013 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3014 *page_size
= TARGET_PAGE_SIZE
;
3015 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
3017 } else if (extended_addresses_enabled(env
)) {
3018 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
3020 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
3021 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
3024 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
3029 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
,
3030 int access_type
, int mmu_idx
)
3033 target_ulong page_size
;
3037 is_user
= mmu_idx
== MMU_USER_IDX
;
3038 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
3041 /* Map a single [sub]page. */
3042 phys_addr
&= ~(hwaddr
)0x3ff;
3043 address
&= ~(uint32_t)0x3ff;
3044 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
3048 if (access_type
== 2) {
3049 env
->cp15
.c5_insn
= ret
;
3050 env
->cp15
.c6_insn
= address
;
3051 env
->exception_index
= EXCP_PREFETCH_ABORT
;
3053 env
->cp15
.c5_data
= ret
;
3054 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
3055 env
->cp15
.c5_data
|= (1 << 11);
3056 env
->cp15
.c6_data
= address
;
3057 env
->exception_index
= EXCP_DATA_ABORT
;
3062 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
3064 ARMCPU
*cpu
= ARM_CPU(cs
);
3066 target_ulong page_size
;
3070 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
3079 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3081 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
3082 env
->regs
[13] = val
;
3084 env
->banked_r13
[bank_number(mode
)] = val
;
3088 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3090 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
3091 return env
->regs
[13];
3093 return env
->banked_r13
[bank_number(mode
)];
3097 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3101 return xpsr_read(env
) & 0xf8000000;
3103 return xpsr_read(env
) & 0xf80001ff;
3105 return xpsr_read(env
) & 0xff00fc00;
3107 return xpsr_read(env
) & 0xff00fdff;
3109 return xpsr_read(env
) & 0x000001ff;
3111 return xpsr_read(env
) & 0x0700fc00;
3113 return xpsr_read(env
) & 0x0700edff;
3115 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
3117 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
3118 case 16: /* PRIMASK */
3119 return (env
->uncached_cpsr
& CPSR_I
) != 0;
3120 case 17: /* BASEPRI */
3121 case 18: /* BASEPRI_MAX */
3122 return env
->v7m
.basepri
;
3123 case 19: /* FAULTMASK */
3124 return (env
->uncached_cpsr
& CPSR_F
) != 0;
3125 case 20: /* CONTROL */
3126 return env
->v7m
.control
;
3128 /* ??? For debugging only. */
3129 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
3134 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3138 xpsr_write(env
, val
, 0xf8000000);
3141 xpsr_write(env
, val
, 0xf8000000);
3144 xpsr_write(env
, val
, 0xfe00fc00);
3147 xpsr_write(env
, val
, 0xfe00fc00);
3150 /* IPSR bits are readonly. */
3153 xpsr_write(env
, val
, 0x0600fc00);
3156 xpsr_write(env
, val
, 0x0600fc00);
3159 if (env
->v7m
.current_sp
)
3160 env
->v7m
.other_sp
= val
;
3162 env
->regs
[13] = val
;
3165 if (env
->v7m
.current_sp
)
3166 env
->regs
[13] = val
;
3168 env
->v7m
.other_sp
= val
;
3170 case 16: /* PRIMASK */
3172 env
->uncached_cpsr
|= CPSR_I
;
3174 env
->uncached_cpsr
&= ~CPSR_I
;
3176 case 17: /* BASEPRI */
3177 env
->v7m
.basepri
= val
& 0xff;
3179 case 18: /* BASEPRI_MAX */
3181 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
3182 env
->v7m
.basepri
= val
;
3184 case 19: /* FAULTMASK */
3186 env
->uncached_cpsr
|= CPSR_F
;
3188 env
->uncached_cpsr
&= ~CPSR_F
;
3190 case 20: /* CONTROL */
3191 env
->v7m
.control
= val
& 3;
3192 switch_v7m_sp(env
, (val
& 2) != 0);
3195 /* ??? For debugging only. */
3196 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
3203 /* Note that signed overflow is undefined in C. The following routines are
3204 careful to use unsigned types where modulo arithmetic is required.
