hw/xen/hvm: Inline TARGET_PAGE_ALIGN() macro
[qemu/ar7.git] / hw / misc / stm32l4x5_rcc.c
blobbc2d63528ba631cc54e34b92d22e91c3faaa495b
1 /*
2 * STM32L4X5 RCC (Reset and clock control)
4 * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
5 * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
7 * SPDX-License-Identifier: GPL-2.0-or-later
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
12 * The reference used is the STMicroElectronics RM0351 Reference manual
13 * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
15 * Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel.
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qemu/timer.h"
22 #include "qapi/error.h"
23 #include "migration/vmstate.h"
24 #include "hw/misc/stm32l4x5_rcc.h"
25 #include "hw/misc/stm32l4x5_rcc_internals.h"
26 #include "hw/clock.h"
27 #include "hw/irq.h"
28 #include "hw/qdev-clock.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/registerfields.h"
32 #include "trace.h"
34 #define HSE_DEFAULT_FRQ 48000000ULL
35 #define HSI_FRQ 16000000ULL
36 #define MSI_DEFAULT_FRQ 4000000ULL
37 #define LSE_FRQ 32768ULL
38 #define LSI_FRQ 32000ULL
41 * Function to simply acknowledge and propagate changes in a clock mux
42 * frequency.
43 * `bypass_source` allows to bypass the period of the current source and just
44 * consider it equal to 0. This is useful during the hold phase of reset.
46 static void clock_mux_update(RccClockMuxState *mux, bool bypass_source)
48 uint64_t src_freq;
49 Clock *current_source = mux->srcs[mux->src];
50 uint32_t freq_multiplier = 0;
52 * To avoid rounding errors, we use the clock period instead of the
53 * frequency.
54 * This means that the multiplier of the mux becomes the divider of
55 * the clock and the divider of the mux becomes the multiplier of the
56 * clock.
58 if (!bypass_source && mux->enabled && mux->divider) {
59 freq_multiplier = mux->divider;
62 clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier);
63 clock_update(mux->out, clock_get(current_source));
65 src_freq = clock_get_hz(current_source);
66 /* TODO: can we simply detect if the config changed so that we reduce log spam ? */
67 trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq,
68 mux->multiplier, mux->divider);
71 static void clock_mux_src_update(void *opaque, ClockEvent event)
73 RccClockMuxState **backref = opaque;
74 RccClockMuxState *s = *backref;
76 * The backref value is equal to:
77 * s->backref + (sizeof(RccClockMuxState *) * update_src).
78 * By subtracting we can get back the index of the updated clock.
80 const uint32_t update_src = backref - s->backref;
81 /* Only update if the clock that was updated is the current source */
82 if (update_src == s->src) {
83 clock_mux_update(s, false);
87 static void clock_mux_init(Object *obj)
89 RccClockMuxState *s = RCC_CLOCK_MUX(obj);
90 size_t i;
92 for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
93 char *name = g_strdup_printf("srcs[%zu]", i);
94 s->backref[i] = s;
95 s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
96 clock_mux_src_update,
97 &s->backref[i],
98 ClockUpdate);
99 g_free(name);
102 s->out = qdev_init_clock_out(DEVICE(s), "out");
105 static void clock_mux_reset_enter(Object *obj, ResetType type)
107 RccClockMuxState *s = RCC_CLOCK_MUX(obj);
108 set_clock_mux_init_info(s, s->id);
111 static void clock_mux_reset_hold(Object *obj)
113 RccClockMuxState *s = RCC_CLOCK_MUX(obj);
114 clock_mux_update(s, true);
117 static void clock_mux_reset_exit(Object *obj)
119 RccClockMuxState *s = RCC_CLOCK_MUX(obj);
120 clock_mux_update(s, false);
123 static const VMStateDescription clock_mux_vmstate = {
124 .name = TYPE_RCC_CLOCK_MUX,
125 .version_id = 1,
126 .minimum_version_id = 1,
127 .fields = (VMStateField[]) {
128 VMSTATE_UINT32(id, RccClockMuxState),
129 VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState,
130 RCC_NUM_CLOCK_MUX_SRC),
131 VMSTATE_BOOL(enabled, RccClockMuxState),
132 VMSTATE_UINT32(src, RccClockMuxState),
133 VMSTATE_UINT32(multiplier, RccClockMuxState),
134 VMSTATE_UINT32(divider, RccClockMuxState),
135 VMSTATE_END_OF_LIST()
139 static void clock_mux_class_init(ObjectClass *klass, void *data)
141 DeviceClass *dc = DEVICE_CLASS(klass);
142 ResettableClass *rc = RESETTABLE_CLASS(klass);
144 rc->phases.enter = clock_mux_reset_enter;
145 rc->phases.hold = clock_mux_reset_hold;
146 rc->phases.exit = clock_mux_reset_exit;
147 dc->vmsd = &clock_mux_vmstate;
150 static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled)
152 if (mux->enabled == enabled) {
153 return;
156 if (enabled) {
157 trace_stm32l4x5_rcc_mux_enable(mux->id);
158 } else {
159 trace_stm32l4x5_rcc_mux_disable(mux->id);
162 mux->enabled = enabled;
163 clock_mux_update(mux, false);
166 static void clock_mux_set_factor(RccClockMuxState *mux,
167 uint32_t multiplier, uint32_t divider)
169 if (mux->multiplier == multiplier && mux->divider == divider) {
170 return;
172 trace_stm32l4x5_rcc_mux_set_factor(mux->id,
173 mux->multiplier, multiplier, mux->divider, divider);
175 mux->multiplier = multiplier;
176 mux->divider = divider;
177 clock_mux_update(mux, false);
180 static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src)
182 if (mux->src == src) {
183 return;
186 trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src);
187 mux->src = src;
188 clock_mux_update(mux, false);
192 * Acknowledge and propagate changes in a PLL frequency.
193 * `bypass_source` allows to bypass the period of the current source and just
194 * consider it equal to 0. This is useful during the hold phase of reset.
