4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/datadir.h"
13 #include "qemu/error-report.h"
14 #include "qapi/error.h"
16 #include "hw/arm/boot.h"
17 #include "hw/arm/linux-boot-if.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "hw/boards.h"
22 #include "sysemu/reset.h"
23 #include "hw/loader.h"
25 #include "sysemu/device_tree.h"
26 #include "qemu/config-file.h"
27 #include "qemu/option.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/units.h"
31 /* Kernel boot protocol is specified in the kernel docs
32 * Documentation/arm/Booting and Documentation/arm64/booting.txt
33 * They have different preferred image load offsets from system RAM base.
35 #define KERNEL_ARGS_ADDR 0x100
36 #define KERNEL_NOLOAD_ADDR 0x02000000
37 #define KERNEL_LOAD_ADDR 0x00010000
38 #define KERNEL64_LOAD_ADDR 0x00080000
40 #define ARM64_TEXT_OFFSET_OFFSET 8
41 #define ARM64_MAGIC_OFFSET 56
43 #define BOOTLOADER_MAX_SIZE (4 * KiB)
45 AddressSpace
*arm_boot_address_space(ARMCPU
*cpu
,
46 const struct arm_boot_info
*info
)
48 /* Return the address space to use for bootloader reads and writes.
49 * We prefer the secure address space if the CPU has it and we're
50 * going to boot the guest into it.
53 CPUState
*cs
= CPU(cpu
);
55 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
) && info
->secure_boot
) {
61 return cpu_get_address_space(cs
, asidx
);
65 FIXUP_NONE
= 0, /* do nothing */
66 FIXUP_TERMINATOR
, /* end of insns */
67 FIXUP_BOARDID
, /* overwrite with board ID number */
68 FIXUP_BOARD_SETUP
, /* overwrite with board specific setup code address */
69 FIXUP_ARGPTR_LO
, /* overwrite with pointer to kernel args */
70 FIXUP_ARGPTR_HI
, /* overwrite with pointer to kernel args (high half) */
71 FIXUP_ENTRYPOINT_LO
, /* overwrite with kernel entry point */
72 FIXUP_ENTRYPOINT_HI
, /* overwrite with kernel entry point (high half) */
73 FIXUP_GIC_CPU_IF
, /* overwrite with GIC CPU interface address */
74 FIXUP_BOOTREG
, /* overwrite with boot register address */
75 FIXUP_DSB
, /* overwrite with correct DSB insn for cpu */
79 typedef struct ARMInsnFixup
{
84 static const ARMInsnFixup bootloader_aarch64
[] = {
85 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
86 { 0xaa1f03e1 }, /* mov x1, xzr */
87 { 0xaa1f03e2 }, /* mov x2, xzr */
88 { 0xaa1f03e3 }, /* mov x3, xzr */
89 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
90 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
91 { 0, FIXUP_ARGPTR_LO
}, /* arg: .word @DTB Lower 32-bits */
92 { 0, FIXUP_ARGPTR_HI
}, /* .word @DTB Higher 32-bits */
93 { 0, FIXUP_ENTRYPOINT_LO
}, /* entry: .word @Kernel Entry Lower 32-bits */
94 { 0, FIXUP_ENTRYPOINT_HI
}, /* .word @Kernel Entry Higher 32-bits */
95 { 0, FIXUP_TERMINATOR
}
98 /* A very small bootloader: call the board-setup code (if needed),
99 * set r0-r2, then jump to the kernel.
100 * If we're not calling boot setup code then we don't copy across
101 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
104 static const ARMInsnFixup bootloader
[] = {
105 { 0xe28fe004 }, /* add lr, pc, #4 */
106 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
107 { 0, FIXUP_BOARD_SETUP
},
108 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
109 { 0xe3a00000 }, /* mov r0, #0 */
110 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
111 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
112 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
113 { 0, FIXUP_BOARDID
},
114 { 0, FIXUP_ARGPTR_LO
},
115 { 0, FIXUP_ENTRYPOINT_LO
},
116 { 0, FIXUP_TERMINATOR
}
119 /* Handling for secondary CPU boot in a multicore system.
120 * Unlike the uniprocessor/primary CPU boot, this is platform
121 * dependent. The default code here is based on the secondary
122 * CPU boot protocol used on realview/vexpress boards, with
123 * some parameterisation to increase its flexibility.
124 * QEMU platform models for which this code is not appropriate
125 * should override write_secondary_boot and secondary_cpu_reset_hook
128 * This code enables the interrupt controllers for the secondary
129 * CPUs and then puts all the secondary CPUs into a loop waiting
130 * for an interprocessor interrupt and polling a configurable
131 * location for the kernel secondary CPU entry point.
