ui/cocoa: Subclass NSApplication so we can implement sendEvent
[qemu/ar7.git] / target / arm / cpu.c
blob54b61f917be0a4a6ab114f34ae6418cbb69e25c4
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "qapi/visitor.h"
26 #include "cpu.h"
27 #include "internals.h"
28 #include "qemu-common.h"
29 #include "exec/exec-all.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/loader.h"
33 #endif
34 #include "hw/arm/arm.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hw_accel.h"
37 #include "kvm_arm.h"
38 #include "disas/capstone.h"
39 #include "fpu/softfloat.h"
41 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
43 ARMCPU *cpu = ARM_CPU(cs);
44 CPUARMState *env = &cpu->env;
46 if (is_a64(env)) {
47 env->pc = value;
48 env->thumb = 0;
49 } else {
50 env->regs[15] = value & ~1;
51 env->thumb = value & 1;
55 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
57 ARMCPU *cpu = ARM_CPU(cs);
58 CPUARMState *env = &cpu->env;
61 * It's OK to look at env for the current mode here, because it's
62 * never possible for an AArch64 TB to chain to an AArch32 TB.
64 if (is_a64(env)) {
65 env->pc = tb->pc;
66 } else {
67 env->regs[15] = tb->pc;
71 static bool arm_cpu_has_work(CPUState *cs)
73 ARMCPU *cpu = ARM_CPU(cs);
75 return (cpu->power_state != PSCI_OFF)
76 && cs->interrupt_request &
77 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
78 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
79 | CPU_INTERRUPT_EXITTB);
82 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
83 void *opaque)
85 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
87 entry->hook = hook;
88 entry->opaque = opaque;
90 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94 void *opaque)
96 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
98 entry->hook = hook;
99 entry->opaque = opaque;
101 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
106 /* Reset a single ARMCPRegInfo register */
107 ARMCPRegInfo *ri = value;
108 ARMCPU *cpu = opaque;
110 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
111 return;
114 if (ri->resetfn) {
115 ri->resetfn(&cpu->env, ri);
116 return;
119 /* A zero offset is never possible as it would be regs[0]
120 * so we use it to indicate that reset is being handled elsewhere.
121 * This is basically only used for fields in non-core coprocessors
122 * (like the pxa2xx ones).
124 if (!ri->fieldoffset) {
125 return;
128 if (cpreg_field_is_64bit(ri)) {
129 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
130 } else {
131 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
135 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
137 /* Purely an assertion check: we've already done reset once,
138 * so now check that running the reset for the cpreg doesn't
139 * change its value. This traps bugs where two different cpregs
140 * both try to reset the same state field but to different values.
142 ARMCPRegInfo *ri = value;
143 ARMCPU *cpu = opaque;
144 uint64_t oldvalue, newvalue;
146 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
147 return;
150 oldvalue = read_raw_cp_reg(&cpu->env, ri);
151 cp_reg_reset(key, value, opaque);
152 newvalue = read_raw_cp_reg(&cpu->env, ri);
153 assert(oldvalue == newvalue);
156 /* CPUClass::reset() */
157 static void arm_cpu_reset(CPUState *s)
159 ARMCPU *cpu = ARM_CPU(s);
160 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
161 CPUARMState *env = &cpu->env;
163 acc->parent_reset(s);
165 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
167 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
168 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
170 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
171 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
172 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
173 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
175 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
176 s->halted = cpu->start_powered_off;
178 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
179 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
183 /* 64 bit CPUs always start in 64 bit mode */
184 env->aarch64 = 1;
185 #if defined(CONFIG_USER_ONLY)
186 env->pstate = PSTATE_MODE_EL0t;
187 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
188 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
189 /* Enable all PAC keys. */
190 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
191 SCTLR_EnDA | SCTLR_EnDB);
192 /* Enable all PAC instructions */
193 env->cp15.hcr_el2 |= HCR_API;
194 env->cp15.scr_el3 |= SCR_API;
195 /* and to the FP/Neon instructions */
196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
197 /* and to the SVE instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
199 env->cp15.cptr_el[3] |= CPTR_EZ;
200 /* with maximum vector length */
201 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
202 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
203 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
205 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
206 * turning on both here will produce smaller code and otherwise
207 * make no difference to the user-level emulation.
209 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211 /* Reset into the highest available EL */
212 if (arm_feature(env, ARM_FEATURE_EL3)) {
213 env->pstate = PSTATE_MODE_EL3h;
214 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215 env->pstate = PSTATE_MODE_EL2h;
216 } else {
217 env->pstate = PSTATE_MODE_EL1h;
219 env->pc = cpu->rvbar;
220 #endif
221 } else {
222 #if defined(CONFIG_USER_ONLY)
223 /* Userspace expects access to cp10 and cp11 for FP/Neon */
224 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
228 #if defined(CONFIG_USER_ONLY)
229 env->uncached_cpsr = ARM_CPU_MODE_USR;
230 /* For user mode we must enable access to coprocessors */
231 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233 env->cp15.c15_cpar = 3;
234 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235 env->cp15.c15_cpar = 1;
237 #else
240 * If the highest available EL is EL2, AArch32 will start in Hyp
241 * mode; otherwise it starts in SVC. Note that if we start in
242 * AArch64 then these values in the uncached_cpsr will be ignored.
244 if (arm_feature(env, ARM_FEATURE_EL2) &&
245 !arm_feature(env, ARM_FEATURE_EL3)) {
246 env->uncached_cpsr = ARM_CPU_MODE_HYP;
247 } else {
248 env->uncached_cpsr = ARM_CPU_MODE_SVC;
250 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 if (arm_feature(env, ARM_FEATURE_M)) {
253 uint32_t initial_msp; /* Loaded from 0x0 */
254 uint32_t initial_pc; /* Loaded from 0x4 */
255 uint8_t *rom;
256 uint32_t vecbase;
258 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259 env->v7m.secure = true;
260 } else {
261 /* This bit resets to 0 if security is supported, but 1 if
262 * it is not. The bit is not present in v7M, but we set it
263 * here so we can avoid having to make checks on it conditional
264 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
270 * that it resets to 1, so QEMU always does that rather than making
271 * it dependent on CPU model. In v8M it is RES1.
273 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
274 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
275 if (arm_feature(env, ARM_FEATURE_V8)) {
276 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
277 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
280 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
281 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
282 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
285 /* Unlike A/R profile, M profile defines the reset LR value */
286 env->regs[14] = 0xffffffff;
288 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
290 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
291 vecbase = env->v7m.vecbase[env->v7m.secure];
292 rom = rom_ptr(vecbase, 8);
293 if (rom) {
294 /* Address zero is covered by ROM which hasn't yet been
295 * copied into physical memory.
297 initial_msp = ldl_p(rom);
298 initial_pc = ldl_p(rom + 4);
299 } else {
300 /* Address zero not covered by a ROM blob, or the ROM blob
301 * is in non-modifiable memory and this is a second reset after
302 * it got copied into memory. In the latter case, rom_ptr
303 * will return a NULL pointer and we should use ldl_phys instead.
305 initial_msp = ldl_phys(s->as, vecbase);
306 initial_pc = ldl_phys(s->as, vecbase + 4);
309 env->regs[13] = initial_msp & 0xFFFFFFFC;
310 env->regs[15] = initial_pc & ~1;
311 env->thumb = initial_pc & 1;
314 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
315 * executing as AArch32 then check if highvecs are enabled and
316 * adjust the PC accordingly.
318 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
319 env->regs[15] = 0xFFFF0000;
322 /* M profile requires that reset clears the exclusive monitor;
323 * A profile does not, but clearing it makes more sense than having it
324 * set with an exclusive access on address zero.
326 arm_clear_exclusive(env);
328 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
329 #endif
331 if (arm_feature(env, ARM_FEATURE_PMSA)) {
332 if (cpu->pmsav7_dregion > 0) {
333 if (arm_feature(env, ARM_FEATURE_V8)) {
334 memset(env->pmsav8.rbar[M_REG_NS], 0,
335 sizeof(*env->pmsav8.rbar[M_REG_NS])
336 * cpu->pmsav7_dregion);
337 memset(env->pmsav8.rlar[M_REG_NS], 0,
338 sizeof(*env->pmsav8.rlar[M_REG_NS])
339 * cpu->pmsav7_dregion);
340 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
341 memset(env->pmsav8.rbar[M_REG_S], 0,
342 sizeof(*env->pmsav8.rbar[M_REG_S])
343 * cpu->pmsav7_dregion);
344 memset(env->pmsav8.rlar[M_REG_S], 0,
345 sizeof(*env->pmsav8.rlar[M_REG_S])
346 * cpu->pmsav7_dregion);
348 } else if (arm_feature(env, ARM_FEATURE_V7)) {
349 memset(env->pmsav7.drbar, 0,
350 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
351 memset(env->pmsav7.drsr, 0,
352 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
353 memset(env->pmsav7.dracr, 0,
354 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
357 env->pmsav7.rnr[M_REG_NS] = 0;
358 env->pmsav7.rnr[M_REG_S] = 0;
359 env->pmsav8.mair0[M_REG_NS] = 0;
360 env->pmsav8.mair0[M_REG_S] = 0;
361 env->pmsav8.mair1[M_REG_NS] = 0;
362 env->pmsav8.mair1[M_REG_S] = 0;
365 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
366 if (cpu->sau_sregion > 0) {
367 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
368 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
370 env->sau.rnr = 0;
371 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
372 * the Cortex-M33 does.