196 static void pll_update(RccPllState *pll, bool bypass_source)
198 uint64_t vco_freq, old_channel_freq, channel_freq;
199 int i;
201 /* The common PLLM factor is handled by the PLL mux */
202 vco_freq = muldiv64(clock_get_hz(pll->in), pll->vco_multiplier, 1);
204 for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
205 if (!pll->channel_exists[i]) {
206 continue;
209 old_channel_freq = clock_get_hz(pll->channels[i]);
210 if (bypass_source ||
211 !pll->enabled ||
212 !pll->channel_enabled[i] ||
213 !pll->channel_divider[i]) {
214 channel_freq = 0;
215 } else {
216 channel_freq = muldiv64(vco_freq,
218 pll->channel_divider[i]);
221 /* No change, early continue to avoid log spam and useless propagation */
222 if (old_channel_freq == channel_freq) {
223 continue;
226 clock_update_hz(pll->channels[i], channel_freq);
227 trace_stm32l4x5_rcc_pll_update(pll->id, i, vco_freq,
228 old_channel_freq, channel_freq);
232 static void pll_src_update(void *opaque, ClockEvent event)
234 RccPllState *s = opaque;
235 pll_update(s, false);
238 static void pll_init(Object *obj)
240 RccPllState *s = RCC_PLL(obj);
241 size_t i;
243 s->in = qdev_init_clock_in(DEVICE(s), "in",
244 pll_src_update, s, ClockUpdate);
246 const char *names[] = {
247 "out-p", "out-q", "out-r",
250 for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
251 s->channels[i] = qdev_init_clock_out(DEVICE(s), names[i]);
255 static void pll_reset_enter(Object *obj, ResetType type)
257 RccPllState *s = RCC_PLL(obj);
258 set_pll_init_info(s, s->id);
261 static void pll_reset_hold(Object *obj)
263 RccPllState *s = RCC_PLL(obj);
264 pll_update(s, true);
267 static void pll_reset_exit(Object *obj)
269 RccPllState *s = RCC_PLL(obj);
270 pll_update(s, false);
273 static const VMStateDescription pll_vmstate = {
274 .name = TYPE_RCC_PLL,
275 .version_id = 1,
276 .minimum_version_id = 1,
277 .fields = (VMStateField[]) {
278 VMSTATE_UINT32(id, RccPllState),
279 VMSTATE_CLOCK(in, RccPllState),
280 VMSTATE_ARRAY_CLOCK(channels, RccPllState,
281 RCC_NUM_CHANNEL_PLL_OUT),
282 VMSTATE_BOOL(enabled, RccPllState),
283 VMSTATE_UINT32(vco_multiplier, RccPllState),
284 VMSTATE_BOOL_ARRAY(channel_enabled, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
285 VMSTATE_BOOL_ARRAY(channel_exists, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
286 VMSTATE_UINT32_ARRAY(channel_divider, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
287 VMSTATE_END_OF_LIST()
291 static void pll_class_init(ObjectClass *klass, void *data)
293 DeviceClass *dc = DEVICE_CLASS(klass);
294 ResettableClass *rc = RESETTABLE_CLASS(klass);
296 rc->phases.enter = pll_reset_enter;
297 rc->phases.hold = pll_reset_hold;
298 rc->phases.exit = pll_reset_exit;
299 dc->vmsd = &pll_vmstate;
302 static void pll_set_vco_multiplier(RccPllState *pll, uint32_t vco_multiplier)
304 if (pll->vco_multiplier == vco_multiplier) {
305 return;
308 if (vco_multiplier < 8 || vco_multiplier > 86) {
309 qemu_log_mask(LOG_GUEST_ERROR,
310 "%s: VCO multiplier is out of bound (%u) for PLL %u\n",
311 __func__, vco_multiplier, pll->id);
312 return;
315 trace_stm32l4x5_rcc_pll_set_vco_multiplier(pll->id,
316 pll->vco_multiplier, vco_multiplier);
318 pll->vco_multiplier = vco_multiplier;
319 pll_update(pll, false);
322 static void pll_set_enable(RccPllState *pll, bool enabled)
324 if (pll->enabled == enabled) {
325 return;
328 pll->enabled = enabled;
329 pll_update(pll, false);
332 static void pll_set_channel_enable(RccPllState *pll,
333 PllCommonChannels channel,
334 bool enabled)
336 if (pll->channel_enabled[channel] == enabled) {
337 return;
340 if (enabled) {
341 trace_stm32l4x5_rcc_pll_channel_enable(pll->id, channel);
342 } else {
343 trace_stm32l4x5_rcc_pll_channel_disable(pll->id, channel);
346 pll->channel_enabled[channel] = enabled;
347 pll_update(pll, false);
350 static void pll_set_channel_divider(RccPllState *pll,
351 PllCommonChannels channel,
352 uint32_t divider)
354 if (pll->channel_divider[channel] == divider) {
355 return;
358 trace_stm32l4x5_rcc_pll_set_channel_divider(pll->id,
359 channel, pll->channel_divider[channel], divider);
361 pll->channel_divider[channel] = divider;
362 pll_update(pll, false);
365 static void rcc_update_irq(Stm32l4x5RccState *s)
368 * TODO: Handle LSECSSF and CSSF flags when the CSS is implemented.
370 if (s->cifr & CIFR_IRQ_MASK) {
371 qemu_irq_raise(s->irq);
372 } else {
373 qemu_irq_lower(s->irq);
377 static void rcc_update_msi(Stm32l4x5RccState *s, uint32_t previous_value)
379 uint32_t val;
381 static const uint32_t msirange[] = {
382 100000, 200000, 400000, 800000, 1000000, 2000000,
383 4000000, 8000000, 16000000, 24000000, 32000000, 48000000
385 /* MSIRANGE and MSIRGSEL */
386 val = extract32(s->cr, R_CR_MSIRGSEL_SHIFT, R_CR_MSIRGSEL_LENGTH);
387 if (val) {
388 /* MSIRGSEL is set, use the MSIRANGE field */
389 val = extract32(s->cr, R_CR_MSIRANGE_SHIFT, R_CR_MSIRANGE_LENGTH);
390 } else {
391 /* MSIRGSEL is not set, use the MSISRANGE field */
392 val = extract32(s->csr, R_CSR_MSISRANGE_SHIFT, R_CSR_MSISRANGE_LENGTH);
395 if (val < ARRAY_SIZE(msirange)) {
396 clock_update_hz(s->msi_rc, msirange[val]);
397 } else {
399 * There is a hardware write protection if the value is out of bound.
400 * Restore the previous value.