133 #define DSB_INSN 0xf57ff04f
134 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
136 static const ARMInsnFixup smpboot
[] = {
137 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
138 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
139 { 0xe3a01001 }, /* mov r1, #1 */
140 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
141 { 0xe3a010ff }, /* mov r1, #0xff */
142 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
143 { 0, FIXUP_DSB
}, /* dsb */
144 { 0xe320f003 }, /* wfi */
145 { 0xe5901000 }, /* ldr r1, [r0] */
146 { 0xe1110001 }, /* tst r1, r1 */
147 { 0x0afffffb }, /* beq <wfi> */
148 { 0xe12fff11 }, /* bx r1 */
149 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
150 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
151 { 0, FIXUP_TERMINATOR
}
154 static void write_bootloader(const char *name
, hwaddr addr
,
155 const ARMInsnFixup
*insns
, uint32_t *fixupcontext
,
158 /* Fix up the specified bootloader fragment and write it into
159 * guest memory using rom_add_blob_fixed(). fixupcontext is
160 * an array giving the values to write in for the fixup types
161 * which write a value into the code array.
167 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
171 code
= g_new0(uint32_t, len
);
173 for (i
= 0; i
< len
; i
++) {
174 uint32_t insn
= insns
[i
].insn
;
175 FixupType fixup
= insns
[i
].fixup
;
181 case FIXUP_BOARD_SETUP
:
182 case FIXUP_ARGPTR_LO
:
183 case FIXUP_ARGPTR_HI
:
184 case FIXUP_ENTRYPOINT_LO
:
185 case FIXUP_ENTRYPOINT_HI
:
186 case FIXUP_GIC_CPU_IF
:
189 insn
= fixupcontext
[fixup
];
194 code
[i
] = tswap32(insn
);
197 assert((len
* sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE
);
199 rom_add_blob_fixed_as(name
, code
, len
* sizeof(uint32_t), addr
, as
);
204 static void default_write_secondary(ARMCPU
*cpu
,
205 const struct arm_boot_info
*info
)
207 uint32_t fixupcontext
[FIXUP_MAX
];
208 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
210 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
211 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
212 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
213 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
215 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
218 write_bootloader("smpboot", info
->smp_loader_start
,
219 smpboot
, fixupcontext
, as
);
222 void arm_write_secure_board_setup_dummy_smc(ARMCPU
*cpu
,
223 const struct arm_boot_info
*info
,
226 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
228 uint32_t mvbar_blob
[] = {
229 /* mvbar_addr: secure monitor vectors
230 * Default unimplemented and unused vectors to spin. Makes it
231 * easier to debug (as opposed to the CPU running away).
233 0xeafffffe, /* (spin) */
234 0xeafffffe, /* (spin) */
235 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
239 0xeafffffe, /* (spin) */
240 0xeafffffe, /* (spin) */
242 uint32_t board_setup_blob
[] = {
243 /* board setup addr */
244 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
245 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
246 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
247 0xe3a00e00 + (mvbar_addr
>> 4), /* mov r0, #mvbar_addr */
248 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
249 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
250 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
251 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
252 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
253 0xe1600070, /* smc #0 ;call monitor to flush SCR */
254 0xe1a0f001, /* mov pc, r1 ;return */
257 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
258 assert((mvbar_addr
& 0x1f) == 0 && (mvbar_addr
>> 4) < 0x100);
260 /* check that these blobs don't overlap */
261 assert((mvbar_addr
+ sizeof(mvbar_blob
) <= info
->board_setup_addr
)
262 || (info
->board_setup_addr
+ sizeof(board_setup_blob
) <= mvbar_addr
));
264 for (n
= 0; n
< ARRAY_SIZE(mvbar_blob
); n
++) {
265 mvbar_blob
[n
] = tswap32(mvbar_blob
[n
]);
267 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob
, sizeof(mvbar_blob
),
270 for (n
= 0; n
< ARRAY_SIZE(board_setup_blob
); n
++) {
271 board_setup_blob
[n
] = tswap32(board_setup_blob
[n
]);
273 rom_add_blob_fixed_as("board-setup", board_setup_blob
,
274 sizeof(board_setup_blob
), info
->board_setup_addr
, as
);
277 static void default_reset_secondary(ARMCPU
*cpu
,
278 const struct arm_boot_info
*info
)
280 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
281 CPUState
*cs
= CPU(cpu
);
283 address_space_stl_notdirty(as
, info
->smp_bootreg_addr
,
284 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
285 cpu_set_pc(cs
, info
->smp_loader_start
);
288 static inline bool have_dtb(const struct arm_boot_info