3205 Failure to do so _will_ break on newer gcc. */
3207 /* Signed saturating arithmetic. */
3209 /* Perform 16-bit signed saturating addition. */
3210 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
3215 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
3224 /* Perform 8-bit signed saturating addition. */
3225 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
3230 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
3239 /* Perform 16-bit signed saturating subtraction. */
3240 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
3245 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
3254 /* Perform 8-bit signed saturating subtraction. */
3255 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
3260 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
3269 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3270 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3271 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3272 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3275 #include "op_addsub.h"
3277 /* Unsigned saturating arithmetic. */
3278 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
3287 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
3295 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
3304 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
3312 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3313 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3314 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3315 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3318 #include "op_addsub.h"
3320 /* Signed modulo arithmetic. */
3321 #define SARITH16(a, b, n, op) do { \
3323 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3324 RESULT(sum, n, 16); \
3326 ge |= 3 << (n * 2); \
3329 #define SARITH8(a, b, n, op) do { \
3331 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3332 RESULT(sum, n, 8); \
3338 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3339 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3340 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3341 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3345 #include "op_addsub.h"
3347 /* Unsigned modulo arithmetic. */
3348 #define ADD16(a, b, n) do { \
3350 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3351 RESULT(sum, n, 16); \
3352 if ((sum >> 16) == 1) \
3353 ge |= 3 << (n * 2); \
3356 #define ADD8(a, b, n) do { \
3358 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3359 RESULT(sum, n, 8); \
3360 if ((sum >> 8) == 1) \
3364 #define SUB16(a, b, n) do { \
3366 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3367 RESULT(sum, n, 16); \
3368 if ((sum >> 16) == 0) \
3369 ge |= 3 << (n * 2); \
3372 #define SUB8(a, b, n) do { \
3374 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3375 RESULT(sum, n, 8); \
3376 if ((sum >> 8) == 0) \
3383 #include "op_addsub.h"
3385 /* Halved signed arithmetic. */
3386 #define ADD16(a, b, n) \
3387 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3388 #define SUB16(a, b, n) \
3389 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3390 #define ADD8(a, b, n) \
3391 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3392 #define SUB8(a, b, n) \
3393 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3396 #include "op_addsub.h"
3398 /* Halved unsigned arithmetic. */
3399 #define ADD16(a, b, n) \
3400 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3401 #define SUB16(a, b, n) \
3402 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3403 #define ADD8(a, b, n) \
3404 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3405 #define SUB8(a, b, n) \
3406 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3409 #include "op_addsub.h"
3411 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
3419 /* Unsigned sum of absolute byte differences. */
3420 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
3423 sum
= do_usad(a
, b
);
3424 sum
+= do_usad(a
>> 8, b
>> 8);
3425 sum
+= do_usad(a
>> 16, b
>>16);
3426 sum
+= do_usad(a
>> 24, b
>> 24);
3430 /* For ARMv6 SEL instruction. */
3431 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
3444 return (a
& mask
) | (b
& ~mask
);
3447 /* VFP support. We follow the convention used for VFP instructions:
3448 Single precision routines have a "s" suffix, double precision a
3451 /* Convert host exception flags to vfp form. */
3452 static inline int vfp_exceptbits_from_host(int host_bits
)
3454 int target_bits
= 0;
3456 if (host_bits
& float_flag_invalid
)
3458 if (host_bits
& float_flag_divbyzero
)
3460 if (host_bits
& float_flag_overflow
)
3462 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
3464 if (host_bits
& float_flag_inexact
)
3465 target_bits
|= 0x10;
3466 if (host_bits
& float_flag_input_denormal
)
3467 target_bits
|= 0x80;
3471 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
3476 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
3477 | (env
->vfp
.vec_len
<< 16)
3478 | (env
->vfp
.vec_stride
<< 20);
3479 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
