2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 #define _WIN32_WINNT 0x0600
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
25 static bool name_threads
;
27 void qemu_thread_naming(bool enable
)
29 /* But note we don't actually name them on Windows yet */
30 name_threads
= enable
;
32 fprintf(stderr
, "qemu: thread naming not supported on this host\n");
35 static void error_exit(int err
, const char *msg
)
39 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
| FORMAT_MESSAGE_ALLOCATE_BUFFER
,
40 NULL
, err
, 0, (LPTSTR
)&pstr
, 2, NULL
);
41 fprintf(stderr
, "qemu: %s: %s\n", msg
, pstr
);
46 void qemu_mutex_init(QemuMutex
*mutex
)
48 InitializeSRWLock(&mutex
->lock
);
49 mutex
->initialized
= true;
52 void qemu_mutex_destroy(QemuMutex
*mutex
)
54 assert(mutex
->initialized
);
55 mutex
->initialized
= false;
56 InitializeSRWLock(&mutex
->lock
);
59 void qemu_mutex_lock(QemuMutex
*mutex
)
61 assert(mutex
->initialized
);
62 AcquireSRWLockExclusive(&mutex
->lock
);
63 trace_qemu_mutex_locked(mutex
);
66 int qemu_mutex_trylock(QemuMutex
*mutex
)
70 assert(mutex
->initialized
);
71 owned
= TryAcquireSRWLockExclusive(&mutex
->lock
);
73 trace_qemu_mutex_locked(mutex
);
79 void qemu_mutex_unlock(QemuMutex
*mutex
)
81 assert(mutex
->initialized
);
82 trace_qemu_mutex_unlocked(mutex
);
83 ReleaseSRWLockExclusive(&mutex
->lock
);
86 void qemu_rec_mutex_init(QemuRecMutex
*mutex
)
88 InitializeCriticalSection(&mutex
->lock
);
89 mutex
->initialized
= true;
92 void qemu_rec_mutex_destroy(QemuRecMutex
*mutex
)
94 assert(mutex
->initialized
);
95 mutex
->initialized
= false;
96 DeleteCriticalSection(&mutex
->lock
);
99 void qemu_rec_mutex_lock(QemuRecMutex
*mutex
)
101 assert(mutex
->initialized
);
102 EnterCriticalSection(&mutex
->lock
);
105 int qemu_rec_mutex_trylock(QemuRecMutex
*mutex
)
107 assert(mutex
->initialized
);
108 return !TryEnterCriticalSection(&mutex
->lock
);
111 void qemu_rec_mutex_unlock(QemuRecMutex
*mutex
)
113 assert(mutex
->initialized
);
114 LeaveCriticalSection(&mutex
->lock
);
117 void qemu_cond_init(QemuCond
*cond
)
119 memset(cond
, 0, sizeof(*cond
));
120 InitializeConditionVariable(&cond
->var
);
121 cond
->initialized
= true;
124 void qemu_cond_destroy(QemuCond
*cond
)
126 assert(cond
->initialized
);
127 cond
->initialized
= false;
128 InitializeConditionVariable(&cond
->var
);
131 void qemu_cond_signal(QemuCond
*cond
)
133 assert(cond
->initialized
);
134 WakeConditionVariable(&cond
->var
);
137 void qemu_cond_broadcast(QemuCond
*cond
)
139 assert(cond
->initialized
);
140 WakeAllConditionVariable(&cond
->var
);
143 void qemu_cond_wait(QemuCond
*cond
, QemuMutex
*mutex
)
145 assert(cond
->initialized
);
146 trace_qemu_mutex_unlocked(mutex
);
147 SleepConditionVariableSRW(&cond
->var
, &mutex
->lock
, INFINITE
, 0);
148 trace_qemu_mutex_locked(mutex
);
151 void qemu_sem_init(QemuSemaphore
*sem
, int init
)
154 sem
->sema
= CreateSemaphore(NULL
, init
, LONG_MAX
, NULL
);
155 sem
->initialized
= true;
158 void qemu_sem_destroy(QemuSemaphore
*sem
)
160 assert(sem
->initialized
);
161 sem
->initialized
= false;
162 CloseHandle(sem
->sema
);
165 void qemu_sem_post(QemuSemaphore
*sem
)
167 assert(sem
->initialized
);
168 ReleaseSemaphore(sem
->sema
, 1, NULL
);
171 int qemu_sem_timedwait(QemuSemaphore
*sem
, int ms
)
175 assert(sem
->initialized
);
176 rc
= WaitForSingleObject(sem
->sema
, ms
);
177 if (rc
== WAIT_OBJECT_0
) {
180 if (rc
!= WAIT_TIMEOUT
) {
181 error_exit(GetLastError(), __func__
);
186 void qemu_sem_wait(QemuSemaphore
*sem
)
188 assert(sem
->initialized
);
189 if (WaitForSingleObject(sem
->sema
, INFINITE
) != WAIT_OBJECT_0
) {
190 error_exit(GetLastError(), __func__
);
194 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
195 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
196 * sequence. Such a sequence is, indeed, how QemuEvents are used by
197 * RCU and other subsystems!
200 * - free->set, when setting the event
201 * - busy->set, when setting the event, followed by SetEvent
202 * - set->free, when resetting the event
203 * - free->busy, when waiting
205 * set->busy does not happen (it can be observed from the outside but
206 * it really is set->free->busy).
208 * busy->free provably cannot happen; to enforce it, the set->free transition
209 * is done with an OR, which becomes a no-op if the event has concurrently
210 * transitioned to free or busy (and is faster than cmpxchg).
