4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "qapi/visitor.h"
27 #include "internals.h"
28 #include "qemu-common.h"
29 #include "exec/exec-all.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/loader.h"
34 #include "hw/arm/arm.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hw_accel.h"
38 #include "disas/capstone.h"
39 #include "fpu/softfloat.h"
41 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
43 ARMCPU
*cpu
= ARM_CPU(cs
);
44 CPUARMState
*env
= &cpu
->env
;
50 env
->regs
[15] = value
& ~1;
51 env
->thumb
= value
& 1;
55 static void arm_cpu_synchronize_from_tb(CPUState
*cs
, TranslationBlock
*tb
)
57 ARMCPU
*cpu
= ARM_CPU(cs
);
58 CPUARMState
*env
= &cpu
->env
;
61 * It's OK to look at env for the current mode here, because it's
62 * never possible for an AArch64 TB to chain to an AArch32 TB.
67 env
->regs
[15] = tb
->pc
;
71 static bool arm_cpu_has_work(CPUState
*cs
)
73 ARMCPU
*cpu
= ARM_CPU(cs
);
75 return (cpu
->power_state
!= PSCI_OFF
)
76 && cs
->interrupt_request
&
77 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
78 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
79 | CPU_INTERRUPT_EXITTB
);
82 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
85 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
88 entry
->opaque
= opaque
;
90 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
93 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
96 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
99 entry
->opaque
= opaque
;
101 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
104 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
106 /* Reset a single ARMCPRegInfo register */
107 ARMCPRegInfo
*ri
= value
;
108 ARMCPU
*cpu
= opaque
;
110 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
115 ri
->resetfn(&cpu
->env
, ri
);
119 /* A zero offset is never possible as it would be regs[0]
120 * so we use it to indicate that reset is being handled elsewhere.
121 * This is basically only used for fields in non-core coprocessors
122 * (like the pxa2xx ones).
124 if (!ri
->fieldoffset
) {
128 if (cpreg_field_is_64bit(ri
)) {
129 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
131 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
135 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
137 /* Purely an assertion check: we've already done reset once,
138 * so now check that running the reset for the cpreg doesn't
139 * change its value. This traps bugs where two different cpregs
140 * both try to reset the same state field but to different values.
142 ARMCPRegInfo
*ri
= value
;
143 ARMCPU
*cpu
= opaque
;
144 uint64_t oldvalue
, newvalue
;
146 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
150 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
151 cp_reg_reset(key
, value
, opaque
);
152 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
153 assert(oldvalue
== newvalue
);
156 /* CPUClass::reset() */
157 static void arm_cpu_reset(CPUState
*s
)
159 ARMCPU
*cpu
= ARM_CPU(s
);
160 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
161 CPUARMState
*env
= &cpu
->env
;
163 acc
->parent_reset(s
);
165 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
167 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
168 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
170 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
171 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
172 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
173 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
175 cpu
->power_state
= cpu
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
176 s
->halted
= cpu
->start_powered_off
;
178 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
179 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
182 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
183 /* 64 bit CPUs always start in 64 bit mode */
185 #if defined(CONFIG_USER_ONLY)
186 env
->pstate
= PSTATE_MODE_EL0t
;
187 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
188 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
189 /* Enable all PAC keys. */
190 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
191 SCTLR_EnDA
| SCTLR_EnDB
);
192 /* Enable all PAC instructions */
193 env
->cp15
.hcr_el2
|= HCR_API
;
194 env
->cp15
.scr_el3
|= SCR_API
;
195 /* and to the FP/Neon instructions */
196 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
197 /* and to the SVE instructions */
198 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 16, 2, 3);
199 env
->cp15
.cptr_el
[3] |= CPTR_EZ
;
200 /* with maximum vector length */
201 env
->vfp
.zcr_el
[1] = cpu
->sve_max_vq
- 1;
202 env
->vfp
.zcr_el
[2] = env
->vfp
.zcr_el
[1];
203 env
->vfp
.zcr_el
[3] = env
->vfp
.zcr_el
[1];
205 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
206 * turning on both here will produce smaller code and otherwise
207 * make no difference to the user-level emulation.
209 env
->cp15
.tcr_el
[1].raw_tcr
= (3ULL << 37);
211 /* Reset into the highest available EL */
212 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
213 env
->pstate
= PSTATE_MODE_EL3h
;
214 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
215 env
->pstate
= PSTATE_MODE_EL2h
;
217 env
->pstate
= PSTATE_MODE_EL1h
;
219 env
->pc
= cpu
->rvbar
;
222 #if defined(CONFIG_USER_ONLY)
223 /* Userspace expects access to cp10 and cp11 for FP/Neon */
224 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
228 #if defined(CONFIG_USER_ONLY)
229 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
230 /* For user mode we must enable access to coprocessors */
231 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
232 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
233 env
->cp15
.c15_cpar
= 3;
234 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
235 env
->cp15
.c15_cpar
= 1;
240 * If the highest available EL is EL2, AArch32 will start in Hyp
241 * mode; otherwise it starts in SVC. Note that if we start in
242 * AArch64 then these values in the uncached_cpsr will be ignored.
244 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
245 !arm_feature(env
, ARM_FEATURE_EL3
)) {
246 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
248 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
250 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
252 if (arm_feature(env
, ARM_FEATURE_M
)) {
253 uint32_t initial_msp
; /* Loaded from 0x0 */
254 uint32_t initial_pc
; /* Loaded from 0x4 */
258 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
259 env
->v7m
.secure
= true;
261 /* This bit resets to 0 if security is supported, but 1 if
262 * it is not. The bit is not present in v7M, but we set it
263 * here so we can avoid having to make checks on it conditional
264 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
269 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
270 * that it resets to 1, so QEMU always does that rather than making
271 * it dependent on CPU model. In v8M it is RES1.
273 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
274 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
275 if (arm_feature(env
, ARM_FEATURE_V8
)) {
276 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
277 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
278 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
280 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
281 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
282 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
285 /* Unlike A/R profile, M profile defines the reset LR value */
286 env
->regs
[14] = 0xffffffff;
288 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
290 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
291 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
292 rom
= rom_ptr(vecbase
, 8);
294 /* Address zero is covered by ROM which hasn't yet been
295 * copied into physical memory.
297 initial_msp
= ldl_p(rom
);
298 initial_pc
= ldl_p(rom
+ 4);
300 /* Address zero not covered by a ROM blob, or the ROM blob
301 * is in non-modifiable memory and this is a second reset after
302 * it got copied into memory. In the latter case, rom_ptr
303 * will return a NULL pointer and we should use ldl_phys instead.
305 initial_msp
= ldl_phys(s
->as
, vecbase
);
306 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
309 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
310 env
->regs
[15] = initial_pc
& ~1;
311 env
->thumb
= initial_pc
& 1;
314 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
315 * executing as AArch32 then check if highvecs are enabled and
316 * adjust the PC accordingly.
318 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
319 env
->regs
[15] = 0xFFFF0000;
322 /* M profile requires that reset clears the exclusive monitor;
323 * A profile does not, but clearing it makes more sense than having it
324 * set with an exclusive access on address zero.
326 arm_clear_exclusive(env
);
328 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
331 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
332 if (cpu
->pmsav7_dregion
> 0) {
333 if (arm_feature(env
, ARM_FEATURE_V8
)) {
334 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
335 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
336 * cpu
->pmsav7_dregion
);
337 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
338 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
339 * cpu
->pmsav7_dregion
);
340 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
341 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
342 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
343 * cpu
->pmsav7_dregion
);
344 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
345 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
346 * cpu
->pmsav7_dregion
);
348 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
349 memset(env
->pmsav7
.drbar
, 0,
350 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
351 memset(env
->pmsav7
.drsr
, 0,
352 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
353 memset(env
->pmsav7
.dracr
, 0,
354 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
357 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
358 env
->pmsav7
.rnr
[M_REG_S
] = 0;
359 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
360 env
->pmsav8
.mair0
[M_REG_S
] = 0;
361 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
362 env
->pmsav8
.mair1
[M_REG_S
] = 0;
365 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
366 if (cpu
->sau_sregion
> 0) {
367 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
368 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
371 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
372 * the Cortex-M33 does.