374 env->sau.ctrl = 0;
377 set_flush_to_zero(1, &env->vfp.standard_fp_status);
378 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
379 set_default_nan_mode(1, &env->vfp.standard_fp_status);
380 set_float_detect_tininess(float_tininess_before_rounding,
381 &env->vfp.fp_status);
382 set_float_detect_tininess(float_tininess_before_rounding,
383 &env->vfp.standard_fp_status);
384 set_float_detect_tininess(float_tininess_before_rounding,
385 &env->vfp.fp_status_f16);
386 #ifndef CONFIG_USER_ONLY
387 if (kvm_enabled()) {
388 kvm_arm_reset_vcpu(cpu);
390 #endif
392 hw_breakpoint_update_all(cpu);
393 hw_watchpoint_update_all(cpu);
396 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
398 CPUClass *cc = CPU_GET_CLASS(cs);
399 CPUARMState *env = cs->env_ptr;
400 uint32_t cur_el = arm_current_el(env);
401 bool secure = arm_is_secure(env);
402 uint32_t target_el;
403 uint32_t excp_idx;
404 bool ret = false;
406 if (interrupt_request & CPU_INTERRUPT_FIQ) {
407 excp_idx = EXCP_FIQ;
408 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
409 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
410 cs->exception_index = excp_idx;
411 env->exception.target_el = target_el;
412 cc->do_interrupt(cs);
413 ret = true;
416 if (interrupt_request & CPU_INTERRUPT_HARD) {
417 excp_idx = EXCP_IRQ;
418 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
419 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
420 cs->exception_index = excp_idx;
421 env->exception.target_el = target_el;
422 cc->do_interrupt(cs);
423 ret = true;
426 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
427 excp_idx = EXCP_VIRQ;
428 target_el = 1;
429 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
430 cs->exception_index = excp_idx;
431 env->exception.target_el = target_el;
432 cc->do_interrupt(cs);
433 ret = true;
436 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
437 excp_idx = EXCP_VFIQ;
438 target_el = 1;
439 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
440 cs->exception_index = excp_idx;
441 env->exception.target_el = target_el;
442 cc->do_interrupt(cs);
443 ret = true;
447 return ret;
450 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
451 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
453 CPUClass *cc = CPU_GET_CLASS(cs);
454 ARMCPU *cpu = ARM_CPU(cs);
455 CPUARMState *env = &cpu->env;
456 bool ret = false;
458 /* ARMv7-M interrupt masking works differently than -A or -R.
459 * There is no FIQ/IRQ distinction. Instead of I and F bits
460 * masking FIQ and IRQ interrupts, an exception is taken only
461 * if it is higher priority than the current execution priority
462 * (which depends on state like BASEPRI, FAULTMASK and the
463 * currently active exception).
465 if (interrupt_request & CPU_INTERRUPT_HARD
466 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
467 cs->exception_index = EXCP_IRQ;
468 cc->do_interrupt(cs);
469 ret = true;
471 return ret;
473 #endif
475 void arm_cpu_update_virq(ARMCPU *cpu)
478 * Update the interrupt level for VIRQ, which is the logical OR of
479 * the HCR_EL2.VI bit and the input line level from the GIC.
481 CPUARMState *env = &cpu->env;
482 CPUState *cs = CPU(cpu);
484 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
485 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
487 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
488 if (new_state) {
489 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
490 } else {
491 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
496 void arm_cpu_update_vfiq(ARMCPU *cpu)
499 * Update the interrupt level for VFIQ, which is the logical OR of
500 * the HCR_EL2.VF bit and the input line level from the GIC.
502 CPUARMState *env = &cpu->env;
503 CPUState *cs = CPU(cpu);
505 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
506 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
508 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
509 if (new_state) {
510 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
511 } else {
512 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
517 #ifndef CONFIG_USER_ONLY
518 static void arm_cpu_set_irq(void *opaque, int irq, int level)
520 ARMCPU *cpu = opaque;
521 CPUARMState *env = &cpu->env;
522 CPUState *cs = CPU(cpu);
523 static const int mask[] = {
524 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
525 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
526 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
527 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
530 if (level) {
531 env->irq_line_state |= mask[irq];
532 } else {
533 env->irq_line_state &= ~mask[irq];
536 switch (irq) {
537 case ARM_CPU_VIRQ:
538 assert(arm_feature(env, ARM_FEATURE_EL2));
539 arm_cpu_update_virq(cpu);
540 break;
541 case ARM_CPU_VFIQ:
542 assert(arm_feature(env, ARM_FEATURE_EL2));
543 arm_cpu_update_vfiq(cpu);
544 break;
545 case ARM_CPU_IRQ:
546 case ARM_CPU_FIQ:
547 if (level) {
548 cpu_interrupt(cs, mask[irq]);
549 } else {
550 cpu_reset_interrupt(cs, mask[irq]);
552 break;
553 default:
554 g_assert_not_reached();
558 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
560 #ifdef CONFIG_KVM
561 ARMCPU *cpu = opaque;
562 CPUARMState *env = &cpu->env;
563 CPUState *cs = CPU(cpu);
564 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
565 uint32_t linestate_bit;
567 switch (irq) {
568 case ARM_CPU_IRQ:
569 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
570 linestate_bit = CPU_INTERRUPT_HARD;
571 break;
572 case ARM_CPU_FIQ:
573 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
574 linestate_bit = CPU_INTERRUPT_FIQ;
575 break;
576 default:
577 g_assert_not_reached();
580 if (level) {
581 env->irq_line_state |= linestate_bit;
582 } else {
583 env->irq_line_state &= ~linestate_bit;
586 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
587 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
588 #endif
591 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
593 ARMCPU *cpu = ARM_CPU(cs);
594 CPUARMState *env = &cpu->env;
596 cpu_synchronize_state(cs);
597 return arm_cpu_data_is_big_endian(env);
600 #endif
602 static inline void set_feature(CPUARMState *env, int feature)
604 env->features |= 1ULL << feature;
607 static inline void unset_feature(CPUARMState *env, int feature)
609 env->features &= ~(1ULL << feature);
612 static int
613 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
615 return print_insn_arm(pc | 1, info);
618 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
620 ARMCPU *ac = ARM_CPU(cpu);
621 CPUARMState *env = &ac->env;
622 bool sctlr_b;
624 if (is_a64(env)) {
625 /* We might not be compiled with the A64 disassembler
626 * because it needs a C++ compiler. Leave print_insn
627 * unset in this case to use the caller default behaviour.
629 #if defined(CONFIG_ARM_A64_DIS)
630 info->print_insn = print_insn_arm_a64;
631 #endif
632 info->cap_arch = CS_ARCH_ARM64;
633 info->cap_insn_unit = 4;
634 info->cap_insn_split = 4;
635 } else {
636 int cap_mode;
637 if (env->thumb) {
638 info->print_insn = print_insn_thumb1;
639 info->cap_insn_unit = 2;
640 info->cap_insn_split = 4;
641 cap_mode = CS_MODE_THUMB;
642 } else {
643 info->print_insn = print_insn_arm;
644 info->cap_insn_unit = 4;
645 info->cap_insn_split = 4;
646 cap_mode = CS_MODE_ARM;
648 if (arm_feature(env, ARM_FEATURE_V8)) {
649 cap_mode |= CS_MODE_V8;
651 if (arm_feature(env, ARM_FEATURE_M)) {
652 cap_mode |= CS_MODE_MCLASS;
654 info->cap_arch = CS_ARCH_ARM;
655 info->cap_mode = cap_mode;
658 sctlr_b = arm_sctlr_b(env);
659 if (bswap_code(sctlr_b)) {
660 #ifdef TARGET_WORDS_BIGENDIAN
661 info->endian = BFD_ENDIAN_LITTLE;
662 #else
663 info->endian = BFD_ENDIAN_BIG;
664 #endif
666 info->flags &= ~INSN_ARM_BE32;
667 #ifndef CONFIG_USER_ONLY
668 if (sctlr_b) {
669 info->flags |= INSN_ARM_BE32;
671 #endif
674 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
676 uint32_t Aff1 = idx / clustersz;
677 uint32_t Aff0 = idx % clustersz;
678 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
681 static void cpreg_hashtable_data_destroy(gpointer data)
684 * Destroy function for cpu->cp_regs hashtable data entries.
