MAINTAINERS: Add VMWare devices maintainer
[qemu/ar7.git] / hw / ppc / spapr.c
blob5cb452f234c29334521742070b6a6c8d71356998
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58 #include "hw/nmi.h"
60 #include <libfdt.h>
62 /* SLOF memory layout:
64 * SLOF raw image loaded at 0, copies its romfs right below the flat
65 * device-tree, then position SLOF itself 31M below that
67 * So we set FW_OVERHEAD to 40MB which should account for all of that
68 * and more
70 * We load our kernel at 4M, leaving space for SLOF initial image
72 #define FDT_MAX_SIZE 0x40000
73 #define RTAS_MAX_SIZE 0x10000
74 #define FW_MAX_SIZE 0x400000
75 #define FW_FILE_NAME "slof.bin"
76 #define FW_OVERHEAD 0x2800000
77 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
79 #define MIN_RMA_SLOF 128UL
81 #define TIMEBASE_FREQ 512000000ULL
83 #define MAX_CPUS 256
85 #define PHANDLE_XICP 0x00001111
87 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
89 typedef struct sPAPRMachineState sPAPRMachineState;
91 #define TYPE_SPAPR_MACHINE "spapr-machine"
92 #define SPAPR_MACHINE(obj) \
93 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
95 /**
96 * sPAPRMachineState:
98 struct sPAPRMachineState {
99 /*< private >*/
100 MachineState parent_obj;
102 /*< public >*/
103 char *kvm_type;
106 sPAPREnvironment *spapr;
108 static XICSState *try_create_xics(const char *type, int nr_servers,
109 int nr_irqs)
111 DeviceState *dev;
113 dev = qdev_create(NULL, type);
114 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
115 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
116 if (qdev_init(dev) < 0) {
117 return NULL;
120 return XICS_COMMON(dev);
123 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
125 XICSState *icp = NULL;
127 if (kvm_enabled()) {
128 QemuOpts *machine_opts = qemu_get_machine_opts();
129 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
130 "kernel_irqchip", true);
131 bool irqchip_required = qemu_opt_get_bool(machine_opts,
132 "kernel_irqchip", false);
133 if (irqchip_allowed) {
134 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
137 if (irqchip_required && !icp) {
138 perror("Failed to create in-kernel XICS\n");
139 abort();
143 if (!icp) {
144 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
147 if (!icp) {
148 perror("Failed to create XICS\n");
149 abort();
152 return icp;
155 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
156 int smt_threads)
158 int i, ret = 0;
159 uint32_t servers_prop[smt_threads];
160 uint32_t gservers_prop[smt_threads * 2];
161 int index = ppc_get_vcpu_dt_id(cpu);
163 if (cpu->cpu_version) {
164 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
165 if (ret < 0) {
166 return ret;
170 /* Build interrupt servers and gservers properties */
171 for (i = 0; i < smt_threads; i++) {
172 servers_prop[i] = cpu_to_be32(index + i);
173 /* Hack, direct the group queues back to cpu 0 */
174 gservers_prop[i*2] = cpu_to_be32(index + i);
175 gservers_prop[i*2 + 1] = 0;
177 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
178 servers_prop, sizeof(servers_prop));
179 if (ret < 0) {
180 return ret;
182 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
183 gservers_prop, sizeof(gservers_prop));
185 return ret;
188 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
190 int ret = 0, offset, cpus_offset;
191 CPUState *cs;
192 char cpu_model[32];
193 int smt = kvmppc_smt_threads();
194 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
196 CPU_FOREACH(cs) {
197 PowerPCCPU *cpu = POWERPC_CPU(cs);
198 DeviceClass *dc = DEVICE_GET_CLASS(cs);
199 int index = ppc_get_vcpu_dt_id(cpu);
200 uint32_t associativity[] = {cpu_to_be32(0x5),
201 cpu_to_be32(0x0),
202 cpu_to_be32(0x0),
203 cpu_to_be32(0x0),
204 cpu_to_be32(cs->numa_node),
205 cpu_to_be32(index)};
207 if ((index % smt) != 0) {
208 continue;
211 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
213 cpus_offset = fdt_path_offset(fdt, "/cpus");
214 if (cpus_offset < 0) {
215 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
216 "cpus");
217 if (cpus_offset < 0) {
218 return cpus_offset;
221 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222 if (offset < 0) {
223 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
224 if (offset < 0) {
225 return offset;
229 if (nb_numa_nodes > 1) {
230 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
231 sizeof(associativity));
232 if (ret < 0) {
233 return ret;
237 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
238 pft_size_prop, sizeof(pft_size_prop));
239 if (ret < 0) {
240 return ret;
243 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244 ppc_get_compat_smt_threads(cpu));
245 if (ret < 0) {
246 return ret;
249 return ret;
253 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
254 size_t maxsize)
256 size_t maxcells = maxsize / sizeof(uint32_t);
257 int i, j, count;
258 uint32_t *p = prop;
260 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
263 if (!sps->page_shift) {
264 break;
266 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
267 if (sps->enc[count].page_shift == 0) {
268 break;
271 if ((p - prop) >= (maxcells - 3 - count * 2)) {
272 break;
274 *(p++) = cpu_to_be32(sps->page_shift);
275 *(p++) = cpu_to_be32(sps->slb_enc);
276 *(p++) = cpu_to_be32(count);
277 for (j = 0; j < count; j++) {
278 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
279 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
283 return (p - prop) * sizeof(uint32_t);
286 #define _FDT(exp) \