377 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
378 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
379 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
380 set_float_detect_tininess(float_tininess_before_rounding
,
381 &env
->vfp
.fp_status
);
382 set_float_detect_tininess(float_tininess_before_rounding
,
383 &env
->vfp
.standard_fp_status
);
384 set_float_detect_tininess(float_tininess_before_rounding
,
385 &env
->vfp
.fp_status_f16
);
386 #ifndef CONFIG_USER_ONLY
388 kvm_arm_reset_vcpu(cpu
);
392 hw_breakpoint_update_all(cpu
);
393 hw_watchpoint_update_all(cpu
);
396 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
398 CPUClass
*cc
= CPU_GET_CLASS(cs
);
399 CPUARMState
*env
= cs
->env_ptr
;
400 uint32_t cur_el
= arm_current_el(env
);
401 bool secure
= arm_is_secure(env
);
406 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
408 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
409 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
410 cs
->exception_index
= excp_idx
;
411 env
->exception
.target_el
= target_el
;
412 cc
->do_interrupt(cs
);
416 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
418 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
419 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
420 cs
->exception_index
= excp_idx
;
421 env
->exception
.target_el
= target_el
;
422 cc
->do_interrupt(cs
);
426 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
427 excp_idx
= EXCP_VIRQ
;
429 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
430 cs
->exception_index
= excp_idx
;
431 env
->exception
.target_el
= target_el
;
432 cc
->do_interrupt(cs
);
436 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
437 excp_idx
= EXCP_VFIQ
;
439 if (arm_excp_unmasked(cs
, excp_idx
, target_el
)) {
440 cs
->exception_index
= excp_idx
;
441 env
->exception
.target_el
= target_el
;
442 cc
->do_interrupt(cs
);
450 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
451 static bool arm_v7m_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
453 CPUClass
*cc
= CPU_GET_CLASS(cs
);
454 ARMCPU
*cpu
= ARM_CPU(cs
);
455 CPUARMState
*env
= &cpu
->env
;
458 /* ARMv7-M interrupt masking works differently than -A or -R.
459 * There is no FIQ/IRQ distinction. Instead of I and F bits
460 * masking FIQ and IRQ interrupts, an exception is taken only
461 * if it is higher priority than the current execution priority
462 * (which depends on state like BASEPRI, FAULTMASK and the
463 * currently active exception).
465 if (interrupt_request
& CPU_INTERRUPT_HARD
466 && (armv7m_nvic_can_take_pending_exception(env
->nvic
))) {
467 cs
->exception_index
= EXCP_IRQ
;
468 cc
->do_interrupt(cs
);
475 void arm_cpu_update_virq(ARMCPU
*cpu
)
478 * Update the interrupt level for VIRQ, which is the logical OR of
479 * the HCR_EL2.VI bit and the input line level from the GIC.
481 CPUARMState
*env
= &cpu
->env
;
482 CPUState
*cs
= CPU(cpu
);
484 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
485 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
487 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
489 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
491 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
496 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
499 * Update the interrupt level for VFIQ, which is the logical OR of
500 * the HCR_EL2.VF bit and the input line level from the GIC.
502 CPUARMState
*env
= &cpu
->env
;
503 CPUState
*cs
= CPU(cpu
);
505 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
506 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
508 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
510 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
512 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
517 #ifndef CONFIG_USER_ONLY
518 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
520 ARMCPU
*cpu
= opaque
;
521 CPUARMState
*env
= &cpu
->env
;
522 CPUState
*cs
= CPU(cpu
);
523 static const int mask
[] = {
524 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
525 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
526 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
527 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
531 env
->irq_line_state
|= mask
[irq
];
533 env
->irq_line_state
&= ~mask
[irq
];
538 assert(arm_feature(env
, ARM_FEATURE_EL2
));
539 arm_cpu_update_virq(cpu
);
542 assert(arm_feature(env
, ARM_FEATURE_EL2
));
543 arm_cpu_update_vfiq(cpu
);
548 cpu_interrupt(cs
, mask
[irq
]);
550 cpu_reset_interrupt(cs
, mask
[irq
]);
554 g_assert_not_reached();
558 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
561 ARMCPU
*cpu
= opaque
;
562 CPUARMState
*env
= &cpu
->env
;
563 CPUState
*cs
= CPU(cpu
);
564 int kvm_irq
= KVM_ARM_IRQ_TYPE_CPU
<< KVM_ARM_IRQ_TYPE_SHIFT
;
565 uint32_t linestate_bit
;
569 kvm_irq
|= KVM_ARM_IRQ_CPU_IRQ
;
570 linestate_bit
= CPU_INTERRUPT_HARD
;
573 kvm_irq
|= KVM_ARM_IRQ_CPU_FIQ
;
574 linestate_bit
= CPU_INTERRUPT_FIQ
;
577 g_assert_not_reached();
581 env
->irq_line_state
|= linestate_bit
;
583 env
->irq_line_state
&= ~linestate_bit
;
586 kvm_irq
|= cs
->cpu_index
<< KVM_ARM_IRQ_VCPU_SHIFT
;
587 kvm_set_irq(kvm_state
, kvm_irq
, level
? 1 : 0);
591 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
593 ARMCPU
*cpu
= ARM_CPU(cs
);
594 CPUARMState
*env
= &cpu
->env
;
596 cpu_synchronize_state(cs
);
597 return arm_cpu_data_is_big_endian(env
);
602 static inline void set_feature(CPUARMState
*env
, int feature
)
604 env
->features
|= 1ULL << feature
;
607 static inline void unset_feature(CPUARMState
*env
, int feature
)
609 env
->features
&= ~(1ULL << feature
);
613 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
615 return print_insn_arm(pc
| 1, info
);
618 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
620 ARMCPU
*ac
= ARM_CPU(cpu
);
621 CPUARMState
*env
= &ac
->env
;
625 /* We might not be compiled with the A64 disassembler
626 * because it needs a C++ compiler. Leave print_insn
627 * unset in this case to use the caller default behaviour.
629 #if defined(CONFIG_ARM_A64_DIS)
630 info
->print_insn
= print_insn_arm_a64
;
632 info
->cap_arch
= CS_ARCH_ARM64
;
633 info
->cap_insn_unit
= 4;
634 info
->cap_insn_split
= 4;
638 info
->print_insn
= print_insn_thumb1
;
639 info
->cap_insn_unit
= 2;
640 info
->cap_insn_split
= 4;
641 cap_mode
= CS_MODE_THUMB
;
643 info
->print_insn
= print_insn_arm
;
644 info
->cap_insn_unit
= 4;
645 info
->cap_insn_split
= 4;
646 cap_mode
= CS_MODE_ARM
;
648 if (arm_feature(env
, ARM_FEATURE_V8
)) {
649 cap_mode
|= CS_MODE_V8
;
651 if (arm_feature(env
, ARM_FEATURE_M
)) {
652 cap_mode
|= CS_MODE_MCLASS
;
654 info
->cap_arch
= CS_ARCH_ARM
;
655 info
->cap_mode
= cap_mode
;
658 sctlr_b
= arm_sctlr_b(env
);
659 if (bswap_code(sctlr_b
)) {
660 #ifdef TARGET_WORDS_BIGENDIAN
661 info
->endian
= BFD_ENDIAN_LITTLE
;
663 info
->endian
= BFD_ENDIAN_BIG
;
666 info
->flags
&= ~INSN_ARM_BE32
;
667 #ifndef CONFIG_USER_ONLY
669 info
->flags
|= INSN_ARM_BE32
;
674 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
676 uint32_t Aff1
= idx
/ clustersz
;
677 uint32_t Aff0
= idx
% clustersz
;
678 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
681 static void cpreg_hashtable_data_destroy(gpointer data
)
684 * Destroy function for cpu->cp_regs hashtable data entries.
685 * We must free the name string because it was g_strdup()ed in
686 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
687 * from r->name because we know we definitely allocated it.
689 ARMCPRegInfo
*r
= data
;
691 g_free((void *)r
->name
);
695 static void arm_cpu_initfn(Object
*obj
)
697 CPUState
*cs
= CPU(obj
);
698 ARMCPU
*cpu
= ARM_CPU(obj
);
700 cs
->env_ptr
= &cpu
->env
;
701 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
702 g_free
, cpreg_hashtable_data_destroy
);
704 QLIST_INIT(&cpu
->pre_el_change_hooks
);
705 QLIST_INIT(&cpu
->el_change_hooks
);
707 #ifndef CONFIG_USER_ONLY
708 /* Our inbound IRQ and FIQ lines */
710 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
711 * the same interface as non-KVM CPUs.
713 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
715 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
718 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
719 ARRAY_SIZE(cpu
->gt_timer_outputs
));
721 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
722 "gicv3-maintenance-interrupt", 1);
723 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
727 /* DTB consumers generally don't in fact care what the 'compatible'
728 * string is, so always provide some string and trust that a hypothetical
729 * picky DTB consumer will also provide a helpful error message.