685 * We must free the name string because it was g_strdup()ed in
686 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
687 * from r->name because we know we definitely allocated it.
689 ARMCPRegInfo *r = data;
691 g_free((void *)r->name);
692 g_free(r);
695 static void arm_cpu_initfn(Object *obj)
697 CPUState *cs = CPU(obj);
698 ARMCPU *cpu = ARM_CPU(obj);
700 cs->env_ptr = &cpu->env;
701 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
702 g_free, cpreg_hashtable_data_destroy);
704 QLIST_INIT(&cpu->pre_el_change_hooks);
705 QLIST_INIT(&cpu->el_change_hooks);
707 #ifndef CONFIG_USER_ONLY
708 /* Our inbound IRQ and FIQ lines */
709 if (kvm_enabled()) {
710 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
711 * the same interface as non-KVM CPUs.
713 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
714 } else {
715 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
718 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
719 ARRAY_SIZE(cpu->gt_timer_outputs));
721 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
722 "gicv3-maintenance-interrupt", 1);
723 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
724 "pmu-interrupt", 1);
725 #endif
727 /* DTB consumers generally don't in fact care what the 'compatible'
728 * string is, so always provide some string and trust that a hypothetical
729 * picky DTB consumer will also provide a helpful error message.
731 cpu->dtb_compatible = "qemu,unknown";
732 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
733 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
735 if (tcg_enabled()) {
736 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
740 static Property arm_cpu_reset_cbar_property =
741 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
743 static Property arm_cpu_reset_hivecs_property =
744 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
746 static Property arm_cpu_rvbar_property =
747 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
749 static Property arm_cpu_has_el2_property =
750 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
752 static Property arm_cpu_has_el3_property =
753 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
755 static Property arm_cpu_cfgend_property =
756 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
758 /* use property name "pmu" to match other archs and virt tools */
759 static Property arm_cpu_has_pmu_property =
760 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
762 static Property arm_cpu_has_mpu_property =
763 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
765 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
766 * because the CPU initfn will have already set cpu->pmsav7_dregion to
767 * the right value for that particular CPU type, and we don't want
768 * to override that with an incorrect constant value.
770 static Property arm_cpu_pmsav7_dregion_property =
771 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
772 pmsav7_dregion,
773 qdev_prop_uint32, uint32_t);
775 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
776 void *opaque, Error **errp)
778 ARMCPU *cpu = ARM_CPU(obj);
780 visit_type_uint32(v, name, &cpu->init_svtor, errp);
783 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
784 void *opaque, Error **errp)
786 ARMCPU *cpu = ARM_CPU(obj);
788 visit_type_uint32(v, name, &cpu->init_svtor, errp);
791 void arm_cpu_post_init(Object *obj)
793 ARMCPU *cpu = ARM_CPU(obj);
795 /* M profile implies PMSA. We have to do this here rather than
796 * in realize with the other feature-implication checks because
797 * we look at the PMSA bit to see if we should add some properties.
799 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
800 set_feature(&cpu->env, ARM_FEATURE_PMSA);
803 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
804 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
805 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
806 &error_abort);
809 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
810 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
811 &error_abort);
814 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
815 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
816 &error_abort);
819 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
820 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
821 * prevent "has_el3" from existing on CPUs which cannot support EL3.
823 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
824 &error_abort);
826 #ifndef CONFIG_USER_ONLY
827 object_property_add_link(obj, "secure-memory",
828 TYPE_MEMORY_REGION,
829 (Object **)&cpu->secure_memory,
830 qdev_prop_allow_set_link_before_realize,
831 OBJ_PROP_LINK_STRONG,
832 &error_abort);
833 #endif
836 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
837 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
838 &error_abort);
841 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
842 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
843 &error_abort);
846 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
847 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
848 &error_abort);
849 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
850 qdev_property_add_static(DEVICE(obj),
851 &arm_cpu_pmsav7_dregion_property,
852 &error_abort);
856 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
857 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
858 qdev_prop_allow_set_link_before_realize,
859 OBJ_PROP_LINK_STRONG,
860 &error_abort);
862 * M profile: initial value of the Secure VTOR. We can't just use
863 * a simple DEFINE_PROP_UINT32 for this because we want to permit
864 * the property to be set after realize.
866 object_property_add(obj, "init-svtor", "uint32",
867 arm_get_init_svtor, arm_set_init_svtor,
868 NULL, NULL, &error_abort);
871 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
872 &error_abort);
875 static void arm_cpu_finalizefn(Object *obj)
877 ARMCPU *cpu = ARM_CPU(obj);
878 ARMELChangeHook *hook, *next;
880 g_hash_table_destroy(cpu->cp_regs);
882 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
883 QLIST_REMOVE(hook, node);
884 g_free(hook);
886 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
887 QLIST_REMOVE(hook, node);
888 g_free(hook);
890 #ifndef CONFIG_USER_ONLY
891 if (cpu->pmu_timer) {
892 timer_del(cpu->pmu_timer);
893 timer_deinit(cpu->pmu_timer);
894 timer_free(cpu->pmu_timer);
896 #endif
899 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
901 CPUState *cs = CPU(dev);
902 ARMCPU *cpu = ARM_CPU(dev);
903 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
904 CPUARMState *env = &cpu->env;
905 int pagebits;
906 Error *local_err = NULL;
907 bool no_aa32 = false;
909 /* If we needed to query the host kernel for the CPU features
910 * then it's possible that might have failed in the initfn, but
911 * this is the first point where we can report it.
913 if (cpu->host_cpu_probe_failed) {
914 if (!kvm_enabled()) {
915 error_setg(errp, "The 'host' CPU type can only be used with KVM");
916 } else {
917 error_setg(errp, "Failed to retrieve host CPU features");
919 return;
922 #ifndef CONFIG_USER_ONLY
923 /* The NVIC and M-profile CPU are two halves of a single piece of
924 * hardware; trying to use one without the other is a command line
925 * error and will result in segfaults if not caught here.
927 if (arm_feature(env, ARM_FEATURE_M)) {
928 if (!env->nvic) {
929 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
930 return;
932 } else {
933 if (env->nvic) {
934 error_setg(errp, "This board can only be used with Cortex-M CPUs");
935 return;
939 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
940 arm_gt_ptimer_cb, cpu);
941 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
942 arm_gt_vtimer_cb, cpu);
943 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
944 arm_gt_htimer_cb, cpu);
945 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
946 arm_gt_stimer_cb, cpu);
947 #endif
949 cpu_exec_realizefn(cs, &local_err);
950 if (local_err != NULL) {
951 error_propagate(errp, local_err);
952 return;
955 /* Some features automatically imply others: */
956 if (arm_feature(env, ARM_FEATURE_V8)) {
957 if (arm_feature(env, ARM_FEATURE_M)) {
958 set_feature(env, ARM_FEATURE_V7);
959 } else {
960 set_feature(env, ARM_FEATURE_V7VE);
965 * There exist AArch64 cpus without AArch32 support. When KVM
966 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
967 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
969 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
970 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
973 if (arm_feature(env, ARM_FEATURE_V7VE)) {
974 /* v7 Virtualization Extensions. In real hardware this implies
975 * EL2 and also the presence of the Security Extensions.
976 * For QEMU, for backwards-compatibility we implement some
977 * CPUs or CPU configs which have no actual EL2 or EL3 but do
978 * include the various other features that V7VE implies.
979 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
980 * Security Extensions is ARM_FEATURE_EL3.
982 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
983 set_feature(env, ARM_FEATURE_LPAE);
984 set_feature(env, ARM_FEATURE_V7);
986 if (arm_feature(env, ARM_FEATURE_V7)) {
987 set_feature(env, ARM_FEATURE_VAPA);
988 set_feature(env, ARM_FEATURE_THUMB2);
989 set_feature(env, ARM_FEATURE_MPIDR);
990 if (!arm_feature(env, ARM_FEATURE_M)) {
991 set_feature(env, ARM_FEATURE_V6K);
992 } else {
993 set_feature(env, ARM_FEATURE_V6);
996 /* Always define VBAR for V7 CPUs even if it doesn't exist in
997 * non-EL3 configs. This is needed by some legacy boards.