287 do { \
288 int ret = (exp); \
289 if (ret < 0) { \
290 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
291 #exp, fdt_strerror(ret)); \
292 exit(1); \
294 } while (0)
296 static void add_str(GString *s, const gchar *s1)
298 g_string_append_len(s, s1, strlen(s1) + 1);
301 static void *spapr_create_fdt_skel(hwaddr initrd_base,
302 hwaddr initrd_size,
303 hwaddr kernel_size,
304 bool little_endian,
305 const char *boot_device,
306 const char *kernel_cmdline,
307 uint32_t epow_irq)
309 void *fdt;
310 CPUState *cs;
311 uint32_t start_prop = cpu_to_be32(initrd_base);
312 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
313 GString *hypertas = g_string_sized_new(256);
314 GString *qemu_hypertas = g_string_sized_new(256);
315 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
316 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
317 int smt = kvmppc_smt_threads();
318 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
319 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
320 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
321 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
323 add_str(hypertas, "hcall-pft");
324 add_str(hypertas, "hcall-term");
325 add_str(hypertas, "hcall-dabr");
326 add_str(hypertas, "hcall-interrupt");
327 add_str(hypertas, "hcall-tce");
328 add_str(hypertas, "hcall-vio");
329 add_str(hypertas, "hcall-splpar");
330 add_str(hypertas, "hcall-bulk");
331 add_str(hypertas, "hcall-set-mode");
332 add_str(qemu_hypertas, "hcall-memop1");
334 fdt = g_malloc0(FDT_MAX_SIZE);
335 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
337 if (kernel_size) {
338 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
340 if (initrd_size) {
341 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
343 _FDT((fdt_finish_reservemap(fdt)));
345 /* Root node */
346 _FDT((fdt_begin_node(fdt, "")));
347 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
348 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
349 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
351 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
352 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
354 /* /chosen */
355 _FDT((fdt_begin_node(fdt, "chosen")));
357 /* Set Form1_affinity */
358 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
360 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
361 _FDT((fdt_property(fdt, "linux,initrd-start",
362 &start_prop, sizeof(start_prop))));
363 _FDT((fdt_property(fdt, "linux,initrd-end",
364 &end_prop, sizeof(end_prop))));
365 if (kernel_size) {
366 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
367 cpu_to_be64(kernel_size) };
369 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
370 if (little_endian) {
371 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
374 if (boot_device) {
375 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
377 if (boot_menu) {
378 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
380 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
381 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
382 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
384 _FDT((fdt_end_node(fdt)));
386 /* cpus */
387 _FDT((fdt_begin_node(fdt, "cpus")));
389 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
390 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
392 CPU_FOREACH(cs) {
393 PowerPCCPU *cpu = POWERPC_CPU(cs);
394 CPUPPCState *env = &cpu->env;
395 DeviceClass *dc = DEVICE_GET_CLASS(cs);
396 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
397 int index = ppc_get_vcpu_dt_id(cpu);
398 char *nodename;
399 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
400 0xffffffff, 0xffffffff};
401 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
402 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
403 uint32_t page_sizes_prop[64];
404 size_t page_sizes_prop_size;
406 if ((index % smt) != 0) {
407 continue;
410 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
412 _FDT((fdt_begin_node(fdt, nodename)));
414 g_free(nodename);
416 _FDT((fdt_property_cell(fdt, "reg", index)));
417 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
419 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
420 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
421 env->dcache_line_size)));
422 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
423 env->dcache_line_size)));
424 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
425 env->icache_line_size)));
426 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
427 env->icache_line_size)));
429 if (pcc->l1_dcache_size) {
430 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
431 } else {
432 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
434 if (pcc->l1_icache_size) {
435 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
436 } else {
437 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
440 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
441 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
442 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
443 _FDT((fdt_property_string(fdt, "status", "okay")));
444 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
446 if (env->spr_cb[SPR_PURR].oea_read) {
447 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
450 if (env->mmu_model & POWERPC_MMU_1TSEG) {
451 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
452 segs, sizeof(segs))));
455 /* Advertise VMX/VSX (vector extensions) if available
