4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
28 uint32_t syndrome
, uint32_t target_el
)
30 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
32 assert(!excp_is_internal(excp
));
33 cs
->exception_index
= excp
;
34 env
->exception
.syndrome
= syndrome
;
35 env
->exception
.target_el
= target_el
;
39 static int exception_target_el(CPUARMState
*env
)
41 int target_el
= MAX(1, arm_current_el(env
));
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
46 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
53 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
54 uint32_t rn
, uint32_t maxindex
)
61 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
63 for (shift
= 0; shift
< 32; shift
+= 8) {
64 index
= (ireg
>> shift
) & 0xff;
65 if (index
< maxindex
) {
66 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
69 val
|= def
& (0xff << shift
);
75 #if !defined(CONFIG_USER_ONLY)
77 /* try to fill the TLB and return an exception if error. If retaddr is
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
81 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
86 ARMMMUFaultInfo fi
= {};
88 ret
= arm_tlb_fill(cs
, addr
, is_write
, mmu_idx
, &fsr
, &fi
);
90 ARMCPU
*cpu
= ARM_CPU(cs
);
91 CPUARMState
*env
= &cpu
->env
;
93 unsigned int target_el
;
97 /* now we have a real cpu fault */
98 cpu_restore_state(cs
, retaddr
);
101 target_el
= exception_target_el(env
);
104 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
106 same_el
= arm_current_el(env
) == target_el
;
107 /* AArch64 syndrome does not have an LPAE bit */
108 syn
= fsr
& ~(1 << 9);
110 /* For insn and data aborts we assume there is no instruction syndrome
111 * information; this is always true for exceptions reported to EL1.
114 syn
= syn_insn_abort(same_el
, 0, fi
.s1ptw
, syn
);
115 exc
= EXCP_PREFETCH_ABORT
;
117 syn
= syn_data_abort(same_el
, 0, 0, fi
.s1ptw
, is_write
== 1, syn
);
118 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
121 exc
= EXCP_DATA_ABORT
;
124 env
->exception
.vaddress
= addr
;
125 env
->exception
.fsr
= fsr
;
126 raise_exception(env
, exc
, syn
, target_el
);
131 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
133 uint32_t res
= a
+ b
;
134 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
139 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
141 uint32_t res
= a
+ b
;
142 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
144 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
149 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
151 uint32_t res
= a
- b
;
152 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
154 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
159 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
162 if (val
>= 0x40000000) {
165 } else if (val
<= (int32_t)0xc0000000) {
174 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
176 uint32_t res
= a
+ b
;
184 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
186 uint32_t res
= a
- b
;
194 /* Signed saturation. */
195 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
201 mask
= (1u << shift
) - 1;
205 } else if (top
< -1) {
212 /* Unsigned saturation. */
213 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
217 max
= (1u << shift
) - 1;
221 } else if (val
> max
) {
228 /* Signed saturate. */
229 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
231 return do_ssat(env
, x
, shift
);
234 /* Dual halfword signed saturate. */
235 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
239 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
240 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
244 /* Unsigned saturate. */
245 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
247 return do_usat(env
, x
, shift
);
250 /* Dual halfword unsigned saturate. */
251 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
255 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
256 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
260 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
261 * The function returns the target EL (1-3) if the instruction is to be trapped;
262 * otherwise it returns 0 indicating it is not trapped.
264 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
266 int cur_el
= arm_current_el(env
);
269 /* If we are currently in EL0 then we need to check if SCTLR is set up for
270 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
272 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
275 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
276 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
277 /* Secure EL0 and Secure PL1 is at EL3 */
283 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
288 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
289 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
290 * bits will be zero indicating no trap.
292 if (cur_el
< 2 && !arm_is_secure(env
)) {
293 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
294 if (env
->cp15
.hcr_el2
& mask
) {
299 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
301 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
302 if (env
->cp15
.scr_el3
& mask
) {
310 void HELPER(wfi
)(CPUARMState
*env
)
312 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
313 int target_el
= check_wfx_trap(env
, false);
315 if (cpu_has_work(cs
)) {
316 /* Don't bother to go into our "low power state" if
317 * we would just wake up immediately.
324 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
327 cs
->exception_index
= EXCP_HLT
;
332 void HELPER(wfe
)(CPUARMState
*env
)
334 /* This is a hint instruction that is semantically different
335 * from YIELD even though we currently implement it identically.
336 * Don't actually halt the CPU, just yield back to top
337 * level loop. This is not going into a "low power state"
338 * (ie halting until some event occurs), so we never take
339 * a configurable trap to a different exception level.