999 set_feature(env, ARM_FEATURE_VBAR);
1001 if (arm_feature(env, ARM_FEATURE_V6K)) {
1002 set_feature(env, ARM_FEATURE_V6);
1003 set_feature(env, ARM_FEATURE_MVFR);
1005 if (arm_feature(env, ARM_FEATURE_V6)) {
1006 set_feature(env, ARM_FEATURE_V5);
1007 if (!arm_feature(env, ARM_FEATURE_M)) {
1008 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1009 set_feature(env, ARM_FEATURE_AUXCR);
1012 if (arm_feature(env, ARM_FEATURE_V5)) {
1013 set_feature(env, ARM_FEATURE_V4T);
1015 if (arm_feature(env, ARM_FEATURE_VFP4)) {
1016 set_feature(env, ARM_FEATURE_VFP3);
1018 if (arm_feature(env, ARM_FEATURE_VFP3)) {
1019 set_feature(env, ARM_FEATURE_VFP);
1021 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1022 set_feature(env, ARM_FEATURE_V7MP);
1023 set_feature(env, ARM_FEATURE_PXN);
1025 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1026 set_feature(env, ARM_FEATURE_CBAR);
1028 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1029 !arm_feature(env, ARM_FEATURE_M)) {
1030 set_feature(env, ARM_FEATURE_THUMB_DSP);
1033 if (arm_feature(env, ARM_FEATURE_V7) &&
1034 !arm_feature(env, ARM_FEATURE_M) &&
1035 !arm_feature(env, ARM_FEATURE_PMSA)) {
1036 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1037 * can use 4K pages.
1039 pagebits = 12;
1040 } else {
1041 /* For CPUs which might have tiny 1K pages, or which have an
1042 * MPU and might have small region sizes, stick with 1K pages.
1044 pagebits = 10;
1046 if (!set_preferred_target_page_bits(pagebits)) {
1047 /* This can only ever happen for hotplugging a CPU, or if
1048 * the board code incorrectly creates a CPU which it has
1049 * promised via minimum_page_size that it will not.
1051 error_setg(errp, "This CPU requires a smaller page size than the "
1052 "system is using");
1053 return;
1056 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1057 * We don't support setting cluster ID ([16..23]) (known as Aff2
1058 * in later ARM ARM versions), or any of the higher affinity level fields,
1059 * so these bits always RAZ.
1061 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1062 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1063 ARM_DEFAULT_CPUS_PER_CLUSTER);
1066 if (cpu->reset_hivecs) {
1067 cpu->reset_sctlr |= (1 << 13);
1070 if (cpu->cfgend) {
1071 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1072 cpu->reset_sctlr |= SCTLR_EE;
1073 } else {
1074 cpu->reset_sctlr |= SCTLR_B;
1078 if (!cpu->has_el3) {
1079 /* If the has_el3 CPU property is disabled then we need to disable the
1080 * feature.
1082 unset_feature(env, ARM_FEATURE_EL3);
1084 /* Disable the security extension feature bits in the processor feature
1085 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1087 cpu->id_pfr1 &= ~0xf0;
1088 cpu->isar.id_aa64pfr0 &= ~0xf000;
1091 if (!cpu->has_el2) {
1092 unset_feature(env, ARM_FEATURE_EL2);
1095 if (!cpu->has_pmu) {
1096 unset_feature(env, ARM_FEATURE_PMU);
1098 if (arm_feature(env, ARM_FEATURE_PMU)) {
1099 pmu_init(cpu);
1101 if (!kvm_enabled()) {
1102 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1103 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1106 #ifndef CONFIG_USER_ONLY
1107 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1108 cpu);
1109 #endif
1110 } else {
1111 cpu->id_aa64dfr0 &= ~0xf00;
1112 cpu->pmceid0 = 0;
1113 cpu->pmceid1 = 0;
1116 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1117 /* Disable the hypervisor feature bits in the processor feature
1118 * registers if we don't have EL2. These are id_pfr1[15:12] and
1119 * id_aa64pfr0_el1[11:8].
1121 cpu->isar.id_aa64pfr0 &= ~0xf00;
1122 cpu->id_pfr1 &= ~0xf000;
1125 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1126 * to false or by setting pmsav7-dregion to 0.
1128 if (!cpu->has_mpu) {
1129 cpu->pmsav7_dregion = 0;
1131 if (cpu->pmsav7_dregion == 0) {
1132 cpu->has_mpu = false;
1135 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1136 arm_feature(env, ARM_FEATURE_V7)) {
1137 uint32_t nr = cpu->pmsav7_dregion;
1139 if (nr > 0xff) {
1140 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1141 return;
1144 if (nr) {
1145 if (arm_feature(env, ARM_FEATURE_V8)) {
1146 /* PMSAv8 */
1147 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1148 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1149 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1150 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1151 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1153 } else {
1154 env->pmsav7.drbar = g_new0(uint32_t, nr);
1155 env->pmsav7.drsr = g_new0(uint32_t, nr);
1156 env->pmsav7.dracr = g_new0(uint32_t, nr);
1161 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1162 uint32_t nr = cpu->sau_sregion;
1164 if (nr > 0xff) {
1165 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1166 return;
1169 if (nr) {
1170 env->sau.rbar = g_new0(uint32_t, nr);
1171 env->sau.rlar = g_new0(uint32_t, nr);
1175 if (arm_feature(env, ARM_FEATURE_EL3)) {
1176 set_feature(env, ARM_FEATURE_VBAR);
1179 register_cp_regs_for_features(cpu);
1180 arm_cpu_register_gdb_regs_for_features(cpu);
1182 init_cpreg_list(cpu);
1184 #ifndef CONFIG_USER_ONLY
1185 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1186 cs->num_ases = 2;
1188 if (!cpu->secure_memory) {
1189 cpu->secure_memory = cs->memory;
1191 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1192 cpu->secure_memory);
1193 } else {
1194 cs->num_ases = 1;
1196 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1198 /* No core_count specified, default to smp_cpus. */
1199 if (cpu->core_count == -1) {
1200 cpu->core_count = smp_cpus;
1202 #endif
1204 qemu_init_vcpu(cs);
1205 cpu_reset(cs);
1207 acc->parent_realize(dev, errp);
1210 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1212 ObjectClass *oc;
1213 char *typename;
1214 char **cpuname;
1215 const char *cpunamestr;
1217 cpuname = g_strsplit(cpu_model, ",", 1);
1218 cpunamestr = cpuname[0];
1219 #ifdef CONFIG_USER_ONLY
1220 /* For backwards compatibility usermode emulation allows "-cpu any",
1221 * which has the same semantics as "-cpu max".
1223 if (!strcmp(cpunamestr, "any")) {
1224 cpunamestr = "max";
1226 #endif
1227 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1228 oc = object_class_by_name(typename);
1229 g_strfreev(cpuname);
1230 g_free(typename);
1231 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1232 object_class_is_abstract(oc)) {
1233 return NULL;
1235 return oc;
1238 /* CPU models. These are not needed for the AArch64 linux-user build. */
1239 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1241 static void arm926_initfn(Object *obj)
1243 ARMCPU *cpu = ARM_CPU(obj);
1245 cpu->dtb_compatible = "arm,arm926";
1246 set_feature(&cpu->env, ARM_FEATURE_V5);
1247 set_feature(&cpu->env, ARM_FEATURE_VFP);
1248 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1249 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1250 cpu->midr = 0x41069265;
1251 cpu->reset_fpsid = 0x41011090;
1252 cpu->ctr = 0x1dd20d2;
1253 cpu->reset_sctlr = 0x00090078;
1256 * ARMv5 does not have the ID_ISAR registers, but we can still
1257 * set the field to indicate Jazelle support within QEMU.
1259 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1262 static void arm946_initfn(Object *obj)
1264 ARMCPU *cpu = ARM_CPU(obj);
1266 cpu->dtb_compatible = "arm,arm946";
1267 set_feature(&cpu->env, ARM_FEATURE_V5);
1268 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1269 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1270 cpu->midr = 0x41059461;
1271 cpu->ctr = 0x0f004006;
1272 cpu->reset_sctlr = 0x00000078;
1275 static void arm1026_initfn(Object *obj)
1277 ARMCPU *cpu = ARM_CPU(obj);
1279 cpu->dtb_compatible = "arm,arm1026";
1280 set_feature(&cpu->env, ARM_FEATURE_V5);
1281 set_feature(&cpu->env, ARM_FEATURE_VFP);
1282 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1283 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1284 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1285 cpu->midr = 0x4106a262;
1286 cpu->reset_fpsid = 0x410110a0;
1287 cpu->ctr = 0x1dd20d2;
1288 cpu->reset_sctlr = 0x00090078;
1289 cpu->reset_auxcr = 1;
1292 * ARMv5 does not have the ID_ISAR registers, but we can still
1293 * set the field to indicate Jazelle support within QEMU.