456 * 0 / no property == no vector extensions
457 * 1 == VMX / Altivec available
458 * 2 == VSX available */
459 if (env->insns_flags & PPC_ALTIVEC) {
460 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
462 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
465 /* Advertise DFP (Decimal Floating Point) if available
466 * 0 / no property == no DFP
467 * 1 == DFP available */
468 if (env->insns_flags2 & PPC2_DFP) {
469 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
472 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
473 sizeof(page_sizes_prop));
474 if (page_sizes_prop_size) {
475 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
476 page_sizes_prop, page_sizes_prop_size)));
479 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
480 cs->cpu_index / cpus_per_socket)));
482 _FDT((fdt_end_node(fdt)));
485 _FDT((fdt_end_node(fdt)));
487 /* RTAS */
488 _FDT((fdt_begin_node(fdt, "rtas")));
490 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
491 add_str(hypertas, "hcall-multi-tce");
493 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
494 hypertas->len)));
495 g_string_free(hypertas, TRUE);
496 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
497 qemu_hypertas->len)));
498 g_string_free(qemu_hypertas, TRUE);
500 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
501 refpoints, sizeof(refpoints))));
503 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
505 _FDT((fdt_end_node(fdt)));
507 /* interrupt controller */
508 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
510 _FDT((fdt_property_string(fdt, "device_type",
511 "PowerPC-External-Interrupt-Presentation")));
512 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
513 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
514 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
515 interrupt_server_ranges_prop,
516 sizeof(interrupt_server_ranges_prop))));
517 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
518 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
519 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
521 _FDT((fdt_end_node(fdt)));
523 /* vdevice */
524 _FDT((fdt_begin_node(fdt, "vdevice")));
526 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
527 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
528 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
529 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
530 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
531 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
533 _FDT((fdt_end_node(fdt)));
535 /* event-sources */
536 spapr_events_fdt_skel(fdt, epow_irq);
538 /* /hypervisor node */
539 if (kvm_enabled()) {
540 uint8_t hypercall[16];
542 /* indicate KVM hypercall interface */
543 _FDT((fdt_begin_node(fdt, "hypervisor")));
544 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
545 if (kvmppc_has_cap_fixup_hcalls()) {
547 * Older KVM versions with older guest kernels were broken with the
548 * magic page, don't allow the guest to map it.
550 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
551 sizeof(hypercall));
552 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
553 sizeof(hypercall))));
555 _FDT((fdt_end_node(fdt)));
558 _FDT((fdt_end_node(fdt))); /* close root node */
559 _FDT((fdt_finish(fdt)));
561 return fdt;
564 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
566 void *fdt, *fdt_skel;
567 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
569 size -= sizeof(hdr);
571 /* Create sceleton */
572 fdt_skel = g_malloc0(size);
573 _FDT((fdt_create(fdt_skel, size)));
574 _FDT((fdt_begin_node(fdt_skel, "")));
575 _FDT((fdt_end_node(fdt_skel)));
576 _FDT((fdt_finish(fdt_skel)));
577 fdt = g_malloc0(size);
578 _FDT((fdt_open_into(fdt_skel, fdt, size)));
579 g_free(fdt_skel);
581 /* Fix skeleton up */
582 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
584 /* Pack resulting tree */
585 _FDT((fdt_pack(fdt)));
587 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
588 trace_spapr_cas_failed(size);
589 return -1;
592 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
593 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
594 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
595 g_free(fdt);
597 return 0;
600 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
602 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
603 cpu_to_be32(0x0), cpu_to_be32(0x0),
604 cpu_to_be32(0x0)};
605 char mem_name[32];
606 hwaddr node0_size, mem_start, node_size;
607 uint64_t mem_reg_property[2];
608 int i, off;
610 /* memory node(s) */
611 if (nb_numa_nodes > 1 && numa_info[0].node_mem < ram_size) {
612 node0_size = numa_info[0].node_mem;
613 } else {
614 node0_size = ram_size;
617 /* RMA */
618 mem_reg_property[0] = 0;
619 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
620 off = fdt_add_subnode(fdt, 0, "memory@0");
621 _FDT(off);
622 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
623 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
624 sizeof(mem_reg_property))));
625 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
626 sizeof(associativity))));
628 /* RAM: Node 0 */
629 if (node0_size > spapr->rma_size) {
630 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
631 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
633 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
634 off = fdt_add_subnode(fdt, 0, mem_name);
635 _FDT(off);
636 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