402 s->cr = (s->cr & ~R_CSR_MSISRANGE_MASK) |
403 (previous_value & R_CSR_MSISRANGE_MASK);
408 * TODO: Add write-protection for all registers:
409 * DONE: CR
412 static void rcc_update_cr_register(Stm32l4x5RccState *s, uint32_t previous_value)
414 int val;
415 const RccClockMuxSource current_pll_src =
416 CLOCK_MUX_INIT_INFO[RCC_CLOCK_MUX_PLL_INPUT].src_mapping[
417 s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].src];
419 /* PLLSAI2ON and update PLLSAI2RDY */
420 val = FIELD_EX32(s->cr, CR, PLLSAI2ON);
421 pll_set_enable(&s->plls[RCC_PLL_PLLSAI2], val);
422 s->cr = (s->cr & ~R_CR_PLLSAI2RDY_MASK) |
423 (val << R_CR_PLLSAI2RDY_SHIFT);
424 if (s->cier & R_CIER_PLLSAI2RDYIE_MASK) {
425 s->cifr |= R_CIFR_PLLSAI2RDYF_MASK;
428 /* PLLSAI1ON and update PLLSAI1RDY */
429 val = FIELD_EX32(s->cr, CR, PLLSAI1ON);
430 pll_set_enable(&s->plls[RCC_PLL_PLLSAI1], val);
431 s->cr = (s->cr & ~R_CR_PLLSAI1RDY_MASK) |
432 (val << R_CR_PLLSAI1RDY_SHIFT);
433 if (s->cier & R_CIER_PLLSAI1RDYIE_MASK) {
434 s->cifr |= R_CIFR_PLLSAI1RDYF_MASK;
438 * PLLON and update PLLRDY
439 * PLLON cannot be reset if the PLL clock is used as the system clock.
441 val = FIELD_EX32(s->cr, CR, PLLON);
442 if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b11) {
443 pll_set_enable(&s->plls[RCC_PLL_PLL], val);
444 s->cr = (s->cr & ~R_CR_PLLRDY_MASK) |
445 (val << R_CR_PLLRDY_SHIFT);
446 if (s->cier & R_CIER_PLLRDYIE_MASK) {
447 s->cifr |= R_CIFR_PLLRDYF_MASK;
449 } else {
450 s->cr |= R_CR_PLLON_MASK;
453 /* CSSON: TODO */
454 /* HSEBYP: TODO */
457 * HSEON and update HSERDY.
458 * HSEON cannot be reset if the HSE oscillator is used directly or
459 * indirectly as the system clock.
461 val = FIELD_EX32(s->cr, CR, HSEON);
462 if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b10 &&
463 current_pll_src != RCC_CLOCK_MUX_SRC_HSE) {
464 s->cr = (s->cr & ~R_CR_HSERDY_MASK) |
465 (val << R_CR_HSERDY_SHIFT);
466 if (val) {
467 clock_update_hz(s->hse, s->hse_frequency);
468 if (s->cier & R_CIER_HSERDYIE_MASK) {
469 s->cifr |= R_CIFR_HSERDYF_MASK;
471 } else {
472 clock_update(s->hse, 0);
474 } else {
475 s->cr |= R_CR_HSEON_MASK;
478 /* HSIAFS: TODO*/
479 /* HSIKERON: TODO*/
482 * HSION and update HSIRDY
483 * HSION is set by hardware if the HSI16 is used directly
484 * or indirectly as system clock.
486 if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b01 ||
487 current_pll_src == RCC_CLOCK_MUX_SRC_HSI) {
488 s->cr |= (R_CR_HSION_MASK | R_CR_HSIRDY_MASK);
489 clock_update_hz(s->hsi16_rc, HSI_FRQ);
490 if (s->cier & R_CIER_HSIRDYIE_MASK) {
491 s->cifr |= R_CIFR_HSIRDYF_MASK;
493 } else {
494 val = FIELD_EX32(s->cr, CR, HSION);
495 if (val) {
496 clock_update_hz(s->hsi16_rc, HSI_FRQ);
497 s->cr |= R_CR_HSIRDY_MASK;
498 if (s->cier & R_CIER_HSIRDYIE_MASK) {
499 s->cifr |= R_CIFR_HSIRDYF_MASK;
501 } else {
502 clock_update(s->hsi16_rc, 0);
503 s->cr &= ~R_CR_HSIRDY_MASK;
507 /* MSIPLLEN: TODO */
510 * MSION and update MSIRDY
511 * Set by hardware when used directly or indirectly as system clock.
513 if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b00 ||
514 current_pll_src == RCC_CLOCK_MUX_SRC_MSI) {
515 s->cr |= (R_CR_MSION_MASK | R_CR_MSIRDY_MASK);
516 if (!(previous_value & R_CR_MSION_MASK) && (s->cier & R_CIER_MSIRDYIE_MASK)) {
517 s->cifr |= R_CIFR_MSIRDYF_MASK;
519 rcc_update_msi(s, previous_value);
520 } else {
521 val = FIELD_EX32(s->cr, CR, MSION);
522 if (val) {
523 s->cr |= R_CR_MSIRDY_MASK;
524 rcc_update_msi(s, previous_value);
525 if (s->cier & R_CIER_MSIRDYIE_MASK) {
526 s->cifr |= R_CIFR_MSIRDYF_MASK;
528 } else {
529 s->cr &= ~R_CR_MSIRDY_MASK;
530 clock_update(s->msi_rc, 0);
533 rcc_update_irq(s);
536 static void rcc_update_cfgr_register(Stm32l4x5RccState *s)
538 uint32_t val;
539 /* MCOPRE */
540 val = FIELD_EX32(s->cfgr, CFGR, MCOPRE);
541 assert(val <= 0b100);
542 clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
543 1, 1 << val);
545 /* MCOSEL */
546 val = FIELD_EX32(s->cfgr, CFGR, MCOSEL);
547 assert(val <= 0b111);
548 if (val == 0) {
549 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false);
550 } else {
551 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], true);
552 clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
553 val - 1);
556 /* STOPWUCK */
557 /* TODO */
559 /* PPRE2 */
560 val = FIELD_EX32(s->cfgr, CFGR, PPRE2);
561 if (val < 0b100) {
562 clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
563 1, 1);
564 } else {
565 clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
566 1, 1 << (val - 0b11));