1295 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1298 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1299 ARMCPRegInfo ifar = {
1300 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1301 .access = PL1_RW,
1302 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1303 .resetvalue = 0
1305 define_one_arm_cp_reg(cpu, &ifar);
1309 static void arm1136_r2_initfn(Object *obj)
1311 ARMCPU *cpu = ARM_CPU(obj);
1312 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1313 * older core than plain "arm1136". In particular this does not
1314 * have the v6K features.
1315 * These ID register values are correct for 1136 but may be wrong
1316 * for 1136_r2 (in particular r0p2 does not actually implement most
1317 * of the ID registers).
1320 cpu->dtb_compatible = "arm,arm1136";
1321 set_feature(&cpu->env, ARM_FEATURE_V6);
1322 set_feature(&cpu->env, ARM_FEATURE_VFP);
1323 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1324 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1325 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1326 cpu->midr = 0x4107b362;
1327 cpu->reset_fpsid = 0x410120b4;
1328 cpu->isar.mvfr0 = 0x11111111;
1329 cpu->isar.mvfr1 = 0x00000000;
1330 cpu->ctr = 0x1dd20d2;
1331 cpu->reset_sctlr = 0x00050078;
1332 cpu->id_pfr0 = 0x111;
1333 cpu->id_pfr1 = 0x1;
1334 cpu->id_dfr0 = 0x2;
1335 cpu->id_afr0 = 0x3;
1336 cpu->id_mmfr0 = 0x01130003;
1337 cpu->id_mmfr1 = 0x10030302;
1338 cpu->id_mmfr2 = 0x01222110;
1339 cpu->isar.id_isar0 = 0x00140011;
1340 cpu->isar.id_isar1 = 0x12002111;
1341 cpu->isar.id_isar2 = 0x11231111;
1342 cpu->isar.id_isar3 = 0x01102131;
1343 cpu->isar.id_isar4 = 0x141;
1344 cpu->reset_auxcr = 7;
1347 static void arm1136_initfn(Object *obj)
1349 ARMCPU *cpu = ARM_CPU(obj);
1351 cpu->dtb_compatible = "arm,arm1136";
1352 set_feature(&cpu->env, ARM_FEATURE_V6K);
1353 set_feature(&cpu->env, ARM_FEATURE_V6);
1354 set_feature(&cpu->env, ARM_FEATURE_VFP);
1355 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1356 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1357 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1358 cpu->midr = 0x4117b363;
1359 cpu->reset_fpsid = 0x410120b4;
1360 cpu->isar.mvfr0 = 0x11111111;
1361 cpu->isar.mvfr1 = 0x00000000;
1362 cpu->ctr = 0x1dd20d2;
1363 cpu->reset_sctlr = 0x00050078;
1364 cpu->id_pfr0 = 0x111;
1365 cpu->id_pfr1 = 0x1;
1366 cpu->id_dfr0 = 0x2;
1367 cpu->id_afr0 = 0x3;
1368 cpu->id_mmfr0 = 0x01130003;
1369 cpu->id_mmfr1 = 0x10030302;
1370 cpu->id_mmfr2 = 0x01222110;
1371 cpu->isar.id_isar0 = 0x00140011;
1372 cpu->isar.id_isar1 = 0x12002111;
1373 cpu->isar.id_isar2 = 0x11231111;
1374 cpu->isar.id_isar3 = 0x01102131;
1375 cpu->isar.id_isar4 = 0x141;
1376 cpu->reset_auxcr = 7;
1379 static void arm1176_initfn(Object *obj)
1381 ARMCPU *cpu = ARM_CPU(obj);
1383 cpu->dtb_compatible = "arm,arm1176";
1384 set_feature(&cpu->env, ARM_FEATURE_V6K);
1385 set_feature(&cpu->env, ARM_FEATURE_VFP);
1386 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1387 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1388 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1389 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1390 set_feature(&cpu->env, ARM_FEATURE_EL3);
1391 cpu->midr = 0x410fb767;
1392 cpu->reset_fpsid = 0x410120b5;
1393 cpu->isar.mvfr0 = 0x11111111;
1394 cpu->isar.mvfr1 = 0x00000000;
1395 cpu->ctr = 0x1dd20d2;
1396 cpu->reset_sctlr = 0x00050078;
1397 cpu->id_pfr0 = 0x111;
1398 cpu->id_pfr1 = 0x11;
1399 cpu->id_dfr0 = 0x33;
1400 cpu->id_afr0 = 0;
1401 cpu->id_mmfr0 = 0x01130003;
1402 cpu->id_mmfr1 = 0x10030302;
1403 cpu->id_mmfr2 = 0x01222100;
1404 cpu->isar.id_isar0 = 0x0140011;
1405 cpu->isar.id_isar1 = 0x12002111;
1406 cpu->isar.id_isar2 = 0x11231121;
1407 cpu->isar.id_isar3 = 0x01102131;
1408 cpu->isar.id_isar4 = 0x01141;
1409 cpu->reset_auxcr = 7;
1412 static void arm11mpcore_initfn(Object *obj)
1414 ARMCPU *cpu = ARM_CPU(obj);
1416 cpu->dtb_compatible = "arm,arm11mpcore";
1417 set_feature(&cpu->env, ARM_FEATURE_V6K);
1418 set_feature(&cpu->env, ARM_FEATURE_VFP);
1419 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1420 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1421 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1422 cpu->midr = 0x410fb022;
1423 cpu->reset_fpsid = 0x410120b4;
1424 cpu->isar.mvfr0 = 0x11111111;
1425 cpu->isar.mvfr1 = 0x00000000;
1426 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1427 cpu->id_pfr0 = 0x111;
1428 cpu->id_pfr1 = 0x1;
1429 cpu->id_dfr0 = 0;
1430 cpu->id_afr0 = 0x2;
1431 cpu->id_mmfr0 = 0x01100103;
1432 cpu->id_mmfr1 = 0x10020302;
1433 cpu->id_mmfr2 = 0x01222000;
1434 cpu->isar.id_isar0 = 0x00100011;
1435 cpu->isar.id_isar1 = 0x12002111;
1436 cpu->isar.id_isar2 = 0x11221011;
1437 cpu->isar.id_isar3 = 0x01102131;
1438 cpu->isar.id_isar4 = 0x141;
1439 cpu->reset_auxcr = 1;
1442 static void cortex_m0_initfn(Object *obj)
1444 ARMCPU *cpu = ARM_CPU(obj);
1445 set_feature(&cpu->env, ARM_FEATURE_V6);
1446 set_feature(&cpu->env, ARM_FEATURE_M);
1448 cpu->midr = 0x410cc200;
1451 static void cortex_m3_initfn(Object *obj)
1453 ARMCPU *cpu = ARM_CPU(obj);
1454 set_feature(&cpu->env, ARM_FEATURE_V7);
1455 set_feature(&cpu->env, ARM_FEATURE_M);
1456 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1457 cpu->midr = 0x410fc231;
1458 cpu->pmsav7_dregion = 8;
1459 cpu->id_pfr0 = 0x00000030;
1460 cpu->id_pfr1 = 0x00000200;
1461 cpu->id_dfr0 = 0x00100000;
1462 cpu->id_afr0 = 0x00000000;
1463 cpu->id_mmfr0 = 0x00000030;
1464 cpu->id_mmfr1 = 0x00000000;
1465 cpu->id_mmfr2 = 0x00000000;
1466 cpu->id_mmfr3 = 0x00000000;
1467 cpu->isar.id_isar0 = 0x01141110;
1468 cpu->isar.id_isar1 = 0x02111000;
1469 cpu->isar.id_isar2 = 0x21112231;
1470 cpu->isar.id_isar3 = 0x01111110;
1471 cpu->isar.id_isar4 = 0x01310102;
1472 cpu->isar.id_isar5 = 0x00000000;
1473 cpu->isar.id_isar6 = 0x00000000;
1476 static void cortex_m4_initfn(Object *obj)
1478 ARMCPU *cpu = ARM_CPU(obj);
1480 set_feature(&cpu->env, ARM_FEATURE_V7);
1481 set_feature(&cpu->env, ARM_FEATURE_M);
1482 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1483 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1484 cpu->midr = 0x410fc240; /* r0p0 */
1485 cpu->pmsav7_dregion = 8;
1486 cpu->id_pfr0 = 0x00000030;
1487 cpu->id_pfr1 = 0x00000200;
1488 cpu->id_dfr0 = 0x00100000;
1489 cpu->id_afr0 = 0x00000000;
1490 cpu->id_mmfr0 = 0x00000030;
1491 cpu->id_mmfr1 = 0x00000000;
1492 cpu->id_mmfr2 = 0x00000000;
1493 cpu->id_mmfr3 = 0x00000000;
1494 cpu->isar.id_isar0 = 0x01141110;
1495 cpu->isar.id_isar1 = 0x02111000;
1496 cpu->isar.id_isar2 = 0x21112231;
1497 cpu->isar.id_isar3 = 0x01111110;
1498 cpu->isar.id_isar4 = 0x01310102;
1499 cpu->isar.id_isar5 = 0x00000000;
1500 cpu->isar.id_isar6 = 0x00000000;
1503 static void cortex_m33_initfn(Object *obj)
1505 ARMCPU *cpu = ARM_CPU(obj);
1507 set_feature(&cpu->env, ARM_FEATURE_V8);
1508 set_feature(&cpu->env, ARM_FEATURE_M);
1509 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1510 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1511 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1512 cpu->midr = 0x410fd213; /* r0p3 */
1513 cpu->pmsav7_dregion = 16;
1514 cpu->sau_sregion = 8;
1515 cpu->id_pfr0 = 0x00000030;
1516 cpu->id_pfr1 = 0x00000210;