637 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
638 sizeof(mem_reg_property))));
639 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
640 sizeof(associativity))));
643 /* RAM: Node 1 and beyond */
644 mem_start = node0_size;
645 for (i = 1; i < nb_numa_nodes; i++) {
646 mem_reg_property[0] = cpu_to_be64(mem_start);
647 if (mem_start >= ram_size) {
648 node_size = 0;
649 } else {
650 node_size = numa_info[i].node_mem;
651 if (node_size > ram_size - mem_start) {
652 node_size = ram_size - mem_start;
655 mem_reg_property[1] = cpu_to_be64(node_size);
656 associativity[3] = associativity[4] = cpu_to_be32(i);
657 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
658 off = fdt_add_subnode(fdt, 0, mem_name);
659 _FDT(off);
660 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
661 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
662 sizeof(mem_reg_property))));
663 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
664 sizeof(associativity))));
665 mem_start += node_size;
668 return 0;
671 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
672 hwaddr fdt_addr,
673 hwaddr rtas_addr,
674 hwaddr rtas_size)
676 int ret, i;
677 size_t cb = 0;
678 char *bootlist;
679 void *fdt;
680 sPAPRPHBState *phb;
682 fdt = g_malloc(FDT_MAX_SIZE);
684 /* open out the base tree into a temp buffer for the final tweaks */
685 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
687 ret = spapr_populate_memory(spapr, fdt);
688 if (ret < 0) {
689 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
690 exit(1);
693 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
694 if (ret < 0) {
695 fprintf(stderr, "couldn't setup vio devices in fdt\n");
696 exit(1);
699 QLIST_FOREACH(phb, &spapr->phbs, list) {
700 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
703 if (ret < 0) {
704 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
705 exit(1);
708 /* RTAS */
709 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
710 if (ret < 0) {
711 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
714 /* Advertise NUMA via ibm,associativity */
715 ret = spapr_fixup_cpu_dt(fdt, spapr);
716 if (ret < 0) {
717 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
720 bootlist = get_boot_devices_list(&cb, true);
721 if (cb && bootlist) {
722 int offset = fdt_path_offset(fdt, "/chosen");
723 if (offset < 0) {
724 exit(1);
726 for (i = 0; i < cb; i++) {
727 if (bootlist[i] == '\n') {
728 bootlist[i] = ' ';
732 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
735 if (!spapr->has_graphics) {
736 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
739 _FDT((fdt_pack(fdt)));
741 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
742 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
743 fdt_totalsize(fdt), FDT_MAX_SIZE);
744 exit(1);
747 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
749 g_free(fdt);
752 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
754 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
757 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
759 CPUPPCState *env = &cpu->env;
761 if (msr_pr) {
762 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
763 env->gpr[3] = H_PRIVILEGE;
764 } else {
765 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
769 static void spapr_reset_htab(sPAPREnvironment *spapr)
771 long shift;
773 /* allocate hash page table. For now we always make this 16mb,
774 * later we should probably make it scale to the size of guest
775 * RAM */
777 shift = kvmppc_reset_htab(spapr->htab_shift);
779 if (shift > 0) {
780 /* Kernel handles htab, we don't need to allocate one */
781 spapr->htab_shift = shift;
782 kvmppc_kern_htab = true;
783 } else {
784 if (!spapr->htab) {
785 /* Allocate an htab if we don't yet have one */
786 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
789 /* And clear it */
790 memset(spapr->htab, 0, HTAB_SIZE(spapr));
793 /* Update the RMA size if necessary */
794 if (spapr->vrma_adjust) {
795 hwaddr node0_size = (nb_numa_nodes > 1) ?
796 numa_info[0].node_mem : ram_size;
797 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
801 static void ppc_spapr_reset(void)
803 PowerPCCPU *first_ppc_cpu;
805 /* Reset the hash table & recalc the RMA */
806 spapr_reset_htab(spapr);
808 qemu_devices_reset();
810 /* Load the fdt */
811 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
812 spapr->rtas_size);
814 /* Set up the entry state */
815 first_ppc_cpu = POWERPC_CPU(first_cpu);
816 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
817 first_ppc_cpu->env.gpr[5] = 0;
818 first_cpu->halted = 0;
819 first_ppc_cpu->env.nip = spapr->entry_point;
823 static void spapr_cpu_reset(void *opaque)
825 PowerPCCPU *cpu = opaque;
826 CPUState *cs = CPU(cpu);
827 CPUPPCState *env = &cpu->env;
829 cpu_reset(cs);
831 /* All CPUs start halted. CPU0 is unhalted from the machine level
832 * reset code and the rest are explicitly started up by the guest
833 * using an RTAS call */
834 cs->halted = 1;
836 env->spr[SPR_HIOR] = 0;
838 env->external_htab = (uint8_t *)spapr->htab;
839 if (kvm_enabled() && !env->external_htab) {
841 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
842 * functions do the right thing.
844 env->external_htab = (void *)1;
846 env->htab_base = -1;
848 * htab_mask is the mask used to normalize hash value to PTEG index.
849 * htab_shift is log2 of hash table size.
850 * We have 8 hpte per group, and each hpte is 16 bytes.
851 * ie have 128 bytes per hpte entry.