*info
)
290 return info
->dtb_filename
|| info
->get_dtb
;
293 #define WRITE_WORD(p, value) do { \
294 address_space_stl_notdirty(as, p, value, \
295 MEMTXATTRS_UNSPECIFIED, NULL); \
299 static void set_kernel_args(const struct arm_boot_info
*info
, AddressSpace
*as
)
301 int initrd_size
= info
->initrd_size
;
302 hwaddr base
= info
->loader_start
;
305 p
= base
+ KERNEL_ARGS_ADDR
;
308 WRITE_WORD(p
, 0x54410001);
310 WRITE_WORD(p
, 0x1000);
313 /* TODO: handle multiple chips on one ATAG list */
315 WRITE_WORD(p
, 0x54410002);
316 WRITE_WORD(p
, info
->ram_size
);
317 WRITE_WORD(p
, info
->loader_start
);
321 WRITE_WORD(p
, 0x54420005);
322 WRITE_WORD(p
, info
->initrd_start
);
323 WRITE_WORD(p
, initrd_size
);
325 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
329 cmdline_size
= strlen(info
->kernel_cmdline
);
330 address_space_write(as
, p
+ 8, MEMTXATTRS_UNSPECIFIED
,
331 info
->kernel_cmdline
, cmdline_size
+ 1);
332 cmdline_size
= (cmdline_size
>> 2) + 1;
333 WRITE_WORD(p
, cmdline_size
+ 2);
334 WRITE_WORD(p
, 0x54410009);
335 p
+= cmdline_size
* 4;
337 if (info
->atag_board
) {
340 uint8_t atag_board_buf
[0x1000];
342 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
343 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
344 WRITE_WORD(p
, 0x414f4d50);
345 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
,
346 atag_board_buf
, atag_board_len
);
354 static void set_kernel_args_old(const struct arm_boot_info
*info
,
359 int initrd_size
= info
->initrd_size
;
360 hwaddr base
= info
->loader_start
;
362 /* see linux/include/asm-arm/setup.h */
363 p
= base
+ KERNEL_ARGS_ADDR
;
367 WRITE_WORD(p
, info
->ram_size
/ 4096);
370 #define FLAG_READONLY 1
371 #define FLAG_RDLOAD 4
372 #define FLAG_RDPROMPT 8
374 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
376 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
385 /* memc_control_reg */
387 /* unsigned char sounddefault */
388 /* unsigned char adfsdrives */
389 /* unsigned char bytes_per_char_h */
390 /* unsigned char bytes_per_char_v */
392 /* pages_in_bank[4] */
401 WRITE_WORD(p
, info
->initrd_start
);
406 WRITE_WORD(p
, initrd_size
);
411 /* system_serial_low */
413 /* system_serial_high */
417 /* zero unused fields */
418 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
421 s
= info
->kernel_cmdline
;
423 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
, s
, strlen(s
) + 1);
429 static int fdt_add_memory_node(void *fdt
, uint32_t acells
, hwaddr mem_base
,
430 uint32_t scells
, hwaddr mem_len
,
436 nodename
= g_strdup_printf("/memory@%" PRIx64
, mem_base
);
437 qemu_fdt_add_subnode(fdt
, nodename
);
438 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
439 ret
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg", acells
, mem_base
,
445 /* only set the NUMA ID if it is specified */
446 if (numa_node_id
>= 0) {
447 ret
= qemu_fdt_setprop_cell(fdt
, nodename
,
448 "numa-node-id", numa_node_id
);
455 static void fdt_add_psci_node(void *fdt
)
457 uint32_t cpu_suspend_fn
;
461 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
462 const char *psci_method
;
463 int64_t psci_conduit
;
466 psci_conduit
= object_property_get_int(OBJECT(armcpu
),
469 switch (psci_conduit
) {
470 case QEMU_PSCI_CONDUIT_DISABLED
:
472 case QEMU_PSCI_CONDUIT_HVC
:
475 case QEMU_PSCI_CONDUIT_SMC
:
479 g_assert_not_reached();
483 * If /psci node is present in provided DTB, assume that no fixup
484 * is necessary and all PSCI configuration should be taken as-is
486 rc
= fdt_path_offset(fdt
, "/psci");
491 qemu_fdt_add_subnode(fdt
, "/psci");
492 if (armcpu
->psci_version
== 2) {
493 const char comp
[] = "arm,psci-0.2\0arm,psci";
494 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
496 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
497 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
498 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
499 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
500 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
502 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
503 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
504 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
507 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
509 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
510 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
511 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
512 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
515 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
516 * to the instruction that should be used to invoke PSCI functions.
517 * However, the device tree binding uses 'method' instead, so that is
518 * what we should use here.