569 /* PPRE1 */
570 val = FIELD_EX32(s->cfgr, CFGR, PPRE1);
571 if (val < 0b100) {
572 clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
573 1, 1);
574 } else {
575 clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
576 1, 1 << (val - 0b11));
579 /* HPRE */
580 val = FIELD_EX32(s->cfgr, CFGR, HPRE);
581 if (val < 0b1000) {
582 clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
583 1, 1);
584 } else {
585 clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
586 1, 1 << (val - 0b111));
589 /* Update SWS */
590 val = FIELD_EX32(s->cfgr, CFGR, SW);
591 clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_SYSCLK],
592 val);
593 s->cfgr &= ~R_CFGR_SWS_MASK;
594 s->cfgr |= val << R_CFGR_SWS_SHIFT;
597 static void rcc_update_ahb1enr(Stm32l4x5RccState *s)
599 #define AHB1ENR_SET_ENABLE(_peripheral_name) \
600 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
601 FIELD_EX32(s->ahb1enr, AHB1ENR, _peripheral_name##EN))
603 /* DMA2DEN: reserved for STM32L475xx */
604 AHB1ENR_SET_ENABLE(TSC);
605 AHB1ENR_SET_ENABLE(CRC);
606 AHB1ENR_SET_ENABLE(FLASH);
607 AHB1ENR_SET_ENABLE(DMA2);
608 AHB1ENR_SET_ENABLE(DMA1);
610 #undef AHB1ENR_SET_ENABLE
613 static void rcc_update_ahb2enr(Stm32l4x5RccState *s)
615 #define AHB2ENR_SET_ENABLE(_peripheral_name) \
616 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
617 FIELD_EX32(s->ahb2enr, AHB2ENR, _peripheral_name##EN))
619 AHB2ENR_SET_ENABLE(RNG);
620 /* HASHEN: reserved for STM32L475xx */
621 AHB2ENR_SET_ENABLE(AES);
622 /* DCMIEN: reserved for STM32L475xx */
623 AHB2ENR_SET_ENABLE(ADC);
624 AHB2ENR_SET_ENABLE(OTGFS);
625 /* GPIOIEN: reserved for STM32L475xx */
626 AHB2ENR_SET_ENABLE(GPIOA);
627 AHB2ENR_SET_ENABLE(GPIOB);
628 AHB2ENR_SET_ENABLE(GPIOC);
629 AHB2ENR_SET_ENABLE(GPIOD);
630 AHB2ENR_SET_ENABLE(GPIOE);
631 AHB2ENR_SET_ENABLE(GPIOF);
632 AHB2ENR_SET_ENABLE(GPIOG);
633 AHB2ENR_SET_ENABLE(GPIOH);
635 #undef AHB2ENR_SET_ENABLE
638 static void rcc_update_ahb3enr(Stm32l4x5RccState *s)
640 #define AHB3ENR_SET_ENABLE(_peripheral_name) \
641 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
642 FIELD_EX32(s->ahb3enr, AHB3ENR, _peripheral_name##EN))
644 AHB3ENR_SET_ENABLE(QSPI);
645 AHB3ENR_SET_ENABLE(FMC);
647 #undef AHB3ENR_SET_ENABLE
650 static void rcc_update_apb1enr(Stm32l4x5RccState *s)
652 #define APB1ENR1_SET_ENABLE(_peripheral_name) \
653 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
654 FIELD_EX32(s->apb1enr1, APB1ENR1, _peripheral_name##EN))
655 #define APB1ENR2_SET_ENABLE(_peripheral_name) \
656 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
657 FIELD_EX32(s->apb1enr2, APB1ENR2, _peripheral_name##EN))
659 /* APB1ENR1 */
660 APB1ENR1_SET_ENABLE(LPTIM1);
661 APB1ENR1_SET_ENABLE(OPAMP);
662 APB1ENR1_SET_ENABLE(DAC1);
663 APB1ENR1_SET_ENABLE(PWR);
664 /* CAN2: reserved for STM32L4x5 */
665 APB1ENR1_SET_ENABLE(CAN1);
666 /* CRSEN: reserved for STM32L4x5 */
667 APB1ENR1_SET_ENABLE(I2C3);
668 APB1ENR1_SET_ENABLE(I2C2);
669 APB1ENR1_SET_ENABLE(I2C1);
670 APB1ENR1_SET_ENABLE(UART5);
671 APB1ENR1_SET_ENABLE(UART4);
672 APB1ENR1_SET_ENABLE(USART3);
673 APB1ENR1_SET_ENABLE(USART2);
674 APB1ENR1_SET_ENABLE(SPI3);
675 APB1ENR1_SET_ENABLE(SPI2);
676 APB1ENR1_SET_ENABLE(WWDG);
677 /* RTCAPB: reserved for STM32L4x5 */
678 APB1ENR1_SET_ENABLE(LCD);
679 APB1ENR1_SET_ENABLE(TIM7);
680 APB1ENR1_SET_ENABLE(TIM6);
681 APB1ENR1_SET_ENABLE(TIM5);
682 APB1ENR1_SET_ENABLE(TIM4);
683 APB1ENR1_SET_ENABLE(TIM3);
684 APB1ENR1_SET_ENABLE(TIM2);
686 /* APB1ENR2 */
687 APB1ENR2_SET_ENABLE(LPTIM2);
688 APB1ENR2_SET_ENABLE(SWPMI1);
689 /* I2C4EN: reserved for STM32L4x5 */
690 APB1ENR2_SET_ENABLE(LPUART1);
692 #undef APB1ENR1_SET_ENABLE
693 #undef APB1ENR2_SET_ENABLE
696 static void rcc_update_apb2enr(Stm32l4x5RccState *s)
698 #define APB2ENR_SET_ENABLE(_peripheral_name) \
699 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
700 FIELD_EX32(s->apb2enr, APB2ENR, _peripheral_name##EN))
702 APB2ENR_SET_ENABLE(DFSDM1);
703 APB2ENR_SET_ENABLE(SAI2);
704 APB2ENR_SET_ENABLE(SAI1);
705 APB2ENR_SET_ENABLE(TIM17);
706 APB2ENR_SET_ENABLE(TIM16);
707 APB2ENR_SET_ENABLE(TIM15);
708 APB2ENR_SET_ENABLE(USART1);
709 APB2ENR_SET_ENABLE(TIM8);
710 APB2ENR_SET_ENABLE(SPI1);
711 APB2ENR_SET_ENABLE(TIM1);
712 APB2ENR_SET_ENABLE(SDMMC1);
713 APB2ENR_SET_ENABLE(FW);
714 APB2ENR_SET_ENABLE(SYSCFG);
716 #undef APB2ENR_SET_ENABLE
720 * The 3 PLLs share the same register layout
721 * so we can use the same function for all of them
722 * Note: no frequency bounds checking is done here.