853 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
854 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
855 (spapr->htab_shift - 18);
858 static void spapr_create_nvram(sPAPREnvironment *spapr)
860 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
861 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
863 if (dinfo) {
864 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
867 qdev_init_nofail(dev);
869 spapr->nvram = (struct sPAPRNVRAM *)dev;
872 /* Returns whether we want to use VGA or not */
873 static int spapr_vga_init(PCIBus *pci_bus)
875 switch (vga_interface_type) {
876 case VGA_NONE:
877 return false;
878 case VGA_DEVICE:
879 return true;
880 case VGA_STD:
881 return pci_vga_init(pci_bus) != NULL;
882 default:
883 fprintf(stderr, "This vga model is not supported,"
884 "currently it only supports -vga std\n");
885 exit(0);
889 static const VMStateDescription vmstate_spapr = {
890 .name = "spapr",
891 .version_id = 2,
892 .minimum_version_id = 1,
893 .fields = (VMStateField[]) {
894 VMSTATE_UNUSED(4), /* used to be @next_irq */
896 /* RTC offset */
897 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
898 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
899 VMSTATE_END_OF_LIST()
903 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
904 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
905 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
906 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
908 static int htab_save_setup(QEMUFile *f, void *opaque)
910 sPAPREnvironment *spapr = opaque;
912 /* "Iteration" header */
913 qemu_put_be32(f, spapr->htab_shift);
915 if (spapr->htab) {
916 spapr->htab_save_index = 0;
917 spapr->htab_first_pass = true;
918 } else {
919 assert(kvm_enabled());
921 spapr->htab_fd = kvmppc_get_htab_fd(false);
922 if (spapr->htab_fd < 0) {
923 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
924 strerror(errno));
925 return -1;
930 return 0;
933 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
934 int64_t max_ns)
936 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
937 int index = spapr->htab_save_index;
938 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
940 assert(spapr->htab_first_pass);
942 do {
943 int chunkstart;
945 /* Consume invalid HPTEs */
946 while ((index < htabslots)
947 && !HPTE_VALID(HPTE(spapr->htab, index))) {
948 index++;
949 CLEAN_HPTE(HPTE(spapr->htab, index));
952 /* Consume valid HPTEs */
953 chunkstart = index;
954 while ((index < htabslots)
955 && HPTE_VALID(HPTE(spapr->htab, index))) {
956 index++;
957 CLEAN_HPTE(HPTE(spapr->htab, index));
960 if (index > chunkstart) {
961 int n_valid = index - chunkstart;
963 qemu_put_be32(f, chunkstart);
964 qemu_put_be16(f, n_valid);
965 qemu_put_be16(f, 0);
966 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
967 HASH_PTE_SIZE_64 * n_valid);
969 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
970 break;
973 } while ((index < htabslots) && !qemu_file_rate_limit(f));
975 if (index >= htabslots) {
976 assert(index == htabslots);
977 index = 0;
978 spapr->htab_first_pass = false;
980 spapr->htab_save_index = index;
983 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
984 int64_t max_ns)
986 bool final = max_ns < 0;
987 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
988 int examined = 0, sent = 0;
989 int index = spapr->htab_save_index;
990 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
992 assert(!spapr->htab_first_pass);
994 do {
995 int chunkstart, invalidstart;
997 /* Consume non-dirty HPTEs */
998 while ((index < htabslots)
999 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1000 index++;
1001 examined++;
1004 chunkstart = index;
1005 /* Consume valid dirty HPTEs */
1006 while ((index < htabslots)
1007 && HPTE_DIRTY(HPTE(spapr->htab, index))
1008 && HPTE_VALID(HPTE(spapr->htab, index))) {
1009 CLEAN_HPTE(HPTE(spapr->htab, index));
1010 index++;
1011 examined++;
1014 invalidstart = index;
1015 /* Consume invalid dirty HPTEs */
1016 while ((index < htabslots)
1017 && HPTE_DIRTY(HPTE(spapr->htab, index))
1018 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1019 CLEAN_HPTE(HPTE(spapr->htab, index));
1020 index++;
1021 examined++;
1024 if (index > chunkstart) {
1025 int n_valid = invalidstart - chunkstart;
1026 int n_invalid = index - invalidstart;
1028 qemu_put_be32(f, chunkstart);
1029 qemu_put_be16(f, n_valid);
1030 qemu_put_be16(f, n_invalid);
1031 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1032 HASH_PTE_SIZE_64 * n_valid);
1033 sent += index - chunkstart;
1035 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1036 break;
1040 if (examined >= htabslots) {
1041 break;
1044 if (index >= htabslots) {
1045 assert(index == htabslots);
1046 index = 0;
1048 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1050 if (index >= htabslots) {
1051 assert(index == htabslots);
1052 index = 0;
1055 spapr->htab_save_index = index;