1517 cpu->id_dfr0 = 0x00200000;
1518 cpu->id_afr0 = 0x00000000;
1519 cpu->id_mmfr0 = 0x00101F40;
1520 cpu->id_mmfr1 = 0x00000000;
1521 cpu->id_mmfr2 = 0x01000000;
1522 cpu->id_mmfr3 = 0x00000000;
1523 cpu->isar.id_isar0 = 0x01101110;
1524 cpu->isar.id_isar1 = 0x02212000;
1525 cpu->isar.id_isar2 = 0x20232232;
1526 cpu->isar.id_isar3 = 0x01111131;
1527 cpu->isar.id_isar4 = 0x01310132;
1528 cpu->isar.id_isar5 = 0x00000000;
1529 cpu->isar.id_isar6 = 0x00000000;
1530 cpu->clidr = 0x00000000;
1531 cpu->ctr = 0x8000c000;
1534 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1536 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1537 CPUClass *cc = CPU_CLASS(oc);
1539 acc->info = data;
1540 #ifndef CONFIG_USER_ONLY
1541 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1542 #endif
1544 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1547 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1548 /* Dummy the TCM region regs for the moment */
1549 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1550 .access = PL1_RW, .type = ARM_CP_CONST },
1551 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1552 .access = PL1_RW, .type = ARM_CP_CONST },
1553 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1554 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1555 REGINFO_SENTINEL
1558 static void cortex_r5_initfn(Object *obj)
1560 ARMCPU *cpu = ARM_CPU(obj);
1562 set_feature(&cpu->env, ARM_FEATURE_V7);
1563 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1564 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1565 cpu->midr = 0x411fc153; /* r1p3 */
1566 cpu->id_pfr0 = 0x0131;
1567 cpu->id_pfr1 = 0x001;
1568 cpu->id_dfr0 = 0x010400;
1569 cpu->id_afr0 = 0x0;
1570 cpu->id_mmfr0 = 0x0210030;
1571 cpu->id_mmfr1 = 0x00000000;
1572 cpu->id_mmfr2 = 0x01200000;
1573 cpu->id_mmfr3 = 0x0211;
1574 cpu->isar.id_isar0 = 0x02101111;
1575 cpu->isar.id_isar1 = 0x13112111;
1576 cpu->isar.id_isar2 = 0x21232141;
1577 cpu->isar.id_isar3 = 0x01112131;
1578 cpu->isar.id_isar4 = 0x0010142;
1579 cpu->isar.id_isar5 = 0x0;
1580 cpu->isar.id_isar6 = 0x0;
1581 cpu->mp_is_up = true;
1582 cpu->pmsav7_dregion = 16;
1583 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1586 static void cortex_r5f_initfn(Object *obj)
1588 ARMCPU *cpu = ARM_CPU(obj);
1590 cortex_r5_initfn(obj);
1591 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1594 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1595 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1596 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1597 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1598 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1599 REGINFO_SENTINEL
1602 static void cortex_a8_initfn(Object *obj)
1604 ARMCPU *cpu = ARM_CPU(obj);
1606 cpu->dtb_compatible = "arm,cortex-a8";
1607 set_feature(&cpu->env, ARM_FEATURE_V7);
1608 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1609 set_feature(&cpu->env, ARM_FEATURE_NEON);
1610 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1611 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1612 set_feature(&cpu->env, ARM_FEATURE_EL3);
1613 cpu->midr = 0x410fc080;
1614 cpu->reset_fpsid = 0x410330c0;
1615 cpu->isar.mvfr0 = 0x11110222;
1616 cpu->isar.mvfr1 = 0x00011111;
1617 cpu->ctr = 0x82048004;
1618 cpu->reset_sctlr = 0x00c50078;
1619 cpu->id_pfr0 = 0x1031;
1620 cpu->id_pfr1 = 0x11;
1621 cpu->id_dfr0 = 0x400;
1622 cpu->id_afr0 = 0;
1623 cpu->id_mmfr0 = 0x31100003;
1624 cpu->id_mmfr1 = 0x20000000;
1625 cpu->id_mmfr2 = 0x01202000;
1626 cpu->id_mmfr3 = 0x11;
1627 cpu->isar.id_isar0 = 0x00101111;
1628 cpu->isar.id_isar1 = 0x12112111;
1629 cpu->isar.id_isar2 = 0x21232031;
1630 cpu->isar.id_isar3 = 0x11112131;
1631 cpu->isar.id_isar4 = 0x00111142;
1632 cpu->dbgdidr = 0x15141000;
1633 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1634 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1635 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1636 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1637 cpu->reset_auxcr = 2;
1638 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1641 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1642 /* power_control should be set to maximum latency. Again,
1643 * default to 0 and set by private hook
1645 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1646 .access = PL1_RW, .resetvalue = 0,
1647 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1648 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1649 .access = PL1_RW, .resetvalue = 0,
1650 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1651 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1652 .access = PL1_RW, .resetvalue = 0,
1653 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1654 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1655 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1656 /* TLB lockdown control */
1657 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1658 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1659 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1660 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1661 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1662 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1663 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1664 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1665 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1666 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1667 REGINFO_SENTINEL
1670 static void cortex_a9_initfn(Object *obj)
1672 ARMCPU *cpu = ARM_CPU(obj);
1674 cpu->dtb_compatible = "arm,cortex-a9";
1675 set_feature(&cpu->env, ARM_FEATURE_V7);
1676 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1677 set_feature(&cpu->env, ARM_FEATURE_NEON);
1678 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1679 set_feature(&cpu->env, ARM_FEATURE_EL3);
1680 /* Note that A9 supports the MP extensions even for
1681 * A9UP and single-core A9MP (which are both different
1682 * and valid configurations; we don't model A9UP).
1684 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1685 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1686 cpu->midr = 0x410fc090;
1687 cpu->reset_fpsid = 0x41033090;
1688 cpu->isar.mvfr0 = 0x11110222;
1689 cpu->isar.mvfr1 = 0x01111111;
1690 cpu->ctr = 0x80038003;
1691 cpu->reset_sctlr = 0x00c50078;
1692 cpu->id_pfr0 = 0x1031;
1693 cpu->id_pfr1 = 0x11;
1694 cpu->id_dfr0 = 0x000;
1695 cpu->id_afr0 = 0;
1696 cpu->id_mmfr0 = 0x00100103;
1697 cpu->id_mmfr1 = 0x20000000;
1698 cpu->id_mmfr2 = 0x01230000;
1699 cpu->id_mmfr3 = 0x00002111;
1700 cpu->isar.id_isar0 = 0x00101111;
1701 cpu->isar.id_isar1 = 0x13112111;
1702 cpu->isar.id_isar2 = 0x21232041;
1703 cpu->isar.id_isar3 = 0x11112131;
1704 cpu->isar.id_isar4 = 0x00111142;
1705 cpu->dbgdidr = 0x35141000;
1706 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1707 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1708 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1709 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1712 #ifndef CONFIG_USER_ONLY
1713 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1715 /* Linux wants the number of processors from here.
1716 * Might as well set the interrupt-controller bit too.