344 void HELPER(yield
)(CPUARMState
*env
)
346 ARMCPU
*cpu
= arm_env_get_cpu(env
);
347 CPUState
*cs
= CPU(cpu
);
349 /* This is a non-trappable hint instruction that generally indicates
350 * that the guest is currently busy-looping. Yield control back to the
351 * top level loop so that a more deserving VCPU has a chance to run.
353 cs
->exception_index
= EXCP_YIELD
;
357 /* Raise an internal-to-QEMU exception. This is limited to only
358 * those EXCP values which are special cases for QEMU to interrupt
359 * execution and not to be used for exceptions which are passed to
360 * the guest (those must all have syndrome information and thus should
361 * use exception_with_syndrome).
363 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
365 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
367 assert(excp_is_internal(excp
));
368 cs
->exception_index
= excp
;
372 /* Raise an exception with the specified syndrome register value */
373 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
374 uint32_t syndrome
, uint32_t target_el
)
376 raise_exception(env
, excp
, syndrome
, target_el
);
379 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
381 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
384 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
386 cpsr_write(env
, val
, mask
);
389 /* Access to user mode registers from privileged modes. */
390 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
395 val
= env
->banked_r13
[BANK_USRSYS
];
396 } else if (regno
== 14) {
397 val
= env
->banked_r14
[BANK_USRSYS
];
398 } else if (regno
>= 8
399 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
400 val
= env
->usr_regs
[regno
- 8];
402 val
= env
->regs
[regno
];
407 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
410 env
->banked_r13
[BANK_USRSYS
] = val
;
411 } else if (regno
== 14) {
412 env
->banked_r14
[BANK_USRSYS
] = val
;
413 } else if (regno
>= 8
414 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
415 env
->usr_regs
[regno
- 8] = val
;
417 env
->regs
[regno
] = val
;
421 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
)
423 const ARMCPRegInfo
*ri
= rip
;
426 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
427 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
428 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
435 switch (ri
->accessfn(env
, ri
)) {
439 target_el
= exception_target_el(env
);
441 case CP_ACCESS_TRAP_EL2
:
442 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
443 * a bug in the access function.
445 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
448 case CP_ACCESS_TRAP_EL3
:
451 case CP_ACCESS_TRAP_UNCATEGORIZED
:
452 target_el
= exception_target_el(env
);
453 syndrome
= syn_uncategorized();
455 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
457 syndrome
= syn_uncategorized();
459 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
461 syndrome
= syn_uncategorized();
464 g_assert_not_reached();
467 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
470 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
472 const ARMCPRegInfo
*ri
= rip
;
474 ri
->writefn(env
, ri
, value
);
477 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
479 const ARMCPRegInfo
*ri
= rip
;
481 return ri
->readfn(env
, ri
);
484 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
486 const ARMCPRegInfo
*ri
= rip
;
488 ri
->writefn(env
, ri
, value
);
491 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
493 const ARMCPRegInfo
*ri
= rip
;
495 return ri
->readfn(env
, ri
);
498 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
500 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
501 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
502 * to catch that case at translate time.
504 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
505 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
506 extract32(op
, 3, 3), 4,
508 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
512 case 0x05: /* SPSel */
513 update_spsel(env
, imm
);
515 case 0x1e: /* DAIFSet */
516 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
518 case 0x1f: /* DAIFClear */
519 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
522 g_assert_not_reached();
526 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
528 env
->pstate
&= ~PSTATE_SS
;
531 void HELPER(pre_hvc
)(CPUARMState
*env
)
533 ARMCPU
*cpu
= arm_env_get_cpu(env
);
534 int cur_el
= arm_current_el(env
);
535 /* FIXME: Use actual secure state. */
539 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
540 /* If PSCI is enabled and this looks like a valid PSCI call then
541 * that overrides the architecturally mandated HVC behaviour.
546 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
547 /* If EL2 doesn't exist, HVC always UNDEFs */
549 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
550 /* EL3.HCE has priority over EL2.HCD. */
551 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
553 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
556 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
557 * For ARMv8/AArch64, HVC is allowed in EL3.
558 * Note that we've already trapped HVC from EL0 at translation
561 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
566 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
567 exception_target_el(env
));
571 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
573 ARMCPU
*cpu
= arm_env_get_cpu(env
);
574 int cur_el
= arm_current_el(env
);
575 bool secure
= arm_is_secure(env
);
576 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
577 /* On ARMv8 AArch32, SMD only applies to NS state.
578 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
579 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
580 * the EL2 condition here.