1057 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1060 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1061 #define MAX_KVM_BUF_SIZE 2048
1063 static int htab_save_iterate(QEMUFile *f, void *opaque)
1065 sPAPREnvironment *spapr = opaque;
1066 int rc = 0;
1068 /* Iteration header */
1069 qemu_put_be32(f, 0);
1071 if (!spapr->htab) {
1072 assert(kvm_enabled());
1074 rc = kvmppc_save_htab(f, spapr->htab_fd,
1075 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1076 if (rc < 0) {
1077 return rc;
1079 } else if (spapr->htab_first_pass) {
1080 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1081 } else {
1082 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1085 /* End marker */
1086 qemu_put_be32(f, 0);
1087 qemu_put_be16(f, 0);
1088 qemu_put_be16(f, 0);
1090 return rc;
1093 static int htab_save_complete(QEMUFile *f, void *opaque)
1095 sPAPREnvironment *spapr = opaque;
1097 /* Iteration header */
1098 qemu_put_be32(f, 0);
1100 if (!spapr->htab) {
1101 int rc;
1103 assert(kvm_enabled());
1105 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1106 if (rc < 0) {
1107 return rc;
1109 close(spapr->htab_fd);
1110 spapr->htab_fd = -1;
1111 } else {
1112 htab_save_later_pass(f, spapr, -1);
1115 /* End marker */
1116 qemu_put_be32(f, 0);
1117 qemu_put_be16(f, 0);
1118 qemu_put_be16(f, 0);
1120 return 0;
1123 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1125 sPAPREnvironment *spapr = opaque;
1126 uint32_t section_hdr;
1127 int fd = -1;
1129 if (version_id < 1 || version_id > 1) {
1130 fprintf(stderr, "htab_load() bad version\n");
1131 return -EINVAL;
1134 section_hdr = qemu_get_be32(f);
1136 if (section_hdr) {
1137 /* First section, just the hash shift */
1138 if (spapr->htab_shift != section_hdr) {
1139 return -EINVAL;
1141 return 0;
1144 if (!spapr->htab) {
1145 assert(kvm_enabled());
1147 fd = kvmppc_get_htab_fd(true);
1148 if (fd < 0) {
1149 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1150 strerror(errno));
1154 while (true) {
1155 uint32_t index;
1156 uint16_t n_valid, n_invalid;
1158 index = qemu_get_be32(f);
1159 n_valid = qemu_get_be16(f);
1160 n_invalid = qemu_get_be16(f);
1162 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1163 /* End of Stream */
1164 break;
1167 if ((index + n_valid + n_invalid) >
1168 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1169 /* Bad index in stream */
1170 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1171 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1172 spapr->htab_shift);
1173 return -EINVAL;
1176 if (spapr->htab) {
1177 if (n_valid) {
1178 qemu_get_buffer(f, HPTE(spapr->htab, index),
1179 HASH_PTE_SIZE_64 * n_valid);
1181 if (n_invalid) {
1182 memset(HPTE(spapr->htab, index + n_valid), 0,
1183 HASH_PTE_SIZE_64 * n_invalid);
1185 } else {
1186 int rc;
1188 assert(fd >= 0);
1190 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1191 if (rc < 0) {
1192 return rc;
1197 if (!spapr->htab) {
1198 assert(fd >= 0);
1199 close(fd);
1202 return 0;
1205 static SaveVMHandlers savevm_htab_handlers = {
1206 .save_live_setup = htab_save_setup,
1207 .save_live_iterate = htab_save_iterate,
1208 .save_live_complete = htab_save_complete,
1209 .load_state = htab_load,
1212 /* pSeries LPAR / sPAPR hardware init */
1213 static void ppc_spapr_init(MachineState *machine)
1215 ram_addr_t ram_size = machine->ram_size;
1216 const char *cpu_model = machine->cpu_model;
1217 const char *kernel_filename = machine->kernel_filename;
1218 const char *kernel_cmdline = machine->kernel_cmdline;
1219 const char *initrd_filename = machine->initrd_filename;
1220 const char *boot_device = machine->boot_order;
1221 PowerPCCPU *cpu;
1222 CPUPPCState *env;
1223 PCIHostState *phb;
1224 int i;
1225 MemoryRegion *sysmem = get_system_memory();
1226 MemoryRegion *ram = g_new(MemoryRegion, 1);
1227 MemoryRegion *rma_region;
1228 void *rma = NULL;
1229 hwaddr rma_alloc_size;
1230 hwaddr node0_size = (nb_numa_nodes > 1) ? numa_info[0].node_mem : ram_size;
1231 uint32_t initrd_base = 0;
1232 long kernel_size = 0, initrd_size = 0;
1233 long load_limit, rtas_limit, fw_size;
1234 bool kernel_le = false;
1235 char *filename;
1237 msi_supported = true;
1239 spapr = g_malloc0(sizeof(*spapr));
1240 QLIST_INIT(&spapr->phbs);
1242 cpu_ppc_hypercall = emulate_spapr_hypercall;
1244 /* Allocate RMA if necessary */
1245 rma_alloc_size = kvmppc_alloc_rma(&rma);
1247 if (rma_alloc_size == -1) {
1248 hw_error("qemu: Unable to create RMA\n");
1249 exit(1);
1252 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1253 spapr->rma_size = rma_alloc_size;
1254 } else {
1255 spapr->rma_size = node0_size;
1257 /* With KVM, we don't actually know whether KVM supports an
1258 * unbounded RMA (PR KVM) or is limited by the hash table size
1259 * (HV KVM using VRMA), so we always assume the latter
1261 * In that case, we also limit the initial allocations for RTAS
1262 * etc... to 256M since we have no way to know what the VRMA size
1263 * is going to be as it depends on the size of the hash table
1264 * isn't determined yet.