731 cpu
->dtb_compatible
= "qemu,unknown";
732 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
733 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
736 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
740 static Property arm_cpu_reset_cbar_property
=
741 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
743 static Property arm_cpu_reset_hivecs_property
=
744 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
746 static Property arm_cpu_rvbar_property
=
747 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
749 static Property arm_cpu_has_el2_property
=
750 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
752 static Property arm_cpu_has_el3_property
=
753 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
755 static Property arm_cpu_cfgend_property
=
756 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
758 /* use property name "pmu" to match other archs and virt tools */
759 static Property arm_cpu_has_pmu_property
=
760 DEFINE_PROP_BOOL("pmu", ARMCPU
, has_pmu
, true);
762 static Property arm_cpu_has_mpu_property
=
763 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
765 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
766 * because the CPU initfn will have already set cpu->pmsav7_dregion to
767 * the right value for that particular CPU type, and we don't want
768 * to override that with an incorrect constant value.
770 static Property arm_cpu_pmsav7_dregion_property
=
771 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
773 qdev_prop_uint32
, uint32_t);
775 static void arm_get_init_svtor(Object
*obj
, Visitor
*v
, const char *name
,
776 void *opaque
, Error
**errp
)
778 ARMCPU
*cpu
= ARM_CPU(obj
);
780 visit_type_uint32(v
, name
, &cpu
->init_svtor
, errp
);
783 static void arm_set_init_svtor(Object
*obj
, Visitor
*v
, const char *name
,
784 void *opaque
, Error
**errp
)
786 ARMCPU
*cpu
= ARM_CPU(obj
);
788 visit_type_uint32(v
, name
, &cpu
->init_svtor
, errp
);
791 void arm_cpu_post_init(Object
*obj
)
793 ARMCPU
*cpu
= ARM_CPU(obj
);
795 /* M profile implies PMSA. We have to do this here rather than
796 * in realize with the other feature-implication checks because
797 * we look at the PMSA bit to see if we should add some properties.
799 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
800 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
803 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
804 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
805 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
,
809 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
810 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
,
814 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
815 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
,
819 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
820 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
821 * prevent "has_el3" from existing on CPUs which cannot support EL3.
823 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
,
826 #ifndef CONFIG_USER_ONLY
827 object_property_add_link(obj
, "secure-memory",
829 (Object
**)&cpu
->secure_memory
,
830 qdev_prop_allow_set_link_before_realize
,
831 OBJ_PROP_LINK_STRONG
,
836 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
837 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
,
841 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
842 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_pmu_property
,
846 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
847 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
,
849 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
850 qdev_property_add_static(DEVICE(obj
),
851 &arm_cpu_pmsav7_dregion_property
,
856 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
857 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
858 qdev_prop_allow_set_link_before_realize
,
859 OBJ_PROP_LINK_STRONG
,
862 * M profile: initial value of the Secure VTOR. We can't just use
863 * a simple DEFINE_PROP_UINT32 for this because we want to permit
864 * the property to be set after realize.
866 object_property_add(obj
, "init-svtor", "uint32",
867 arm_get_init_svtor
, arm_set_init_svtor
,
868 NULL
, NULL
, &error_abort
);
871 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
,
875 static void arm_cpu_finalizefn(Object
*obj
)
877 ARMCPU
*cpu
= ARM_CPU(obj
);
878 ARMELChangeHook
*hook
, *next
;
880 g_hash_table_destroy(cpu
->cp_regs
);
882 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
883 QLIST_REMOVE(hook
, node
);
886 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
887 QLIST_REMOVE(hook
, node
);
890 #ifndef CONFIG_USER_ONLY
891 if (cpu
->pmu_timer
) {
892 timer_del(cpu
->pmu_timer
);
893 timer_deinit(cpu
->pmu_timer
);
894 timer_free(cpu
->pmu_timer
);
899 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
901 CPUState
*cs
= CPU(dev
);
902 ARMCPU
*cpu
= ARM_CPU(dev
);
903 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
904 CPUARMState
*env
= &cpu
->env
;
906 Error
*local_err
= NULL
;
907 bool no_aa32
= false;
909 /* If we needed to query the host kernel for the CPU features
910 * then it's possible that might have failed in the initfn, but
911 * this is the first point where we can report it.
913 if (cpu
->host_cpu_probe_failed
) {
914 if (!kvm_enabled()) {
915 error_setg(errp
, "The 'host' CPU type can only be used with KVM");
917 error_setg(errp
, "Failed to retrieve host CPU features");
922 #ifndef CONFIG_USER_ONLY
923 /* The NVIC and M-profile CPU are two halves of a single piece of
924 * hardware; trying to use one without the other is a command line
925 * error and will result in segfaults if not caught here.
927 if (arm_feature(env
, ARM_FEATURE_M
)) {
929 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
934 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
939 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
940 arm_gt_ptimer_cb
, cpu
);
941 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
942 arm_gt_vtimer_cb
, cpu
);
943 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
944 arm_gt_htimer_cb
, cpu
);
945 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, GTIMER_SCALE
,
946 arm_gt_stimer_cb
, cpu
);
949 cpu_exec_realizefn(cs
, &local_err
);
950 if (local_err
!= NULL
) {
951 error_propagate(errp
, local_err
);
955 /* Some features automatically imply others: */
956 if (arm_feature(env
, ARM_FEATURE_V8
)) {
957 if (arm_feature(env
, ARM_FEATURE_M
)) {
958 set_feature(env
, ARM_FEATURE_V7
);
960 set_feature(env
, ARM_FEATURE_V7VE
);
965 * There exist AArch64 cpus without AArch32 support. When KVM
966 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
967 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
969 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
970 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
973 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
974 /* v7 Virtualization Extensions. In real hardware this implies
975 * EL2 and also the presence of the Security Extensions.
976 * For QEMU, for backwards-compatibility we implement some
977 * CPUs or CPU configs which have no actual EL2 or EL3 but do
978 * include the various other features that V7VE implies.
979 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
980 * Security Extensions is ARM_FEATURE_EL3.
982 assert(no_aa32
|| cpu_isar_feature(arm_div
, cpu
));
983 set_feature(env
, ARM_FEATURE_LPAE
);
984 set_feature(env
, ARM_FEATURE_V7
);
986 if (arm_feature(env
, ARM_FEATURE_V7
)) {
987 set_feature(env
, ARM_FEATURE_VAPA
);
988 set_feature(env
, ARM_FEATURE_THUMB2
);
989 set_feature(env
, ARM_FEATURE_MPIDR
);
990 if (!arm_feature(env
, ARM_FEATURE_M
)) {
991 set_feature(env
, ARM_FEATURE_V6K
);
993 set_feature(env
, ARM_FEATURE_V6
);
996 /* Always define VBAR for V7 CPUs even if it doesn't exist in
997 * non-EL3 configs. This is needed by some legacy boards.
999 set_feature(env
, ARM_FEATURE_VBAR
);
1001 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1002 set_feature(env
, ARM_FEATURE_V6
);
1003 set_feature(env
, ARM_FEATURE_MVFR
);
1005 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1006 set_feature(env
, ARM_FEATURE_V5
);
1007 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1008 assert(no_aa32
|| cpu_isar_feature(jazelle
, cpu
));
1009 set_feature(env
, ARM_FEATURE_AUXCR
);
1012 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1013 set_feature(env
, ARM_FEATURE_V4T
);
1015 if (arm_feature(env
, ARM_FEATURE_VFP4
)) {
1016 set_feature(env
, ARM_FEATURE_VFP3
);
1018 if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
1019 set_feature(env
, ARM_FEATURE_VFP
);
1021 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1022 set_feature(env
, ARM_FEATURE_V7MP
);
1023 set_feature(env
, ARM_FEATURE_PXN
);
1025 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1026 set_feature(env
, ARM_FEATURE_CBAR
);
1028 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1029 !arm_feature(env
, ARM_FEATURE_M
)) {
1030 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1033 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1034 !arm_feature(env
, ARM_FEATURE_M
) &&
1035 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
1036 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1041 /* For CPUs which might have tiny 1K pages, or which have an
1042 * MPU and might have small region sizes, stick with 1K pages.
1046 if (!set_preferred_target_page_bits(pagebits
)) {
1047 /* This can only ever happen for hotplugging a CPU, or if
1048 * the board code incorrectly creates a CPU which it has
1049 * promised via minimum_page_size that it will not.
1051 error_setg(errp
, "This CPU requires a smaller page size than the "
1056 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1057 * We don't support setting cluster ID ([16..23]) (known as Aff2
1058 * in later ARM ARM versions), or any of the higher affinity level fields,
1059 * so these bits always RAZ.