724 static void rcc_update_pllsaixcfgr(Stm32l4x5RccState *s, RccPll pll_id)
726 uint32_t reg, val;
727 switch (pll_id) {
728 case RCC_PLL_PLL:
729 reg = s->pllcfgr;
730 break;
731 case RCC_PLL_PLLSAI1:
732 reg = s->pllsai1cfgr;
733 break;
734 case RCC_PLL_PLLSAI2:
735 reg = s->pllsai2cfgr;
736 break;
737 default:
738 qemu_log_mask(LOG_GUEST_ERROR,
739 "%s: Invalid PLL ID: %u\n", __func__, pll_id);
740 return;
743 /* PLLPDIV */
744 val = FIELD_EX32(reg, PLLCFGR, PLLPDIV);
745 /* 1 is a reserved value */
746 if (val == 0) {
747 /* Get PLLP value */
748 val = FIELD_EX32(reg, PLLCFGR, PLLP);
749 pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
750 (val ? 17 : 7));
751 } else if (val > 1) {
752 pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
753 val);
757 /* PLLR */
758 val = FIELD_EX32(reg, PLLCFGR, PLLR);
759 pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R,
760 2 * (val + 1));
762 /* PLLREN */
763 val = FIELD_EX32(reg, PLLCFGR, PLLREN);
764 pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, val);
766 /* PLLQ */
767 val = FIELD_EX32(reg, PLLCFGR, PLLQ);
768 pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q,
769 2 * (val + 1));
771 /* PLLQEN */
772 val = FIELD_EX32(reg, PLLCFGR, PLLQEN);
773 pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, val);
775 /* PLLPEN */
776 val = FIELD_EX32(reg, PLLCFGR, PLLPEN);
777 pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, val);
779 /* PLLN */
780 val = FIELD_EX32(reg, PLLCFGR, PLLN);
781 pll_set_vco_multiplier(&s->plls[pll_id], val);
784 static void rcc_update_pllcfgr(Stm32l4x5RccState *s)
786 int val;
788 /* Use common layout */
789 rcc_update_pllsaixcfgr(s, RCC_PLL_PLL);
791 /* Fetch specific fields for pllcfgr */
793 /* PLLM */
794 val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLM);
795 clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], 1, (val + 1));
797 /* PLLSRC */
798 val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLSRC);
799 if (val == 0) {
800 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], false);
801 } else {
802 clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], val - 1);
803 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], true);
807 static void rcc_update_ccipr(Stm32l4x5RccState *s)
809 #define CCIPR_SET_SOURCE(_peripheral_name) \
810 clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
811 FIELD_EX32(s->ccipr, CCIPR, _peripheral_name##SEL))
813 CCIPR_SET_SOURCE(DFSDM1);
814 CCIPR_SET_SOURCE(SWPMI1);
815 CCIPR_SET_SOURCE(ADC);
816 CCIPR_SET_SOURCE(CLK48);
817 CCIPR_SET_SOURCE(SAI2);
818 CCIPR_SET_SOURCE(SAI1);
819 CCIPR_SET_SOURCE(LPTIM2);
820 CCIPR_SET_SOURCE(LPTIM1);
821 CCIPR_SET_SOURCE(I2C3);
822 CCIPR_SET_SOURCE(I2C2);
823 CCIPR_SET_SOURCE(I2C1);
824 CCIPR_SET_SOURCE(LPUART1);
825 CCIPR_SET_SOURCE(UART5);
826 CCIPR_SET_SOURCE(UART4);
827 CCIPR_SET_SOURCE(USART3);
828 CCIPR_SET_SOURCE(USART2);
829 CCIPR_SET_SOURCE(USART1);
831 #undef CCIPR_SET_SOURCE
834 static void rcc_update_bdcr(Stm32l4x5RccState *s)
836 int val;
838 /* LSCOSEL */
839 val = FIELD_EX32(s->bdcr, BDCR, LSCOSEL);
840 clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
842 val = FIELD_EX32(s->bdcr, BDCR, LSCOEN);
843 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
845 /* BDRST */
847 * The documentation is not clear if the RTCEN flag disables the RTC and
848 * the LCD common mux or if it only affects the RTC.
849 * As the LCDEN flag exists, we assume here that it only affects the RTC.
851 val = FIELD_EX32(s->bdcr, BDCR, RTCEN);
852 clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_RTC], val);
853 /* LCD and RTC share the same clock */
854 val = FIELD_EX32(s->bdcr, BDCR, RTCSEL);
855 clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON], val);
857 /* LSECSSON */
858 /* LSEDRV[1:0] */
859 /* LSEBYP */
861 /* LSEON: Update LSERDY at the same time */
862 val = FIELD_EX32(s->bdcr, BDCR, LSEON);
863 if (val) {
864 clock_update_hz(s->lse_crystal, LSE_FRQ);
865 s->bdcr |= R_BDCR_LSERDY_MASK;
866 if (s->cier & R_CIER_LSERDYIE_MASK) {
867 s->cifr |= R_CIFR_LSERDYF_MASK;
869 } else {
870 clock_update(s->lse_crystal, 0);
871 s->bdcr &= ~R_BDCR_LSERDY_MASK;
874 rcc_update_irq(s);
877 static void rcc_update_csr(Stm32l4x5RccState *s)
879 int val;
881 /* Reset flags: Not implemented */
882 /* MSISRANGE: Not implemented after reset */
884 /* LSION: Update LSIRDY at the same time */
885 val = FIELD_EX32(s->csr, CSR, LSION);
886 if (val) {
887 clock_update_hz(s->lsi_rc, LSI_FRQ);
888 s->csr |= R_CSR_LSIRDY_MASK;
889 if (s->cier & R_CIER_LSIRDYIE_MASK) {
890 s->cifr |= R_CIFR_LSIRDYF_MASK;
892 } else {
894 * TODO: Handle when the LSI is set independently of LSION.
895 * E.g. when the LSI is set by the RTC.
896 * See the reference manual for more details.
898 clock_update(s->lsi_rc, 0);
899 s->csr &= ~R_CSR_LSIRDY_MASK;
902 rcc_update_irq(s);
905 static void stm32l4x5_rcc_reset_hold(Object *obj)
907 Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
908 s->cr = 0x00000063;
910 * Factory-programmed calibration data
911 * From the reference manual: 0x10XX 00XX
912 * Value taken from a real card.