217 void qemu_event_init(QemuEvent
*ev
, bool init
)
220 ev
->event
= CreateEvent(NULL
, TRUE
, TRUE
, NULL
);
221 ev
->value
= (init
? EV_SET
: EV_FREE
);
222 ev
->initialized
= true;
225 void qemu_event_destroy(QemuEvent
*ev
)
227 assert(ev
->initialized
);
228 ev
->initialized
= false;
229 CloseHandle(ev
->event
);
232 void qemu_event_set(QemuEvent
*ev
)
234 assert(ev
->initialized
);
235 /* qemu_event_set has release semantics, but because it *loads*
236 * ev->value we need a full memory barrier here.
239 if (atomic_read(&ev
->value
) != EV_SET
) {
240 if (atomic_xchg(&ev
->value
, EV_SET
) == EV_BUSY
) {
241 /* There were waiters, wake them up. */
247 void qemu_event_reset(QemuEvent
*ev
)
251 assert(ev
->initialized
);
252 value
= atomic_read(&ev
->value
);
254 if (value
== EV_SET
) {
255 /* If there was a concurrent reset (or even reset+wait),
256 * do nothing. Otherwise change EV_SET->EV_FREE.
258 atomic_or(&ev
->value
, EV_FREE
);
262 void qemu_event_wait(QemuEvent
*ev
)
266 assert(ev
->initialized
);
267 value
= atomic_read(&ev
->value
);
269 if (value
!= EV_SET
) {
270 if (value
== EV_FREE
) {
271 /* qemu_event_set is not yet going to call SetEvent, but we are
272 * going to do another check for EV_SET below when setting EV_BUSY.
273 * At that point it is safe to call WaitForSingleObject.
275 ResetEvent(ev
->event
);
277 /* Tell qemu_event_set that there are waiters. No need to retry
278 * because there cannot be a concurent busy->free transition.
279 * After the CAS, the event will be either set or busy.
281 if (atomic_cmpxchg(&ev
->value
, EV_FREE
, EV_BUSY
) == EV_SET
) {
287 if (value
== EV_BUSY
) {
288 WaitForSingleObject(ev
->event
, INFINITE
);
293 struct QemuThreadData
{
294 /* Passed to win32_start_routine. */
295 void *(*start_routine
)(void *);
300 /* Only used for joinable threads. */
306 static bool atexit_registered
;
307 static NotifierList main_thread_exit
;
309 static __thread QemuThreadData
*qemu_thread_data
;
311 static void run_main_thread_exit(void)
313 notifier_list_notify(&main_thread_exit
, NULL
);
316 void qemu_thread_atexit_add(Notifier
*notifier
)
318 if (!qemu_thread_data
) {
319 if (!atexit_registered
) {
320 atexit_registered
= true;
321 atexit(run_main_thread_exit
);
323 notifier_list_add(&main_thread_exit
, notifier
);
325 notifier_list_add(&qemu_thread_data
->exit
, notifier
);
329 void qemu_thread_atexit_remove(Notifier
*notifier
)
331 notifier_remove(notifier
);
334 static unsigned __stdcall
win32_start_routine(void *arg
)
336 QemuThreadData
*data
= (QemuThreadData
*) arg
;
337 void *(*start_routine
)(void *) = data
->start_routine
;
338 void *thread_arg
= data
->arg
;
340 qemu_thread_data
= data
;
341 qemu_thread_exit(start_routine(thread_arg
));
345 void qemu_thread_exit(void *arg
)
347 QemuThreadData
*data
= qemu_thread_data
;
349 notifier_list_notify(&data
->exit
, NULL
);
350 if (data
->mode
== QEMU_THREAD_JOINABLE
) {
352 EnterCriticalSection(&data
->cs
);
354 LeaveCriticalSection(&data
->cs
);
361 void *qemu_thread_join(QemuThread
*thread
)
363 QemuThreadData
*data
;
368 if (data
->mode
== QEMU_THREAD_DETACHED
) {
373 * Because multiple copies of the QemuThread can exist via
374 * qemu_thread_get_self, we need to store a value that cannot
375 * leak there. The simplest, non racy way is to store the TID,
376 * discard the handle that _beginthreadex gives back, and
377 * get another copy of the handle here.
379 handle
= qemu_thread_get_handle(thread
);
381 WaitForSingleObject(handle
, INFINITE
);
385 DeleteCriticalSection(&data
->cs
);
390 void qemu_thread_create(QemuThread
*thread
, const char *name
,
391 void *(*start_routine
)(void *),
395 struct QemuThreadData
*data
;
397 data
= g_malloc(sizeof *data
);
398 data
->start_routine
= start_routine
;
401 data
->exited
= false;
402 notifier_list_init(&data
->exit
);
404 if (data
->mode
!= QEMU_THREAD_DETACHED
) {
405 InitializeCriticalSection(&data
->cs
);
408 hThread
= (HANDLE
) _beginthreadex(NULL
, 0, win32_start_routine
,
409 data
, 0, &thread
->tid
);
411 error_exit(GetLastError(), __func__
);
413 CloseHandle(hThread
);
417 void qemu_thread_get_self(QemuThread
*thread
)
419 thread
->data
= qemu_thread_data
;
420 thread
->tid
= GetCurrentThreadId();
423 HANDLE
qemu_thread_get_handle(QemuThread
*thread
)
425 QemuThreadData
*data
;
429 if (data
->mode
== QEMU_THREAD_DETACHED
) {
433 EnterCriticalSection(&data
->cs
);
435 handle
= OpenThread(SYNCHRONIZE
| THREAD_SUSPEND_RESUME
|
436 THREAD_SET_CONTEXT
, FALSE
, thread
->tid
);
440 LeaveCriticalSection(&data
->cs
);
444 bool qemu_thread_is_self(QemuThread
*thread
)
446 return GetCurrentThreadId() == thread
->tid
;