1061 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1062 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1063 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1066 if (cpu
->reset_hivecs
) {
1067 cpu
->reset_sctlr
|= (1 << 13);
1071 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1072 cpu
->reset_sctlr
|= SCTLR_EE
;
1074 cpu
->reset_sctlr
|= SCTLR_B
;
1078 if (!cpu
->has_el3
) {
1079 /* If the has_el3 CPU property is disabled then we need to disable the
1082 unset_feature(env
, ARM_FEATURE_EL3
);
1084 /* Disable the security extension feature bits in the processor feature
1085 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1087 cpu
->id_pfr1
&= ~0xf0;
1088 cpu
->isar
.id_aa64pfr0
&= ~0xf000;
1091 if (!cpu
->has_el2
) {
1092 unset_feature(env
, ARM_FEATURE_EL2
);
1095 if (!cpu
->has_pmu
) {
1096 unset_feature(env
, ARM_FEATURE_PMU
);
1098 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
1101 if (!kvm_enabled()) {
1102 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
1103 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
1106 #ifndef CONFIG_USER_ONLY
1107 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
1111 cpu
->id_aa64dfr0
&= ~0xf00;
1116 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1117 /* Disable the hypervisor feature bits in the processor feature
1118 * registers if we don't have EL2. These are id_pfr1[15:12] and
1119 * id_aa64pfr0_el1[11:8].
1121 cpu
->isar
.id_aa64pfr0
&= ~0xf00;
1122 cpu
->id_pfr1
&= ~0xf000;
1125 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1126 * to false or by setting pmsav7-dregion to 0.
1128 if (!cpu
->has_mpu
) {
1129 cpu
->pmsav7_dregion
= 0;
1131 if (cpu
->pmsav7_dregion
== 0) {
1132 cpu
->has_mpu
= false;
1135 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1136 arm_feature(env
, ARM_FEATURE_V7
)) {
1137 uint32_t nr
= cpu
->pmsav7_dregion
;
1140 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1145 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1147 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1148 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1149 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1150 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1151 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1154 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1155 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1156 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1161 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1162 uint32_t nr
= cpu
->sau_sregion
;
1165 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1170 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1171 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1175 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1176 set_feature(env
, ARM_FEATURE_VBAR
);
1179 register_cp_regs_for_features(cpu
);
1180 arm_cpu_register_gdb_regs_for_features(cpu
);
1182 init_cpreg_list(cpu
);
1184 #ifndef CONFIG_USER_ONLY
1185 if (cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1188 if (!cpu
->secure_memory
) {
1189 cpu
->secure_memory
= cs
->memory
;
1191 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
1192 cpu
->secure_memory
);
1196 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
1198 /* No core_count specified, default to smp_cpus. */
1199 if (cpu
->core_count
== -1) {
1200 cpu
->core_count
= smp_cpus
;
1207 acc
->parent_realize(dev
, errp
);
1210 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
1215 const char *cpunamestr
;
1217 cpuname
= g_strsplit(cpu_model
, ",", 1);
1218 cpunamestr
= cpuname
[0];
1219 #ifdef CONFIG_USER_ONLY
1220 /* For backwards compatibility usermode emulation allows "-cpu any",
1221 * which has the same semantics as "-cpu max".
1223 if (!strcmp(cpunamestr
, "any")) {
1227 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
1228 oc
= object_class_by_name(typename
);
1229 g_strfreev(cpuname
);
1231 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
1232 object_class_is_abstract(oc
)) {
1238 /* CPU models. These are not needed for the AArch64 linux-user build. */
1239 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1241 static void arm926_initfn(Object
*obj
)
1243 ARMCPU
*cpu
= ARM_CPU(obj
);
1245 cpu
->dtb_compatible
= "arm,arm926";
1246 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1247 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1248 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1249 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1250 cpu
->midr
= 0x41069265;
1251 cpu
->reset_fpsid
= 0x41011090;
1252 cpu
->ctr
= 0x1dd20d2;
1253 cpu
->reset_sctlr
= 0x00090078;
1256 * ARMv5 does not have the ID_ISAR registers, but we can still
1257 * set the field to indicate Jazelle support within QEMU.
1259 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1262 static void arm946_initfn(Object
*obj
)
1264 ARMCPU
*cpu
= ARM_CPU(obj
);
1266 cpu
->dtb_compatible
= "arm,arm946";
1267 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1268 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1269 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1270 cpu
->midr
= 0x41059461;
1271 cpu
->ctr
= 0x0f004006;
1272 cpu
->reset_sctlr
= 0x00000078;
1275 static void arm1026_initfn(Object
*obj
)
1277 ARMCPU
*cpu
= ARM_CPU(obj
);
1279 cpu
->dtb_compatible
= "arm,arm1026";
1280 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1281 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1282 set_feature(&cpu
->env
, ARM_FEATURE_AUXCR
);
1283 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1284 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_TEST_CLEAN
);
1285 cpu
->midr
= 0x4106a262;
1286 cpu
->reset_fpsid
= 0x410110a0;
1287 cpu
->ctr
= 0x1dd20d2;
1288 cpu
->reset_sctlr
= 0x00090078;
1289 cpu
->reset_auxcr
= 1;
1292 * ARMv5 does not have the ID_ISAR registers, but we can still
1293 * set the field to indicate Jazelle support within QEMU.
1295 cpu
->isar
.id_isar1
= FIELD_DP32(cpu
->isar
.id_isar1
, ID_ISAR1
, JAZELLE
, 1);
1298 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1299 ARMCPRegInfo ifar
= {
1300 .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
1302 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifar_ns
),
1305 define_one_arm_cp_reg(cpu
, &ifar
);
1309 static void arm1136_r2_initfn(Object
*obj
)
1311 ARMCPU
*cpu
= ARM_CPU(obj
);
1312 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1313 * older core than plain "arm1136". In particular this does not
1314 * have the v6K features.
1315 * These ID register values are correct for 1136 but may be wrong
1316 * for 1136_r2 (in particular r0p2 does not actually implement most
1317 * of the ID registers).
1320 cpu
->dtb_compatible
= "arm,arm1136";
1321 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1322 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1323 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1324 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1325 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1326 cpu
->midr
= 0x4107b362;
1327 cpu
->reset_fpsid
= 0x410120b4;
1328 cpu
->isar
.mvfr0
= 0x11111111;
1329 cpu
->isar
.mvfr1
= 0x00000000;
1330 cpu
->ctr
= 0x1dd20d2;
1331 cpu
->reset_sctlr
= 0x00050078;
1332 cpu
->id_pfr0
= 0x111;
1336 cpu
->id_mmfr0
= 0x01130003;
1337 cpu
->id_mmfr1
= 0x10030302;
1338 cpu
->id_mmfr2
= 0x01222110;
1339 cpu
->isar
.id_isar0
= 0x00140011;
1340 cpu
->isar
.id_isar1
= 0x12002111;
1341 cpu
->isar
.id_isar2
= 0x11231111;
1342 cpu
->isar
.id_isar3
= 0x01102131;
1343 cpu
->isar
.id_isar4