1718 return ((smp_cpus - 1) << 24) | (1 << 23);
1720 #endif
1722 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1723 #ifndef CONFIG_USER_ONLY
1724 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1725 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1726 .writefn = arm_cp_write_ignore, },
1727 #endif
1728 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1729 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1730 REGINFO_SENTINEL
1733 static void cortex_a7_initfn(Object *obj)
1735 ARMCPU *cpu = ARM_CPU(obj);
1737 cpu->dtb_compatible = "arm,cortex-a7";
1738 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1739 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1740 set_feature(&cpu->env, ARM_FEATURE_NEON);
1741 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1742 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1743 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1744 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1745 set_feature(&cpu->env, ARM_FEATURE_EL2);
1746 set_feature(&cpu->env, ARM_FEATURE_EL3);
1747 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1748 cpu->midr = 0x410fc075;
1749 cpu->reset_fpsid = 0x41023075;
1750 cpu->isar.mvfr0 = 0x10110222;
1751 cpu->isar.mvfr1 = 0x11111111;
1752 cpu->ctr = 0x84448003;
1753 cpu->reset_sctlr = 0x00c50078;
1754 cpu->id_pfr0 = 0x00001131;
1755 cpu->id_pfr1 = 0x00011011;
1756 cpu->id_dfr0 = 0x02010555;
1757 cpu->id_afr0 = 0x00000000;
1758 cpu->id_mmfr0 = 0x10101105;
1759 cpu->id_mmfr1 = 0x40000000;
1760 cpu->id_mmfr2 = 0x01240000;
1761 cpu->id_mmfr3 = 0x02102211;
1762 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1763 * table 4-41 gives 0x02101110, which includes the arm div insns.
1765 cpu->isar.id_isar0 = 0x02101110;
1766 cpu->isar.id_isar1 = 0x13112111;
1767 cpu->isar.id_isar2 = 0x21232041;
1768 cpu->isar.id_isar3 = 0x11112131;
1769 cpu->isar.id_isar4 = 0x10011142;
1770 cpu->dbgdidr = 0x3515f005;
1771 cpu->clidr = 0x0a200023;
1772 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1773 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1774 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1775 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1778 static void cortex_a15_initfn(Object *obj)
1780 ARMCPU *cpu = ARM_CPU(obj);
1782 cpu->dtb_compatible = "arm,cortex-a15";
1783 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1784 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1785 set_feature(&cpu->env, ARM_FEATURE_NEON);
1786 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1787 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1788 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1789 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1790 set_feature(&cpu->env, ARM_FEATURE_EL2);
1791 set_feature(&cpu->env, ARM_FEATURE_EL3);
1792 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1793 cpu->midr = 0x412fc0f1;
1794 cpu->reset_fpsid = 0x410430f0;
1795 cpu->isar.mvfr0 = 0x10110222;
1796 cpu->isar.mvfr1 = 0x11111111;
1797 cpu->ctr = 0x8444c004;
1798 cpu->reset_sctlr = 0x00c50078;
1799 cpu->id_pfr0 = 0x00001131;
1800 cpu->id_pfr1 = 0x00011011;
1801 cpu->id_dfr0 = 0x02010555;
1802 cpu->id_afr0 = 0x00000000;
1803 cpu->id_mmfr0 = 0x10201105;
1804 cpu->id_mmfr1 = 0x20000000;
1805 cpu->id_mmfr2 = 0x01240000;
1806 cpu->id_mmfr3 = 0x02102211;
1807 cpu->isar.id_isar0 = 0x02101110;
1808 cpu->isar.id_isar1 = 0x13112111;
1809 cpu->isar.id_isar2 = 0x21232041;
1810 cpu->isar.id_isar3 = 0x11112131;
1811 cpu->isar.id_isar4 = 0x10011142;
1812 cpu->dbgdidr = 0x3515f021;
1813 cpu->clidr = 0x0a200023;
1814 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1815 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1816 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1817 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1820 static void ti925t_initfn(Object *obj)
1822 ARMCPU *cpu = ARM_CPU(obj);
1823 set_feature(&cpu->env, ARM_FEATURE_V4T);
1824 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1825 cpu->midr = ARM_CPUID_TI925T;
1826 cpu->ctr = 0x5109149;
1827 cpu->reset_sctlr = 0x00000070;
1830 static void sa1100_initfn(Object *obj)
1832 ARMCPU *cpu = ARM_CPU(obj);
1834 cpu->dtb_compatible = "intel,sa1100";
1835 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1836 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1837 cpu->midr = 0x4401A11B;
1838 cpu->reset_sctlr = 0x00000070;
1841 static void sa1110_initfn(Object *obj)
1843 ARMCPU *cpu = ARM_CPU(obj);
1844 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1845 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1846 cpu->midr = 0x6901B119;
1847 cpu->reset_sctlr = 0x00000070;
1850 static void pxa250_initfn(Object *obj)
1852 ARMCPU *cpu = ARM_CPU(obj);
1854 cpu->dtb_compatible = "marvell,xscale";
1855 set_feature(&cpu->env, ARM_FEATURE_V5);
1856 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1857 cpu->midr = 0x69052100;
1858 cpu->ctr = 0xd172172;
1859 cpu->reset_sctlr = 0x00000078;
1862 static void pxa255_initfn(Object *obj)
1864 ARMCPU *cpu = ARM_CPU(obj);
1866 cpu->dtb_compatible = "marvell,xscale";
1867 set_feature(&cpu->env, ARM_FEATURE_V5);
1868 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1869 cpu->midr = 0x69052d00;
1870 cpu->ctr = 0xd172172;
1871 cpu->reset_sctlr = 0x00000078;
1874 static void pxa260_initfn(Object *obj)
1876 ARMCPU *cpu = ARM_CPU(obj);
1878 cpu->dtb_compatible = "marvell,xscale";
1879 set_feature(&cpu->env, ARM_FEATURE_V5);
1880 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1881 cpu->midr = 0x69052903;
1882 cpu->ctr = 0xd172172;
1883 cpu->reset_sctlr = 0x00000078;
1886 static void pxa261_initfn(Object *obj)
1888 ARMCPU *cpu = ARM_CPU(obj);
1890 cpu->dtb_compatible = "marvell,xscale";
1891 set_feature(&cpu->env, ARM_FEATURE_V5);
1892 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1893 cpu->midr = 0x69052d05;
1894 cpu->ctr = 0xd172172;
1895 cpu->reset_sctlr = 0x00000078;
1898 static void pxa262_initfn(Object *obj)
1900 ARMCPU *cpu = ARM_CPU(obj);
1902 cpu->dtb_compatible = "marvell,xscale";
1903 set_feature(&cpu->env, ARM_FEATURE_V5);
1904 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1905 cpu->midr = 0x69052d06;
1906 cpu->ctr = 0xd172172;
1907 cpu->reset_sctlr = 0x00000078;
1910 static void pxa270a0_initfn(Object *obj)
1912 ARMCPU *cpu = ARM_CPU(obj);
1914 cpu->dtb_compatible = "marvell,xscale";
1915 set_feature(&cpu->env, ARM_FEATURE_V5);
1916 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1917 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1918 cpu->midr = 0x69054110;
1919 cpu->ctr = 0xd172172;
1920 cpu->reset_sctlr = 0x00000078;
1923 static void pxa270a1_initfn(Object *obj)
1925 ARMCPU *cpu = ARM_CPU(obj);
1927 cpu->dtb_compatible = "marvell,xscale";
1928 set_feature(&cpu->env, ARM_FEATURE_V5);
1929 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1930 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1931 cpu->midr = 0x69054111;
1932 cpu->ctr = 0xd172172;
1933 cpu->reset_sctlr = 0x00000078;
1936 static void pxa270b0_initfn(Object *obj)
1938 ARMCPU *cpu = ARM_CPU(obj);
1940 cpu->dtb_compatible = "marvell,xscale";
1941 set_feature(&cpu->env, ARM_FEATURE_V5);
1942 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1943 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1944 cpu->midr = 0x69054112;
1945 cpu->ctr = 0xd172172;
1946 cpu->reset_sctlr = 0x00000078;
1949 static void pxa270b1_initfn(Object *obj)
1951 ARMCPU *cpu = ARM_CPU(obj);
1953 cpu->dtb_compatible = "marvell,xscale";
1954 set_feature(&cpu->env, ARM_FEATURE_V5);
1955 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1956 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1957 cpu->midr = 0x69054113;
1958 cpu->ctr = 0xd172172;
1959 cpu->reset_sctlr = 0x00000078;
1962 static void pxa270c0_initfn(Object *obj)
1964 ARMCPU *cpu = ARM_CPU(obj);
1966 cpu->dtb_compatible = "marvell,xscale";
1967 set_feature(&cpu->env, ARM_FEATURE_V5);
1968 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1969 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1970 cpu->midr = 0x69054114;
1971 cpu->ctr = 0xd172172;
1972 cpu->reset_sctlr = 0x00000078;
1975 static void pxa270c5_initfn(Object *obj)
1977 ARMCPU *cpu = ARM_CPU(obj);
1979 cpu->dtb_compatible = "marvell,xscale";
1980 set_feature(&cpu->env, ARM_FEATURE_V5);
1981 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1982 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1983 cpu->midr = 0x69054117;
1984 cpu->ctr = 0xd172172;
1985 cpu->reset_sctlr = 0x00000078;
1988 #ifndef TARGET_AARCH64
1989 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1990 * otherwise, a CPU with as many features enabled as our emulation supports.