582 bool undef
= is_a64(env
) ? smd
: (!secure
&& smd
);
584 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
585 /* If PSCI is enabled and this looks like a valid PSCI call then
586 * that overrides the architecturally mandated SMC behaviour.
591 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
592 /* If we have no EL3 then SMC always UNDEFs */
594 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
595 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
596 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
600 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
601 exception_target_el(env
));
605 void HELPER(exception_return
)(CPUARMState
*env
)
607 int cur_el
= arm_current_el(env
);
608 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
609 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
612 aarch64_save_sp(env
, cur_el
);
614 env
->exclusive_addr
= -1;
616 /* We must squash the PSTATE.SS bit to zero unless both of the
618 * 1. debug exceptions are currently disabled
619 * 2. singlestep will be active in the EL we return to
620 * We check 1 here and 2 after we've done the pstate/cpsr write() to
621 * transition to the EL we're going to.
623 if (arm_generate_debug_exceptions(env
)) {
627 if (spsr
& PSTATE_nRW
) {
628 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
631 env
->uncached_cpsr
= 0x10;
632 cpsr_write(env
, spsr
, ~0);
633 if (!arm_singlestep_active(env
)) {
634 env
->uncached_cpsr
&= ~PSTATE_SS
;
636 aarch64_sync_64_to_32(env
);
638 env
->regs
[15] = env
->elr_el
[1] & ~0x1;
640 new_el
= extract32(spsr
, 2, 2);
642 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
643 /* Disallow return to an EL which is unimplemented or higher
644 * than the current one.
648 if (extract32(spsr
, 1, 1)) {
649 /* Return with reserved M[1] bit set */
652 if (new_el
== 0 && (spsr
& PSTATE_SP
)) {
653 /* Return to EL0 with M[0] bit set */
657 pstate_write(env
, spsr
);
658 if (!arm_singlestep_active(env
)) {
659 env
->pstate
&= ~PSTATE_SS
;
661 aarch64_restore_sp(env
, new_el
);
662 env
->pc
= env
->elr_el
[cur_el
];
668 /* Illegal return events of various kinds have architecturally
669 * mandated behaviour:
670 * restore NZCV and DAIF from SPSR_ELx
672 * restore PC from ELR_ELx
673 * no change to exception level, execution state or stack pointer
675 env
->pstate
|= PSTATE_IL
;
676 env
->pc
= env
->elr_el
[cur_el
];
677 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
678 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
679 pstate_write(env
, spsr
);
680 if (!arm_singlestep_active(env
)) {
681 env
->pstate
&= ~PSTATE_SS
;
685 /* Return true if the linked breakpoint entry lbn passes its checks */
686 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
688 CPUARMState
*env
= &cpu
->env
;
689 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
690 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
691 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
695 /* Links to unimplemented or non-context aware breakpoints are
696 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
697 * as if linked to an UNKNOWN context-aware breakpoint (in which
698 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
699 * We choose the former.
701 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
705 bcr
= env
->cp15
.dbgbcr
[lbn
];
707 if (extract64(bcr
, 0, 1) == 0) {
708 /* Linked breakpoint disabled : generate no events */
712 bt
= extract64(bcr
, 20, 4);
714 /* We match the whole register even if this is AArch32 using the
715 * short descriptor format (in which case it holds both PROCID and ASID),
716 * since we don't implement the optional v7 context ID masking.
718 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
721 case 3: /* linked context ID match */
722 if (arm_current_el(env
) > 1) {
723 /* Context matches never fire in EL2 or (AArch64) EL3 */
726 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
727 case 5: /* linked address mismatch (reserved in AArch64) */
728 case 9: /* linked VMID match (reserved if no EL2) */
729 case 11: /* linked context ID and VMID match (reserved if no EL2) */
731 /* Links to Unlinked context breakpoints must generate no
732 * events; we choose to do the same for reserved values too.
740 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
742 CPUARMState
*env
= &cpu
->env
;
744 int pac
, hmc
, ssc
, wt
, lbn
;
745 /* Note that for watchpoints the check is against the CPU security
746 * state, not the S/NS attribute on the offending data access.
748 bool is_secure
= arm_is_secure(env
);
749 int access_el
= arm_current_el(env
);
752 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
754 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
757 cr
= env
->cp15
.dbgwcr
[n
];
758 if (wp
->hitattrs
.user
) {
759 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
760 * match watchpoints as if they were accesses done at EL0, even if
761 * the CPU is at EL1 or higher.
