4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
38 /* This check must be after config-host.h is included */
40 #include <sys/eventfd.h>
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
65 ram_addr_t memory_size
;
71 typedef struct kvm_dirty_log KVMDirtyLog
;
79 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
80 bool coalesced_flush_in_progress
;
81 int broken_set_mem_region
;
84 int robust_singlestep
;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl
;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing
*irq_routes
;
99 int nr_allocated_irq_routes
;
100 uint32_t *used_gsi_bitmap
;
101 unsigned int gsi_count
;
102 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
108 bool kvm_kernel_irqchip
;
109 bool kvm_async_interrupts_allowed
;
110 bool kvm_irqfds_allowed
;
111 bool kvm_msi_via_irqfd_allowed
;
112 bool kvm_gsi_routing_allowed
;
115 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
116 KVM_CAP_INFO(USER_MEMORY
),
117 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
121 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
125 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
126 if (s
->slots
[i
].memory_size
== 0) {
131 fprintf(stderr
, "%s: no free slot available\n", __func__
);
135 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
141 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
142 KVMSlot
*mem
= &s
->slots
[i
];
144 if (start_addr
== mem
->start_addr
&&
145 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
154 * Find overlapping slot with lowest start address
156 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
160 KVMSlot
*found
= NULL
;
163 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
164 KVMSlot
*mem
= &s
->slots
[i
];
166 if (mem
->memory_size
== 0 ||
167 (found
&& found
->start_addr
< mem
->start_addr
)) {
171 if (end_addr
> mem
->start_addr
&&
172 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
180 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
185 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
186 KVMSlot
*mem
= &s
->slots
[i
];
188 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
189 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
197 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
199 struct kvm_userspace_memory_region mem
;
201 mem
.slot
= slot
->slot
;
202 mem
.guest_phys_addr
= slot
->start_addr
;
203 mem
.memory_size
= slot
->memory_size
;
204 mem
.userspace_addr
= (unsigned long)slot
->ram
;
205 mem
.flags
= slot
->flags
;
206 if (s
->migration_log
) {
207 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
209 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
212 static void kvm_reset_vcpu(void *opaque
)
214 CPUState
*cpu
= opaque
;
216 kvm_arch_reset_vcpu(cpu
);
219 int kvm_init_vcpu(CPUState
*cpu
)
221 KVMState
*s
= kvm_state
;
225 DPRINTF("kvm_init_vcpu\n");
227 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
229 DPRINTF("kvm_create_vcpu failed\n");
235 cpu
->kvm_vcpu_dirty
= true;
237 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
240 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
244 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
246 if (cpu
->kvm_run
== MAP_FAILED
) {
248 DPRINTF("mmap'ing vcpu state failed\n");
252 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
253 s
->coalesced_mmio_ring
=
254 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
257 ret
= kvm_arch_init_vcpu(cpu
);
259 qemu_register_reset(kvm_reset_vcpu
, cpu
);
260 kvm_arch_reset_vcpu(cpu
);
267 * dirty pages logging control
270 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
272 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
275 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
277 KVMState
*s
= kvm_state
;
278 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
281 old_flags
= mem
->flags
;
283 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
286 /* If nothing changed effectively, no need to issue ioctl */
287 if (s
->migration_log
) {
288 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
291 if (flags
== old_flags
) {
295 return kvm_set_user_memory_region(s
, mem
);
298 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
299 ram_addr_t size
, bool log_dirty
)
301 KVMState
*s
= kvm_state
;
302 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
305 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
306 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
307 (hwaddr
)(phys_addr
+ size
- 1));
310 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
313 static void kvm_log_start(MemoryListener
*listener
,
314 MemoryRegionSection
*section
)
318 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
319 section
->size
, true);
325 static void kvm_log_stop(MemoryListener
*listener
,
326 MemoryRegionSection
*section
)
330 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
331 section
->size
, false);
337 static int kvm_set_migration_log(int enable
)
339 KVMState
*s
= kvm_state
;
343 s
->migration_log
= enable
;
345 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
348 if (!mem
->memory_size
) {
351 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
354 err
= kvm_set_user_memory_region(s
, mem
);
362 /* get kvm's dirty pages bitmap and update qemu's */
363 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
364 unsigned long *bitmap
)
367 unsigned long page_number
, c
;
369 unsigned int len
= ((section
->size
/ getpagesize()) + HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
370 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
373 * bitmap-traveling is faster than memory-traveling (for addr...)