520 qemu_fdt_setprop_string(fdt
, "/psci", "method", psci_method
);
522 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
523 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
524 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
525 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
528 int arm_load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
529 hwaddr addr_limit
, AddressSpace
*as
, MachineState
*ms
)
533 uint32_t acells
, scells
;
535 hwaddr mem_base
, mem_len
;
539 if (binfo
->dtb_filename
) {
541 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
543 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
547 fdt
= load_device_tree(filename
, &size
);
549 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
555 fdt
= binfo
->get_dtb(binfo
, &size
);
557 fprintf(stderr
, "Board was unable to create a dtb blob\n");
562 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
563 /* Installing the device tree blob at addr would exceed addr_limit.
564 * Whether this constitutes failure is up to the caller to decide,
565 * so just return 0 as size, i.e., no error.
571 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells",
573 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells",
575 if (acells
== 0 || scells
== 0) {
576 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
580 if (scells
< 2 && binfo
->ram_size
>= 4 * GiB
) {
581 /* This is user error so deserves a friendlier error message
582 * than the failure of setprop_sized_cells would provide
584 fprintf(stderr
, "qemu: dtb file not compatible with "
589 /* nop all root nodes matching /memory or /memory@unit-address */
590 node_path
= qemu_fdt_node_unit_path(fdt
, "memory", &err
);
592 error_report_err(err
);
595 while (node_path
[n
]) {
596 if (g_str_has_prefix(node_path
[n
], "/memory")) {
597 qemu_fdt_nop_node(fdt
, node_path
[n
]);
601 g_strfreev(node_path
);
603 if (ms
->numa_state
!= NULL
&& ms
->numa_state
->num_nodes
> 0) {
604 mem_base
= binfo
->loader_start
;
605 for (i
= 0; i
< ms
->numa_state
->num_nodes
; i
++) {
606 mem_len
= ms
->numa_state
->nodes
[i
].node_mem
;
607 rc
= fdt_add_memory_node(fdt
, acells
, mem_base
,
610 fprintf(stderr
, "couldn't add /memory@%"PRIx64
" node\n",
618 rc
= fdt_add_memory_node(fdt
, acells
, binfo
->loader_start
,
619 scells
, binfo
->ram_size
, -1);
621 fprintf(stderr
, "couldn't add /memory@%"PRIx64
" node\n",
622 binfo
->loader_start
);
627 rc
= fdt_path_offset(fdt
, "/chosen");
629 qemu_fdt_add_subnode(fdt
, "/chosen");
632 if (ms
->kernel_cmdline
&& *ms
->kernel_cmdline
) {
633 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
636 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
641 if (binfo
->initrd_size
) {
642 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-start",
643 binfo
->initrd_start
);
645 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
649 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-end",
650 binfo
->initrd_start
+ binfo
->initrd_size
);
652 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
657 fdt_add_psci_node(fdt
);
659 if (binfo
->modify_dtb
) {
660 binfo
->modify_dtb(binfo
, fdt
);
663 qemu_fdt_dumpdtb(fdt
, size
);
665 /* Put the DTB into the memory map as a ROM image: this will ensure
666 * the DTB is copied again upon reset, even if addr points into RAM.
668 rom_add_blob_fixed_as("dtb", fdt
, size
, addr
, as
);
679 static void do_cpu_reset(void *opaque
)
681 ARMCPU
*cpu
= opaque
;
682 CPUState
*cs
= CPU(cpu
);
683 CPUARMState
*env
= &cpu
->env
;
684 const struct arm_boot_info
*info
= env
->boot_info
;
688 if (!info
->is_linux
) {
690 /* Jump to the entry point. */
691 uint64_t entry
= info
->entry
;
693 switch (info
->endianness
) {
694 case ARM_ENDIANNESS_LE
:
695 env
->cp15
.sctlr_el
[1] &= ~SCTLR_E0E
;
696 for (i
= 1; i
< 4; ++i
) {
697 env
->cp15
.sctlr_el
[i
] &= ~SCTLR_EE
;
699 env
->uncached_cpsr
&= ~CPSR_E
;
701 case ARM_ENDIANNESS_BE8
:
702 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
703 for (i
= 1; i
< 4; ++i
) {
704 env
->cp15
.sctlr_el
[i
] |= SCTLR_EE
;
706 env
->uncached_cpsr
|= CPSR_E
;
708 case ARM_ENDIANNESS_BE32
:
709 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
711 case ARM_ENDIANNESS_UNKNOWN
:
712 break; /* Board's decision */
714 g_assert_not_reached();
717 cpu_set_pc(cs
, entry
);
719 /* If we are booting Linux then we need to check whether we are
720 * booting into secure or non-secure state and adjust the state
721 * accordingly. Out of reset, ARM is defined to be in secure state
722 * (SCR.NS = 0), we change that here if non-secure boot has been
725 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
726 /* AArch64 is defined to come out of reset into EL3 if enabled.