766 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
768 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
771 cr
= env
->cp15
.dbgbcr
[n
];
773 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
774 * enabled and that the address and access type match; for breakpoints
775 * we know the address matched; check the remaining fields, including
776 * linked breakpoints. We rely on WCR and BCR having the same layout
777 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
778 * Note that some combinations of {PAC, HMC, SSC} are reserved and
779 * must act either like some valid combination or as if the watchpoint
780 * were disabled. We choose the former, and use this together with
781 * the fact that EL3 must always be Secure and EL2 must always be
782 * Non-Secure to simplify the code slightly compared to the full
783 * table in the ARM ARM.
785 pac
= extract64(cr
, 1, 2);
786 hmc
= extract64(cr
, 13, 1);
787 ssc
= extract64(cr
, 14, 2);
813 if (extract32(pac
, 0, 1) == 0) {
818 if (extract32(pac
, 1, 1) == 0) {
823 g_assert_not_reached();
826 wt
= extract64(cr
, 20, 1);
827 lbn
= extract64(cr
, 16, 4);
829 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
836 static bool check_watchpoints(ARMCPU
*cpu
)
838 CPUARMState
*env
= &cpu
->env
;
841 /* If watchpoints are disabled globally or we can't take debug
842 * exceptions here then watchpoint firings are ignored.
844 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
845 || !arm_generate_debug_exceptions(env
)) {
849 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
850 if (bp_wp_matches(cpu
, n
, true)) {
857 static bool check_breakpoints(ARMCPU
*cpu
)
859 CPUARMState
*env
= &cpu
->env
;
862 /* If breakpoints are disabled globally or we can't take debug
863 * exceptions here then breakpoint firings are ignored.
865 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
866 || !arm_generate_debug_exceptions(env
)) {
870 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
871 if (bp_wp_matches(cpu
, n
, false)) {
878 void HELPER(check_breakpoints
)(CPUARMState
*env
)
880 ARMCPU
*cpu
= arm_env_get_cpu(env
);
882 if (check_breakpoints(cpu
)) {
883 HELPER(exception_internal(env
, EXCP_DEBUG
));
887 void arm_debug_excp_handler(CPUState
*cs
)
889 /* Called by core code when a watchpoint or breakpoint fires;
890 * need to check which one and raise the appropriate exception.
892 ARMCPU
*cpu
= ARM_CPU(cs
);
893 CPUARMState
*env
= &cpu
->env
;
894 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
897 if (wp_hit
->flags
& BP_CPU
) {
898 cs
->watchpoint_hit
= NULL
;
899 if (check_watchpoints(cpu
)) {
900 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
901 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
903 if (extended_addresses_enabled(env
)) {
904 env
->exception
.fsr
= (1 << 9) | 0x22;
906 env
->exception
.fsr
= 0x2;
908 env
->exception
.vaddress
= wp_hit
->hitaddr
;
909 raise_exception(env
, EXCP_DATA_ABORT
,
910 syn_watchpoint(same_el
, 0, wnr
),
911 arm_debug_target_el(env
));
913 cpu_resume_from_signal(cs
, NULL
);
917 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
918 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
920 /* (1) GDB breakpoints should be handled first.
921 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
922 * since singlestep is also done by generating a debug internal
925 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
926 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
930 if (extended_addresses_enabled(env
)) {
931 env
->exception
.fsr
= (1 << 9) | 0x22;
933 env
->exception
.fsr
= 0x2;
935 /* FAR is UNKNOWN, so doesn't need setting */
936 raise_exception(env
, EXCP_PREFETCH_ABORT
,
937 syn_breakpoint(same_el
),
938 arm_debug_target_el(env
));
942 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
943 The only way to do that in TCG is a conditional branch, which clobbers
944 all our temporaries. For now implement these as helper functions. */
946 /* Similarly for variable shift instructions. */
948 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
950 int shift
= i
& 0xff;
957 } else if (shift
!= 0) {
958 env
->CF
= (x
>> (32 - shift
)) & 1;
964 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
966 int shift
= i
& 0xff;
969 env
->CF
= (x
>> 31) & 1;
973 } else if (shift
!= 0) {
974 env
->CF
= (x
>> (shift
- 1)) & 1;
980 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
982 int shift
= i
& 0xff;
984 env
->CF
= (x
>> 31) & 1;
985 return (int32_t)x
>> 31;
986 } else if (shift
!= 0) {
987 env
->CF
= (x
>> (shift
- 1)) & 1;
988 return (int32_t)x
>> shift
;
993 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
997 shift
= shift1
& 0x1f;
1000 env
->CF
= (x
>> 31) & 1;
1003 env
->CF
= (x
>> (shift
- 1)) & 1;
1004 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));