374 * especially when most of the memory is not dirty.
376 for (i
= 0; i
< len
; i
++) {
377 if (bitmap
[i
] != 0) {
378 c
= leul_to_cpu(bitmap
[i
]);
382 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
383 addr1
= page_number
* TARGET_PAGE_SIZE
;
384 addr
= section
->offset_within_region
+ addr1
;
385 memory_region_set_dirty(section
->mr
, addr
,
386 TARGET_PAGE_SIZE
* hpratio
);
393 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
396 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
397 * This function updates qemu's dirty bitmap using
398 * memory_region_set_dirty(). This means all bits are set
401 * @start_add: start of logged region.
402 * @end_addr: end of logged region.
404 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
406 KVMState
*s
= kvm_state
;
407 unsigned long size
, allocated_size
= 0;
411 hwaddr start_addr
= section
->offset_within_address_space
;
412 hwaddr end_addr
= start_addr
+ section
->size
;
414 d
.dirty_bitmap
= NULL
;
415 while (start_addr
< end_addr
) {
416 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
421 /* XXX bad kernel interface alert
422 * For dirty bitmap, kernel allocates array of size aligned to
423 * bits-per-long. But for case when the kernel is 64bits and
424 * the userspace is 32bits, userspace can't align to the same
425 * bits-per-long, since sizeof(long) is different between kernel
426 * and user space. This way, userspace will provide buffer which
427 * may be 4 bytes less than the kernel will use, resulting in
428 * userspace memory corruption (which is not detectable by valgrind
429 * too, in most cases).
430 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
431 * a hope that sizeof(long) wont become >8 any time soon.
433 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
434 /*HOST_LONG_BITS*/ 64) / 8;
435 if (!d
.dirty_bitmap
) {
436 d
.dirty_bitmap
= g_malloc(size
);
437 } else if (size
> allocated_size
) {
438 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
440 allocated_size
= size
;
441 memset(d
.dirty_bitmap
, 0, allocated_size
);
445 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
446 DPRINTF("ioctl failed %d\n", errno
);
451 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
452 start_addr
= mem
->start_addr
+ mem
->memory_size
;
454 g_free(d
.dirty_bitmap
);
459 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
460 MemoryRegionSection
*secion
,
461 hwaddr start
, hwaddr size
)
463 KVMState
*s
= kvm_state
;
465 if (s
->coalesced_mmio
) {
466 struct kvm_coalesced_mmio_zone zone
;
472 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
476 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
477 MemoryRegionSection
*secion
,
478 hwaddr start
, hwaddr size
)
480 KVMState
*s
= kvm_state
;
482 if (s
->coalesced_mmio
) {
483 struct kvm_coalesced_mmio_zone zone
;
489 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
493 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
497 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
505 static int kvm_set_ioeventfd_mmio(int fd
, uint32_t addr
, uint32_t val
,
506 bool assign
, uint32_t size
, bool datamatch
)
509 struct kvm_ioeventfd iofd
;
511 iofd
.datamatch
= datamatch
? val
: 0;
517 if (!kvm_enabled()) {
522 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
525 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
528 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
537 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
538 bool assign
, uint32_t size
, bool datamatch
)
540 struct kvm_ioeventfd kick
= {
541 .datamatch
= datamatch
? val
: 0,
543 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
548 if (!kvm_enabled()) {
552 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
555 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
557 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
565 static int kvm_check_many_ioeventfds(void)
567 /* Userspace can use ioeventfd for io notification. This requires a host
568 * that supports eventfd(2) and an I/O thread; since eventfd does not
569 * support SIGIO it cannot interrupt the vcpu.
571 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
572 * can avoid creating too many ioeventfds.