914 s->icscr = 0x106E0082;
915 s->cfgr = 0x0;
916 s->pllcfgr = 0x00001000;
917 s->pllsai1cfgr = 0x00001000;
918 s->pllsai2cfgr = 0x00001000;
919 s->cier = 0x0;
920 s->cifr = 0x0;
921 s->ahb1rstr = 0x0;
922 s->ahb2rstr = 0x0;
923 s->ahb3rstr = 0x0;
924 s->apb1rstr1 = 0x0;
925 s->apb1rstr2 = 0x0;
926 s->apb2rstr = 0x0;
927 s->ahb1enr = 0x00000100;
928 s->ahb2enr = 0x0;
929 s->ahb3enr = 0x0;
930 s->apb1enr1 = 0x0;
931 s->apb1enr2 = 0x0;
932 s->apb2enr = 0x0;
933 s->ahb1smenr = 0x00011303;
934 s->ahb2smenr = 0x000532FF;
935 s->ahb3smenr = 0x00000101;
936 s->apb1smenr1 = 0xF2FECA3F;
937 s->apb1smenr2 = 0x00000025;
938 s->apb2smenr = 0x01677C01;
939 s->ccipr = 0x0;
940 s->bdcr = 0x0;
941 s->csr = 0x0C000600;
944 static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr,
945 unsigned int size)
947 Stm32l4x5RccState *s = opaque;
948 uint64_t retvalue = 0;
950 switch (addr) {
951 case A_CR:
952 retvalue = s->cr;
953 break;
954 case A_ICSCR:
955 retvalue = s->icscr;
956 break;
957 case A_CFGR:
958 retvalue = s->cfgr;
959 break;
960 case A_PLLCFGR:
961 retvalue = s->pllcfgr;
962 break;
963 case A_PLLSAI1CFGR:
964 retvalue = s->pllsai1cfgr;
965 break;
966 case A_PLLSAI2CFGR:
967 retvalue = s->pllsai2cfgr;
968 break;
969 case A_CIER:
970 retvalue = s->cier;
971 break;
972 case A_CIFR:
973 retvalue = s->cifr;
974 break;
975 case A_CICR:
976 /* CICR is write only, return the reset value = 0 */
977 break;
978 case A_AHB1RSTR:
979 retvalue = s->ahb1rstr;
980 break;
981 case A_AHB2RSTR:
982 retvalue = s->ahb2rstr;
983 break;
984 case A_AHB3RSTR:
985 retvalue = s->ahb3rstr;
986 break;
987 case A_APB1RSTR1:
988 retvalue = s->apb1rstr1;
989 break;
990 case A_APB1RSTR2:
991 retvalue = s->apb1rstr2;
992 break;
993 case A_APB2RSTR:
994 retvalue = s->apb2rstr;
995 break;
996 case A_AHB1ENR:
997 retvalue = s->ahb1enr;
998 break;
999 case A_AHB2ENR:
1000 retvalue = s->ahb2enr;
1001 break;
1002 case A_AHB3ENR:
1003 retvalue = s->ahb3enr;
1004 break;
1005 case A_APB1ENR1:
1006 retvalue = s->apb1enr1;
1007 break;
1008 case A_APB1ENR2:
1009 retvalue = s->apb1enr2;
1010 break;
1011 case A_APB2ENR:
1012 retvalue = s->apb2enr;
1013 break;
1014 case A_AHB1SMENR:
1015 retvalue = s->ahb1smenr;
1016 break;
1017 case A_AHB2SMENR:
1018 retvalue = s->ahb2smenr;
1019 break;
1020 case A_AHB3SMENR:
1021 retvalue = s->ahb3smenr;
1022 break;
1023 case A_APB1SMENR1:
1024 retvalue = s->apb1smenr1;
1025 break;
1026 case A_APB1SMENR2:
1027 retvalue = s->apb1smenr2;
1028 break;
1029 case A_APB2SMENR:
1030 retvalue = s->apb2smenr;
1031 break;
1032 case A_CCIPR:
1033 retvalue = s->ccipr;
1034 break;
1035 case A_BDCR:
1036 retvalue = s->bdcr;
1037 break;
1038 case A_CSR:
1039 retvalue = s->csr;
1040 break;
1041 default:
1042 qemu_log_mask(LOG_GUEST_ERROR,
1043 "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
1044 break;
1047 trace_stm32l4x5_rcc_read(addr, retvalue);
1049 return retvalue;
1052 static void stm32l4x5_rcc_write(void *opaque, hwaddr addr,
1053 uint64_t val64, unsigned int size)
1055 Stm32l4x5RccState *s = opaque;
1056 uint32_t previous_value = 0;
1057 const uint32_t value = val64;
1059 trace_stm32l4x5_rcc_write(addr, value);
1061 switch (addr) {
1062 case A_CR:
1063 previous_value = s->cr;
1064 s->cr = (s->cr & CR_READ_SET_MASK) |
1065 (value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK));
1066 rcc_update_cr_register(s, previous_value);
1067 break;
1068 case A_ICSCR:
1069 s->icscr = value & ~ICSCR_READ_ONLY_MASK;
1070 qemu_log_mask(LOG_UNIMP,
1071 "%s: Side-effects not implemented for ICSCR\n", __func__);
1072 break;
1073 case A_CFGR:
1074 s->cfgr = value & ~CFGR_READ_ONLY_MASK;
1075 rcc_update_cfgr_register(s);
1076 break;
1077 case A_PLLCFGR:
1078 s->pllcfgr = value;
1079 rcc_update_pllcfgr(s);
1080 break;
1081 case A_PLLSAI1CFGR:
1082 s->pllsai1cfgr = value;
1083 rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI1);
1084 break;
1085 case A_PLLSAI2CFGR:
1086 s->pllsai2cfgr = value;
1087 rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI2);
1088 break;
1089 case A_CIER:
1090 s->cier = value;
1091 qemu_log_mask(LOG_UNIMP,
1092 "%s: Side-effects not implemented for CIER\n", __func__);
1093 break;
1094 case A_CIFR:
1095 qemu_log_mask(LOG_GUEST_ERROR,
1096 "%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n",
1097 __func__, value);
1098 break;
1099 case A_CICR:
1100 /* Clear interrupt flags by writing a 1 to the CICR register */
1101 s->cifr &= ~value;
1102 rcc_update_irq(s);
1103 break;
1104 /* Reset behaviors are not implemented */
1105 case A_AHB1RSTR:
1106 s->ahb1rstr = value;
1107 qemu_log_mask(LOG_UNIMP,
1108 "%s: Side-effects not implemented for AHB1RSTR\n", __func__);
1109 break;
1110 case A_AHB2RSTR:
1111 s->ahb2rstr = value;
1112 qemu_log_mask(LOG_UNIMP,
1113 "%s: Side-effects not implemented for AHB2RSTR\n", __func__);
1114 break;
1115 case A_AHB3RSTR:
1116 s->ahb3rstr = value;
1117 qemu_log_mask(LOG_UNIMP,
1118 "%s: Side-effects not implemented for AHB3RSTR\n", __func__);
1119 break;
1120 case A_APB1RSTR1:
1121 s->apb1rstr1 = value;
1122 qemu_log_mask(LOG_UNIMP,
1123 "%s: Side-effects not implemented for APB1RSTR1\n", __func__);
1124 break;
1125 case A_APB1RSTR2:
1126 s->apb1rstr2 = value;
1127 qemu_log_mask(LOG_UNIMP,
1128 "%s: Side-effects not implemented for APB1RSTR2\n", __func__);
1129 break;
1130 case A_APB2RSTR:
1131 s->apb2rstr = value;
1132 qemu_log_mask(LOG_UNIMP,
1133 "%s: Side-effects not implemented for APB2RSTR\n", __func__);
1134 break;
1135 case A_AHB1ENR:
1136 s->ahb1enr = value;
1137 rcc_update_ahb1enr(s);