1266 if (kvm_enabled()) {
1267 spapr->vrma_adjust = 1;
1268 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1272 if (spapr->rma_size > node0_size) {
1273 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1274 spapr->rma_size);
1275 exit(1);
1278 /* We place the device tree and RTAS just below either the top of the RMA,
1279 * or just below 2GB, whichever is lowere, so that it can be
1280 * processed with 32-bit real mode code if necessary */
1281 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1282 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1283 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1284 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1286 /* We aim for a hash table of size 1/128 the size of RAM. The
1287 * normal rule of thumb is 1/64 the size of RAM, but that's much
1288 * more than needed for the Linux guests we support. */
1289 spapr->htab_shift = 18; /* Minimum architected size */
1290 while (spapr->htab_shift <= 46) {
1291 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1292 break;
1294 spapr->htab_shift++;
1297 /* Set up Interrupt Controller before we create the VCPUs */
1298 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1299 XICS_IRQS);
1301 /* init CPUs */
1302 if (cpu_model == NULL) {
1303 cpu_model = kvm_enabled() ? "host" : "POWER7";
1305 for (i = 0; i < smp_cpus; i++) {
1306 cpu = cpu_ppc_init(cpu_model);
1307 if (cpu == NULL) {
1308 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1309 exit(1);
1311 env = &cpu->env;
1313 /* Set time-base frequency to 512 MHz */
1314 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1316 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1317 * MSR[IP] should never be set.
1319 env->msr_mask &= ~(1 << 6);
1321 /* Tell KVM that we're in PAPR mode */
1322 if (kvm_enabled()) {
1323 kvmppc_set_papr(cpu);
1326 if (cpu->max_compat) {
1327 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1328 exit(1);
1332 xics_cpu_setup(spapr->icp, cpu);
1334 qemu_register_reset(spapr_cpu_reset, cpu);
1337 /* allocate RAM */
1338 spapr->ram_limit = ram_size;
1339 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1340 spapr->ram_limit);
1341 memory_region_add_subregion(sysmem, 0, ram);
1343 if (rma_alloc_size && rma) {
1344 rma_region = g_new(MemoryRegion, 1);
1345 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1346 rma_alloc_size, rma);
1347 vmstate_register_ram_global(rma_region);
1348 memory_region_add_subregion(sysmem, 0, rma_region);
1351 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1352 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1353 rtas_limit - spapr->rtas_addr);
1354 if (spapr->rtas_size < 0) {
1355 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1356 exit(1);
1358 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1359 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1360 spapr->rtas_size, RTAS_MAX_SIZE);
1361 exit(1);
1363 g_free(filename);
1365 /* Set up EPOW events infrastructure */
1366 spapr_events_init(spapr);
1368 /* Set up VIO bus */
1369 spapr->vio_bus = spapr_vio_bus_init();
1371 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1372 if (serial_hds[i]) {
1373 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1377 /* We always have at least the nvram device on VIO */
1378 spapr_create_nvram(spapr);
1380 /* Set up PCI */
1381 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1382 spapr_pci_rtas_init();
1384 phb = spapr_create_phb(spapr, 0);
1386 for (i = 0; i < nb_nics; i++) {
1387 NICInfo *nd = &nd_table[i];
1389 if (!nd->model) {
1390 nd->model = g_strdup("ibmveth");
1393 if (strcmp(nd->model, "ibmveth") == 0) {
1394 spapr_vlan_create(spapr->vio_bus, nd);
1395 } else {
1396 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1400 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1401 spapr_vscsi_create(spapr->vio_bus);
1404 /* Graphics */
1405 if (spapr_vga_init(phb->bus)) {
1406 spapr->has_graphics = true;
1409 if (usb_enabled(spapr->has_graphics)) {
1410 pci_create_simple(phb->bus, -1, "pci-ohci");
1411 if (spapr->has_graphics) {
1412 usbdevice_create("keyboard");
1413 usbdevice_create("mouse");
1417 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1418 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1419 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1420 exit(1);
1423 if (kernel_filename) {
1424 uint64_t lowaddr = 0;
1426 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1427 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1428 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1429 kernel_size = load_elf(kernel_filename,
1430 translate_kernel_address, NULL,
1431 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1432 kernel_le = kernel_size > 0;
1434 if (kernel_size < 0) {
1435 fprintf(stderr, "qemu: error loading %s: %s\n",
1436 kernel_filename, load_elf_strerror(kernel_size));
1437 exit(1);
1440 /* load initrd */
1441 if (initrd_filename) {
1442 /* Try to locate the initrd in the gap between the kernel
1443 * and the firmware. Add a bit of space just in case
1445 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1446 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1447 load_limit - initrd_base);
1448 if (initrd_size < 0) {