574 #if defined(CONFIG_EVENTFD)
577 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
578 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
579 if (ioeventfds
[i
] < 0) {
582 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
584 close(ioeventfds
[i
]);
589 /* Decide whether many devices are supported or not */
590 ret
= i
== ARRAY_SIZE(ioeventfds
);
593 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
594 close(ioeventfds
[i
]);
602 static const KVMCapabilityInfo
*
603 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
606 if (!kvm_check_extension(s
, list
->value
)) {
614 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
616 KVMState
*s
= kvm_state
;
619 MemoryRegion
*mr
= section
->mr
;
620 bool log_dirty
= memory_region_is_logging(mr
);
621 hwaddr start_addr
= section
->offset_within_address_space
;
622 ram_addr_t size
= section
->size
;
626 /* kvm works in page size chunks, but the function may be called
627 with sub-page size and unaligned start address. */
628 delta
= TARGET_PAGE_ALIGN(size
) - size
;
634 size
&= TARGET_PAGE_MASK
;
635 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
639 if (!memory_region_is_ram(mr
)) {
643 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
646 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
651 if (add
&& start_addr
>= mem
->start_addr
&&
652 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
653 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
654 /* The new slot fits into the existing one and comes with
655 * identical parameters - update flags and done. */
656 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
662 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
663 kvm_physical_sync_dirty_bitmap(section
);
666 /* unregister the overlapping slot */
667 mem
->memory_size
= 0;
668 err
= kvm_set_user_memory_region(s
, mem
);
670 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
671 __func__
, strerror(-err
));
675 /* Workaround for older KVM versions: we can't join slots, even not by
676 * unregistering the previous ones and then registering the larger
677 * slot. We have to maintain the existing fragmentation. Sigh.
679 * This workaround assumes that the new slot starts at the same
680 * address as the first existing one. If not or if some overlapping
681 * slot comes around later, we will fail (not seen in practice so far)
682 * - and actually require a recent KVM version. */
683 if (s
->broken_set_mem_region
&&
684 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
685 mem
= kvm_alloc_slot(s
);
686 mem
->memory_size
= old
.memory_size
;
687 mem
->start_addr
= old
.start_addr
;
689 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
691 err
= kvm_set_user_memory_region(s
, mem
);
693 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
698 start_addr
+= old
.memory_size
;
699 ram
+= old
.memory_size
;
700 size
-= old
.memory_size
;
704 /* register prefix slot */
705 if (old
.start_addr
< start_addr
) {
706 mem
= kvm_alloc_slot(s
);
707 mem
->memory_size
= start_addr
- old
.start_addr
;
708 mem
->start_addr
= old
.start_addr
;
710 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
712 err
= kvm_set_user_memory_region(s
, mem
);
714 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
715 __func__
, strerror(-err
));
717 fprintf(stderr
, "%s: This is probably because your kernel's " \
718 "PAGE_SIZE is too big. Please try to use 4k " \
719 "PAGE_SIZE!\n", __func__
);
725 /* register suffix slot */
726 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
727 ram_addr_t size_delta
;
729 mem
= kvm_alloc_slot(s
);
730 mem
->start_addr
= start_addr
+ size
;
731 size_delta
= mem
->start_addr
- old
.start_addr
;
732 mem
->memory_size
= old
.memory_size
- size_delta
;
733 mem
->ram
= old
.ram
+ size_delta
;
734 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
736 err
= kvm_set_user_memory_region(s
, mem
);
738 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
739 __func__
, strerror(-err
));
745 /* in case the KVM bug workaround already "consumed" the new slot */
752 mem
= kvm_alloc_slot(s
);
753 mem
->memory_size
= size
;
754 mem
->start_addr
= start_addr
;
756 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
758 err
= kvm_set_user_memory_region(s
, mem
);
760 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
766 static void kvm_region_add(MemoryListener
*listener
,
767 MemoryRegionSection
*section
)
769 kvm_set_phys_mem(section
, true);
772 static void kvm_region_del(MemoryListener
*listener
,
773 MemoryRegionSection
*section
)
775 kvm_set_phys_mem(section
, false);
778 static void kvm_log_sync(MemoryListener
*listener
,
779 MemoryRegionSection
*section
)
783 r
= kvm_physical_sync_dirty_bitmap(section
);
789 static void kvm_log_global_start(struct MemoryListener
*listener
)
793 r
= kvm_set_migration_log(1);
797 static void kvm_log_global_stop(struct MemoryListener
*listener
)
801 r
= kvm_set_migration_log(0);
805 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