1138 break;
1139 case A_AHB2ENR:
1140 s->ahb2enr = value;
1141 rcc_update_ahb2enr(s);
1142 break;
1143 case A_AHB3ENR:
1144 s->ahb3enr = value;
1145 rcc_update_ahb3enr(s);
1146 break;
1147 case A_APB1ENR1:
1148 s->apb1enr1 = value;
1149 rcc_update_apb1enr(s);
1150 break;
1151 case A_APB1ENR2:
1152 s->apb1enr2 = value;
1153 rcc_update_apb1enr(s);
1154 break;
1155 case A_APB2ENR:
1156 s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value;
1157 rcc_update_apb2enr(s);
1158 break;
1159 /* Behaviors for Sleep and Stop modes are not implemented */
1160 case A_AHB1SMENR:
1161 s->ahb1smenr = value;
1162 qemu_log_mask(LOG_UNIMP,
1163 "%s: Side-effects not implemented for AHB1SMENR\n", __func__);
1164 break;
1165 case A_AHB2SMENR:
1166 s->ahb2smenr = value;
1167 qemu_log_mask(LOG_UNIMP,
1168 "%s: Side-effects not implemented for AHB2SMENR\n", __func__);
1169 break;
1170 case A_AHB3SMENR:
1171 s->ahb3smenr = value;
1172 qemu_log_mask(LOG_UNIMP,
1173 "%s: Side-effects not implemented for AHB3SMENR\n", __func__);
1174 break;
1175 case A_APB1SMENR1:
1176 s->apb1smenr1 = value;
1177 qemu_log_mask(LOG_UNIMP,
1178 "%s: Side-effects not implemented for APB1SMENR1\n", __func__);
1179 break;
1180 case A_APB1SMENR2:
1181 s->apb1smenr2 = value;
1182 qemu_log_mask(LOG_UNIMP,
1183 "%s: Side-effects not implemented for APB1SMENR2\n", __func__);
1184 break;
1185 case A_APB2SMENR:
1186 s->apb2smenr = value;
1187 qemu_log_mask(LOG_UNIMP,
1188 "%s: Side-effects not implemented for APB2SMENR\n", __func__);
1189 break;
1190 case A_CCIPR:
1191 s->ccipr = value;
1192 rcc_update_ccipr(s);
1193 break;
1194 case A_BDCR:
1195 s->bdcr = value & ~BDCR_READ_ONLY_MASK;
1196 rcc_update_bdcr(s);
1197 break;
1198 case A_CSR:
1199 s->csr = value & ~CSR_READ_ONLY_MASK;
1200 rcc_update_csr(s);
1201 break;
1202 default:
1203 qemu_log_mask(LOG_GUEST_ERROR,
1204 "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
1208 static const MemoryRegionOps stm32l4x5_rcc_ops = {
1209 .read = stm32l4x5_rcc_read,
1210 .write = stm32l4x5_rcc_write,
1211 .endianness = DEVICE_NATIVE_ENDIAN,
1212 .valid = {
1213 .max_access_size = 4,
1214 .min_access_size = 4,
1215 .unaligned = false
1217 .impl = {
1218 .max_access_size = 4,
1219 .min_access_size = 4,
1220 .unaligned = false
1224 static const ClockPortInitArray stm32l4x5_rcc_clocks = {
1225 QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0),
1226 QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0),
1227 QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0),
1228 QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0),
1229 QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0),
1230 QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0),
1231 QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0),
1232 QDEV_CLOCK_END
1236 static void stm32l4x5_rcc_init(Object *obj)
1238 Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
1239 size_t i;
1241 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
1243 memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s,
1244 TYPE_STM32L4X5_RCC, 0x400);
1245 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
1247 qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks);
1249 for (i = 0; i < RCC_NUM_PLL; i++) {
1250 object_initialize_child(obj, PLL_INIT_INFO[i].name,
1251 &s->plls[i], TYPE_RCC_PLL);
1252 set_pll_init_info(&s->plls[i], i);
1255 for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
1256 char *alias;
1258 object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
1259 &s->clock_muxes[i],
1260 TYPE_RCC_CLOCK_MUX);
1261 set_clock_mux_init_info(&s->clock_muxes[i], i);
1263 if (!CLOCK_MUX_INIT_INFO[i].hidden) {
1264 /* Expose muxes output as RCC outputs */
1265 alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
1266 qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
1267 g_free(alias);
1271 s->gnd = clock_new(obj, "gnd");
1274 static void connect_mux_sources(Stm32l4x5RccState *s,
1275 RccClockMuxState *mux,
1276 const RccClockMuxSource *clk_mapping)
1278 size_t i;
1280 Clock * const CLK_SRC_MAPPING[] = {
1281 [RCC_CLOCK_MUX_SRC_GND] = s->gnd,
1282 [RCC_CLOCK_MUX_SRC_HSI] = s->hsi16_rc,
1283 [RCC_CLOCK_MUX_SRC_HSE] = s->hse,
1284 [RCC_CLOCK_MUX_SRC_MSI] = s->msi_rc,
1285 [RCC_CLOCK_MUX_SRC_LSI] = s->lsi_rc,
1286 [RCC_CLOCK_MUX_SRC_LSE] = s->lse_crystal,
1287 [RCC_CLOCK_MUX_SRC_SAI1_EXTCLK] = s->sai1_extclk,
1288 [RCC_CLOCK_MUX_SRC_SAI2_EXTCLK] = s->sai2_extclk,
1289 [RCC_CLOCK_MUX_SRC_PLL] =
1290 s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLCLK],
1291 [RCC_CLOCK_MUX_SRC_PLLSAI1] =
1292 s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLSAI1CLK],
1293 [RCC_CLOCK_MUX_SRC_PLLSAI2] =
1294 s->plls[RCC_PLL_PLLSAI2].channels[RCC_PLLSAI2_CHANNEL_PLLSAI2CLK],
1295 [RCC_CLOCK_MUX_SRC_PLLSAI3] =
1296 s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLSAI3CLK],
1297 [RCC_CLOCK_MUX_SRC_PLL48M1] =
1298 s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLL48M1CLK],
1299 [RCC_CLOCK_MUX_SRC_PLL48M2] =
1300 s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLL48M2CLK],
1301 [RCC_CLOCK_MUX_SRC_PLLADC1] =
1302 s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLADC1CLK],
1303 [RCC_CLOCK_MUX_SRC_PLLADC2] =
1304 s->plls[RCC_PLL_PLLSAI2] .channels[RCC_PLLSAI2_CHANNEL_PLLADC2CLK],
1305 [RCC_CLOCK_MUX_SRC_SYSCLK] = s->clock_muxes[RCC_CLOCK_MUX_SYSCLK].out,
1306 [RCC_CLOCK_MUX_SRC_HCLK] = s->clock_muxes[RCC_CLOCK_MUX_HCLK].out,
1307 [RCC_CLOCK_MUX_SRC_PCLK1] = s->clock_muxes[RCC_CLOCK_MUX_PCLK1].out,