1991 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1992 * this only needs to handle 32 bits.
1994 static void arm_max_initfn(Object *obj)
1996 ARMCPU *cpu = ARM_CPU(obj);
1998 if (kvm_enabled()) {
1999 kvm_arm_set_cpu_features_from_host(cpu);
2000 } else {
2001 cortex_a15_initfn(obj);
2002 #ifdef CONFIG_USER_ONLY
2003 /* We don't set these in system emulation mode for the moment,
2004 * since we don't correctly set (all of) the ID registers to
2005 * advertise them.
2007 set_feature(&cpu->env, ARM_FEATURE_V8);
2009 uint32_t t;
2011 t = cpu->isar.id_isar5;
2012 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2013 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2014 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2015 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2016 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2017 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2018 cpu->isar.id_isar5 = t;
2020 t = cpu->isar.id_isar6;
2021 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2022 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2023 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2024 cpu->isar.id_isar6 = t;
2026 t = cpu->id_mmfr4;
2027 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2028 cpu->id_mmfr4 = t;
2030 #endif
2033 #endif
2035 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2037 struct ARMCPUInfo {
2038 const char *name;
2039 void (*initfn)(Object *obj);
2040 void (*class_init)(ObjectClass *oc, void *data);
2043 static const ARMCPUInfo arm_cpus[] = {
2044 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2045 { .name = "arm926", .initfn = arm926_initfn },
2046 { .name = "arm946", .initfn = arm946_initfn },
2047 { .name = "arm1026", .initfn = arm1026_initfn },
2048 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2049 * older core than plain "arm1136". In particular this does not
2050 * have the v6K features.
2052 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2053 { .name = "arm1136", .initfn = arm1136_initfn },
2054 { .name = "arm1176", .initfn = arm1176_initfn },
2055 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2056 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2057 .class_init = arm_v7m_class_init },
2058 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2059 .class_init = arm_v7m_class_init },
2060 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2061 .class_init = arm_v7m_class_init },
2062 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2063 .class_init = arm_v7m_class_init },
2064 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2065 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2066 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2067 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2068 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2069 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2070 { .name = "ti925t", .initfn = ti925t_initfn },
2071 { .name = "sa1100", .initfn = sa1100_initfn },
2072 { .name = "sa1110", .initfn = sa1110_initfn },
2073 { .name = "pxa250", .initfn = pxa250_initfn },
2074 { .name = "pxa255", .initfn = pxa255_initfn },
2075 { .name = "pxa260", .initfn = pxa260_initfn },
2076 { .name = "pxa261", .initfn = pxa261_initfn },
2077 { .name = "pxa262", .initfn = pxa262_initfn },
2078 /* "pxa270" is an alias for "pxa270-a0" */
2079 { .name = "pxa270", .initfn = pxa270a0_initfn },
2080 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2081 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2082 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2083 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2084 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2085 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2086 #ifndef TARGET_AARCH64
2087 { .name = "max", .initfn = arm_max_initfn },
2088 #endif
2089 #ifdef CONFIG_USER_ONLY
2090 { .name = "any", .initfn = arm_max_initfn },
2091 #endif
2092 #endif
2093 { .name = NULL }
2096 static Property arm_cpu_properties[] = {
2097 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2098 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2099 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2100 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2101 mp_affinity, ARM64_AFFINITY_INVALID),
2102 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2103 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2104 DEFINE_PROP_END_OF_LIST()
2107 #ifdef CONFIG_USER_ONLY
2108 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2109 int rw, int mmu_idx)
2111 ARMCPU *cpu = ARM_CPU(cs);
2112 CPUARMState *env = &cpu->env;
2114 env->exception.vaddress = address;
2115 if (rw == 2) {
2116 cs->exception_index = EXCP_PREFETCH_ABORT;
2117 } else {
2118 cs->exception_index = EXCP_DATA_ABORT;
2120 return 1;
2122 #endif
2124 static gchar *arm_gdb_arch_name(CPUState *cs)
2126 ARMCPU *cpu = ARM_CPU(cs);
2127 CPUARMState *env = &cpu->env;
2129 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2130 return g_strdup("iwmmxt");
2132 return g_strdup("arm");
2135 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2137 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2138 CPUClass *cc = CPU_CLASS(acc);
2139 DeviceClass *dc = DEVICE_CLASS(oc);
2141 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2142 &acc->parent_realize);
2143 dc->props = arm_cpu_properties;
2145 acc->parent_reset = cc->reset;
2146 cc->reset = arm_cpu_reset;
2148 cc->class_by_name = arm_cpu_class_by_name;
2149 cc->has_work = arm_cpu_has_work;
2150 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2151 cc->dump_state = arm_cpu_dump_state;
2152 cc->set_pc = arm_cpu_set_pc;
2153 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2154 cc->gdb_read_register = arm_cpu_gdb_read_register;
2155 cc->gdb_write_register = arm_cpu_gdb_write_register;
2156 #ifdef CONFIG_USER_ONLY
2157 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2158 #else
2159 cc->do_interrupt = arm_cpu_do_interrupt;
2160 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2161 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2162 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2163 cc->asidx_from_attrs = arm_asidx_from_attrs;
2164 cc->vmsd = &vmstate_arm_cpu;
2165 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2166 cc->write_elf64_note = arm_cpu_write_elf64_note;
2167 cc->write_elf32_note = arm_cpu_write_elf32_note;
2168 #endif
2169 cc->gdb_num_core_regs = 26;
2170 cc->gdb_core_xml_file = "arm-core.xml";
2171 cc->gdb_arch_name = arm_gdb_arch_name;
2172 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2173 cc->gdb_stop_before_watchpoint = true;
2174 cc->debug_excp_handler = arm_debug_excp_handler;
2175 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2176 #if !defined(CONFIG_USER_ONLY)
2177 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2178 #endif
2180 cc->disas_set_info = arm_disas_set_info;
2181 #ifdef CONFIG_TCG
2182 cc->tcg_initialize = arm_translate_init;
2183 #endif
2186 #ifdef CONFIG_KVM
2187 static void arm_host_initfn(Object *obj)
2189 ARMCPU *cpu = ARM_CPU(obj);
2191 kvm_arm_set_cpu_features_from_host(cpu);
2192 arm_cpu_post_init(obj);
2195 static const TypeInfo host_arm_cpu_type_info = {
2196 .name = TYPE_ARM_HOST_CPU,
2197 #ifdef TARGET_AARCH64
2198 .parent = TYPE_AARCH64_CPU,
2199 #else
2200 .parent = TYPE_ARM_CPU,
2201 #endif
2202 .instance_init = arm_host_initfn,
2205 #endif
2207 static void arm_cpu_instance_init(Object *obj)
2209 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2211 acc->info->initfn(obj);
2212 arm_cpu_post_init(obj);
2215 static void cpu_register_class_init(ObjectClass *oc, void *data)
2217 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2219 acc->info = data;
2222 static void cpu_register(const ARMCPUInfo *info)
2224 TypeInfo type_info = {
2225 .parent = TYPE_ARM_CPU,
2226 .instance_size = sizeof(ARMCPU),
2227 .instance_init = arm_cpu_instance_init,
2228 .class_size = sizeof(ARMCPUClass),
2229 .class_init = info->class_init ?: cpu_register_class_init,
2230 .class_data = (void *)info,
2233 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2234 type_register(&type_info);
2235 g_free((void *)type_info.name);
2238 static const TypeInfo arm_cpu_type_info = {
2239 .name = TYPE_ARM_CPU,
2240 .parent = TYPE_CPU,
2241 .instance_size = sizeof(ARMCPU),
2242 .instance_init = arm_cpu_initfn,
2243 .instance_finalize = arm_cpu_finalizefn,
2244 .abstract = true,
2245 .class_size = sizeof(ARMCPUClass),
2246 .class_init = arm_cpu_class_init,
2249 static const TypeInfo idau_interface_type_info = {
2250 .name = TYPE_IDAU_INTERFACE,
2251 .parent = TYPE_INTERFACE,
2252 .class_size = sizeof(IDAUInterfaceClass),
2255 static void arm_cpu_register_types(void)
2257 const ARMCPUInfo *info = arm_cpus;
2259 type_register_static(&arm_cpu_type_info);
2260 type_register_static(&idau_interface_type_info);
2262 while (info->name) {
2263 cpu_register(info);
2264 info++;
2267 #ifdef CONFIG_KVM
2268 type_register_static(&host_arm_cpu_type_info);
2269 #endif
2272 type_init(arm_cpu_register_types)