806 MemoryRegionSection
*section
,
807 bool match_data
, uint64_t data
,
810 int fd
= event_notifier_get_fd(e
);
813 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
814 data
, true, section
->size
, match_data
);
820 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
821 MemoryRegionSection
*section
,
822 bool match_data
, uint64_t data
,
825 int fd
= event_notifier_get_fd(e
);
828 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
829 data
, false, section
->size
, match_data
);
835 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
836 MemoryRegionSection
*section
,
837 bool match_data
, uint64_t data
,
840 int fd
= event_notifier_get_fd(e
);
843 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
844 data
, true, section
->size
, match_data
);
850 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
851 MemoryRegionSection
*section
,
852 bool match_data
, uint64_t data
,
856 int fd
= event_notifier_get_fd(e
);
859 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
860 data
, false, section
->size
, match_data
);
866 static MemoryListener kvm_memory_listener
= {
867 .region_add
= kvm_region_add
,
868 .region_del
= kvm_region_del
,
869 .log_start
= kvm_log_start
,
870 .log_stop
= kvm_log_stop
,
871 .log_sync
= kvm_log_sync
,
872 .log_global_start
= kvm_log_global_start
,
873 .log_global_stop
= kvm_log_global_stop
,
874 .eventfd_add
= kvm_mem_ioeventfd_add
,
875 .eventfd_del
= kvm_mem_ioeventfd_del
,
876 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
877 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
881 static MemoryListener kvm_io_listener
= {
882 .eventfd_add
= kvm_io_ioeventfd_add
,
883 .eventfd_del
= kvm_io_ioeventfd_del
,
887 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
889 cpu
->interrupt_request
|= mask
;
891 if (!qemu_cpu_is_self(cpu
)) {
896 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
898 struct kvm_irq_level event
;
901 assert(kvm_async_interrupts_enabled());
905 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
907 perror("kvm_set_irq");
911 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
914 #ifdef KVM_CAP_IRQ_ROUTING
915 typedef struct KVMMSIRoute
{
916 struct kvm_irq_routing_entry kroute
;
917 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
920 static void set_gsi(KVMState
*s
, unsigned int gsi
)
922 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
925 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
927 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
930 static void kvm_init_irq_routing(KVMState
*s
)
934 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
936 unsigned int gsi_bits
, i
;
938 /* Round up so we can search ints using ffs */
939 gsi_bits
= ALIGN(gsi_count
, 32);
940 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
941 s
->gsi_count
= gsi_count
;
943 /* Mark any over-allocated bits as already in use */
944 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
949 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
950 s
->nr_allocated_irq_routes
= 0;
952 if (!s
->direct_msi
) {
953 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
954 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
958 kvm_arch_init_irq_routing(s
);
961 static void kvm_irqchip_commit_routes(KVMState
*s
)
965 s
->irq_routes
->flags
= 0;
966 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
970 static void kvm_add_routing_entry(KVMState
*s
,
971 struct kvm_irq_routing_entry
*entry
)
973 struct kvm_irq_routing_entry
*new;
976 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
977 n
= s
->nr_allocated_irq_routes
* 2;
981 size
= sizeof(struct kvm_irq_routing
);
982 size
+= n
* sizeof(*new);
983 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
984 s
->nr_allocated_irq_routes
= n
;
986 n
= s
->irq_routes
->nr
++;
987 new = &s
->irq_routes
->entries
[n
];
988 memset(new, 0, sizeof(*new));
989 new->gsi
= entry
->gsi
;
990 new->type
= entry
->type
;
991 new->flags
= entry
->flags
;
994 set_gsi(s
, entry
->gsi
);
996 kvm_irqchip_commit_routes(s
);
999 static int kvm_update_routing_entry(KVMState
*s
,
1000 struct kvm_irq_routing_entry
*new_entry
)
1002 struct kvm_irq_routing_entry
*entry
;
1005 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1006 entry
= &s
->irq_routes
->entries
[n
];
1007 if (entry
->gsi
!= new_entry
->gsi
) {
1011 entry
->type
= new_entry
->type
;
1012 entry
->flags
= new_entry
->flags
;
1013 entry
->u
= new_entry
->u
;
1015 kvm_irqchip_commit_routes(s
);
1023 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1025 struct kvm_irq_routing_entry e
;
1027 assert(pin
< s
->gsi_count
);
1030 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1032 e
.u
.irqchip
.irqchip
= irqchip
;
1033 e
.u
.irqchip
.pin
= pin
;
1034 kvm_add_routing_entry(s
, &e
);
1037 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1039 struct kvm_irq_routing_entry
*e
;
1042 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1043 e
= &s
->irq_routes
->entries