= 0x141;
1344 cpu
->reset_auxcr
= 7;
1347 static void arm1136_initfn(Object
*obj
)
1349 ARMCPU
*cpu
= ARM_CPU(obj
);
1351 cpu
->dtb_compatible
= "arm,arm1136";
1352 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1353 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1354 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1355 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1356 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1357 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1358 cpu
->midr
= 0x4117b363;
1359 cpu
->reset_fpsid
= 0x410120b4;
1360 cpu
->isar
.mvfr0
= 0x11111111;
1361 cpu
->isar
.mvfr1
= 0x00000000;
1362 cpu
->ctr
= 0x1dd20d2;
1363 cpu
->reset_sctlr
= 0x00050078;
1364 cpu
->id_pfr0
= 0x111;
1368 cpu
->id_mmfr0
= 0x01130003;
1369 cpu
->id_mmfr1
= 0x10030302;
1370 cpu
->id_mmfr2
= 0x01222110;
1371 cpu
->isar
.id_isar0
= 0x00140011;
1372 cpu
->isar
.id_isar1
= 0x12002111;
1373 cpu
->isar
.id_isar2
= 0x11231111;
1374 cpu
->isar
.id_isar3
= 0x01102131;
1375 cpu
->isar
.id_isar4
= 0x141;
1376 cpu
->reset_auxcr
= 7;
1379 static void arm1176_initfn(Object
*obj
)
1381 ARMCPU
*cpu
= ARM_CPU(obj
);
1383 cpu
->dtb_compatible
= "arm,arm1176";
1384 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1385 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1386 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1387 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1388 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_DIRTY_REG
);
1389 set_feature(&cpu
->env
, ARM_FEATURE_CACHE_BLOCK_OPS
);
1390 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1391 cpu
->midr
= 0x410fb767;
1392 cpu
->reset_fpsid
= 0x410120b5;
1393 cpu
->isar
.mvfr0
= 0x11111111;
1394 cpu
->isar
.mvfr1
= 0x00000000;
1395 cpu
->ctr
= 0x1dd20d2;
1396 cpu
->reset_sctlr
= 0x00050078;
1397 cpu
->id_pfr0
= 0x111;
1398 cpu
->id_pfr1
= 0x11;
1399 cpu
->id_dfr0
= 0x33;
1401 cpu
->id_mmfr0
= 0x01130003;
1402 cpu
->id_mmfr1
= 0x10030302;
1403 cpu
->id_mmfr2
= 0x01222100;
1404 cpu
->isar
.id_isar0
= 0x0140011;
1405 cpu
->isar
.id_isar1
= 0x12002111;
1406 cpu
->isar
.id_isar2
= 0x11231121;
1407 cpu
->isar
.id_isar3
= 0x01102131;
1408 cpu
->isar
.id_isar4
= 0x01141;
1409 cpu
->reset_auxcr
= 7;
1412 static void arm11mpcore_initfn(Object
*obj
)
1414 ARMCPU
*cpu
= ARM_CPU(obj
);
1416 cpu
->dtb_compatible
= "arm,arm11mpcore";
1417 set_feature(&cpu
->env
, ARM_FEATURE_V6K
);
1418 set_feature(&cpu
->env
, ARM_FEATURE_VFP
);
1419 set_feature(&cpu
->env
, ARM_FEATURE_VAPA
);
1420 set_feature(&cpu
->env
, ARM_FEATURE_MPIDR
);
1421 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1422 cpu
->midr
= 0x410fb022;
1423 cpu
->reset_fpsid
= 0x410120b4;
1424 cpu
->isar
.mvfr0
= 0x11111111;
1425 cpu
->isar
.mvfr1
= 0x00000000;
1426 cpu
->ctr
= 0x1d192992; /* 32K icache 32K dcache */
1427 cpu
->id_pfr0
= 0x111;
1431 cpu
->id_mmfr0
= 0x01100103;
1432 cpu
->id_mmfr1
= 0x10020302;
1433 cpu
->id_mmfr2
= 0x01222000;
1434 cpu
->isar
.id_isar0
= 0x00100011;
1435 cpu
->isar
.id_isar1
= 0x12002111;
1436 cpu
->isar
.id_isar2
= 0x11221011;
1437 cpu
->isar
.id_isar3
= 0x01102131;
1438 cpu
->isar
.id_isar4
= 0x141;
1439 cpu
->reset_auxcr
= 1;
1442 static void cortex_m0_initfn(Object
*obj
)
1444 ARMCPU
*cpu
= ARM_CPU(obj
);
1445 set_feature(&cpu
->env
, ARM_FEATURE_V6
);
1446 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1448 cpu
->midr
= 0x410cc200;
1451 static void cortex_m3_initfn(Object
*obj
)
1453 ARMCPU
*cpu
= ARM_CPU(obj
);
1454 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1455 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1456 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1457 cpu
->midr
= 0x410fc231;
1458 cpu
->pmsav7_dregion
= 8;
1459 cpu
->id_pfr0
= 0x00000030;
1460 cpu
->id_pfr1
= 0x00000200;
1461 cpu
->id_dfr0
= 0x00100000;
1462 cpu
->id_afr0
= 0x00000000;
1463 cpu
->id_mmfr0
= 0x00000030;
1464 cpu
->id_mmfr1
= 0x00000000;
1465 cpu
->id_mmfr2
= 0x00000000;
1466 cpu
->id_mmfr3
= 0x00000000;
1467 cpu
->isar
.id_isar0
= 0x01141110;
1468 cpu
->isar
.id_isar1
= 0x02111000;
1469 cpu
->isar
.id_isar2
= 0x21112231;
1470 cpu
->isar
.id_isar3
= 0x01111110;
1471 cpu
->isar
.id_isar4
= 0x01310102;
1472 cpu
->isar
.id_isar5
= 0x00000000;
1473 cpu
->isar
.id_isar6
= 0x00000000;
1476 static void cortex_m4_initfn(Object
*obj
)
1478 ARMCPU
*cpu
= ARM_CPU(obj
);
1480 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1481 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1482 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1483 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1484 cpu
->midr
= 0x410fc240; /* r0p0 */
1485 cpu
->pmsav7_dregion
= 8;
1486 cpu
->id_pfr0
= 0x00000030;
1487 cpu
->id_pfr1
= 0x00000200;
1488 cpu
->id_dfr0
= 0x00100000;
1489 cpu
->id_afr0
= 0x00000000;
1490 cpu
->id_mmfr0
= 0x00000030;
1491 cpu
->id_mmfr1
= 0x00000000;
1492 cpu
->id_mmfr2
= 0x00000000;
1493 cpu
->id_mmfr3
= 0x00000000;
1494 cpu
->isar
.id_isar0
= 0x01141110;
1495 cpu
->isar
.id_isar1
= 0x02111000;
1496 cpu
->isar
.id_isar2
= 0x21112231;
1497 cpu
->isar
.id_isar3
= 0x01111110;
1498 cpu
->isar
.id_isar4
= 0x01310102;
1499 cpu
->isar
.id_isar5
= 0x00000000;
1500 cpu
->isar
.id_isar6
= 0x00000000;
1503 static void cortex_m33_initfn(Object
*obj
)
1505 ARMCPU
*cpu
= ARM_CPU(obj
);
1507 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
1508 set_feature(&cpu
->env
, ARM_FEATURE_M
);
1509 set_feature(&cpu
->env
, ARM_FEATURE_M_MAIN
);
1510 set_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
);
1511 set_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
);
1512 cpu
->midr
= 0x410fd213; /* r0p3 */
1513 cpu
->pmsav7_dregion
= 16;
1514 cpu
->sau_sregion
= 8;
1515 cpu
->id_pfr0
= 0x00000030;
1516 cpu
->id_pfr1
= 0x00000210;
1517 cpu
->id_dfr0
= 0x00200000;
1518 cpu
->id_afr0
= 0x00000000;
1519 cpu
->id_mmfr0
= 0x00101F40;
1520 cpu
->id_mmfr1
= 0x00000000;
1521 cpu
->id_mmfr2
= 0x01000000;
1522 cpu
->id_mmfr3
= 0x00000000;
1523 cpu
->isar
.id_isar0
= 0x01101110;
1524 cpu
->isar
.id_isar1
= 0x02212000;
1525 cpu
->isar
.id_isar2
= 0x20232232;
1526 cpu
->isar
.id_isar3
= 0x01111131;
1527 cpu
->isar
.id_isar4
= 0x01310132;
1528 cpu
->isar
.id_isar5
= 0x00000000;
1529 cpu
->isar
.id_isar6
= 0x00000000;
1530 cpu
->clidr
= 0x00000000;
1531 cpu
->ctr
= 0x8000c000;
1534 static void arm_v7m_class_init(ObjectClass
*oc
, void *data
)
1536 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
1537 CPUClass
*cc
= CPU_CLASS(oc
);
1540 #ifndef CONFIG_USER_ONLY
1541 cc
->do_interrupt
= arm_v7m_cpu_do_interrupt
;
1544 cc
->cpu_exec_interrupt
= arm_v7m_cpu_exec_interrupt
;
1547 static const ARMCPRegInfo cortexr5_cp_reginfo
[] = {
1548 /* Dummy the TCM region regs for the moment */
1549 { .name
= "ATCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1550 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1551 { .name
= "BTCM", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1552 .access
= PL1_RW
, .type
= ARM_CP_CONST
},
1553 { .name
= "DCACHE_INVAL", .cp
= 15, .opc1
= 0, .crn
= 15, .crm
= 5,
1554 .opc2
= 0, .access
= PL1_W
, .type
= ARM_CP_NOP
},
1558 static void cortex_r5_initfn(Object
*obj
)
1560 ARMCPU
*cpu
= ARM_CPU(obj
);
1562 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1563 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1564 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1565 cpu
->midr
= 0x411fc153; /* r1p3 */
1566 cpu
->id_pfr0
= 0x0131;
1567 cpu
->id_pfr1
= 0x001;
1568 cpu
->id_dfr0
= 0x010400;
1570 cpu
->id_mmfr0
= 0x0210030;
1571 cpu
->id_mmfr1
= 0x00000000;
1572 cpu