727 * If we are booting Linux then we need to adjust our EL as
728 * Linux expects us to be in EL2 or EL1. AArch32 resets into
729 * SVC, which Linux expects, so no privilege/exception level to
733 env
->cp15
.scr_el3
|= SCR_RW
;
734 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
735 env
->cp15
.hcr_el2
|= HCR_RW
;
736 env
->pstate
= PSTATE_MODE_EL2h
;
738 env
->pstate
= PSTATE_MODE_EL1h
;
740 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
741 env
->cp15
.scr_el3
|= SCR_API
| SCR_APK
;
743 if (cpu_isar_feature(aa64_mte
, cpu
)) {
744 env
->cp15
.scr_el3
|= SCR_ATA
;
746 if (cpu_isar_feature(aa64_sve
, cpu
)) {
747 env
->cp15
.cptr_el
[3] |= CPTR_EZ
;
749 /* AArch64 kernels never boot in secure mode */
750 assert(!info
->secure_boot
);
751 /* This hook is only supported for AArch32 currently:
752 * bootloader_aarch64[] will not call the hook, and
753 * the code above has already dropped us into EL2 or EL1.
755 assert(!info
->secure_board_setup
);
758 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
759 /* If we have EL2 then Linux expects the HVC insn to work */
760 env
->cp15
.scr_el3
|= SCR_HCE
;
763 /* Set to non-secure if not a secure boot */
764 if (!info
->secure_boot
&&
765 (cs
!= first_cpu
|| !info
->secure_board_setup
)) {
766 /* Linux expects non-secure state */
767 env
->cp15
.scr_el3
|= SCR_NS
;
768 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
769 env
->cp15
.nsacr
|= 3 << 10;
773 if (!env
->aarch64
&& !info
->secure_boot
&&
774 arm_feature(env
, ARM_FEATURE_EL2
)) {
776 * This is an AArch32 boot not to Secure state, and
777 * we have Hyp mode available, so boot the kernel into
778 * Hyp mode. This is not how the CPU comes out of reset,
779 * so we need to manually put it there.
781 cpsr_write(env
, ARM_CPU_MODE_HYP
, CPSR_M
, CPSRWriteRaw
);
784 if (cs
== first_cpu
) {
785 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
787 cpu_set_pc(cs
, info
->loader_start
);
789 if (!have_dtb(info
)) {
791 set_kernel_args_old(info
, as
);
793 set_kernel_args(info
, as
);
797 info
->secondary_cpu_reset_hook(cpu
, info
);
800 arm_rebuild_hflags(env
);
805 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
807 * @fw_cfg: The firmware config instance to store the data in.
808 * @size_key: The firmware config key to store the size of the loaded
809 * data under, with fw_cfg_add_i32().
810 * @data_key: The firmware config key to store the loaded data under,
811 * with fw_cfg_add_bytes().
812 * @image_name: The name of the image file to load. If it is NULL, the
813 * function returns without doing anything.
814 * @try_decompress: Whether the image should be decompressed (gunzipped) before
815 * adding it to fw_cfg. If decompression fails, the image is
818 * In case of failure, the function prints an error message to stderr and the
819 * process exits with status 1.
821 static void load_image_to_fw_cfg(FWCfgState
*fw_cfg
, uint16_t size_key
,
822 uint16_t data_key
, const char *image_name
,
828 if (image_name
== NULL
) {
832 if (try_decompress
) {
833 size
= load_image_gzipped_buffer(image_name
,
834 LOAD_IMAGE_MAX_GUNZIP_BYTES
, &data
);
837 if (size
== (size_t)-1) {
841 if (!g_file_get_contents(image_name
, &contents
, &length
, NULL
)) {
842 error_report("failed to load \"%s\"", image_name
);
846 data
= (uint8_t *)contents
;
849 fw_cfg_add_i32(fw_cfg
, size_key
, size
);
850 fw_cfg_add_bytes(fw_cfg
, data_key
, data
, size
);
853 static int do_arm_linux_init(Object
*obj
, void *opaque
)
855 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
856 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
857 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
858 struct arm_boot_info
*info
= opaque
;
860 if (albifc
->arm_linux_init
) {
861 albifc
->arm_linux_init(albif
, info
->secure_boot
);
867 static int64_t arm_load_elf(struct arm_boot_info
*info
, uint64_t *pentry
,
868 uint64_t *lowaddr
, uint64_t *highaddr
,
869 int elf_machine
, AddressSpace
*as
)
882 load_elf_hdr(info
->kernel_filename
, &elf_header
, &elf_is64
, &err
);
889 big_endian
= elf_header
.h64
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
890 info
->endianness
= big_endian
? ARM_ENDIANNESS_BE8
893 big_endian
= elf_header
.h32
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
895 if (bswap32(elf_header
.h32
.e_flags
) & EF_ARM_BE8
) {
896 info
->endianness
= ARM_ENDIANNESS_BE8
;
898 info
->endianness
= ARM_ENDIANNESS_BE32
;
899 /* In BE32, the CPU has a different view of the per-byte
900 * address map than the rest of the system. BE32 ELF files
901 * are organised such that they can be programmed through
902 * the CPU's per-word byte-reversed view of the world. QEMU
903 * however loads ELF files independently of the CPU. So
904 * tell the ELF loader to byte reverse the data for us.