[i
];
1044 if (e
->gsi
== virq
) {
1045 s
->irq_routes
->nr
--;
1046 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1052 static unsigned int kvm_hash_msi(uint32_t data
)
1054 /* This is optimized for IA32 MSI layout. However, no other arch shall
1055 * repeat the mistake of not providing a direct MSI injection API. */
1059 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1061 KVMMSIRoute
*route
, *next
;
1064 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1065 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1066 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1067 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1073 static int kvm_irqchip_get_virq(KVMState
*s
)
1075 uint32_t *word
= s
->used_gsi_bitmap
;
1076 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1081 /* Return the lowest unused GSI in the bitmap */
1082 for (i
= 0; i
< max_words
; i
++) {
1083 bit
= ffs(~word
[i
]);
1088 return bit
- 1 + i
* 32;
1090 if (!s
->direct_msi
&& retry
) {
1092 kvm_flush_dynamic_msi_routes(s
);
1099 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1101 unsigned int hash
= kvm_hash_msi(msg
.data
);
1104 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1105 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1106 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1107 route
->kroute
.u
.msi
.data
== msg
.data
) {
1114 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1119 if (s
->direct_msi
) {
1120 msi
.address_lo
= (uint32_t)msg
.address
;
1121 msi
.address_hi
= msg
.address
>> 32;
1122 msi
.data
= msg
.data
;
1124 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1126 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1129 route
= kvm_lookup_msi_route(s
, msg
);
1133 virq
= kvm_irqchip_get_virq(s
);
1138 route
= g_malloc(sizeof(KVMMSIRoute
));
1139 route
->kroute
.gsi
= virq
;
1140 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1141 route
->kroute
.flags
= 0;
1142 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1143 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1144 route
->kroute
.u
.msi
.data
= msg
.data
;
1146 kvm_add_routing_entry(s
, &route
->kroute
);
1148 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1152 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1154 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1157 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1159 struct kvm_irq_routing_entry kroute
;
1162 if (!kvm_gsi_routing_enabled()) {
1166 virq
= kvm_irqchip_get_virq(s
);
1172 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1174 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1175 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1176 kroute
.u
.msi
.data
= msg
.data
;
1178 kvm_add_routing_entry(s
, &kroute
);
1183 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1185 struct kvm_irq_routing_entry kroute
;
1187 if (!kvm_irqchip_in_kernel()) {
1192 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1194 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1195 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1196 kroute
.u
.msi
.data
= msg
.data
;
1198 return kvm_update_routing_entry(s
, &kroute
);
1201 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1203 struct kvm_irqfd irqfd
= {
1206 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1209 if (!kvm_irqfds_enabled()) {
1213 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1216 #else /* !KVM_CAP_IRQ_ROUTING */
1218 static void kvm_init_irq_routing(KVMState
*s
)
1222 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1226 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1231 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1236 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1241 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1245 #endif /* !KVM_CAP_IRQ_ROUTING */
1247 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1249 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), virq
, true);
1252 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1254 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), virq
, false);
1257 static int kvm_irqchip_create(KVMState
*s
)
1259 QemuOptsList
*list
= qemu_find_opts("machine");
1262 if (QTAILQ_EMPTY(&list
->head
) ||
1263 !qemu_opt_get_bool(QTAILQ_FIRST(&list
->head
),
1264 "kernel_irqchip", true) ||
1265 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1269 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1271 fprintf(stderr
, "Create kernel irqchip failed\n");
1275 kvm_kernel_irqchip
= true;
1276 /* If we have an in-kernel IRQ chip then we must have asynchronous
1277 * interrupt delivery (though the reverse is not necessarily true)
1279 kvm_async_interrupts_allowed
= true;
1281 kvm_init_irq_routing(s
);
1286 static int kvm_max_vcpus(KVMState
*s
)
1290 /* Find number of supported CPUs using the recommended
1291 * procedure from the kernel API documentation to cope with
1292 * older kernels that may be missing capabilities.