3480 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
3481 fpscr
|= vfp_exceptbits_from_host(i
);
3485 uint32_t vfp_get_fpscr(CPUARMState
*env
)
3487 return HELPER(vfp_get_fpscr
)(env
);
3490 /* Convert vfp exception flags to target form. */
3491 static inline int vfp_exceptbits_to_host(int target_bits
)
3495 if (target_bits
& 1)
3496 host_bits
|= float_flag_invalid
;
3497 if (target_bits
& 2)
3498 host_bits
|= float_flag_divbyzero
;
3499 if (target_bits
& 4)
3500 host_bits
|= float_flag_overflow
;
3501 if (target_bits
& 8)
3502 host_bits
|= float_flag_underflow
;
3503 if (target_bits
& 0x10)
3504 host_bits
|= float_flag_inexact
;
3505 if (target_bits
& 0x80)
3506 host_bits
|= float_flag_input_denormal
;
3510 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
3515 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
3516 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
3517 env
->vfp
.vec_len
= (val
>> 16) & 7;
3518 env
->vfp
.vec_stride
= (val
>> 20) & 3;
3521 if (changed
& (3 << 22)) {
3522 i
= (val
>> 22) & 3;
3525 i
= float_round_nearest_even
;
3531 i
= float_round_down
;
3534 i
= float_round_to_zero
;
3537 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
3539 if (changed
& (1 << 24)) {
3540 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
3541 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
3543 if (changed
& (1 << 25))
3544 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
3546 i
= vfp_exceptbits_to_host(val
);
3547 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
3548 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
3551 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
3553 HELPER(vfp_set_fpscr
)(env
, val
);
3556 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3558 #define VFP_BINOP(name) \
3559 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3561 float_status *fpst = fpstp; \
3562 return float32_ ## name(a, b, fpst); \
3564 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3566 float_status *fpst = fpstp; \
3567 return float64_ ## name(a, b, fpst); \
3575 float32
VFP_HELPER(neg
, s
)(float32 a
)
3577 return float32_chs(a
);
3580 float64
VFP_HELPER(neg
, d
)(float64 a
)
3582 return float64_chs(a
);
3585 float32
VFP_HELPER(abs
, s
)(float32 a
)
3587 return float32_abs(a
);
3590 float64
VFP_HELPER(abs
, d
)(float64 a
)
3592 return float64_abs(a
);
3595 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
3597 return float32_sqrt(a
, &env
->vfp
.fp_status
);
3600 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
3602 return float64_sqrt(a
, &env
->vfp
.fp_status
);
3605 /* XXX: check quiet/signaling case */
3606 #define DO_VFP_cmp(p, type) \
3607 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3610 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3611 case 0: flags = 0x6; break; \
3612 case -1: flags = 0x8; break; \
3613 case 1: flags = 0x2; break; \
3614 default: case 2: flags = 0x3; break; \
3616 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3617 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3619 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3622 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3623 case 0: flags = 0x6; break; \
3624 case -1: flags = 0x8; break; \
3625 case 1: flags = 0x2; break; \
3626 default: case 2: flags = 0x3; break; \
3628 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3629 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3631 DO_VFP_cmp(s
, float32
)
3632 DO_VFP_cmp(d
, float64
)
3635 /* Integer to float and float to integer conversions */
3637 #define CONV_ITOF(name, fsz, sign) \
3638 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3640 float_status *fpst = fpstp; \
3641 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3644 #define CONV_FTOI(name, fsz, sign, round) \
3645 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3647 float_status *fpst = fpstp; \
3648 if (float##fsz##_is_any_nan(x)) { \
3649 float_raise(float_flag_invalid, fpst); \
3652 return float##fsz##_to_##sign##int32##round(x, fpst); \
3655 #define FLOAT_CONVS(name, p, fsz, sign) \
3656 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3657 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3658 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3660 FLOAT_CONVS(si
, s
, 32, )
3661 FLOAT_CONVS(si
, d
, 64, )
3662 FLOAT_CONVS(ui
, s
, 32, u
)
3663 FLOAT_CONVS(ui
, d
, 64, u
)
3669 /* floating point conversion */
3670 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
3672 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
3673 /* ARM requires that S<->D conversion of any kind of NaN generates
3674 * a quiet NaN by forcing the most significant frac bit to 1.
3676 return float64_maybe_silence_nan(r
);
3679 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
3681 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
3682 /* ARM requires that S<->D conversion of any kind of NaN generates
3683 * a quiet NaN by forcing the most significant frac bit to 1.