->id_mmfr2
= 0x01200000;
1573 cpu
->id_mmfr3
= 0x0211;
1574 cpu
->isar
.id_isar0
= 0x02101111;
1575 cpu
->isar
.id_isar1
= 0x13112111;
1576 cpu
->isar
.id_isar2
= 0x21232141;
1577 cpu
->isar
.id_isar3
= 0x01112131;
1578 cpu
->isar
.id_isar4
= 0x0010142;
1579 cpu
->isar
.id_isar5
= 0x0;
1580 cpu
->isar
.id_isar6
= 0x0;
1581 cpu
->mp_is_up
= true;
1582 cpu
->pmsav7_dregion
= 16;
1583 define_arm_cp_regs(cpu
, cortexr5_cp_reginfo
);
1586 static void cortex_r5f_initfn(Object
*obj
)
1588 ARMCPU
*cpu
= ARM_CPU(obj
);
1590 cortex_r5_initfn(obj
);
1591 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1594 static const ARMCPRegInfo cortexa8_cp_reginfo
[] = {
1595 { .name
= "L2LOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 0,
1596 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1597 { .name
= "L2AUXCR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1598 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1602 static void cortex_a8_initfn(Object
*obj
)
1604 ARMCPU
*cpu
= ARM_CPU(obj
);
1606 cpu
->dtb_compatible
= "arm,cortex-a8";
1607 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1608 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1609 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1610 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1611 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1612 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1613 cpu
->midr
= 0x410fc080;
1614 cpu
->reset_fpsid
= 0x410330c0;
1615 cpu
->isar
.mvfr0
= 0x11110222;
1616 cpu
->isar
.mvfr1
= 0x00011111;
1617 cpu
->ctr
= 0x82048004;
1618 cpu
->reset_sctlr
= 0x00c50078;
1619 cpu
->id_pfr0
= 0x1031;
1620 cpu
->id_pfr1
= 0x11;
1621 cpu
->id_dfr0
= 0x400;
1623 cpu
->id_mmfr0
= 0x31100003;
1624 cpu
->id_mmfr1
= 0x20000000;
1625 cpu
->id_mmfr2
= 0x01202000;
1626 cpu
->id_mmfr3
= 0x11;
1627 cpu
->isar
.id_isar0
= 0x00101111;
1628 cpu
->isar
.id_isar1
= 0x12112111;
1629 cpu
->isar
.id_isar2
= 0x21232031;
1630 cpu
->isar
.id_isar3
= 0x11112131;
1631 cpu
->isar
.id_isar4
= 0x00111142;
1632 cpu
->dbgdidr
= 0x15141000;
1633 cpu
->clidr
= (1 << 27) | (2 << 24) | 3;
1634 cpu
->ccsidr
[0] = 0xe007e01a; /* 16k L1 dcache. */
1635 cpu
->ccsidr
[1] = 0x2007e01a; /* 16k L1 icache. */
1636 cpu
->ccsidr
[2] = 0xf0000000; /* No L2 icache. */
1637 cpu
->reset_auxcr
= 2;
1638 define_arm_cp_regs(cpu
, cortexa8_cp_reginfo
);
1641 static const ARMCPRegInfo cortexa9_cp_reginfo
[] = {
1642 /* power_control should be set to maximum latency. Again,
1643 * default to 0 and set by private hook
1645 { .name
= "A9_PWRCTL", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1646 .access
= PL1_RW
, .resetvalue
= 0,
1647 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_control
) },
1648 { .name
= "A9_DIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 1,
1649 .access
= PL1_RW
, .resetvalue
= 0,
1650 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_diagnostic
) },
1651 { .name
= "A9_PWRDIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 2,
1652 .access
= PL1_RW
, .resetvalue
= 0,
1653 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_diagnostic
) },
1654 { .name
= "NEONBUSY", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1655 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1656 /* TLB lockdown control */
1657 { .name
= "TLB_LOCKR", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 2,
1658 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1659 { .name
= "TLB_LOCKW", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 4,
1660 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1661 { .name
= "TLB_VA", .cp
= 15, .crn
= 15, .crm
= 5, .opc1
= 5, .opc2
= 2,
1662 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1663 { .name
= "TLB_PA", .cp
= 15, .crn
= 15, .crm
= 6, .opc1
= 5, .opc2
= 2,
1664 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1665 { .name
= "TLB_ATTR", .cp
= 15, .crn
= 15, .crm
= 7, .opc1
= 5, .opc2
= 2,
1666 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1670 static void cortex_a9_initfn(Object
*obj
)
1672 ARMCPU
*cpu
= ARM_CPU(obj
);
1674 cpu
->dtb_compatible
= "arm,cortex-a9";
1675 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1676 set_feature(&cpu
->env
, ARM_FEATURE_VFP3
);
1677 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1678 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1679 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1680 /* Note that A9 supports the MP extensions even for
1681 * A9UP and single-core A9MP (which are both different
1682 * and valid configurations; we don't model A9UP).
1684 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1685 set_feature(&cpu
->env
, ARM_FEATURE_CBAR
);
1686 cpu
->midr
= 0x410fc090;
1687 cpu
->reset_fpsid
= 0x41033090;
1688 cpu
->isar
.mvfr0
= 0x11110222;
1689 cpu
->isar
.mvfr1
= 0x01111111;
1690 cpu
->ctr
= 0x80038003;
1691 cpu
->reset_sctlr
= 0x00c50078;
1692 cpu
->id_pfr0
= 0x1031;
1693 cpu
->id_pfr1
= 0x11;
1694 cpu
->id_dfr0
= 0x000;
1696 cpu
->id_mmfr0
= 0x00100103;
1697 cpu
->id_mmfr1
= 0x20000000;
1698 cpu
->id_mmfr2
= 0x01230000;
1699 cpu
->id_mmfr3
= 0x00002111;
1700 cpu
->isar
.id_isar0
= 0x00101111;
1701 cpu
->isar
.id_isar1
= 0x13112111;
1702 cpu
->isar
.id_isar2
= 0x21232041;
1703 cpu
->isar
.id_isar3
= 0x11112131;
1704 cpu
->isar
.id_isar4
= 0x00111142;
1705 cpu
->dbgdidr
= 0x35141000;
1706 cpu
->clidr
= (1 << 27) | (1 << 24) | 3;
1707 cpu
->ccsidr
[0] = 0xe00fe019; /* 16k L1 dcache. */
1708 cpu
->ccsidr
[1] = 0x200fe019; /* 16k L1 icache. */
1709 define_arm_cp_regs(cpu
, cortexa9_cp_reginfo
);
1712 #ifndef CONFIG_USER_ONLY
1713 static uint64_t a15_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1715 /* Linux wants the number of processors from here.
1716 * Might as well set the interrupt-controller bit too.
1718 return ((smp_cpus
- 1) << 24) | (1 << 23);
1722 static const ARMCPRegInfo cortexa15_cp_reginfo
[] = {
1723 #ifndef CONFIG_USER_ONLY
1724 { .name
= "L2CTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1725 .access
= PL1_RW
, .resetvalue
= 0, .readfn
= a15_l2ctlr_read
,
1726 .writefn
= arm_cp_write_ignore
, },
1728 { .name
= "L2ECTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 3,
1729 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1733 static void cortex_a7_initfn(Object
*obj
)
1735 ARMCPU
*cpu
= ARM_CPU(obj
);
1737 cpu
->dtb_compatible
= "arm,cortex-a7";
1738 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1739 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1740 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1741 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1742 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1743 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1744 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1745 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1746 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1747 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A7
;
1748 cpu
->midr
= 0x410fc075;
1749 cpu
->reset_fpsid
= 0x41023075;
1750 cpu
->isar
.mvfr0
= 0x10110222;
1751 cpu
->isar
.mvfr1
= 0x11111111;
1752 cpu
->ctr
= 0x84448003;
1753 cpu
->reset_sctlr
= 0x00c50078;
1754 cpu
->id_pfr0
= 0x00001131;
1755 cpu
->id_pfr1
= 0x00011011;
1756 cpu
->id_dfr0
= 0x02010555;
1757 cpu
->id_afr0
= 0x00000000;
1758 cpu
->id_mmfr0
= 0x10101105;
1759 cpu
->id_mmfr1
= 0x40000000;
1760 cpu
->id_mmfr2
= 0x01240000;
1761 cpu
->id_mmfr3
= 0x02102211;
1762 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1763 * table 4-41 gives 0x02101110, which includes the arm div insns.