1308 [RCC_CLOCK_MUX_SRC_PCLK2] = s->clock_muxes[RCC_CLOCK_MUX_PCLK2].out,
1309 [RCC_CLOCK_MUX_SRC_HSE_OVER_32] = s->clock_muxes[RCC_CLOCK_MUX_HSE_OVER_32].out,
1310 [RCC_CLOCK_MUX_SRC_LCD_AND_RTC_COMMON] =
1311 s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON].out,
1314 assert(ARRAY_SIZE(CLK_SRC_MAPPING) == RCC_CLOCK_MUX_SRC_NUMBER);
1316 for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
1317 RccClockMuxSource mapping = clk_mapping[i];
1318 clock_set_source(mux->srcs[i], CLK_SRC_MAPPING[mapping]);
1323 static const VMStateDescription vmstate_stm32l4x5_rcc = {
1324 .name = TYPE_STM32L4X5_RCC,
1325 .version_id = 1,
1326 .minimum_version_id = 1,
1327 .fields = (VMStateField[]) {
1328 VMSTATE_UINT32(cr, Stm32l4x5RccState),
1329 VMSTATE_UINT32(icscr, Stm32l4x5RccState),
1330 VMSTATE_UINT32(cfgr, Stm32l4x5RccState),
1331 VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState),
1332 VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState),
1333 VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState),
1334 VMSTATE_UINT32(cier, Stm32l4x5RccState),
1335 VMSTATE_UINT32(cifr, Stm32l4x5RccState),
1336 VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState),
1337 VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState),
1338 VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState),
1339 VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState),
1340 VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState),
1341 VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState),
1342 VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState),
1343 VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState),
1344 VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState),
1345 VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState),
1346 VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState),
1347 VMSTATE_UINT32(apb2enr, Stm32l4x5RccState),
1348 VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState),
1349 VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState),
1350 VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState),
1351 VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState),
1352 VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState),
1353 VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState),
1354 VMSTATE_UINT32(ccipr, Stm32l4x5RccState),
1355 VMSTATE_UINT32(bdcr, Stm32l4x5RccState),
1356 VMSTATE_UINT32(csr, Stm32l4x5RccState),
1357 VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState),
1358 VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState),
1359 VMSTATE_CLOCK(hse, Stm32l4x5RccState),
1360 VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState),
1361 VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState),
1362 VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState),
1363 VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState),
1364 VMSTATE_END_OF_LIST()
1369 static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp)
1371 Stm32l4x5RccState *s = STM32L4X5_RCC(dev);
1372 size_t i;
1374 if (s->hse_frequency < 4000000ULL ||
1375 s->hse_frequency > 48000000ULL) {
1376 error_setg(errp,
1377 "HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "",
1378 s->hse_frequency);
1379 return;
1382 for (i = 0; i < RCC_NUM_PLL; i++) {
1383 RccPllState *pll = &s->plls[i];
1385 clock_set_source(pll->in, s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].out);
1387 if (!qdev_realize(DEVICE(pll), NULL, errp)) {
1388 return;
1392 for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
1393 RccClockMuxState *clock_mux = &s->clock_muxes[i];
1395 connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
1397 if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
1398 return;
1403 * Start clocks after everything is connected
1404 * to propagate the frequencies along the tree.
1406 clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ);
1407 clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency);
1408 clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency);
1409 clock_update(s->gnd, 0);
1412 static Property stm32l4x5_rcc_properties[] = {
1413 DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState,
1414 hse_frequency, HSE_DEFAULT_FRQ),
1415 DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState,
1416 sai1_extclk_frequency, 0),
1417 DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState,
1418 sai2_extclk_frequency, 0),
1419 DEFINE_PROP_END_OF_LIST(),
1422 static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data)
1424 DeviceClass *dc = DEVICE_CLASS(klass);
1425 ResettableClass *rc = RESETTABLE_CLASS(klass);
1427 assert(ARRAY_SIZE(CLOCK_MUX_INIT_INFO) == RCC_NUM_CLOCK_MUX);
1429 rc->phases.hold = stm32l4x5_rcc_reset_hold;
1430 device_class_set_props(dc, stm32l4x5_rcc_properties);
1431 dc->realize = stm32l4x5_rcc_realize;
1432 dc->vmsd = &vmstate_stm32l4x5_rcc;
1435 static const TypeInfo stm32l4x5_rcc_types[] = {
1437 .name = TYPE_STM32L4X5_RCC,
1438 .parent = TYPE_SYS_BUS_DEVICE,
1439 .instance_size = sizeof(Stm32l4x5RccState),
1440 .instance_init = stm32l4x5_rcc_init,
1441 .class_init = stm32l4x5_rcc_class_init,
1442 }, {
1443 .name = TYPE_RCC_CLOCK_MUX,
1444 .parent = TYPE_DEVICE,
1445 .instance_size = sizeof(RccClockMuxState),
1446 .instance_init = clock_mux_init,
1447 .class_init = clock_mux_class_init,
1448 }, {
1449 .name = TYPE_RCC_PLL,
1450 .parent = TYPE_DEVICE,
1451 .instance_size = sizeof(RccPllState),
1452 .instance_init = pll_init,
1453 .class_init = pll_class_init,
1457 DEFINE_TYPES(stm32l4x5_rcc_types)