3685 return float32_maybe_silence_nan(r
);
3688 /* VFP3 fixed point conversion. */
3689 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3690 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3693 float_status *fpst = fpstp; \
3695 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3696 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3698 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3701 float_status *fpst = fpstp; \
3703 if (float##fsz##_is_any_nan(x)) { \
3704 float_raise(float_flag_invalid, fpst); \
3707 tmp = float##fsz##_scalbn(x, shift, fpst); \
3708 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3711 VFP_CONV_FIX(sh
, d
, 64, int16
, )
3712 VFP_CONV_FIX(sl
, d
, 64, int32
, )
3713 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
3714 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
3715 VFP_CONV_FIX(sh
, s
, 32, int16
, )
3716 VFP_CONV_FIX(sl
, s
, 32, int32
, )
3717 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
3718 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
3721 /* Half precision conversions. */
3722 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
3724 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
3725 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
3727 return float32_maybe_silence_nan(r
);
3732 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
3734 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
3735 float16 r
= float32_to_float16(a
, ieee
, s
);
3737 r
= float16_maybe_silence_nan(r
);
3739 return float16_val(r
);
3742 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
3744 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
3747 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
3749 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
3752 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
3754 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
3757 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
3759 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
3762 #define float32_two make_float32(0x40000000)
3763 #define float32_three make_float32(0x40400000)
3764 #define float32_one_point_five make_float32(0x3fc00000)
3766 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
3768 float_status
*s
= &env
->vfp
.standard_fp_status
;
3769 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
3770 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
3771 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
3772 float_raise(float_flag_input_denormal
, s
);
3776 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
3779 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
3781 float_status
*s
= &env
->vfp
.standard_fp_status
;
3783 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
3784 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
3785 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
3786 float_raise(float_flag_input_denormal
, s
);
3788 return float32_one_point_five
;
3790 product
= float32_mul(a
, b
, s
);
3791 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
3796 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3797 * int->float conversions at run-time. */
3798 #define float64_256 make_float64(0x4070000000000000LL)
3799 #define float64_512 make_float64(0x4080000000000000LL)
3801 /* The algorithm that must be used to calculate the estimate
3802 * is specified by the ARM ARM.
3804 static float64
recip_estimate(float64 a
, CPUARMState
*env
)
3806 /* These calculations mustn't set any fp exception flags,
3807 * so we use a local copy of the fp_status.
3809 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3810 float_status
*s
= &dummy_status
;
3811 /* q = (int)(a * 512.0) */
3812 float64 q
= float64_mul(float64_512
, a
, s
);
3813 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3815 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3816 q
= int64_to_float64(q_int
, s
);
3817 q
= float64_add(q
, float64_half
, s
);
3818 q
= float64_div(q
, float64_512
, s
);
3819 q
= float64_div(float64_one
, q
, s
);
3821 /* s = (int)(256.0 * r + 0.5) */
3822 q
= float64_mul(q
, float64_256
, s
);
3823 q
= float64_add(q
, float64_half
, s
);
3824 q_int
= float64_to_int64_round_to_zero(q
, s
);
3826 /* return (double)s / 256.0 */
3827 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3830 float32
HELPER(recpe_f32
)(float32 a
, CPUARMState
*env
)
3832 float_status
*s
= &env
->vfp
.standard_fp_status
;
3834 uint32_t val32
= float32_val(a
);
3837 int a_exp
= (val32
& 0x7f800000) >> 23;
3838 int sign
= val32
& 0x80000000;
3840 if (float32_is_any_nan(a
)) {
3841 if (float32_is_signaling_nan(a
)) {
3842 float_raise(float_flag_invalid
, s
);
3844 return float32_default_nan
;
3845 } else if (float32_is_infinity(a
)) {
3846 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3847 } else if (float32_is_zero_or_denormal(a
)) {
3848 if (!float32_is_zero(a
)) {
3849 float_raise(float_flag_input_denormal
, s
);
3851 float_raise(float_flag_divbyzero
, s
);
3852 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3853 } else if (a_exp
>= 253) {
3854 float_raise(float_flag_underflow
, s
);
3855 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3858 f64
= make_float64((0x3feULL
<< 52)
3859 | ((int64_t)(val32
& 0x7fffff) << 29));
3861 result_exp
= 253 - a_exp
;
3863 f64
= recip_estimate(f64
, env
);
3866 | ((result_exp
& 0xff) << 23)
3867 | ((float64_val(f64
) >> 29) & 0x7fffff);
3868 return make_float32(val32
);
3871 /* The algorithm that must be used to calculate the estimate
3872 * is specified by the ARM ARM.
3874 static float64
recip_sqrt_estimate(float64 a
, CPUARMState
*env
)
3876 /* These calculations mustn't set any fp exception flags,
3877 * so we use a local copy of the fp_status.