1765 cpu
->isar
.id_isar0
= 0x02101110;
1766 cpu
->isar
.id_isar1
= 0x13112111;
1767 cpu
->isar
.id_isar2
= 0x21232041;
1768 cpu
->isar
.id_isar3
= 0x11112131;
1769 cpu
->isar
.id_isar4
= 0x10011142;
1770 cpu
->dbgdidr
= 0x3515f005;
1771 cpu
->clidr
= 0x0a200023;
1772 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1773 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1774 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1775 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
); /* Same as A15 */
1778 static void cortex_a15_initfn(Object
*obj
)
1780 ARMCPU
*cpu
= ARM_CPU(obj
);
1782 cpu
->dtb_compatible
= "arm,cortex-a15";
1783 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
1784 set_feature(&cpu
->env
, ARM_FEATURE_VFP4
);
1785 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1786 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1787 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
1788 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1789 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
1790 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
1791 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1792 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A15
;
1793 cpu
->midr
= 0x412fc0f1;
1794 cpu
->reset_fpsid
= 0x410430f0;
1795 cpu
->isar
.mvfr0
= 0x10110222;
1796 cpu
->isar
.mvfr1
= 0x11111111;
1797 cpu
->ctr
= 0x8444c004;
1798 cpu
->reset_sctlr
= 0x00c50078;
1799 cpu
->id_pfr0
= 0x00001131;
1800 cpu
->id_pfr1
= 0x00011011;
1801 cpu
->id_dfr0
= 0x02010555;
1802 cpu
->id_afr0
= 0x00000000;
1803 cpu
->id_mmfr0
= 0x10201105;
1804 cpu
->id_mmfr1
= 0x20000000;
1805 cpu
->id_mmfr2
= 0x01240000;
1806 cpu
->id_mmfr3
= 0x02102211;
1807 cpu
->isar
.id_isar0
= 0x02101110;
1808 cpu
->isar
.id_isar1
= 0x13112111;
1809 cpu
->isar
.id_isar2
= 0x21232041;
1810 cpu
->isar
.id_isar3
= 0x11112131;
1811 cpu
->isar
.id_isar4
= 0x10011142;
1812 cpu
->dbgdidr
= 0x3515f021;
1813 cpu
->clidr
= 0x0a200023;
1814 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
1815 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
1816 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
1817 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
);
1820 static void ti925t_initfn(Object
*obj
)
1822 ARMCPU
*cpu
= ARM_CPU(obj
);
1823 set_feature(&cpu
->env
, ARM_FEATURE_V4T
);
1824 set_feature(&cpu
->env
, ARM_FEATURE_OMAPCP
);
1825 cpu
->midr
= ARM_CPUID_TI925T
;
1826 cpu
->ctr
= 0x5109149;
1827 cpu
->reset_sctlr
= 0x00000070;
1830 static void sa1100_initfn(Object
*obj
)
1832 ARMCPU
*cpu
= ARM_CPU(obj
);
1834 cpu
->dtb_compatible
= "intel,sa1100";
1835 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1836 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1837 cpu
->midr
= 0x4401A11B;
1838 cpu
->reset_sctlr
= 0x00000070;
1841 static void sa1110_initfn(Object
*obj
)
1843 ARMCPU
*cpu
= ARM_CPU(obj
);
1844 set_feature(&cpu
->env
, ARM_FEATURE_STRONGARM
);
1845 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1846 cpu
->midr
= 0x6901B119;
1847 cpu
->reset_sctlr
= 0x00000070;
1850 static void pxa250_initfn(Object
*obj
)
1852 ARMCPU
*cpu
= ARM_CPU(obj
);
1854 cpu
->dtb_compatible
= "marvell,xscale";
1855 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1856 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1857 cpu
->midr
= 0x69052100;
1858 cpu
->ctr
= 0xd172172;
1859 cpu
->reset_sctlr
= 0x00000078;
1862 static void pxa255_initfn(Object
*obj
)
1864 ARMCPU
*cpu
= ARM_CPU(obj
);
1866 cpu
->dtb_compatible
= "marvell,xscale";
1867 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1868 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1869 cpu
->midr
= 0x69052d00;
1870 cpu
->ctr
= 0xd172172;
1871 cpu
->reset_sctlr
= 0x00000078;
1874 static void pxa260_initfn(Object
*obj
)
1876 ARMCPU
*cpu
= ARM_CPU(obj
);
1878 cpu
->dtb_compatible
= "marvell,xscale";
1879 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1880 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1881 cpu
->midr
= 0x69052903;
1882 cpu
->ctr
= 0xd172172;
1883 cpu
->reset_sctlr
= 0x00000078;
1886 static void pxa261_initfn(Object
*obj
)
1888 ARMCPU
*cpu
= ARM_CPU(obj
);
1890 cpu
->dtb_compatible
= "marvell,xscale";
1891 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1892 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1893 cpu
->midr
= 0x69052d05;
1894 cpu
->ctr
= 0xd172172;
1895 cpu
->reset_sctlr
= 0x00000078;
1898 static void pxa262_initfn(Object
*obj
)
1900 ARMCPU
*cpu
= ARM_CPU(obj
);
1902 cpu
->dtb_compatible
= "marvell,xscale";
1903 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1904 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1905 cpu
->midr
= 0x69052d06;
1906 cpu
->ctr
= 0xd172172;
1907 cpu
->reset_sctlr
= 0x00000078;
1910 static void pxa270a0_initfn(Object
*obj
)
1912 ARMCPU
*cpu
= ARM_CPU(obj
);
1914 cpu
->dtb_compatible
= "marvell,xscale";
1915 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1916 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1917 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1918 cpu
->midr
= 0x69054110;
1919 cpu
->ctr
= 0xd172172;
1920 cpu
->reset_sctlr
= 0x00000078;
1923 static void pxa270a1_initfn(Object
*obj
)
1925 ARMCPU
*cpu
= ARM_CPU(obj
);
1927 cpu
->dtb_compatible
= "marvell,xscale";
1928 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1929 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1930 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1931 cpu
->midr
= 0x69054111;
1932 cpu
->ctr
= 0xd172172;
1933 cpu
->reset_sctlr
= 0x00000078;
1936 static void pxa270b0_initfn(Object
*obj
)
1938 ARMCPU
*cpu
= ARM_CPU(obj
);
1940 cpu
->dtb_compatible
= "marvell,xscale";
1941 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1942 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1943 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1944 cpu
->midr
= 0x69054112;
1945 cpu
->ctr
= 0xd172172;
1946 cpu
->reset_sctlr
= 0x00000078;
1949 static void pxa270b1_initfn(Object
*obj
)
1951 ARMCPU
*cpu
= ARM_CPU(obj
);
1953 cpu
->dtb_compatible
= "marvell,xscale";
1954 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1955 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1956 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1957 cpu
->midr
= 0x69054113;
1958 cpu
->ctr
= 0xd172172;
1959 cpu
->reset_sctlr
= 0x00000078;
1962 static void pxa270c0_initfn(Object
*obj
)
1964 ARMCPU
*cpu
= ARM_CPU(obj
);
1966 cpu
->dtb_compatible
= "marvell,xscale";
1967 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1968 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1969 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1970 cpu
->midr
= 0x69054114;
1971 cpu
->ctr
= 0xd172172;
1972 cpu
->reset_sctlr
= 0x00000078;
1975 static void pxa270c5_initfn(Object
*obj
)
1977 ARMCPU
*cpu
= ARM_CPU(obj
);
1979 cpu
->dtb_compatible
= "marvell,xscale";
1980 set_feature(&cpu
->env
, ARM_FEATURE_V5
);
1981 set_feature(&cpu
->env
, ARM_FEATURE_XSCALE
);
1982 set_feature(&cpu
->env
, ARM_FEATURE_IWMMXT
);
1983 cpu
->midr
= 0x69054117;
1984 cpu
->ctr
= 0xd172172;
1985 cpu
->reset_sctlr
= 0x00000078;
1988 #ifndef TARGET_AARCH64
1989 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1990 * otherwise, a CPU with as many features enabled as our emulation supports.
1991 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1992 * this only needs to handle 32 bits.
1994 static void arm_max_initfn(Object
*obj
)
1996 ARMCPU
*cpu
= ARM_CPU(obj
);
1998 if (kvm_enabled()) {
1999 kvm_arm_set_cpu_features_from_host(cpu
);
2001 cortex_a15_initfn(obj
);
2002 #ifdef CONFIG_USER_ONLY
2003 /* We don't set these in system emulation mode for the moment,
2004 * since we don't correctly set (all of) the ID registers to
2007 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
2011 t
= cpu
->isar
.id_isar5
;
2012 t
= FIELD_DP32(t
, ID_ISAR5
, AES
, 2);
2013 t
= FIELD_DP32(t
, ID_ISAR5
, SHA1
, 1);
2014 t
= FIELD_DP32(t
, ID_ISAR5
, SHA2
, 1);
2015 t
= FIELD_DP32(t
, ID_ISAR5
, CRC32
, 1);
2016 t
= FIELD_DP32(t
, ID_ISAR5
, RDM
, 1);
2017 t
= FIELD_DP32(t
, ID_ISAR5
, VCMA
, 1);
2018 cpu
->isar
.id_isar5
= t
;
2020 t
= cpu
->isar
.id_isar6
;
2021 t
= FIELD_DP32(t
, ID_ISAR6
, JSCVT
, 1);
2022 t
= FIELD_DP32(t
, ID_ISAR6
, DP
, 1);
2023 t
= FIELD_DP32(t
, ID_ISAR6
, FHM
, 1);
2024 t
= FIELD_DP32(t
, ID_ISAR6
, SB
, 1);
2025 t
= FIELD_DP32(t
, ID_ISAR6
, SPECRES
, 1);
2026 cpu
->isar
.id_isar6
= t
;
2029 t
= FIELD_DP32(t
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
2037 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2041 void (*initfn
)(Object
*obj
);
2042 void (*class_init
)(ObjectClass
*oc
, void *data
);
2045 static const ARMCPUInfo arm_cpus
[] = {
2046 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2047 { .name
= "arm926", .initfn
= arm926_initfn
},
2048 { .name
= "arm946", .initfn
= arm946_initfn
},
2049 { .name
= "arm1026", .initfn
= arm1026_initfn
},
2050 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2051 * older core than plain "arm1136". In particular this does not
2052 * have the v6K features.