1294 ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1298 ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1308 static const char upgrade_note
[] =
1309 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1310 "(see http://sourceforge.net/projects/kvm).\n";
1312 const KVMCapabilityInfo
*missing_cap
;
1317 s
= g_malloc0(sizeof(KVMState
));
1320 * On systems where the kernel can support different base page
1321 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1322 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1323 * page size for the system though.
1325 assert(TARGET_PAGE_SIZE
<= getpagesize());
1327 #ifdef KVM_CAP_SET_GUEST_DEBUG
1328 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1330 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
1331 s
->slots
[i
].slot
= i
;
1334 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1336 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1341 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1342 if (ret
< KVM_API_VERSION
) {
1346 fprintf(stderr
, "kvm version too old\n");
1350 if (ret
> KVM_API_VERSION
) {
1352 fprintf(stderr
, "kvm version not supported\n");
1356 max_vcpus
= kvm_max_vcpus(s
);
1357 if (smp_cpus
> max_vcpus
) {
1359 fprintf(stderr
, "Number of SMP cpus requested (%d) exceeds max cpus "
1360 "supported by KVM (%d)\n", smp_cpus
, max_vcpus
);
1364 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1367 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1368 "your host kernel command line\n");
1374 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1377 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1381 fprintf(stderr
, "kvm does not support %s\n%s",
1382 missing_cap
->name
, upgrade_note
);
1386 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1388 s
->broken_set_mem_region
= 1;
1389 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1391 s
->broken_set_mem_region
= 0;
1394 #ifdef KVM_CAP_VCPU_EVENTS
1395 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1398 s
->robust_singlestep
=
1399 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1401 #ifdef KVM_CAP_DEBUGREGS
1402 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1405 #ifdef KVM_CAP_XSAVE
1406 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1410 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1413 #ifdef KVM_CAP_PIT_STATE2
1414 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1417 #ifdef KVM_CAP_IRQ_ROUTING
1418 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1421 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1423 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1424 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1425 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1428 ret
= kvm_arch_init(s
);
1433 ret
= kvm_irqchip_create(s
);
1439 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1440 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1442 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1444 cpu_interrupt_handler
= kvm_handle_interrupt
;
1460 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1464 uint8_t *ptr
= data
;
1466 for (i
= 0; i
< count
; i
++) {
1467 if (direction
== KVM_EXIT_IO_IN
) {
1470 stb_p(ptr
, cpu_inb(port
));
1473 stw_p(ptr
, cpu_inw(port
));
1476 stl_p(ptr
, cpu_inl(port
));
1482 cpu_outb(port
, ldub_p(ptr
));
1485 cpu_outw(port
, lduw_p(ptr
));
1488 cpu_outl(port
, ldl_p(ptr
));
1497 static int kvm_handle_internal_error(CPUArchState
*env
, struct kvm_run
*run
)
1499 CPUState
*cpu
= ENV_GET_CPU(env
);
1501 fprintf(stderr
, "KVM internal error.");
1502 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1505 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1506 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1507 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1508 i
, (uint64_t)run
->internal
.data
[i
]);
1511 fprintf(stderr
, "\n");
1513 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1514 fprintf(stderr
, "emulation failure\n");
1515 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1516 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1517 return EXCP_INTERRUPT
;
1520 /* FIXME: Should trigger a qmp message to let management know
1521 * something went wrong.