909 info
->endianness
= ARM_ENDIANNESS_LE
;
913 ret
= load_elf_as(info
->kernel_filename
, NULL
, NULL
, NULL
,
914 pentry
, lowaddr
, highaddr
, NULL
, big_endian
, elf_machine
,
917 /* The header loaded but the image didn't */
924 static uint64_t load_aarch64_image(const char *filename
, hwaddr mem_base
,
925 hwaddr
*entry
, AddressSpace
*as
)
927 hwaddr kernel_load_offset
= KERNEL64_LOAD_ADDR
;
928 uint64_t kernel_size
= 0;
932 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
933 size
= load_image_gzipped_buffer(filename
, LOAD_IMAGE_MAX_GUNZIP_BYTES
,
939 /* Load as raw file otherwise */
940 if (!g_file_get_contents(filename
, (char **)&buffer
, &len
, NULL
)) {
946 /* check the arm64 magic header value -- very old kernels may not have it */
947 if (size
> ARM64_MAGIC_OFFSET
+ 4 &&
948 memcmp(buffer
+ ARM64_MAGIC_OFFSET
, "ARM\x64", 4) == 0) {
951 /* The arm64 Image header has text_offset and image_size fields at 8 and
952 * 16 bytes into the Image header, respectively. The text_offset field
953 * is only valid if the image_size is non-zero.
955 memcpy(&hdrvals
, buffer
+ ARM64_TEXT_OFFSET_OFFSET
, sizeof(hdrvals
));
957 kernel_size
= le64_to_cpu(hdrvals
[1]);
959 if (kernel_size
!= 0) {
960 kernel_load_offset
= le64_to_cpu(hdrvals
[0]);
963 * We write our startup "bootloader" at the very bottom of RAM,
964 * so that bit can't be used for the image. Luckily the Image
965 * format specification is that the image requests only an offset
966 * from a 2MB boundary, not an absolute load address. So if the
967 * image requests an offset that might mean it overlaps with the
968 * bootloader, we can just load it starting at 2MB+offset rather
971 if (kernel_load_offset
< BOOTLOADER_MAX_SIZE
) {
972 kernel_load_offset
+= 2 * MiB
;
978 * Kernels before v3.17 don't populate the image_size field, and
979 * raw images have no header. For those our best guess at the size
980 * is the size of the Image file itself.
982 if (kernel_size
== 0) {
986 *entry
= mem_base
+ kernel_load_offset
;
987 rom_add_blob_fixed_as(filename
, buffer
, size
, *entry
, as
);
994 static void arm_setup_direct_kernel_boot(ARMCPU
*cpu
,
995 struct arm_boot_info
*info
)
997 /* Set up for a direct boot of a kernel image file. */
999 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1004 /* Addresses of first byte used and first byte not used by the image */
1005 uint64_t image_low_addr
= 0, image_high_addr
= 0;
1008 static const ARMInsnFixup
*primary_loader
;
1009 uint64_t ram_end
= info
->loader_start
+ info
->ram_size
;
1011 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1012 primary_loader
= bootloader_aarch64
;
1013 elf_machine
= EM_AARCH64
;
1015 primary_loader
= bootloader
;
1016 if (!info
->write_board_setup
) {
1017 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
1019 elf_machine
= EM_ARM
;
1022 if (!info
->secondary_cpu_reset_hook
) {
1023 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
1025 if (!info
->write_secondary_boot
) {
1026 info
->write_secondary_boot
= default_write_secondary
;
1029 if (info
->nb_cpus
== 0)
1032 /* Assume that raw images are linux kernels, and ELF images are not. */
1033 kernel_size
= arm_load_elf(info
, &elf_entry
, &image_low_addr
,
1034 &image_high_addr
, elf_machine
, as
);
1035 if (kernel_size
> 0 && have_dtb(info
)) {
1037 * If there is still some room left at the base of RAM, try and put
1038 * the DTB there like we do for images loaded with -bios or -pflash.