2054 { .name
= "arm1136-r2", .initfn
= arm1136_r2_initfn
},
2055 { .name
= "arm1136", .initfn
= arm1136_initfn
},
2056 { .name
= "arm1176", .initfn
= arm1176_initfn
},
2057 { .name
= "arm11mpcore", .initfn
= arm11mpcore_initfn
},
2058 { .name
= "cortex-m0", .initfn
= cortex_m0_initfn
,
2059 .class_init
= arm_v7m_class_init
},
2060 { .name
= "cortex-m3", .initfn
= cortex_m3_initfn
,
2061 .class_init
= arm_v7m_class_init
},
2062 { .name
= "cortex-m4", .initfn
= cortex_m4_initfn
,
2063 .class_init
= arm_v7m_class_init
},
2064 { .name
= "cortex-m33", .initfn
= cortex_m33_initfn
,
2065 .class_init
= arm_v7m_class_init
},
2066 { .name
= "cortex-r5", .initfn
= cortex_r5_initfn
},
2067 { .name
= "cortex-r5f", .initfn
= cortex_r5f_initfn
},
2068 { .name
= "cortex-a7", .initfn
= cortex_a7_initfn
},
2069 { .name
= "cortex-a8", .initfn
= cortex_a8_initfn
},
2070 { .name
= "cortex-a9", .initfn
= cortex_a9_initfn
},
2071 { .name
= "cortex-a15", .initfn
= cortex_a15_initfn
},
2072 { .name
= "ti925t", .initfn
= ti925t_initfn
},
2073 { .name
= "sa1100", .initfn
= sa1100_initfn
},
2074 { .name
= "sa1110", .initfn
= sa1110_initfn
},
2075 { .name
= "pxa250", .initfn
= pxa250_initfn
},
2076 { .name
= "pxa255", .initfn
= pxa255_initfn
},
2077 { .name
= "pxa260", .initfn
= pxa260_initfn
},
2078 { .name
= "pxa261", .initfn
= pxa261_initfn
},
2079 { .name
= "pxa262", .initfn
= pxa262_initfn
},
2080 /* "pxa270" is an alias for "pxa270-a0" */
2081 { .name
= "pxa270", .initfn
= pxa270a0_initfn
},
2082 { .name
= "pxa270-a0", .initfn
= pxa270a0_initfn
},
2083 { .name
= "pxa270-a1", .initfn
= pxa270a1_initfn
},
2084 { .name
= "pxa270-b0", .initfn
= pxa270b0_initfn
},
2085 { .name
= "pxa270-b1", .initfn
= pxa270b1_initfn
},
2086 { .name
= "pxa270-c0", .initfn
= pxa270c0_initfn
},
2087 { .name
= "pxa270-c5", .initfn
= pxa270c5_initfn
},
2088 #ifndef TARGET_AARCH64
2089 { .name
= "max", .initfn
= arm_max_initfn
},
2091 #ifdef CONFIG_USER_ONLY
2092 { .name
= "any", .initfn
= arm_max_initfn
},
2098 static Property arm_cpu_properties
[] = {
2099 DEFINE_PROP_BOOL("start-powered-off", ARMCPU
, start_powered_off
, false),
2100 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
2101 DEFINE_PROP_UINT32("midr", ARMCPU
, midr
, 0),
2102 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2103 mp_affinity
, ARM64_AFFINITY_INVALID
),
2104 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2105 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2106 DEFINE_PROP_END_OF_LIST()
2109 #ifdef CONFIG_USER_ONLY
2110 static int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int size
,
2111 int rw
, int mmu_idx
)
2113 ARMCPU
*cpu
= ARM_CPU(cs
);
2114 CPUARMState
*env
= &cpu
->env
;
2116 env
->exception
.vaddress
= address
;
2118 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
2120 cs
->exception_index
= EXCP_DATA_ABORT
;
2126 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2128 ARMCPU
*cpu
= ARM_CPU(cs
);
2129 CPUARMState
*env
= &cpu
->env
;
2131 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2132 return g_strdup("iwmmxt");
2134 return g_strdup("arm");
2137 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2139 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2140 CPUClass
*cc
= CPU_CLASS(acc
);
2141 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2143 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2144 &acc
->parent_realize
);
2145 dc
->props
= arm_cpu_properties
;
2147 acc
->parent_reset
= cc
->reset
;
2148 cc
->reset
= arm_cpu_reset
;
2150 cc
->class_by_name
= arm_cpu_class_by_name
;
2151 cc
->has_work
= arm_cpu_has_work
;
2152 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
2153 cc
->dump_state
= arm_cpu_dump_state
;
2154 cc
->set_pc
= arm_cpu_set_pc
;
2155 cc
->synchronize_from_tb
= arm_cpu_synchronize_from_tb
;
2156 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2157 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2158 #ifdef CONFIG_USER_ONLY
2159 cc
->handle_mmu_fault
= arm_cpu_handle_mmu_fault
;
2161 cc
->do_interrupt
= arm_cpu_do_interrupt
;
2162 cc
->do_unaligned_access
= arm_cpu_do_unaligned_access
;
2163 cc
->do_transaction_failed
= arm_cpu_do_transaction_failed
;
2164 cc
->get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
;
2165 cc
->asidx_from_attrs
= arm_asidx_from_attrs
;
2166 cc
->vmsd
= &vmstate_arm_cpu
;
2167 cc
->virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
;
2168 cc
->write_elf64_note
= arm_cpu_write_elf64_note
;
2169 cc
->write_elf32_note
= arm_cpu_write_elf32_note
;
2171 cc
->gdb_num_core_regs
= 26;
2172 cc
->gdb_core_xml_file
= "arm-core.xml";
2173 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2174 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2175 cc
->gdb_stop_before_watchpoint
= true;
2176 cc
->debug_excp_handler
= arm_debug_excp_handler
;
2177 cc
->debug_check_watchpoint
= arm_debug_check_watchpoint
;
2178 #if !defined(CONFIG_USER_ONLY)
2179 cc
->adjust_watchpoint_address
= arm_adjust_watchpoint_address
;
2182 cc
->disas_set_info
= arm_disas_set_info
;
2184 cc
->tcg_initialize
= arm_translate_init
;
2189 static void arm_host_initfn(Object
*obj
)
2191 ARMCPU
*cpu
= ARM_CPU(obj
);
2193 kvm_arm_set_cpu_features_from_host(cpu
);
2194 arm_cpu_post_init(obj
);
2197 static const TypeInfo host_arm_cpu_type_info
= {
2198 .name
= TYPE_ARM_HOST_CPU
,
2199 #ifdef TARGET_AARCH64
2200 .parent
= TYPE_AARCH64_CPU
,
2202 .parent
= TYPE_ARM_CPU
,
2204 .instance_init
= arm_host_initfn
,
2209 static void arm_cpu_instance_init(Object
*obj
)
2211 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2213 acc
->info
->initfn(obj
);
2214 arm_cpu_post_init(obj
);
2217 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2219 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2224 static void cpu_register(const ARMCPUInfo
*info
)
2226 TypeInfo type_info
= {
2227 .parent
= TYPE_ARM_CPU
,
2228 .instance_size
= sizeof(ARMCPU
),
2229 .instance_init
= arm_cpu_instance_init
,
2230 .class_size
= sizeof(ARMCPUClass
),
2231 .class_init
= info
->class_init
?: cpu_register_class_init
,
2232 .class_data
= (void *)info
,
2235 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2236 type_register(&type_info
);
2237 g_free((void *)type_info
.name
);
2240 static const TypeInfo arm_cpu_type_info
= {
2241 .name
= TYPE_ARM_CPU
,
2243 .instance_size
= sizeof(ARMCPU
),
2244 .instance_init
= arm_cpu_initfn
,
2245 .instance_finalize
= arm_cpu_finalizefn
,
2247 .class_size
= sizeof(ARMCPUClass
),
2248 .class_init
= arm_cpu_class_init
,
2251 static const TypeInfo idau_interface_type_info
= {
2252 .name
= TYPE_IDAU_INTERFACE
,
2253 .parent
= TYPE_INTERFACE
,
2254 .class_size
= sizeof(IDAUInterfaceClass
),
2257 static void arm_cpu_register_types(void)
2259 const ARMCPUInfo
*info
= arm_cpus
;
2261 type_register_static(&arm_cpu_type_info
);
2262 type_register_static(&idau_interface_type_info
);
2264 while (info
->name
) {
2270 type_register_static(&host_arm_cpu_type_info
);
2274 type_init(arm_cpu_register_types
)