1526 void kvm_flush_coalesced_mmio_buffer(void)
1528 KVMState
*s
= kvm_state
;
1530 if (s
->coalesced_flush_in_progress
) {
1534 s
->coalesced_flush_in_progress
= true;
1536 if (s
->coalesced_mmio_ring
) {
1537 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1538 while (ring
->first
!= ring
->last
) {
1539 struct kvm_coalesced_mmio
*ent
;
1541 ent
= &ring
->coalesced_mmio
[ring
->first
];
1543 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1545 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1549 s
->coalesced_flush_in_progress
= false;
1552 static void do_kvm_cpu_synchronize_state(void *arg
)
1554 CPUState
*cpu
= arg
;
1556 if (!cpu
->kvm_vcpu_dirty
) {
1557 kvm_arch_get_registers(cpu
);
1558 cpu
->kvm_vcpu_dirty
= true;
1562 void kvm_cpu_synchronize_state(CPUArchState
*env
)
1564 CPUState
*cpu
= ENV_GET_CPU(env
);
1566 if (!cpu
->kvm_vcpu_dirty
) {
1567 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1571 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1573 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1574 cpu
->kvm_vcpu_dirty
= false;
1577 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1579 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1580 cpu
->kvm_vcpu_dirty
= false;
1583 int kvm_cpu_exec(CPUArchState
*env
)
1585 CPUState
*cpu
= ENV_GET_CPU(env
);
1586 struct kvm_run
*run
= cpu
->kvm_run
;
1589 DPRINTF("kvm_cpu_exec()\n");
1591 if (kvm_arch_process_async_events(cpu
)) {
1592 cpu
->exit_request
= 0;
1597 if (cpu
->kvm_vcpu_dirty
) {
1598 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1599 cpu
->kvm_vcpu_dirty
= false;
1602 kvm_arch_pre_run(cpu
, run
);
1603 if (cpu
->exit_request
) {
1604 DPRINTF("interrupt exit requested\n");
1606 * KVM requires us to reenter the kernel after IO exits to complete
1607 * instruction emulation. This self-signal will ensure that we
1610 qemu_cpu_kick_self();
1612 qemu_mutex_unlock_iothread();
1614 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1616 qemu_mutex_lock_iothread();
1617 kvm_arch_post_run(cpu
, run
);
1620 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1621 DPRINTF("io window exit\n");
1622 ret
= EXCP_INTERRUPT
;
1625 fprintf(stderr
, "error: kvm run failed %s\n",
1626 strerror(-run_ret
));
1630 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1631 switch (run
->exit_reason
) {
1633 DPRINTF("handle_io\n");
1634 kvm_handle_io(run
->io
.port
,
1635 (uint8_t *)run
+ run
->io
.data_offset
,
1642 DPRINTF("handle_mmio\n");
1643 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1646 run
->mmio
.is_write
);
1649 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1650 DPRINTF("irq_window_open\n");
1651 ret
= EXCP_INTERRUPT
;
1653 case KVM_EXIT_SHUTDOWN
:
1654 DPRINTF("shutdown\n");
1655 qemu_system_reset_request();
1656 ret
= EXCP_INTERRUPT
;
1658 case KVM_EXIT_UNKNOWN
:
1659 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1660 (uint64_t)run
->hw
.hardware_exit_reason
);
1663 case KVM_EXIT_INTERNAL_ERROR
:
1664 ret
= kvm_handle_internal_error(env
, run
);
1667 DPRINTF("kvm_arch_handle_exit\n");
1668 ret
= kvm_arch_handle_exit(cpu
, run
);
1674 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1675 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1678 cpu
->exit_request
= 0;
1682 int kvm_ioctl(KVMState
*s
, int type
, ...)