1040 if (image_low_addr
> info
->loader_start
1041 || image_high_addr
< info
->loader_start
) {
1043 * Set image_low_addr as address limit for arm_load_dtb if it may be
1044 * pointing into RAM, otherwise pass '0' (no limit)
1046 if (image_low_addr
< info
->loader_start
) {
1049 info
->dtb_start
= info
->loader_start
;
1050 info
->dtb_limit
= image_low_addr
;
1054 if (kernel_size
< 0) {
1055 uint64_t loadaddr
= info
->loader_start
+ KERNEL_NOLOAD_ADDR
;
1056 kernel_size
= load_uimage_as(info
->kernel_filename
, &entry
, &loadaddr
,
1057 &is_linux
, NULL
, NULL
, as
);
1058 if (kernel_size
>= 0) {
1059 image_low_addr
= loadaddr
;
1060 image_high_addr
= image_low_addr
+ kernel_size
;
1063 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
1064 kernel_size
= load_aarch64_image(info
->kernel_filename
,
1065 info
->loader_start
, &entry
, as
);
1067 if (kernel_size
>= 0) {
1068 image_low_addr
= entry
;
1069 image_high_addr
= image_low_addr
+ kernel_size
;
1071 } else if (kernel_size
< 0) {
1073 entry
= info
->loader_start
+ KERNEL_LOAD_ADDR
;
1074 kernel_size
= load_image_targphys_as(info
->kernel_filename
, entry
,
1075 ram_end
- KERNEL_LOAD_ADDR
, as
);
1077 if (kernel_size
>= 0) {
1078 image_low_addr
= entry
;
1079 image_high_addr
= image_low_addr
+ kernel_size
;
1082 if (kernel_size
< 0) {
1083 error_report("could not load kernel '%s'", info
->kernel_filename
);
1087 if (kernel_size
> info
->ram_size
) {
1088 error_report("kernel '%s' is too large to fit in RAM "
1089 "(kernel size %d, RAM size %" PRId64
")",
1090 info
->kernel_filename
, kernel_size
, info
->ram_size
);
1094 info
->entry
= entry
;
1097 * We want to put the initrd far enough into RAM that when the
1098 * kernel is uncompressed it will not clobber the initrd. However
1099 * on boards without much RAM we must ensure that we still leave
1100 * enough room for a decent sized initrd, and on boards with large
1101 * amounts of RAM we must avoid the initrd being so far up in RAM
1102 * that it is outside lowmem and inaccessible to the kernel.
1103 * So for boards with less than 256MB of RAM we put the initrd
1104 * halfway into RAM, and for boards with 256MB of RAM or more we put
1105 * the initrd at 128MB.
1106 * We also refuse to put the initrd somewhere that will definitely
1107 * overlay the kernel we just loaded, though for kernel formats which
1108 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1109 * we might still make a bad choice here.
1111 info
->initrd_start
= info
->loader_start
+
1112 MIN(info
->ram_size
/ 2, 128 * MiB
);
1113 if (image_high_addr
) {
1114 info
->initrd_start
= MAX(info
->initrd_start
, image_high_addr
);
1116 info
->initrd_start
= TARGET_PAGE_ALIGN(info
->initrd_start
);
1119 uint32_t fixupcontext
[FIXUP_MAX
];
1121 if (info
->initrd_filename
) {
1123 if (info
->initrd_start
>= ram_end
) {
1124 error_report("not enough space after kernel to load initrd");
1128 initrd_size
= load_ramdisk_as(info
->initrd_filename
,
1130 ram_end
- info
->initrd_start
, as
);
1131 if (initrd_size
< 0) {
1132 initrd_size
= load_image_targphys_as(info
->initrd_filename
,
1138 if (initrd_size
< 0) {
1139 error_report("could not load initrd '%s'",
1140 info
->initrd_filename
);
1143 if (info
->initrd_start
+ initrd_size
> ram_end
) {
1144 error_report("could not load initrd '%s': "
1145 "too big to fit into RAM after the kernel",
1146 info
->initrd_filename
);
1152 info
->initrd_size
= initrd_size
;
1154 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
1155 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
1158 * for device tree boot, we pass the DTB directly in r2. Otherwise
1159 * we point to the kernel args.
1161 if (have_dtb(info
)) {
1164 if (elf_machine
== EM_AARCH64
) {
1166 * Some AArch64 kernels on early bootup map the fdt region as
1168 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1170 * Let's play safe and prealign it to 2MB to give us some space.
1175 * Some 32bit kernels will trash anything in the 4K page the
1176 * initrd ends in, so make sure the DTB isn't caught up in that.