3879 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3880 float_status
*s
= &dummy_status
;
3884 if (float64_lt(a
, float64_half
, s
)) {
3885 /* range 0.25 <= a < 0.5 */
3887 /* a in units of 1/512 rounded down */
3888 /* q0 = (int)(a * 512.0); */
3889 q
= float64_mul(float64_512
, a
, s
);
3890 q_int
= float64_to_int64_round_to_zero(q
, s
);
3892 /* reciprocal root r */
3893 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3894 q
= int64_to_float64(q_int
, s
);
3895 q
= float64_add(q
, float64_half
, s
);
3896 q
= float64_div(q
, float64_512
, s
);
3897 q
= float64_sqrt(q
, s
);
3898 q
= float64_div(float64_one
, q
, s
);
3900 /* range 0.5 <= a < 1.0 */
3902 /* a in units of 1/256 rounded down */
3903 /* q1 = (int)(a * 256.0); */
3904 q
= float64_mul(float64_256
, a
, s
);
3905 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3907 /* reciprocal root r */
3908 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3909 q
= int64_to_float64(q_int
, s
);
3910 q
= float64_add(q
, float64_half
, s
);
3911 q
= float64_div(q
, float64_256
, s
);
3912 q
= float64_sqrt(q
, s
);
3913 q
= float64_div(float64_one
, q
, s
);
3915 /* r in units of 1/256 rounded to nearest */
3916 /* s = (int)(256.0 * r + 0.5); */
3918 q
= float64_mul(q
, float64_256
,s
);
3919 q
= float64_add(q
, float64_half
, s
);
3920 q_int
= float64_to_int64_round_to_zero(q
, s
);
3922 /* return (double)s / 256.0;*/
3923 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3926 float32
HELPER(rsqrte_f32
)(float32 a
, CPUARMState
*env
)
3928 float_status
*s
= &env
->vfp
.standard_fp_status
;
3934 val
= float32_val(a
);
3936 if (float32_is_any_nan(a
)) {
3937 if (float32_is_signaling_nan(a
)) {
3938 float_raise(float_flag_invalid
, s
);
3940 return float32_default_nan
;
3941 } else if (float32_is_zero_or_denormal(a
)) {
3942 if (!float32_is_zero(a
)) {
3943 float_raise(float_flag_input_denormal
, s
);
3945 float_raise(float_flag_divbyzero
, s
);
3946 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3947 } else if (float32_is_neg(a
)) {
3948 float_raise(float_flag_invalid
, s
);
3949 return float32_default_nan
;
3950 } else if (float32_is_infinity(a
)) {
3951 return float32_zero
;
3954 /* Normalize to a double-precision value between 0.25 and 1.0,
3955 * preserving the parity of the exponent. */
3956 if ((val
& 0x800000) == 0) {
3957 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3959 | ((uint64_t)(val
& 0x7fffff) << 29));
3961 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3963 | ((uint64_t)(val
& 0x7fffff) << 29));
3966 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
3968 f64
= recip_sqrt_estimate(f64
, env
);
3970 val64
= float64_val(f64
);
3972 val
= ((result_exp
& 0xff) << 23)
3973 | ((val64
>> 29) & 0x7fffff);
3974 return make_float32(val
);
3977 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUARMState
*env
)
3981 if ((a
& 0x80000000) == 0) {
3985 f64
= make_float64((0x3feULL
<< 52)
3986 | ((int64_t)(a
& 0x7fffffff) << 21));
3988 f64
= recip_estimate (f64
, env
);
3990 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3993 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUARMState
*env
)
3997 if ((a
& 0xc0000000) == 0) {
4001 if (a
& 0x80000000) {
4002 f64
= make_float64((0x3feULL
<< 52)
4003 | ((uint64_t)(a
& 0x7fffffff) << 21));
4004 } else { /* bits 31-30 == '01' */
4005 f64
= make_float64((0x3fdULL
<< 52)
4006 | ((uint64_t)(a
& 0x3fffffff) << 22));
4009 f64
= recip_sqrt_estimate(f64
, env
);
4011 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
4014 /* VFPv4 fused multiply-accumulate */
4015 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
4017 float_status
*fpst
= fpstp
;
4018 return float32_muladd(a
, b
, c
, 0, fpst
);
4021 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
4023 float_status
*fpst
= fpstp
;
4024 return float64_muladd(a
, b
, c
, 0, fpst
);