1689 arg
= va_arg(ap
, void *);
1692 trace_kvm_ioctl(type
, arg
);
1693 ret
= ioctl(s
->fd
, type
, arg
);
1700 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1707 arg
= va_arg(ap
, void *);
1710 trace_kvm_vm_ioctl(type
, arg
);
1711 ret
= ioctl(s
->vmfd
, type
, arg
);
1718 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1725 arg
= va_arg(ap
, void *);
1728 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1729 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1736 int kvm_has_sync_mmu(void)
1738 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1741 int kvm_has_vcpu_events(void)
1743 return kvm_state
->vcpu_events
;
1746 int kvm_has_robust_singlestep(void)
1748 return kvm_state
->robust_singlestep
;
1751 int kvm_has_debugregs(void)
1753 return kvm_state
->debugregs
;
1756 int kvm_has_xsave(void)
1758 return kvm_state
->xsave
;
1761 int kvm_has_xcrs(void)
1763 return kvm_state
->xcrs
;
1766 int kvm_has_pit_state2(void)
1768 return kvm_state
->pit_state2
;
1771 int kvm_has_many_ioeventfds(void)
1773 if (!kvm_enabled()) {
1776 return kvm_state
->many_ioeventfds
;
1779 int kvm_has_gsi_routing(void)
1781 #ifdef KVM_CAP_IRQ_ROUTING
1782 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1788 int kvm_has_intx_set_mask(void)
1790 return kvm_state
->intx_set_mask
;
1793 void *kvm_vmalloc(ram_addr_t size
)
1798 mem
= kvm_arch_vmalloc(size
);
1803 return qemu_vmalloc(size
);
1806 void kvm_setup_guest_memory(void *start
, size_t size
)
1808 #ifdef CONFIG_VALGRIND_H
1809 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1811 if (!kvm_has_sync_mmu()) {
1812 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1815 perror("qemu_madvise");
1817 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1823 #ifdef KVM_CAP_SET_GUEST_DEBUG
1824 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1827 struct kvm_sw_breakpoint
*bp
;
1829 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1837 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1839 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1842 struct kvm_set_guest_debug_data
{
1843 struct kvm_guest_debug dbg
;
1848 static void kvm_invoke_set_guest_debug(void *data
)
1850 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1852 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
1856 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1858 CPUState
*cpu
= ENV_GET_CPU(env
);
1859 struct kvm_set_guest_debug_data data
;
1861 data
.dbg
.control
= reinject_trap
;
1863 if (env
->singlestep_enabled
) {
1864 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1866 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
1869 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
1873 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1874 target_ulong len
, int type
)
1876 CPUState
*current_cpu
= ENV_GET_CPU(current_env
);
1877 struct kvm_sw_breakpoint
*bp
;
1881 if (type
== GDB_BREAKPOINT_SW
) {
1882 bp
= kvm_find_sw_breakpoint(current_cpu
, addr
);
1888 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1895 err
= kvm_arch_insert_sw_breakpoint(current_cpu
, bp
);
1901 QTAILQ_INSERT_HEAD(¤t_cpu
->kvm_state
->kvm_sw_breakpoints
,
1904 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1910 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1911 err
= kvm_update_guest_debug(env
, 0);
1919 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1920 target_ulong len
, int type
)
1922 CPUState
*current_cpu
= ENV_GET_CPU(current_env
);
1923 struct kvm_sw_breakpoint
*bp
;
1927 if (type
== GDB_BREAKPOINT_SW
) {
1928 bp
= kvm_find_sw_breakpoint(current_cpu
, addr
);
1933 if (bp
->use_count
> 1) {
1938 err
= kvm_arch_remove_sw_breakpoint(current_cpu
, bp
);
1943 QTAILQ_REMOVE(¤t_cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1946 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1952 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1953 err
= kvm_update_guest_debug(env
, 0);
1961 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
1963 CPUState
*current_cpu
= ENV_GET_CPU(current_env
);
1964 struct kvm_sw_breakpoint
*bp
, *next
;
1965 KVMState
*s
= current_cpu
->kvm_state
;
1969 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1970 if (kvm_arch_remove_sw_breakpoint(current_cpu
, bp
) != 0) {
1971 /* Try harder to find a CPU that currently sees the breakpoint. */
1972 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1973 cpu
= ENV_GET_CPU(env
);
1974 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) == 0) {
1979 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
1982 kvm_arch_remove_all_hw_breakpoints();
1984 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1985 kvm_update_guest_debug(env
, 0);
1989 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1991 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1996 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1997 target_ulong len
, int type
)
2002 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
2003 target_ulong len
, int type
)
2008 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
2011 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2013 int kvm_set_signal_mask(CPUArchState
*env
, const sigset_t
*sigset
)
2015 CPUState
*cpu
= ENV_GET_CPU(env
);
2016 struct kvm_signal_mask
*sigmask
;
2020 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2023 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2026 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2027 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2032 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2034 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2037 int kvm_on_sigbus(int code
, void *addr
)
2039 return kvm_arch_on_sigbus(code
, addr
);