1181 /* Place the DTB after the initrd in memory with alignment. */
1182 info
->dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
,
1184 if (info
->dtb_start
>= ram_end
) {
1185 error_report("Not enough space for DTB after kernel/initrd");
1188 fixupcontext
[FIXUP_ARGPTR_LO
] = info
->dtb_start
;
1189 fixupcontext
[FIXUP_ARGPTR_HI
] = info
->dtb_start
>> 32;
1191 fixupcontext
[FIXUP_ARGPTR_LO
] =
1192 info
->loader_start
+ KERNEL_ARGS_ADDR
;
1193 fixupcontext
[FIXUP_ARGPTR_HI
] =
1194 (info
->loader_start
+ KERNEL_ARGS_ADDR
) >> 32;
1195 if (info
->ram_size
>= 4 * GiB
) {
1196 error_report("RAM size must be less than 4GB to boot"
1197 " Linux kernel using ATAGS (try passing a device tree"
1202 fixupcontext
[FIXUP_ENTRYPOINT_LO
] = entry
;
1203 fixupcontext
[FIXUP_ENTRYPOINT_HI
] = entry
>> 32;
1205 write_bootloader("bootloader", info
->loader_start
,
1206 primary_loader
, fixupcontext
, as
);
1208 if (info
->nb_cpus
> 1) {
1209 info
->write_secondary_boot(cpu
, info
);
1211 if (info
->write_board_setup
) {
1212 info
->write_board_setup(cpu
, info
);
1216 * Notify devices which need to fake up firmware initialization
1217 * that we're doing a direct kernel boot.
1219 object_child_foreach_recursive(object_get_root(),
1220 do_arm_linux_init
, info
);
1222 info
->is_linux
= is_linux
;
1224 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1225 ARM_CPU(cs
)->env
.boot_info
= info
;
1229 static void arm_setup_firmware_boot(ARMCPU
*cpu
, struct arm_boot_info
*info
)
1231 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1233 if (have_dtb(info
)) {
1235 * If we have a device tree blob, but no kernel to supply it to (or
1236 * the kernel is supposed to be loaded by the bootloader), copy the
1237 * DTB to the base of RAM for the bootloader to pick up.
1239 info
->dtb_start
= info
->loader_start
;
1242 if (info
->kernel_filename
) {
1244 bool try_decompressing_kernel
;
1246 fw_cfg
= fw_cfg_find();
1247 try_decompressing_kernel
= arm_feature(&cpu
->env
,
1248 ARM_FEATURE_AARCH64
);
1251 * Expose the kernel, the command line, and the initrd in fw_cfg.
1252 * We don't process them here at all, it's all left to the
1255 load_image_to_fw_cfg(fw_cfg
,
1256 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
1257 info
->kernel_filename
,
1258 try_decompressing_kernel
);
1259 load_image_to_fw_cfg(fw_cfg
,
1260 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
1261 info
->initrd_filename
, false);
1263 if (info
->kernel_cmdline
) {
1264 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
1265 strlen(info
->kernel_cmdline
) + 1);
1266 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
1267 info
->kernel_cmdline
);
1272 * We will start from address 0 (typically a boot ROM image) in the
1273 * same way as hardware. Leave env->boot_info NULL, so that
1274 * do_cpu_reset() knows it does not need to alter the PC on reset.
1278 void arm_load_kernel(ARMCPU
*cpu
, MachineState
*ms
, struct arm_boot_info
*info
)
1281 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1284 * CPU objects (unlike devices) are not automatically reset on system
1285 * reset, so we must always register a handler to do so. If we're
1286 * actually loading a kernel, the handler is also responsible for
1287 * arranging that we start it correctly.
1289 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1290 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
1294 * The board code is not supposed to set secure_board_setup unless
1295 * running its code in secure mode is actually possible, and KVM
1296 * doesn't support secure.
1298 assert(!(info
->secure_board_setup
&& kvm_enabled()));
1299 info
->kernel_filename
= ms
->kernel_filename
;
1300 info
->kernel_cmdline
= ms
->kernel_cmdline
;
1301 info
->initrd_filename
= ms
->initrd_filename
;
1302 info
->dtb_filename
= ms
->dtb
;
1303 info
->dtb_limit
= 0;
1305 /* Load the kernel. */
1306 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
1307 arm_setup_firmware_boot(cpu
, info
);
1309 arm_setup_direct_kernel_boot(cpu
, info
);
1312 if (!info
->skip_dtb_autoload
&& have_dtb(info
)) {
1313 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1319 static const TypeInfo arm_linux_boot_if_info
= {
1320 .name
= TYPE_ARM_LINUX_BOOT_IF
,
1321 .parent
= TYPE_INTERFACE
,
1322 .class_size
= sizeof(ARMLinuxBootIfClass
),
1325 static void arm_linux_boot_register_types(void)
1327 type_register_static(&arm_linux_boot_if_info
);
1330 type_init(arm_linux_boot_register_types
)