1449 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1450 initrd_filename);
1451 exit(1);
1453 } else {
1454 initrd_base = 0;
1455 initrd_size = 0;
1459 if (bios_name == NULL) {
1460 bios_name = FW_FILE_NAME;
1462 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1463 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1464 if (fw_size < 0) {
1465 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1466 exit(1);
1468 g_free(filename);
1470 spapr->entry_point = 0x100;
1472 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1473 register_savevm_live(NULL, "spapr/htab", -1, 1,
1474 &savevm_htab_handlers, spapr);
1476 /* Prepare the device tree */
1477 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1478 kernel_size, kernel_le,
1479 boot_device, kernel_cmdline,
1480 spapr->epow_irq);
1481 assert(spapr->fdt_skel != NULL);
1484 static int spapr_kvm_type(const char *vm_type)
1486 if (!vm_type) {
1487 return 0;
1490 if (!strcmp(vm_type, "HV")) {
1491 return 1;
1494 if (!strcmp(vm_type, "PR")) {
1495 return 2;
1498 error_report("Unknown kvm-type specified '%s'", vm_type);
1499 exit(1);
1503 * Implementation of an interface to adjust firmware patch
1504 * for the bootindex property handling.
1506 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1507 DeviceState *dev)
1509 #define CAST(type, obj, name) \
1510 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1511 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1512 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1514 if (d) {
1515 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1516 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1517 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1519 if (spapr) {
1521 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1522 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1523 * in the top 16 bits of the 64-bit LUN
1525 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1526 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1527 (uint64_t)id << 48);
1528 } else if (virtio) {
1530 * We use SRP luns of the form 01000000 | (target << 8) | lun
1531 * in the top 32 bits of the 64-bit LUN
1532 * Note: the quote above is from SLOF and it is wrong,
1533 * the actual binding is:
1534 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1536 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1537 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1538 (uint64_t)id << 32);
1539 } else if (usb) {
1541 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1542 * in the top 32 bits of the 64-bit LUN
1544 unsigned usb_port = atoi(usb->port->path);
1545 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1546 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1547 (uint64_t)id << 32);
1551 if (phb) {
1552 /* Replace "pci" with "pci@800000020000000" */
1553 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1556 return NULL;
1559 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1561 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1563 return g_strdup(sm->kvm_type);
1566 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1568 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1570 g_free(sm->kvm_type);
1571 sm->kvm_type = g_strdup(value);
1574 static void spapr_machine_initfn(Object *obj)
1576 object_property_add_str(obj, "kvm-type",
1577 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1580 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1582 CPUState *cs = arg;
1584 cpu_synchronize_state(cs);
1585 ppc_cpu_do_system_reset(cs);
1588 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1590 CPUState *cs;
1592 CPU_FOREACH(cs) {
1593 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1597 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1599 MachineClass *mc = MACHINE_CLASS(oc);
1600 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1601 NMIClass *nc = NMI_CLASS(oc);
1603 mc->name = "pseries";
1604 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1605 mc->is_default = 1;
1606 mc->init = ppc_spapr_init;
1607 mc->reset = ppc_spapr_reset;
1608 mc->block_default_type = IF_SCSI;
1609 mc->max_cpus = MAX_CPUS;
1610 mc->no_parallel = 1;
1611 mc->default_boot_order = NULL;
1612 mc->kvm_type = spapr_kvm_type;
1614 fwc->get_dev_path = spapr_get_fw_dev_path;
1615 nc->nmi_monitor_handler = spapr_nmi;
1618 static const TypeInfo spapr_machine_info = {
1619 .name = TYPE_SPAPR_MACHINE,
1620 .parent = TYPE_MACHINE,
1621 .instance_size = sizeof(sPAPRMachineState),
1622 .instance_init = spapr_machine_initfn,
1623 .class_init = spapr_machine_class_init,
1624 .interfaces = (InterfaceInfo[]) {
1625 { TYPE_FW_PATH_PROVIDER },
1626 { TYPE_NMI },
1631 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1633 MachineClass *mc = MACHINE_CLASS(oc);
1635 mc->name = "pseries-2.1";
1636 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1637 mc->is_default = 0;
1640 static const TypeInfo spapr_machine_2_1_info = {
1641 .name = TYPE_SPAPR_MACHINE "2.1",
1642 .parent = TYPE_SPAPR_MACHINE,
1643 .class_init = spapr_machine_2_1_class_init,
1646 static void spapr_machine_register_types(void)
1648 type_register_static(&spapr_machine_info);
1649 type_register_static(&spapr_machine_2_1_info);
1652 type_init(spapr_machine_register_types)